Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 Chapter 16 16-1 Carbon dioxide is not strongly bonded by water molecules, and thus is readily volatilized from aqueous solution by briefly boiling. On the other hand, HCl molecules are fully dissociated into H3O+ and Cl- when dissolved in water. Neither the H3O+ nor the Clspecies is volatile. 16-2 Nitric acid is seldom used as a standard because it is an oxidizing agent and thus will react with reducible species in titration mixtures. 16-3 Primary standard Na2CO3 can be obtained by heating primary standard grade NaHCO3 for about an hour at 270C to 300C. The reaction is 2 NaHCO 3 ( s ) Na 2 CO3 ( s) H 2 O( g ) CO2 ( g ) 16-4 Near the equivalence point in the titration of Na2CO3, the solution contains a buffer made up of a high concentration of H2CO3 and a small amount of Na2CO3. Boiling removes the H2CO3 as CO2, which causes the pH of the solution to rise sharply (see Figure 16-1). Then the change in pH, when titration is resumed, is much greater than it would otherwise be. Thus, a sharper end point results. 16-5 Let us consider the standardization of 40 mL of 0.010 M NaOH using KH(IO3)2, 1 mmol KH( IO 3 ) 2 390 g KH( IO3 ) 2 0.010 mmol NaOH 40 mL NaOH 0.16 g KH( IO 3 ) 2 mL 1 mmol NaOH 1000 mmol Now using benzoic acid, 1 mmol C 6 H 5COOH 0.010 mmol NaOH 40 mL NaOH mL 1 mmol NaOH 122 g C 6 H 5COOH 0.049 g C 6 H 5COOH 1000 mmol Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 The primary standard KH(IO3)2 is preferable because the relative weighing error would be less with a 0.16 g sample of KH(IO3)2 as opposed to 0.049 g sample of benzoic acid. A second reason for preferring KH(IO3)2 is because it is a strong acid and benzoic acid is not. A smaller titration error occurs when using a strong acid as a primary standard. 16-6 If the sodium hydroxide solution is to be used for titrations with an acid-range indicator, the carbonate in the base solution will consume two analyte hydronium ions just as would the two hydroxides lost in the formation of Na2CO3. 16-7 Unless a reducing agent is introduced into the H2SO4 prior to digestion, nitro-, azo- and azoxy- groups will be partially converted to N2 or nitrogen oxides that are then lost by volatilization. Heterocyclic compounds containing nitrogen also yield low results in many instances because these compounds tend to be incompletely decomposed under the usual digestion procedure. 16-8 (a) 0.15 mole KOH 56.1 g KOH 2.00 L 17 g KOH L mole Dissolve 17 g KOH in water and dilute to 2.00 L total volume. (b) 0.015 mole Ba(OH) 2 8H 2 O 315 g Ba(OH) 2 8H 2 O 2.00 L 9.5 g Ba(OH) 2 8H 2 O L mole Dissolve 9.5 g Ba(OH)2·8H2O in water and dilute to 2.00 L total volume. (c) 0.200 mole HCl 36.46 g HCl mL reagent 100 g reagent 2.00 L 120 mL reagent L mole 1.0579 g reagent 11.50 g HCl Dilute 120 mL reagent to 2.00 L total volume. Fundamentals of