Unit2:RationalsandIrrationals StudentTrackingSheet Math9Principles Name:_________________________ Block:____ What I can do for this unit: 2-1 2-2 After Practice After Review How I Did I can convert rational numbers among their two main forms, fractions and decimals (terminating or repeating). I can convert between percent, fraction, and decimal form for rational numbers. 2-3 I can identify a real number as rational or irrational and, if rational, write it as a reduced fraction or integer. 2-4 I can prime factor natural numbers, determine whether they are perfect squares, and if they are evaluate their square root. 2-5 I can evaluate areas and circumferences of circles using radius, diameter, and Ο. Value Description Not Yet Meeting Expectations I just donβt get it. Minimally Meeting Expectations Barely got it, I need some prompting to help solve the question. Meeting Expectations Got it, I understand the concept without help or prompting. Exceeding Expectations Wow, nailed it! I can use this concept to solve problems I may have not seen in practice. I also get little details that may not be directly related to this target correct. Unit 2: Rationals and Irrationals Day 1 Math 9 Principles 2-1: I can convert rational numbers among their two main forms, fractions and decimals (terminating or repeating). Find the value of π₯ in each pair of equivalent fractions. 1) 3 π₯ = 63 7 2) 2 3 = 16 π₯ = 3) 5 6 π₯ = 48 4) 3 8 = 33 5) Reduce to lowest terms. 6) 10) 14) 12 18 = 27 7) = 12 11) 18 15) = 48 6 4 = 32 8) = 12) = 52 16) 14 32 27 = 9) = 13) = 42 17) 45 15 10 28 18 24 36 15 51 68 = = = Write the decimal equivalent of each. 18) 22) 26) 30) 1 = 2 19) 3 = 4 23) 4 = 5 27) 7 31) 8 = 1 3 1 5 1 8 = 20) = 24) = 28) 32) 2 3 2 5 3 8 = 21) = 25) = 29) 33) 1 4 3 5 5 8 = = = π₯ Write the fractional equivalent of each. 34) 0.3 = 35) 0.45 = 36) 0.225 = 37) 0.5 = Μ Μ Μ = 38) 0. Μ 12 39) 0. Μ Μ Μ Μ Μ 125 = 40) 0. 6Μ = Μ Μ Μ Μ = 41) 2. 06 42) 0.Μ Μ Μ Μ Μ Μ 081 = 43) 0.7 = 44) 0.55 = 45) 0.075 = 46) 0. 8Μ = Μ Μ Μ Μ = 47) 0. 27 Μ Μ Μ Μ Μ = 48) 0. 018 49) 0.2 = 50) 0.28 = 51) 0.8 = 52) 0.65 = 53) 0.54 = 54) 0.72 = 55) 0.48 = 56) 0.125 = 57) 0.625 = 58) 0.12 = 59) 0.055 = 60) 0.875 = 61) 0.325 = 62) 0. 3Μ = 63) 0. 5Μ = Μ Μ Μ = 64) 0. Μ 09 Μ Μ Μ = 65) 0. Μ 63 Μ Μ Μ = 66) 0. Μ 60 67) 1.2 = 68) 2.8 = 69) 1.375 = 70) 3.25 = 71) 2.875 = 72) 0. Μ Μ Μ Μ Μ 036 = Μ Μ Μ Μ Μ = 73) 0. 108 Μ Μ Μ = 74) 2. Μ 09 75) 0.Μ Μ Μ Μ Μ 54 = Unit2:RationalsandIrrationalsDay2 Math9Principles 2-2: I can convert between percent, fraction, and decimal form for rational numbers. Write the following percentages as fractions in lowest terms. 1) 25% = 2) 85% = 3) 66. 6% = 4) 33% = 5) 33. 3% = 6) 12.5% = 7) 80% 8) 37.5% = 9) 40% = 10) 50% = 11) 55. 5% = 12) 87.5% = 13) 75% = 14) 62.5% = 15) 60% = Write the following decimals as fractions in lowest terms. 16) 0.6 = 17) 0.625 = 18) 0.75 = 19) 1. 3 = 20) 0. 8 = 21) 0.375 = 22) 0.25 23) 0.875 = 24) 3.4 = 25) 2.75 = 26) 5.6 = 27) 5. 6 = 28) 0. 207 = 29) 0. 03 = 30) 1. 45 = Fill in the missing portions of the chart with equivalent answers. All fractions must be in lowest terms. Use improper fractions if appropriate. # Percent Decimal Fraction 31) 7 9 32) 3 5 33) 2 7 8 4 3 5 2 1 4 34) 0.625 35) 0. 3 36) 0. 27 37) 1 33 % 3 38) 575% 39) 1 11 % 9 40) 1 37 % 2 41) 1. 6 42) 0.875 43) 44) 45) 155. 5% Unit2:RationalsandIrrationalsDay3 Math9Principles 2-3: I can identify a real number as rational or irrational and, if rational, write it as a reduced fraction or integer. If the number is rational, write it as an integer or fraction in lowest terms. Otherwise write irrational. 1) β20 2) 0. 2 3) 0. 4 4) β160 5) β576 6) 0. 06 7) 80% 8) 37.5% 9) 40% 10) 0. 12 11) 0.2121121112 β¦ 12) 0.06 13) β0.25 16) 5 14) 7 15) 17) 4 18) 3 β8 19) β0.64 20) 0. 