Separating salinity increases due to saltwater intrusion from that due

Separating salinity increases due to saltwater
intrusion from that due to evaporation
by a dual-isotope model:
a case study in the Shark River Slough
Lu Zhai, Rafael Travieso, John Kominoski,
Li Zhang, Evelyn Gaiser, Leo Sternberg*
Greater Everglades Priority Ecosystem program.
Mixing: Saltwater
Intrusion
Salinity of Coastal
Ecosystem
Global Warming
Evaporation
Soil: marsh or beach
Water : river or lake
Evaporation
Freshwater inflow
Mixing
Inland
Saltwater
Intrusion
Ocean
Costal River
Evaporation
Freshwater inflow
Mixing
Saltwater Intrusion
Costal River
Shark River Slough
river of grass
Evaporation
Freshwater inflow
Mixing
Costal River
Saltwater Intrusion
Freshwater
Mixing
Brackish-water
Evaporation
Final-water
Freshwater
Mixing
Brackish-water: V
Evaporation
Final-water:
V*f
Freshwater
Mixing
Brackish-water: V
Evaporation
Final-water:
V*f
Remaining fractionation of water after evaporation.
Freshwater
Salinity = 0
Mixing
Brackish-water
Evaporation
Final Water
Salinity
0
Freshwater
Salinity = 0
Salinity
Mixing
Salinity = SM
Mixing
Brackish-water
Salinity = SM
Evaporation
Final Water
0
Freshwater
Salinity = 0
Evaporation
Salinity
Mixing
Salinity = SM
Mixing
Brackish-water
Salinity = SM
Evaporation
Final Water
Salinity = SME
Salinity = SME
0
Freshwater
Salinity=0
Mixing
Brackish-water:
V
Salinity=SM
Evaporation: (1-f)
Final Water:
V*f
Salinity=SME
Salt Mass Balance:
V * SM = V * f * SME
Freshwater
Salinity=0
Salt Mass Balance:
V * SM = V * f * SME
Mixing
Brackish-water:
V
Salinity=SM
Evaporation: (1-f)
Final Water:
V*f
Salinity=SME
SM = f * SME
Salinity increase from Evaporation:
𝑆𝑀𝐸 βˆ’ 𝑆𝑀
=
𝑆𝑀𝐸
𝑆𝑀𝐸 βˆ’ 𝑓 × π‘†π‘€πΈ
=
𝑆𝑀𝐸
=1βˆ’π‘“
Salinity increase from Mixing:
=1βˆ’ 1βˆ’π‘“
=𝑓
f can be quantified by a duel-isotope
based method
Water β†’ Vapor
More lighter isotopes evaporate to vapor
More heavier isotopes left in the remaining water
Ξ΄18O or Ξ΄D of remaining water will increase
Rayleigh Distillation:
changes of Ξ΄18O and Ξ΄D of remaining water during evaporation
πœΉπ’‡ 𝑢 = 𝜹𝟎 𝑢 + πœΊπ‘Ά βˆ™ π₯𝐧 𝒇
πœΉπ’‡ 𝑫 = 𝜹𝟎 𝑫 + πœΊπ‘« βˆ™ π₯𝐧 𝒇
𝜺 is enrichment factor
d2H
Rainwater
Ξ΄2H = 8.6 Ξ΄18O + 11
Surface water from lake or river
d18O
d2H
Ξ΄2H = 8.6 Ξ΄18O + 11
d18O
Ξ΄2H = 8.6 Ξ΄18O + 11
d2H
deuterium excess (d) = Ξ΄D - 8.6 Ξ΄18O
In south Florida, the average d of rainwater is 11.
d of surface water will decrease with evaporation.
2
1
d18O
d2H
d1
deuterium excess (d) = Ξ΄D - 8.6 Ξ΄18O
d2 In south Florida, the average d of rainwater is 11.
d of surface water will decrease with evaporation.
0
2
1
d18O
0
𝛿𝑓 𝑂 = 𝛿0 𝑂 + πœ€π‘‚ βˆ™ ln 𝑓
𝛿𝑓 𝐷 = 𝛿0 𝐷 + πœ€π· βˆ™ ln 𝑓
deuterium excess (d) = Ξ΄D - 8.6 Ξ΄18O
drain=11
dsample will decrease with evaporation.
deuterium excess (di) = Ξ΄Di - 8.6 Ξ΄18Oi
𝛿𝑓 𝑂 = 𝛿0 𝑂 + πœ€π‘‚ βˆ™ ln 𝑓
𝛿𝑓 𝐷 = 𝛿0 𝐷 + πœ€π· βˆ™ ln 𝑓
deuterium excess (d) = Ξ΄D - 8.6 Ξ΄18O
drain=11
dsample will decrease with evaporation.
deuterium excess (di) = Ξ΄Di - 8.6 Ξ΄18Oi
= (𝛿0 𝐷 + πœ€π· βˆ™ ln 𝑓) βˆ’ 8.6(𝛿0 𝑂 + πœ€π‘‚ βˆ™ ln 𝑓)
𝛿𝑓 𝑂 = 𝛿0 𝑂 + πœ€π‘‚ βˆ™ ln 𝑓
𝛿𝑓 𝐷 = 𝛿0 𝐷 + πœ€π· βˆ™ ln 𝑓
deuterium excess (d) = Ξ΄D - 8.6 Ξ΄18O
drain=11
dsample will decrease with evaporation.