Analytical Chemistry: 8th ed. 16-9 Chapter 16 (a) 0.250 mmol H 2SO 4 98.08 g H 2SO 4 mL reagent 100 g reagent 500.0 mL mL 1000 mmol 1.1539 g reagent 21.8 g H 2SO 4 48.7 mL reagent Dilute 48.7 mL reagent to 500.0 mL total volume. (b) 0.30 mmol NaOH 40.0 g NaOH 500.0 mL 6.0 g NaOH mL 1000 mmol Dissolve 6.0 g NaOH in water and dilute to 500.0 mL total volume. (c) 0.08000 mmol Na 2 CO 3 105.99 g Na 2 CO 3 500.0 mL 4.24 g Na 2 CO 3 mL 1000 mmol Dissolve 4.24 g Na2CO3 in water and dilute to 500.0 mL total volume. 16-10 For the first data set, 0.7987 g KHP csample1 1000 mmol KHP 1 mmol NaOH 204.22 g 1 mmol KHP 0.10214 M NaOH 38.29 mL NaOH The results below were calculated in the same way. Sample 1 csample i, M 0.10214 csample i2 1.043310-2 2 0.10250 1.050610-2 3 0.10305 1.061910-2 4 0.10281 1.057010-2 c samplei 0.4105 c samplei 2 4.2128 102 Fundamentals of Analytical Chemistry: 8th ed. (a) csamplei Chapter 16 0.4105 0.1026 M NaOH 4 (b) ( 4.2128 10 2 ) (0.4105) 2 / 4 3 3.9 10 4 CV 100% 0.38% 0.1026 s (c) 4.657 10 7 3.9 10 4 3 Spread, w = 0.10305 – 0.10214 = 0.00091 16-11 For the first data set, 0.2068 g Na 2 CO3 csample1 1000 mmol Na 2 CO3 2 mmol HClO 4 105.99 g 1 mmol Na 2 CO3 0.10747 M HClO 4 36.31 mL HClO 4 The results below were calculated in the same way. Sample csample i, M csample i2 1 2 0.10747 0.10733 1.1549910-2 1.1519610-2 3 0.10862 1.1798710-2 4 0.10742 1.1538510-2 c samplei (a) csamplei 0.43084 0.43084 0.1077 M HClO 4 4 c samplei 2 4.64069 102 Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 (b) ( 4.64069 10 2 ) (0.43084) 2 / 4 1.11420 10 6 6.1 10 4 3 3 4 6.1 10 CV 100% 0.57% 0.1077 s (c) 0.10862 0.10747 0.89 0.10862 0.10733 Q crit 0.829 at the 95% confidence level Q Q crit 0.926 at the 99% confidence level Thus, 0.10862 could be rejected at 95% level but must be retained at 99% level. With phenolphthalein, the CO32- consumes 1 mmol H3O+ per mmol CO2. Thus, 16-12 (a) the effective amount of NaOH is lowered by 11.2 mmol, and 1 mmol NaOH 0.1500 mmol NaOH 1000 mL 11.2 mmol CO 2 mL 1 mmol CO 2 cbase 1000 mL 0.1388 M NaOH (b) When bromocresol green is the indicator, 2 CO3 2H 3O H 2 CO3 2H 2 O and the effective concentration of the base is unchanged. Thus, cbase 0.1500 M Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-13 As in part (a) of Problem 16-12, 1000 mmol CO 2 1 mmol NaOH 0.1019 mmol NaOH 500 mL 0.652 g CO 2 mL 44.01 g 1 mmol CO 2 cbase 500 mL 0.07227 M NaOH 0.07227 0.1019 100% 29% 0.1019 The relative error in the determination of acetic acid will be the same as the relative error relative carbonate error in molarity in the molarity or -29%. 