AP Calc Notes: DI – 7 Functions Defined as Integrals/Derivatives of Integrals Let f be continuous on the interval [a, b]. Then the area under the curve from a to x is given by y A(x) = ∫ x a f f(t)dt ΔA A dA A(x + h) - A(x) = lim h→0 dx h x x+h a ΔA f(x)h = lim h→0 h h →0 h = lim b t Note: ΔA ≈ f(x)h dA = f(x) dx Fundamental Theorem of Calculus Part I: d x f(t)dt = f(x) dx ∫ a Algebraically integrate, then differentiate. Compare your answer to the original integral x d tdt dx ∫1 d dx x d cos tdt dx π∫ d dx 5 x3 ∫ d dx tdt 1 7 x2 sin x ∫ tdt 1 ex d cos tdt dx 2∫π ∫ cos tdt π 2 What’s a formula for d g (x) f(t)dt ? dx ∫ a f(g ( x ) )g'( x ) Where did the t go? Recall: b Why doesn’t it seem to matter what value of the lower limit is? ∫ f ( t ) dt = F ( b ) − F ( a ) a F ' (t ) = f (t ) Why is there sometimes another function multiplied and sometimes not? Ex: Evaluate a. d 5x cos t 2 dt ∫ dx −1 = cos (5x)2 (5) = 5cos(25x2 ) by the chain rule. b. d 3x2 cos t 2 dt dx ∫ −1 ( = 6xcos 3x2 c. 2 d −1 cos t 2 dt ∫ dx x = d. ) x d (-∫ cos t2 ) = - cos x2 −1 dx d x2 cos t 2 dt ∫ dx x a d = ( ∫ cos t2 + dx x ∫ x d cos t ) = (-∫ cos t2 + dx a a x 2 = cos (x ) (2x)- cos x 2 2 2 2 = 2x cos x4 – cos x2 e. d 2 cos t 2 dt ∫ dx −1 = 0 because ∫ 2 −1 cos t2dt is a constant. ∫ x 2 a cos t2 ) x Ex: Find the absolute extrema of f ( x ) = ∫ et cos 2tdt on the interval [0, π]. 0 Find critical points: f' = e cos2x = 0 when x = π/4 and x = 3π/4. x Check critical points and endpoints in table: 0 The absolute minimum is -4.4203 at x = 3π/4; π the absolute maximum is 4.4281 at x = π. 4 3π 4 x See graph of f below. x f ( x ) = ∫ et cos 2tdt 0 0 0.6773 -4.4203 4.4281 π y 5 4 3 2 1 x π/4 −1 −2 −3 −4 5 π/2 3π/4 π
© Copyright 2026 Paperzz