deuterium excess (di) = Ξ΄Di - 8.6 Ξ΄18Oi
= (𝛿0 𝐷 + πœ€π· βˆ™ ln 𝑓) βˆ’ 8.6(𝛿0 𝑂 + πœ€π‘‚ βˆ™ ln 𝑓)
𝑓𝑖 = 𝑒
𝑑𝑖 βˆ’π›Ώ0 𝐷+8.6𝛿018 𝑂 / 8.6πœ€π‘‚βˆ’πœ€π·
𝛿𝑓 𝑂 = 𝛿0 𝑂 + πœ€π‘‚ βˆ™ ln 𝑓
𝛿𝑓 𝐷 = 𝛿0 𝐷 + πœ€π· βˆ™ ln 𝑓
deuterium excess (d) = Ξ΄D - 8.6 Ξ΄18O
drain=11
dsample will decrease with evaporation.
deuterium excess (di) = Ξ΄Di - 8.6 Ξ΄18Oi
=(𝛿0 𝐷 + πœ€π· βˆ™ ln 𝑓) βˆ’ 8.6(𝛿0 𝑂 + πœ€π‘‚ βˆ™ ln 𝑓)
𝑓𝑖 = 𝑒
=𝑒
𝑑𝑖 βˆ’π›Ώ0 𝐷+8.6𝛿018 𝑂 / 8.6πœ€π‘‚βˆ’πœ€π·
𝑑𝑖 βˆ’π‘‘π‘Ÿπ‘Žπ‘–π‘› / 8.6πœ€π‘‚βˆ’πœ€π·
𝛿𝑓 𝑂 = 𝛿0 𝑂 + πœ€π‘‚ βˆ™ ln 𝑓
𝛿𝑓 𝐷 = 𝛿0 𝐷 + πœ€π· βˆ™ ln 𝑓
deuterium excess (d) = Ξ΄D - 8.6 Ξ΄18O
drain=11
dsample will decrease with evaporation.
deuterium excess (di) = Ξ΄Di - 8.6 Ξ΄18Oi
=(𝛿0 𝐷 + πœ€π· βˆ™ ln 𝑓) βˆ’ 8.6(𝛿0 𝑂 + πœ€π‘‚ βˆ™ ln 𝑓)
𝑓𝑖 = 𝑒
=𝑒
=𝑒
𝑑𝑖 βˆ’π›Ώ0 𝐷+8.6𝛿018 𝑂 / 8.6πœ€π‘‚βˆ’πœ€π·
𝑑𝑖 βˆ’π‘‘π‘Ÿπ‘Žπ‘–π‘› / 8.6πœ€π‘‚βˆ’πœ€π·
𝑑𝑖 βˆ’11 / 8.6πœ€π‘‚βˆ’πœ€π·
𝛿𝑓 𝑂 = 𝛿0 𝑂 + πœ€π‘‚ βˆ™ ln 𝑓
𝛿𝑓 𝐷 = 𝛿0 𝐷 + πœ€π· βˆ™ ln 𝑓
deuterium excess (d) = Ξ΄D - 8.6 Ξ΄18O
drain=11
dsample will decrease with evaporation.
deuterium excess (di) = Ξ΄Di - 8.6 Ξ΄18Oi
= (𝛿0 𝐷 + βˆ†π· βˆ™ ln 𝑓) βˆ’ 8.6(𝛿0 𝑂 + βˆ†π‘‚ βˆ™ ln 𝑓)
𝑑𝑖 βˆ’π›Ώ0 𝐷+8.6𝛿018 𝑂 / 8.6πœ€π‘‚βˆ’πœ€π·
𝑓𝑖 = 𝑒
𝑑𝑖 βˆ’π‘‘π‘Ÿπ‘Žπ‘–π‘› / 8.6πœ€π‘‚βˆ’πœ€π·
=𝑒
𝑑𝑖 βˆ’11 / 8.6πœ€π‘‚βˆ’πœ€π·
=𝑒
However, in addition to evaporation,
saltwater intrusion also can affect Ξ΄O and Ξ΄D
values.
Stable isotope based model
of the mixing and evaporation processes:
Visualization
dD
n
Rain
d18O
dD
n
Fresh
Rain
d18O
dD
Ocean Water
Mixing
n
Fresh
Rain
d18O
Ocean Water
Brackish
dD
Mixing
n
Fresh
Rain
d18O
Evaporation
This is just our model strategy, but does nature work as we think?
Field data in October from SRS
There are 6 sites along SRS, SRS 1~6.
SRS 5 and 6 are brackish water site.
Conceptual figure
Field data figure
Conceptual figure
Field data figure
Ocean Water
Brackish
Fresh
Rain
Conceptual figure
Field data figure
Ocean Water
Brackish
Fresh
Rain
The relative locations of different water match!
Begin to calculate the mixing and evaporation
based on the isotope-based model
Step 1
Fresh Ocean Mixing Water Line:
FOMWL (Blue Line)
Step 2
Brackish Evaporation Water Line:
BEWL (Green Line)
Step 2
Same
slope
Brackish Evaporation Water Line:
BEWL (Green Line)
Step 3: Intersect of FOMWL and
BEWL
18
𝑑𝑖 = 𝛿𝐷𝑖 βˆ’ 8.6 βˆ™ 𝛿 𝑂 𝑖
𝑑𝑖 βˆ’π›Ώ0 𝐷+8.6𝛿018 𝑂 /
𝑓𝑖 = 𝑒
8.6βˆ†18 π‘‚βˆ’βˆ†π·
Salinity of SRS6: ~90% from Saltwater intrusion,
~10% form Evaporation in Oct
On-going work
β€’ Collecting river and rain water of SRS .
β€’ Collecting ocean water from Gulf.
β€’ SRS weather data.
β€’ From Oct2016 to Oct2017: cover wet and dry season
β€’ Long-term simulation of the contribution changes under sea level rise
and increasing temperature
Thank you!