16-14 (a) 0.6010 g AgCl 1000 mmol AgCl 1 mmol HCl 143.32 g 1 mmol AgCl 0.08387 M HCl 50.00 mL HCl (b) 0.04010 mmol Ba (OH ) 2 2 mmol HCl 25.00 mL Ba (OH ) 2 mL 1 mmol Ba (OH ) 2 0.1007 M HCl 19.92 mL HCl (c) 0.2694 g Na 2 CO3 1000 mmol Na 2 CO3 2 mmol HCl 105.99 g 1 mmol Na 2 CO3 0.1311 M HCl 38.77 mL HCl 16-15 (a) 0.1684 g BaSO 4 1000 mmol BaSO 4 1 mmol Ba (OH ) 2 233.39 g 1 mmol BaSO 4 0.01443 M Ba (OH ) 2 50.00 mL Ba (OH ) 2 Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 (b) 0.4815 g KHP 1000 mmol KHP 1 mmol Ba (OH ) 2 204.22 g 2 mmol KHP 0.04008 M Ba (OH ) 2 29.41 mL Ba (OH ) 2 (c) mmol C 6 H 5COOH 0.3614 g C 6 H 5COOH 1000 mmol C 6 H 5COOH 2.9594 mmol 122.12 g 0.05317 mmol HCl 4.13 mL HCl 0.21959 mmol mL total mmol acid 2.9594 0.21959 3.17899 mmol HCl 1 mmol Ba (OH ) 2 2 mmol acid 0.03179 M Ba (OH ) 2 50.00 mL Ba (OH ) 2 3.17899 mmol acid 16-16 (a) For 35 mL, 1 mmol Na 2 CO 3 105.99 g Na 2 CO 3 0.150 mmol HClO 4 35 mL HClO 4 0.28 g Na 2 CO 3 mL 2 mmol HClO 4 1000 mmol Substituting 45 mL in the equation above gives 0.36 g Na2CO3. Thus, the range of sample masses is 0.28 to 0.36 g Na 2 CO3 . Proceeding in the same way as in part (a), we obtain (b) 0.18 to 0.23 g Na 2C2O4 (c) 0.85 to 1.1 g benzoic acid (d) 0.82 to 1.1 g KH(IO3 ) 2 (e) 0.17 to 0.22 g TRIS (f) 1.1 to 1.4 g Na 2 B4 O 7 ·10H 2 O Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-17 In Example 16-1, we found that 20.00 mL of 0.0200 M HCl requires 0.048 g TRIS, 0.021 g Na2CO3 and 0.076 g Na2B4O7·10H2O. In each case, the absolute standard deviation in computed molarity of 0.0200 M HCl is TRIS: s M 0.0001 0.0200 M 4 105 M 0.048 Na2CO3: s M 0.0001 0.0200 M 1 10 4 M 0.021 g (Note: In the first printing of the text, the answer in the back of the book was in error.) Na2B4O7·10H2O: s M 0.0001 0.0200 M 3 10 5 M 0.076 g Proceeding as above, we calculate the relative standard deviation in the computed molarity of 30.00 mL, 40.00 mL and 50.00 mL of 0.0200 M HCl and the results are shown in the table below. V0.0200 M HCl (mL) Calculated masses (g) sM (0.0200 M HCl) 30.00 TRIS Na2CO3 Na2B4O7·10H2O 0.073 0.032 0.11 310-5 610-5 210-5 40.00 TRIS Na2CO3 Na2B4O7·10H2O 0.097 0.042 0.15 210-5 510-5 110-5 50.00 TRIS Na2CO3 Na2B4O7·10H2O 0.12 0.053 0.19 210-5 410-5 110-5 Fundamentals of Analytical Chemistry: 8th ed. 16-18 (a) Chapter 16 In each case, mmol NaOH 0.0400 mmol NaOH 30.00 mL 1.20 mmol NaOH mL For KHP : 1.20 mmol NaOH 1 mmol KHP 204.22 g KHP 0.245 g KHP 1 mmol NaOH 1000 mmol For KH( IO 3 ) 2 : 1.20 mmol NaOH 1 mmol KH( IO 3 ) 2 389.91 g KH( IO 3 ) 2 0.468 g KH( IO 3 ) 2 1 mmol NaOH 1000 mmol For benzoic acid : 1.20 mmol C 6 H 5COOH 1 mmol C 6 H 5COOH 122.12 g C 6 H 5COOH 0.147 g C 6 H 5COOH 1 mmol NaOH 1000 mmol (b) For KHP : 0.002 g sM 100% 0.82% 0.245 g For KH( IO 3 ) 2 : 0.002 g 100% 0.43% 0.468 g For benzoic acid : 0.002 g sM 100% 1.4% 0.147 g sM 16-19 0.03776 mmol NaOH 21.48 mL NaOH 0.81109 mol NaOH mL 1 mmol H 2 C 4 H 4 O 6 150.09 g H 2 C 4 H 4 O 6 0.81109 mol NaOH 2 mmol NaOH 1000 mmol 100 mL 50.00 mL 0.1217 g H 2 C 4 H 4 O 6 per 100 mL mol NaOH Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-20 0.09600 mmol NaOH 1 mmol HOAc 