Oxide Nanoelectronics Chang‐Beom Eom Department of Materials Science and Engineering University of Wisconsin‐Madison Supported by National Science Foundation (NIRT, FRG) Office of Naval Research Army Research Office AFOSR DOE/BES IARPA DARPA David & Lucile Packard Fellowship Multifunctionality of Complex Oxides MRAMs FRAMs Ferroelectrics Ultrasound imaging Superconductors Ferromagnetics Actuators Medical imaging LEDs Maglev trains Piezoelectrics Complex oxides Semiconductors Transparent conductors Optical waveguides Nonlinear optics Dielectrics Metallic conductors Gate oxides Flat panel displays Fuel cells What is unique about Multifunctional Oxides? • • • • Strong anisotropy Variable oxygen stoichiometry Controllable by cation doping Novel Hybrid devices with many multifunctional oxides Cu O Cu Cu O Silicon Cu YBa2Cu3O7 Various forms of Multifunctional Oxides 1. Ceramics • easy to prepare • quickest way to search for new materials • intrinsic properties get masked by grain boundaries 2. Single Crystals • intrinsic properties can be studied • hard to obtain large samples with uniform properties • large sample dimensions 3. Thin Films • well defined dimensions (thickness, lateral dimensions) • device applications (multilayered heterostructures) • orientation controllable • artificial structures can be made Not all films are the same! Polycrystalline Thin Film Epitaxial Thin Film Enhancement of ferroelectric transition temperature in strained BaTiO3 thin films c 4.15 Tc (50nm BaTiO3/DyScO3) Lattice Constant (Å) 4.10 a a Epitaxial BaTiO3 GdScO3 or DyScO3 substrate Tc (100nm BaTiO3/GdScO3) 4.05 4.00 Tc (Single Crystal) 3.95 3.90 0 100 200 300 400 500 600 700 800 Temperature (°C) K.J. Choi et al. Science, 306, 1005 (2004) Superior Jc of Co-doped Ba122 film on SrTiO3(BaTiO3)/LSAT 10 7 Critical Current density (Jc at ~5K) Ba122 on BTO/LSAT 6 Ba122 on STO/LSAT LSAT 2 Jc (A/cm ) 10 Ba122 film STO(BTO) 10 10 5 4 Ba122 bulk single crystal (Yamamoto et al., Appl. Phys. Lett., 2008) Sr122 on bare LSAT (Hiramatsu et al., Appl. Phys. Express, 2008) ★ Sr122 on bare LAO (Choi et al., Appl. Phys. Lett.,2009) Ba(Sr)122 film (La,Sr)(Al,Ta)O3 LSAT Ba122 on bare LSAT 10 3 0 2 4 6 8 10 12 14 or LaAlO3 LAO Magnetic Field (T) S. Lee, Nature Materials 9, 397 (2010) 4 Why we need atomic layer control? • Nanoscale Control of Interfaces and Defects • Uniformity of Barrier Layers Field Effect Devices SQUID Coated Conductors RI RI Top Electrode ~ nm Bottom Electrode Substrate Magnetic Tunnel Junction Ferroelectric Memories P (µC/cm2) Voltage (V) Quasi-ideal surface of SrTiO3 substrate SrTiO3(001) AFM as received: mixed termination Ti Sr O 250 nm 500 nm SrO termination plane TiO2 termination plane Etching in BHF M. Kawasaki, Science, 266, 1540 (1994). [G. Koster et al., APL, 73 , 2920, (1998).] Perfect TiO2-terminated SrTiO3 substrate Thermodynamic stability diagrams 800 600 400 10 T [oC] 25 200 Log (PO2/Torr) 0 -10 V2O5 -20 VO2 -30 V2O3 -40 Cooling Curve VO -50 V -60 5 10 15 20 25 30 10000/T [1/K] High PO2 is needed to stabilize oxide phases 35 How to make atomic flux? Laser Ablation Sputtering Target Ar+ ion Atoms RHEED Intensity and Pattern • Intensity: growth kinetics • Pattern: surface structures RHEED pattern thin reciprocal lattice rods and morphologies 3D islands Ideal smooth Ewald sphere screen Polycrystal RHEED intensity oscillation Real smooth broad reciprocal lattice rods Laser MBE system with in situ High Pressure RHEED Phase transition of SrRuO3 RHEED works up to 1 Torr O2 load lock laser-beam substrate holder heater phosphor screen + camera Electron-gun Ø 1 mm o 0-3 filament Ø 0.5 mm 850 oC target holder 100C SrTiO3 50 mTorr PO2 I/I0 -1 <10Pa <100 Pa to main pump 650C O,Ar,Ne,He -4 <5×10Pa ` 2 Rijnders et al. Appl Phys. Lett. 70 (1997) 1888 Time (s) Atomic layer controlled growth of SrRuO3/SiTiO3/SrRuO3 trilayers SrRuO3 SrTiO3 34 pulses SrRuO3 bottom layer SrRuO3 400 nm SrTiO3 substrate 6 unit cell SrTiO3 barrier layer 22 pulses 200 nm SrRuO3 top layer RHEED intensity oscillation C.B. Eom et al. Science, 258, 1799 (1992). 