Lewis Acid-Base C. P. Huang University of Delaware 1 Content 1. 2. 3. 4. 5. 6. 7. 8. Definition Complex formation equilibrium Inorganic complexes Metal ion as Lewis acid Metal ion hydrolysis Chelates Conditional stability constants pM as a master variable 2 1.0 Definition • By C. N. Lewis in 1923 • Lewis acid: electron pair acceptor • Lewis base: electron pair donor http://www.meta-synthesis.com/index.html 3 Definition Species in which central atom is involved in multiple bonds to (electronegative) terminal atoms are potential Lewis acids H | + H + :N--H-- H | H .. Co2+ + :O --H | H H | H-- N --H | H Co2+ .. :O --H | H H | H-- N: + | H H+ + F H F | | | B --F H-- N -- B --F | | | H F F .. .. | H | H :O --H H -- O --H 4 Definition Species in which central atom is involved in multiple bonds to (electronegative) terminal atoms are potential Lewis acids Cu2+ + H | 4 :N --H | H H | H-- N --H | H H | | | H-- N---- Cu ----N--H | | H | H | H-- N-- H | H 5 Definition LA + LB = Complex Hemoglobin (Iron complex) Chlorophyll (Magnesium complex) Vitamin B12 (Cobalt complex) 6 Chlorophyll a Vitamin B12 hemoglobin 7 8 Lewis Base-Ligand .. NH2 .. NH2 bidentate NH .. 2 .. NH2 tridentate NH .. 2 • Central atom: metal ion (LA) • Ligand: anion or molecule that forms coordination compounds (LB) • Ligand atoms: atoms of ligand that donating free pairs of electron • Monodentate: ligand occupying only 1 position. • Bidentate:ligand occupying 2 positions • Tridentate:ligand occupying 3 positions • Chelation: complex formation with multidentate ligand. 9 Type of complexes • Ion pairs: ions of opposite charge that approach within a critical distance effectively form an ion pair and are no longer electrostatically effective. Metal ion and the base are separated by one or more water molecules (Outer sphere complexes) • Complexes: Most stable entities that result from the formation of largely covalent bonds between a Lewis acid and a Lewis base (inner sphere complexes) • Chelates: Metal ion and base form 3D framework with multiple ligand atoms. 10 2.0 Complex Formation Equilibrium M + L = ML; K1 ML + L = ML2; K2 ML2 + L = ML3; K3 M+ L = ML; β1 M + 2 L = ML2; β2 M + 3L = ML3; β3 11 Stumm & Morgan M + HL = H+ +ML; *K1 ML + HL = H+ + ML2; *K2 ML2 + HL = H+ + ML3; *K3 M+ HL = H+ ML; *β1 M + 2HL = 2H+ + ML2; *β2 M + 3HL = 3H+ + ML3; *β3 12 mM + nL = MmLn; βnm mM + nHL = MmLn + nH+; *βnm 13 Formation Curve M + iL = ML i ; β i β1 [L] + β 2 [L]2 + β 3 [L]3 + β 4 [L]4 + ... + β N [L]N n= 1 + β1 [L] + β 2 [L]2 + β 3 [L]3 + β 4 [L]4 + ... + β N [L]N [MLi ] β i= [M ][L]i n = (1 − n )β1 [L] + ( 2 − n )β 2 [L]2 + ....