60.05 g HOAc 34.88 mL NaOH mL 1 mmol NaOH 1000 mmol 100% 50.0 mL 25.00 mL 250 mL 4.02%( w / v ) HOAc 16-21 For each part, we may write 0.1081 mmol HCl 31.64 mL HCl mmol HCl mL 4.5978 0.7439 g sample g sample (a) 4.5978 mmol HCl 1 mmol Na 2 B4 O 7 201.22 g Na 2 B4 O 7 100% 46.26% Na 2 B4 O 7 g sample 2 mmol HCl 1000 mmol Proceeding in the same way (b) mmol HCl 1 mmol Na 2 B4 O 7 10H 2 O 381.37 g Na 2 B4 O 7 10H 2 O 100% g sample 2 mmol HCl 1000 mmol 87.67% Na 2 B4 O 7 10H 2 O 4.5978 (c) 4.5978 mmol HCl 1 mmol B2 O 3 69.62 g B2 O 3 100% 32.01% B2 O 3 g sample 1 mmol HCl 1000 mmol (d) 4.5978 mmol HCl 2 mmol B 10.811 g B 100% 9.94% B g sample 1 mmol HCl 1000 mmol Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-22 0.1178 mmol HCl 1 mmol OH 1 mmol HgO 216.59 g HgO 42.59 mL HCl mL 1 mmol HCl 2 mmol OH 1000 mmol 100% 0.6334 g sample 85.78% HgO 16-23 0.0996 mmol NaOH mmol NaOH consumed 50.0 mL NaOH mL 0.05250 mmol H 2SO 4 2 mmol NaOH 2.534 mmol NaOH 23.3 mL H 2SO 4 mL 1 mmol H SO 2 4 1 mmol HCHO 30.026 g HCHO 2.534 mmol NaOH 1 mmol NaOH 1000 mmol 100% 24.4% HCHO 0.3124 g sample 16-24 0.0514 mmol NaOH 1 mmol NaO 2 CC 6 H 5 144.1 g NaO 2 CC 6 H 5 14.76 mL NaOH mL 1 mmol NaOH 1000 mmol 100% 106.3 g sample 0.103% NaO 2 CC 6 H 5 16-25 Tetraethylthiuram disulfide, TS4 1 mmol TS4 4 mmol SO2 4 mmol H2SO4 8 mmol NaOH 0.03736 mmol NaOH 1 mmol TS4 296.54 g TS4 22.13 mL NaOH mL 8 mmol NaOH 1000 mmol 100% 0.4329 g sample 7.079% TS4 Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-26 0.2506 mmol HCl 1 mmol NH 3 17.031 g NH 3 40.38 mL HCl mL 1 mmol HCl 1000 mmol 100% 50.00 mL 25.00 mL 250 . 0 mL 3.447%( w / v ) NH 3 16-27 mmol HCl mmol NaOH 2 mmol CO 3 2 0.1140 mmol HCl 0.09802 mmol NaOH 50.00 mL HCl 24.21 mL NaOH mL mL 2 mmol CO 3 2 2 1.6635 mmol CO 3 molar mass carbonate salt 0.1401 g salt 1000 mmol g salt 84.22 2 2 mole 1.6635 mmol CO 3 mole CO 3 2 2 1 mole CO 3 g CO 3 g salt 60.01 molar mass of carbonate salt cation 84.22 2 1 mole salt mole mole CO 3 g cation 24.21 mole MgCO 3 with a molar mass of 84.31 g / mole appears to be a likely candidate. 16-28 0.1084 mmol NaOH 1 mmol NaA 28.62 mL NaOH 3.1024 mmol NaOH mL 1 mmol NaOH 0.2110 g NaA 1000 mmol g NaA molar mass NaA 68.01 3.1024 mmol NaA mole mole molar mass HA equivalent weight molar mass NaA atomic mass Na atomic mass H g HA 68.01 22.99 1.008 46.03 mole mmol NaA Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-29 mmol Ba (OH ) 2 mmol CO 2 mmol HCl 2 0.0108 mmol HCl 23.6 mL HCl 0.0116 mmol Ba (OH ) 2 mL mmol CO 2 50.0 mL Ba (OH ) 2 mL 2 1 4.526 10 mmol CO 2 0.4526 mmol CO 2 44.01 g CO 2 1000 mmol 3.00 L 1 L CO 2 10 6 ppm 3.35 10 3 ppm CO 2 1.98 g CO 2 16-30 1 mmol SO 2 64.06 g SO 2 0.00204 mmol NaOH 11.1 mL NaOH 7.253 10 4 g SO 4 mL 2 mmol NaOH 1000 mmol 1.00 L SO 2 1 min 1 7.253 10 4 g SO 4 10 6 ppm 0.848 ppm SO 2 30.0 L sample 10.0 min 2.85 g SO 2 16-31 ( NH 4 ) 3 PO4 12MoO3 ( s) 