400 nm TEM images of SrRuO3/SrTiO3/SrRuO3 trilayers SrRuO3 top [110]o SrRuO3 SrRuO3 bottom [111]o [111]oSrRuO3 SrTiO3 [001] RuO2 TiO2 [110] [110]SrTiO 3 SrRuO3 SrTiO3 substrate SrTiO3 barrier SrO 6ML TiO2 RuO2 SrO Sharp interface structure Single domain structure TEM: W. Tian and .X. Pan, Univ. of Michigan Ferroelectric tunnel junctions in nonvolatile memory and logic devices. A. Gruverman et al. Nano Letters, 9, 3539 (2009) Ferroelectric Tunnel Junctions Intensity (percent) 100 Start 80 1 60 8 10 ML 4 5 6 7 9 2 3 40 20 SrRuO3 End 0 40 80 120 160 Elap sed Time (seconds) 200 BaTiO3 SrRuO3 I‐V curves for two opposite polarization directions Mechanical Writing of Ferroelectric Polarization H. Lu et al. Science, 336, 59 (2012) Strongly Correlated 2DEG “Metallic and insulating oxide interfaces controlled by electronic correlations H. W. Jang, et al, Science , 331, 886 (2011) 22 B Scan direction LaO OK Ti L2,3 Intensity (arb. unit) A L2 1 nm L3 455 460 465 470 LaO SmO 1 nm 1 nm 540 550 Ti L2,3 TiO2/LaO TiO2/SmO Intensity (arb. unit) D 530 Energy loss (eV) Energy loss (eV) C 520 450 460 470 Energy loss (eV) 480 E.Y. Tsymbal Giant Piezoelecticity for Hyper-Active MEMS • (S.H. Baek et al. Science, 334, 958 (2011) • Medical Imaging • Sensing • Actuation • Piezotronics • Energy Harvesting Ultrasound Medical Imaging Ceramic PZT transducer array At 1 MHz (1960) GE Medical 20x20 first 2-D array (currently 256x256 = 65,536 subdiced elements) S.W. Smith, Duke Univ. (2003) 5MHz, intra-cardiac Catheter 2D Array 7 Fr, 112 Elements Side Scanning 12 Fr, 64 Elements Side Scanning Ultrasound used in virtually every medical specialty: • Obstetrics, Cardiac, Abdominal Rad. (2-10 MHz) • Endoscopy (5-15 MHz) • Intravascular, Skin, Eye (10-50 MHz) • Ultrasound Microscope, Blood cells (100-200 MHz) Better Resolution and Deeper penetration are desirable. (Giant Piezoelectric Materials !!!) Hyper-Active NEMS MEMS spatial light modulator for maskless lithograohy (V. Aksyuk, Bell Labs) 10 million electrostatically actuated mirrors Major challenges are emerging as MEMS move to smaller size and require increased integration density with faster and larger relative motion range. A force achieved by electrostatic actuator at 100 V requires only 0.01 V in a hyper-active NEMS. force achieved by the intrinsic electrostatic Bulk single crystal relaxor ferroelectrics (Pb(Mg1/3Nb2/3)‐ PbTiO3 (PMN‐PT) and Pb(Mg1/3Zn2/3)‐PbTiO3 (PZN‐PT) ). (10 times higher piezo response than PZT ceramics, (d33) = 1500‐2500 pm/V ) S‐E. Park, T.R. Shrout J. Appl. Phys. 82, 1804 (1997). • k33 > 90%, • d33 > 2000 pC/N, • strain up to 1.7% Field Induced Phase Transition in (001) PZN‐8% PT Single Crystal S‐E. Park, T.R. Shrout , J. Appl. Phys. 82, 1804 (1997). SrTiO3 on (001) Silicon STO Si 2 nm MBE growth by D.G. Schlom, Penn State, TEM by X.Q. Pan, Michigan Cross Sectional TEM images of PMN-PT on silicon Rocking Curve FWHM PMN-PT PMN-PT 0.23 SrRuO3 0.58 SrTiO3 100 nm Si 2 nm SrRuO3 TEM by X.Q. Pan, Michigan o 0.32 (bulk PMN-PT single crystal) o o Effective Transverse Piezoelectric Coefficient (-e31) 30 Epitaxial PMN-PTon Si (This work) -e31 (C/m2) 25 20 Best PZT Film on Si 15 10 5 0 0.0 PMN-PT on Si (Previous work) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Thickness (m) Measured by S. Trolier-McKinstry, Penn State PMN‐PT Active Cantilevers Pt PMN‐PT Si SrRuO3 SrTiO3 Cantilever W5‐2‐7 35 µm long, 3.2 µm wide 400 Height (µm) 0.2 0.0 ‐0.2 ‐0.4 Cantilever clamping point ‐0.6 Resonance frequency (kHz) 400 2.8V Resonance frequency (kHz) 0.4 Length:35µm 350 300 350 300 250 200 150 250 100 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1000 / length2 (1/µm2) 200 150 0V ‐0.8 0 0.02 0.04 Length (mm) 0.375 µm / V deflection Resonant frequencies, 100s of kHz. 100 30 35 40 45 Cantilever length (µm) 50 1.2 MEMS performance • PMN‐PT piezoelectric properties unaffected by processing • Simulations match experimental data using bulk PMN‐PT parameters Pt (60nm) PMN-PT (270nm) SrRuO3 (100nm) SrTiO3 (13nm) Si (substrate) 1.0 0.8 0.6 ∆Z (μm) Tip displacement (µm) 0.8 Modeled PMN‐PT cantilever 0.0 0.4 0.2 0.0 0.0 1.5 3.0 Voltage (V) 0.4 0.2 0.6 Actual PMN‐PT cantilever Modeled electrostatic cantilever 100 101 Voltage (V) 102 Inter‐digitated symmetric Electrode 40 Effective Polarization (µC/cm2) Effective Polarization (µC/cm2) Pt / PMN‐PT / SrRuO3 Sandwich type Electrode 30 20 10 0 -10 -20 -30 -40 -200 -100 0 100 200 Effective Electric Field (kV/cm) Unipolar Operation 40 30 20 10 0 -10 -20 -30 -40 -200 -100 0 100 200 Effective Electric Field (kV/cm) Wide Bandwidth Piezoelectric Micro Energy Harvester Based on Nonlinear Resonance Power density 2 W/cm3 A. Hajati and S.G. Kim, APL, 99, 083105 (2011) The maximum extractable power : 45μW (based on PZT: d33 =110 pm/V). Power‐density: 2 W/cm3 (PZT volume: 4×5݉݉×4݉݉×265݊݉ ≈ 0.021݉݉3) PMN‐PT: >200 W/cm2 (d33 = 1200 pm/V) Pextractable 1 2 ce 2 45μW PPZT VPZT A. Hajati and S.G. Kim, APL, 99, 083105 (2011) 2 2 2 EPZT SPZT d33 fex PZT Piezotronics Saturation in CMOS Computer Speed and Performance • More transistors can be put on a chip (“Moore’s Law”) Moore’s Law BUT • CMOS clock speed has not increased since 2003 (Compute performance has also slowed) • Reason for clock speed saturation is that Voltage has stopped scaling. Attempting to increase speed at constant VDD results in economically unacceptable power dissipation. • Challenge is to find a “new switch” operable at low voltage. D.M. Newns, IBM From jai-on-asp.blogspot.com Low power and fast digital switching technology A gate voltage on a piezoelectric (PE) applies pressure to a piezoresistive (PR) material which induces a insulator-metal transition, turning on the current through sense. Isense Insulatormetal transition SmSe Insulator pressure Metal Vgate Piezoelectronic Transistor (PET) D.M. Newns, IBM MRAM Operating at Ultra low voltrage • Ultrahigh storage capacity of up to 88 Gb/in2 • Ultralow power dissipation as low as 0.16 fJ/bit • Room temperature high‐speed operation below 10 ns. J.M. Hu et al, Nature Communications, 2, 553 (2011) Summary 1. Oxide materials has a great potential for novel oxide electronics and discovering new solid state phenomena. 2. Strain, domain and interfacial engineering by heteroepitaxy is a general means for achieving extraordinary physical properties in thin films. 3. Oxide electronics is just beginning. There are much challenges and opportunities. Collaborators S.H. Baek, J. Park, D.A. Felker, D.M. Kim, R. R. Das, R. Blick, M.S. Rzchowski University of Wisconsin‐Madison V. Aksyuk National Institute of Standards and Technology, Gaithersburg V. Vaithyanathan, J. Lettieri, N. B. Gharb, S. Trolier‐Mckinstry, The Pennsylvania State University D.G. Schlom Cornell University V. Nagarajan, R. Ramesh University of California Berkeley Y. B. Chen, H. P. Sun, X.Q. Pan University of Michigan S.K. Streiffer Argonne National Laboratory
© Copyright 2026 Paperzz