45 21) β291 22) β441 23) β0.0324 24) 25) β0.4 26) β0.04 27) β0.001 28) 0. 63 29) 30) 0. 1 12 Unit2:RationalsandIrrationalsDay4 Math9Principles 2-4: I can prime factor natural numbers, determine whether they are perfect squares, and if they are evaluate their square root. Test to see if each number below is divisible by any of 2, 3, 4, 5, 6, 9, or 10. Specify which ones are factors for each number. 1) 2025 2) 120 3) 1215 4) 432 5) 2736 6) 9600 7) 51285 8) 3574 9) 95232 Prime factor each number and determine whether it is a perfect square. If it is, state the square root. No Calculators! 10) 2304 11) 1152 12) 1764 13) 3328 14) 8400 15) 32 400 16) 5292 17) 360 000 18) 676 19) 4332 20) 900 21) 84100 Unit 2: Rationals and Irrationals Day 5 Math 9 Principles 2-5: I can evaluate areas and circumferences of circles using radius, diameter, and Ο. Complete each row of this char for circles without using a calculator. No decimals, fractions only. # Radius 1) 5 2) 2 5 Diameter 3) 14 4) 0.6 5) 1 4 Circumference 6) 18π 7) 2π 3 Area 8) 16π 9) 36π 10) 9π 16 9π 2 11) 12) 5 4 13) What is the area of a pizza with a diameter of 12 inches? 14) What is the area of a circle with a circumference of 50π? 15) A Ferris wheel has a radius of 60 feet. What is its circumference? 16) What is the diameter and circumference of a plate that has an area of 64π? 17) The spray from a spinning lawn sprinkler makes a circle with a 32β radius. What is the circumference and area of the circle? 1 18) What is the area of a CD with a radius of 2 4 "? 19) Gears on a bicycle are just circles in shape. One gear has a diameter of 6β, and a smaller one has a diameter of 3β. How much bigger is the circumference of the larger one compared to the smaller one? Unit 2: Rationals and Irrationals Key Math 9 Principles 2-1: 1) 27 3 13) 8 2) 24 3) 40 8 2 14) 13 15) 3 25)0.8 26)0.125 125 2 27 18 6 37)33 11 8 65) 3 3 7) 5 9 8) 4 9) 4 10) 16 7 51 28)0.625 3 7 29)0.875 11 3 8 3 11 7 4 4 23 38) 37 39) 10 40) 20 41) 40 42) 9 12 14 5 64) 3 6)2 16) 68 17)0.5 18)0. 3Μ 19)0. 6Μ 20)0.25 21)0.75 1 49) 50 50) 25 51) 25 52) 8 63) 5 2 5) 3 27)0.375 68 35) 999 36) 3 4) 88 66) 13 4 5 53)8 67) 54) 25 55) 200 56) 8 23 8 3 11) 2 12) 12 5 22)0.2 23)0.4 24)0.6 3 9 2 1 9 1 7 4 1 7 30) 10 31) 20 32) 40 33) 2 3 43) 11 44) 111 45) 5 13 1 5 57) 40 58) 3 59) 9 46) 25 47) 5 1 4 3 13) 4 11 25) 4 17 2 2) 20 5 8 28 26) 5 33 3) 3 14) 3 5 17 3 15) 27) 5 3 5 23 28) 111 16) 1 35) 33. 3Μ , 3 34) 62.5%, 8 2 3 41)166. 6Μ %, 1 ππ 1 6 68) 111 69) 37 70) 11 71) 11 1 4) 100 5) 3 5 3 4 6) 8 5 8 17) 3 4 16 30) 11 18) 1 29) 33 3 7) 5 19) 2 8) 8 4 3 20) 1 9) 5 8 9 5 10) 2 3 8 21) 22) 11) 9 1 4 23) 31) 77. 7Μ %, 0. 7Μ 32)60%, 0.6 7 8 7 12) 8 24) 17 5 33) 287.5%, 2.875 Μ Μ Μ %, 3 37) 0. 3Μ , 1 38) 5.75, 5 3 ππ 23 39)0. 1Μ , 1 40)0.375, 3 36) 27. Μ 27 11 3 4 4 9 8 42)87.5%, 7 8 5 9 43)460%, 4.6 44)225%, 2.25 45)1. 5Μ , 1 ππ 14 9 2-3: 2 9 3) 2 3 1) irrational 2) 11) irrational 12) 50 13) 2 22) 21 23) 50 24) irrational 3 4) irrational 1 8 14) 3 9 5) 24 8 15) 5 9 16) 4 25) irrational 6) 2 33 17) 11 5 1 26) 5 7) 4 5 8) 18) 5 3 8 9) 4 19) 5 27) irrational 2 5 10) 4 33 5 20) 11 21) irrational 7 1 28) 11 29) 3 7 30) 2 2-4: 1) 3,5,9 2) 2,3,4,5,6,10 3) 3,5,9 4) 2,3,4,6,9 5) 2,3,4,6,9 6) 2,3,4,5,6,10 7) 3,5 8) 2 9)2,3,4,6 10)48 11)not a p.c 12) 42 13) not a p.c 14)not a p.c 15) 180 16)not a p.c 17) 600 18) 26 19) not a p.c 20) 30 21) 290 2-5: 1) 10, 10π, 25π 1 2 π 4 4 4π 2) 5 , 5 π, 25 3 3) 7, 14π, 49π 4) 10 , 3 3 3π 2 7) 3 , 3 , 9 8)4, 8, 8π 9) 6, 12, 12π 10) 4 , 2 , 14) 625π 15) 120π 16) π = 16, πΆ = 16π 3π 9π , 5 100 1 π π 5) 8 , 4 , 64 9 9 81π 16 11) 4 , 2 , 19)πΆ1 = 6π, πΆ2 = 3π. The larger gear is 2 times bigger than the smaller gear 6)9, 18, 81π 5 5π 25π , 4 64 12) 8 , 17) πΆ = 64π, π΄ = 1024π 13 48) 20 20 60) 11 61) 11 62) 33 2-2: 1) 4 34) 33 18) π΄ = 13) 36π 81π 16
© Copyright 2026 Paperzz