26OH HPO4 2 12MoO4 2 14H 2 O 3NH 3 ( g ) 0.2000 mmol NaOH mmol NaOH consumed 50.00 mL NaOH mL 0.1741 mmol HCl 14.17 mL HCl 7.533 mmol NaOH mL 1 mmol ( NH 4 ) 3 PO4 12 MoO 3 mmol P 7.533 mmol NaOH 26 mmol NaOH 1 mmol P 2.897 10 1 mmol P 1 mmol ( NH 4 ) 3 PO4 12 MoO 3 30.974 g P 1000 mmol 100% 6.333% P 0.1417 g sample 2.897 10 1 mmol P Fundamentals of Analytical Chemistry: 8th ed. 16-32 C6 H 4 (COOCH 3 ) 2 2OH C6 H 4 (COO) 2 Chapter 16 2 2CH 3OH C 6 H 4 (COOCH 3 ) 2 DMP 0.1031 mmol NaOH mmol NaOH consumed 50.00 mL NaOH mL 0.1251 mmol HCl 32.25 mL HCl 1.1205 mmol NaOH mL 1 mmol DMP mmol DMP 1.1205 mmol NaOH 0.5603 mmol DMP 2 mmol NaOH 194.19 g DMP 0.5603 mmol DMP 1000 mmol 100% 13.33% DMP 0.8160 g sample 16-33 Neohetramine, C16H 21ON 4 RN 4 1 mmol RN 4 3 mmol NH 3 4 mmol HCl 1 mmol RN 4 285.37 g RN 4 0.01522 mmol HCl 36.65 mL HCl mL 4 mmol HCl 1000 mmol 100% 25.98% RN 4 0.1532 g sample 16-34 (a) 0.1750 mmol HCl mmol HCl consumed 100.0 mL HCl mL 0.1080 mmol NaOH 11.37 mL NaOH 16.272 mmol HCl mL 16.272 mmol HCl 1 mmol CH 5 N 3 59.07 mg CH 5 N 3 3 mmol HCl mmol 80.10 mg / tablet 4 tablets 10 mg CH 5 N 3 4.536 10 1 kg 1 tablet 100 lb 5.68 tablets or 6 tablets kg lb 80.10 mg Proceeding in the same way as part (a), we find the results for parts (b) and (c) in the no. tablets spreadsheet that follows. Fundamentals of Analytical Chemistry: 8th ed. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 A Problem 16-34 B C Conc. HCl, M Vol. HCl, mL Conc. NaOH, M Vol. NaOH, mL No. Tablets 0.1750 100.0 0.1080 11.37 4 mg CH5N3/tablet 80.0991169 (a) (b) (c) Chapter 16 D E Patient Wt, lb Proper dose No. tablets 100 5.67546831 6 150 8.51320247 9 275 15.6075379 16 Spreadsheet Documentation B9 = (((B3*B4)-(B5*B6))*(1/3)*59.07)/B7 C12 = 10*B12*0.4546*(1/$B$9) D12 = ROUND(C12,0) 16-35 0.1224 mmol HCl 1 mmol N 14.007 g N 22.66 mL HCl mL mmol HCl 1000 mmol %N 100% 3.92% N 0.992 g sample 16-36 Multiplication factor for meat is 6.25 protein/N 6.25 protein 24.48% protein N 6.50 oz tuna 28.3 g 24.48 g protein 45.0 g protein / can can oz 100 g tuna 3.916% N Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-37 A B C 1 16-37 Nitrogen in a plant food preparation 2 Weight sample, g 3 Volume of HCl, mL 4 Conc. HCl, M 5 Vol. NaOH, mL 6 Conc. NaoH, M E F 0.5843 50.00 0.1062 11.89 0.0925 In Cell B8, the mmol of HCl/g sample is calculated by subtracting 7 8 D the mmol of NaOH used from the total mmol of HCl added and mmol HCl/g sample 9 7.20550 dividing by the sample weight. Molar masses Percentages 10 (a) N 11 (b) urea 12 (c) (NH4)2SO4 132.141 47.61 % (NH4)2SO4 13 (d) (NH4)3PO4 149.09 35.81 % (NH4)3PO4 14 Spreadsheet Documentation 15 B8=($B$3*$B$4-$B$5*$B$6)/$B$2 16 C10=$B$8*1*B10/1000*100 The percentages are calculated in Cells C10:C13 from the no. of 17 C11=$B$8*1/2*B11/1000*100 mmol of HCl/g sample times the no. of mmol compound/mmol HCl 18 C12=$B$8*1/2*B12/1000*100 times the molar mass of the compound divided by 1000 (mmolar 19 C13=$B$8*1/3*B13/1000*100 mass). 14.007 10.09 %N 60.06 21.64 % urea 16-38 0.05063 mmol 0.04917 mmol mmol HCl consumed 50.00 mL 7.46 mL 2.165 mmol mL mL 1 mmol N 14.007 g 2.165 mmol HCl 1 mmol HCl 1000 mmol %N 100% 3.335% N 0.9092 g % protein 3.335% 5.7 19.0% protein Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-39 In the first titration, 0.08421 mmol HCl mmol HCl consumed 30.00 mL mL 0.08802 mmol NaOH 10.17 mL 1.63114 mmol HCl mL and 1.63114 mmol HCl mmol NH 4 NO 3 2 mmol ( NH 4 ) 2 SO4 The amounts of the two species in the original sample are mmol NH 4 NO 3 2 mmol ( NH 4 ) 2 SO 4 1.63114 mmol 200 mL 6.5246 mmol (1) 50 mL In the second titration, 0.08421 mmol HCl mmol HCl consumed 30.00 mL mL 0.08802 mmol NaOH 14.16 mL 1.27994 mmol HCl mL and 1.27994 mmol HCl (2 mmol NH 4 NO3 ) 2 mmol ( NH 4 ) 2 SO4 The amounts of the two species in the original sample are ( 2 mmol NH 4 NO 3 ) 2 mmol ( NH 4 ) 2 SO 4 1.27994 mmol 200 mL 10.2395 mmol 25 mL (2) Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 Subtracting equation (1) from equation (2) gives mmol NH 4 NO 3 10.2395 mmol 6.52455 mmol 3.7149 mmol NH 4 NO 3 10.2395 mmol ( 2 3.7149 mmol) 1.4048 mmol ( NH 4 ) 2 SO 4 2 80.04 g NH 4 NO 3 3.7149 mmol NH 4 NO 3 1000 mmol % NH 4 NO 3 100% 24.39% NH 4 NO 3 1.219 g sample 132.14 g ( NH 4 ) 2 SO 4 1.4048 mmol ( NH 4 ) 2 SO 4 1000 mmol % ( NH 4 ) 2 SO 4 100% 1.219 g sample 15.23% ( NH 4 ) 2 SO 4 mmol ( NH 4 ) 2 SO 4 16-40 For the first aliquot, mmol HCl consumed mmol NaOH mmol KOH ( 2 mmol K 2 CO 3 ) 0.05304 mmol HCL mmol KOH ( 2 mmol K 2 CO 3 ) 40.00 mL HCl mL 0.04983 mmol NaOH 4.74 mL NaOH 1.8854 mmol mL For the second aliquot, 0.05304 mmol HCl 28.56 mL HCl 1.5148 mmol HCl( KOH ) mL 1.8854 mmol 1.5148 mmol K 2 CO 3 0.1853 mmol K 2 CO 3 2 mmol HCl mmol KOH 56.11 g KOH 1000 mmol 100% 69.84% KOH 50 mL 1.217 g 500 mL 1.5148 mmol KOH % KOH 138.21 g K 2 CO 3 1000 mmol 100% 21.04% K 2 CO 3 50 mL 1.217 g 500 mL 0.18530 mmol K 2 CO 3 % K 2 CO 3 100% (69.84% 21.04%) 9.12% H 2 O Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-41 For the first aliquot, mmol HCl mmol NaOH mmol NaHCO 3 ( 2 mmol Na 2 CO 3 ) 0.01255 mmol HCl mmol NaHCO 3 ( 2 mmol Na 2 CO 3 ) 50.00 mL HCl mL 0.01063 mmol NaOH 2.34 mL NaOH 0.6026 mmol mL For the second aliquot, mmol NaHCO 3 mmol NaOH mmol HCl 0.01063 mmol NaOH 0.01255 mmol HCl 25.00 mL NaOH 7.63 mL HCl mL mL 0.1700 mmol NaHCO 3 mmol Na 2 CO3 0.6026 mmol 0.1700 mmol 0.2163 mmol Na 2 CO3 2 84.01 g NaHCO 3 1000 mmol 100% 28.56% NaHCO 3 25.00 g 0.5000 g 250.0 g 0.1700 mmol NaHCO 3 % NaHCO 3 105.99 g Na 2 CO 3 1000 mmol 100% 45.85% Na 2 CO 3 25.00 mL 0.5000 g 250.0 mL 0.2163 mmol Na 2 CO 3 % Na 2 CO 3 100% ( 28.56% 45.85%) 25.59% H 2 O Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-42 1 2 A B C 16-42 Titrations with 0.06122 M HCl M HCl 0.06122 D E 3 M Na3PO4 4 5 6 7 8 (a) Add one proton to thymolphthalein endpoint mL Na3PO4 mmol base mL HCl 10.00 0.55550 9.07 15.00 0.83325 13.61 25.00 1.38875 22.68 40.00 2.22200 36.30 9 10 11 12 13 14 15 (b) Add two protons to bromocresol green endpoint mL Na3PO4 mmol base mL HCl 10.00 1.11100 18.15 15.00 1.66650 27.22 20.00 2.22200 36.30 25.00 2.77750 45.37 (c) mL solution mmol base mL HCl 16 M Na3PO4 0.02102 20.00 1.17180 19.14 17 18 19 20 21 M Na2HPO4 0.01655 Add two protons to phosphate and one to monohydrogen phosphate 25.00 30.00 40.00 1.46475 1.75770 2.34360 23.93 28.71 38.28 22 23 24 25 26 27 28 29 30 31 32 33 34 35 (d) M NaOH Add one proton 0.05555 0.01655 mL Na3PO4 mmol base mL HCl 15.00 0.56355 9.21 20.00 0.75140 12.27 35.00 1.31495 21.48 40.00 1.50280 24.55 Spreadsheet Documentation D5=C5*$B$3 D10=C10*$B$3*2 D16=$B$15*2*C16+$B$16*C16 D23=C23*$B$16+C23*$B$22 E5=D5/$B$2 E10=D10/$B$2 E16=D16/$B$2 E23=D23/$B$2 Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-43 1 2 3 4 A B C 16-43 Titrations with 0.07731 M NaOH M NaOH 0.07731 (a) and (b) M HCl 0.03000 5 6 7 8 9 10 11 12 13 M H3PO4 (a) React with one proton to bromocresol green endpoint (b) React with two protons to thymolphthalein end point 14 (c) NaH2PO4 15 16 17 18 19 20 M NaH2PO4 One proton reacts to thymol-phthalein endpoint (d) Mixture M H3PO4 0.06407 21 M NaH2PO4 0.03000 D E 0.01000 mL solution mmol acid mL NaOH 25.00 1.0000 12.93 mL solution mmol acid mL NaOH 25.00 1.2500 16.17 mL solution mmol acid mL NaOH 10.00 0.64070 8.29 20.00 1.28140 16.57 30.00 1.92210 24.86 40.00 2.56280 33.15 mL solution mmol acid mL NaOH 0.02000 20.00 1.40000 18.11 22 23 (d) React with two 24 25 protons from H3PO4 and one from 26 27 28 29 30 31 32 33 34 35 NaH2PO4 Spreadsheet Documentation D7=C7*$B$4+C7*$B$5 E6=D6/$B$2 D11=C6*$B$4+2*C6*$B$5 E11=D11/$B$2 D15=$B$15*C15 E15=D15/$B$2 D20=2*$B$20*C20+$B$21*C20 E20=D20/$B$2 25.00 1.75000 22.64 30.00 2.10000 27.16 Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-44 A B C D E F 1 16-44 Titrations of carbonate mixtures 2 M HCl 0.1202 (a) 22.42 22.44 3 Volume, mL 25.00 (b) 15.67 42.13 4 M NaOH 40.00 (c) 29.64 36.42 5 M Na2CO3 105.99 (d) 16.12 32.23 6 M NaHCO3 84.01 (e) 0.00 33.33 7 Table 14-2 gives the volume relationships in titrations of these mixtures. Vol. to phenol., mL Vol. to BCG, mL 8 9 (a) Since essentially the same volume is used for each endpoint, there is only NaOH 10 present. We use the average volume to calculate the no. of mg NaOH/mL 11 mmol NaOH 12 mg NaOH/mL 2.6961 4.314 13 (b) Since Vphth< ½Vbcg, only carbonate and bicarbonate are present. 14 mmol carbonate 15 mmol total 1.8835 mmol bicarbonate 5.0640 16 (c) Now Vphth > ½Vbcg, so we have a mixture of NaOH and Na2CO3 17 mmol carbonate plus NaOH 18 19 mmol NaOH 0.8150 (d) Since Vphth = ½Vbcg, we have only Na2CO3 present 20 mmol carbonate 21 22 mmol carbonate 3.5627 1.2970 mg Na2CO3/ml 1.9376 8.215 (e) Since Vphth = 0, we have only NaHCO3 present which gains one proton. 23 mmol NaHCO3 24 mg NaHCO3/ml 4.0063 13.46 25 Spreadsheet Documentation 26 B12=((D2+E2)/2)*$B$2 D18=B18-C18 27 C12=B12*1*$B$4/$B$3 E18=C18*$B$5/$B$3 28 B15=D3*$B$2 F18=D18*$B$4/$B$3 29 C15=E3*$B$2 B21=$D$5*$B$2 30 D15=C15-2*B15 C21=B21*1*$B$5/$B$3 31 E15=B15*$B$5/$B$3 B24=E6*$B$2 32 F15=D15*$B$6/$B$3 C24=B24*1*$B$6/$B$3 33 B18=D4*$B$2 34 C18=($E$4-$D$4)*$B$2 2.7478 mg Na2CO3/ml 7.985 mg Na2CO3/ml 3.455 mg NaHCO3/ml 4.358 mg NaOH/ml 4.396 Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-45 A 1 2 3 4 5 6 7 B C D 16-45 Titrations of Mixtures E F Vol. to phenol., mL Vol. to BCG, mL 0.08601 (a) 0.00 18.15 Volume, mL M NaOH 25.00 (b) 21.00 28.15 40.00 (c) 19.80 39.61 M Na3AsO4 207.89 (d) 18.04 18.03 M Na2HAsO4 185.91 (e) 16.00 37.37 M HCl We use the method of Problem 14-44. Table 14-2 gives the volume relationships in titrations of similar mixtures . 8 9 10 11 12 13 (a) Since Vphth = 0, we have only Na2HAsO4 present which gains one proton. 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 (c) Since Vphth = ½Vbcg, we have only Na3AsO4 present mmol NaHCO3 mg Na2HAsO4/ml 1.5611 11.61 (b) Now Vphth > ½Vbcg, so we have a mixture of NaOH and Na3AsO4 mmol Na3AsO4 plus NaOH mmol Na3AsO4 1.8062 mmol Na3AsO4 mmol NaOH 0.6150 mg Na3AsO4/ml 1.1912 5.114 mg NaOH/ml 1.906 mg Na3AsO4/ml 1.7030 14.16 (d) Since essentially the same volume is used for each endpoint, there is only NaOH present. We use the average volume to calculate the no. of mg NaOH/mL mmol NaOH mg NaOH/mL 1.5512 2.482 (e) Since Vphth< ½Vbcg, only Na3AsO4 and Na2HAsO4 are present. mmol Na3AsO4 mmol total 1.3762 mmol Na2HAsO4 3.2142 Spreadsheet Documentation B10=$E2*$B$2 B16=$D$4*$B$2 C10=B10*1*$B$6/$B$3 C16=$E$6*$B$2 B13=D3*$B$2 B23=$D$6*$B$2 C13=($E$3-$D$3)*$B$2 C23=$E$6*$B$2 D13=B13-C13 D23=C23-2*B23 E13=C13*$B$5/$B$3 E23=B23*$B$5/$B$3 F13=D13*$B$4/$B$3 F23=D23*$B$6/$B$3 0.4619 mg Na3AsO4/ml 11.44 mg Na2HAsO4/ml 3.435 Fundamentals of Analytical Chemistry: 8th ed. Chapter 16 16-46 (a) The equivalent weight of an acid is that weight of the pure material that contains one mole of titratable protons in a specified reaction. (b) The equivalent weight of a base is that weight of the pure material that consumes one mole of protons in a specified reaction. 16-47 (a) With bromocresol green, only one of the two protons in the oxalic acid will react. Therefore, the equivalent mass is the molar mass, or 126.1 g. (b) When phenolphthalein is the indicator, two of the protons are consumed. Therefore, the equivalent mass of oxalic acid is one-half the molar mass, or 63.0 g. 16-48 (a) 1 mmol CH 3COOH 0.1008 mmol NaOH 45.62 mL NaOH mL mmol NaOH 0.4598 M CH 3COOH 10.00 mL (b) 0.4598 mmol CH 3COOH 60.03 mg CH 3COOH 1 mL CH 3COOH 1g 100% mL mmol 1000 mg 1.004 g 2.75% CH 3COOH
© Copyright 2026 Paperzz