(N − n )β N [L]N N MT = [M ] + ∑ [MLi ] 1 N MT = [M ] + ∑ β i [M ][L] 1 N n= ∑ [ML ] i 1 MT N = ∑ iα i i N n = ∑ (i − N )β i [L] i 1 1 α i = α 0 β i [L]i 14 Stability Constant When N = 2 n 1 − n [L] ( β1 [L] + β 2 [L]2 n= 1 + β1 [L] + β 2 [L]2 ( β 2 [L ] 2 − n n − β1 = 1− n 1− n ( ) ( ) ) β2 ) β1 (2 − n )[L] (1 − n ) 15 Log K= 8; 5; 2 Log β = 8, 13, 15 16 Log K = 5; 4.5; 4 Log β = 5, 9.5, 13.5 17 Log K =7; 3; 4 Log β = 7, 10, 14 18 Log K = 4; 5; 6 Log β = 4, 9, 15 19 Formation Curve 20 3.0 Inorganic Complexes 21 Al(III)-F(-I) System Al3+ +F- =AlF2+; log β1 =6.164 Al3+ + 2F- =AlF2+; log β2 =5.053 Al3+ + 3F- = AlF3; log β3 = 3.91 Al3+ +4F- = AlF4-; log β4 = 2.71 Al3+ + 5F- = AlF52-; log β5 = 1.46 Al3+ + 6F- = AlF63-; log β6 = 2.7 22 Al(III)-F(-I) System [Al(III)] = [Al3+] + [AlF] +[AlF2] +[AlF3] +[AlF4] +[AlF5] + [AlF6] [Al(III)] = [Al3+] +K1[Al3+][F-] +β2[Al3+][F-]2 +β3[Al3+][F-]3 +β4[Al3+][F-]4 +β5[Al3+][F-]5 +β6[Al3+][F-]6 [Al(III)] =[Al3+](1+β1[F-]+β2[F-]2+β3[F-]3+β4[F-]4+β5[F-]5+β6[F-]6) α0=[Al3+]/[Al(III)]=1/(1+β1[F-]+β2[F-]2+β3[F-]3+β4[F-]4+β5[F-]5+β6[F-]6) α1=[AlF]/[Al(III)]=β1[F-]α0 α2=[AlF2]/[Al(III)]=β2[F-]2α0 α3=[AlF3]/[Al(III)]=β3[F-]3α0 α4=[AlF4]/[Al(III)]=β4[F-]4α0 α5=[AlF5]/[Al(III)]=β5[F-]5α0 α6=[AlF6]/[Al(III)]=β6[F-]6α0 23 Al(III)-F(-I) System Log K1 = 6.16 Log K2 = 5.05 Log K3 = 3.91 Log K4 = 2.71 Log K5 = 1.46 Log K6 = 2.7 Log β1 = 6.16 Log β2 =log (K1K2) = 11.21 Log β3=log (K1K2K3) = 15.13 Log β4 = log (K1K2K3K4) =17.84 Log β5 = log (K1K2K3K4 K5) = 19.30 Log β6 = log (K1K2K3K4K5K6) = 22.0 24 K1 = 101.5 K2 = 100.7 K3 = 10-0.1 K4 = 10-0.07 Cd(II)-Cl(-I) β1= 1.5 β2= 2.2 β3 = 2.3 β4 = 1.6 25 Cd(II)-Cl(-I) System 6 [i]/[Cd] vs. log[Cl] 4 2 0 [i]/[Cd] -12 -10 -8 -6 -4 -2 0 -2 Cd/Cd CdCl/Cd CdCl2/Cd CdCl3/Cd CdCl4/Cd -4 2 [Cd]/[Cd]=1 [CdCl]/[Cd]=α1/α0 [CdCl2]/[Cd]=α2/α0 [CdCl3]/[Cd]=α3/α0 [CdCl4]/[Cd]=α4/α0 -6 -8 -10 log[Cl] 26 27 28 4.0 Metal Ions as Lewis Acid 29 Occurrence of forms of metal species 30 Proton and meal ions 31 32 Acidity of metal ions 33 Mn+ + H2O = MOHn-1 + H+; *K1 pK1* Hg2+ Pb2+ Ca2+ Cu2+ Zn2+ Co2+ Ni2+ -5 -8 -9 -9 -10 -11 -11.5 34 Stumm & Morgan 35 Stumm & Morgan 36 37 38 39 5.0 Metal Ions Hydrolysis 40 41 Metal ion Hydrolysis 42 Hg(II)-H2O System Log β1=10.0 Log β2 =21.8 Log β3 = 20.9 43 Al(III)-H2O system 1.2 1 a 0.8 b1 b2 9.01 b3 17.8 a1 a2 b4 25.5 a0 0.6 33.4 0.4 a3 0.2 a4 0 0 2 4 6 8 10 12 14 12 14 pH a n 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 a1 a2 a3 a4 n n a0 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 n 0 0 2 4 6 8 pH 10 12 14 2 4 6 8 10 pH 44 45 46 47 48 Metal Ion Hydrolysis FeT=[Fe3+] +[Fe(OH)2+] +[Fe(OH)2+] + 2[Fe2(OH)24+] * K1 * β2 2[ Fe3+ ] * β 22 + + FeT = [ Fe ]1 + + + 2 + 2 [H ] [H ] [H ] 3+ * K1 * β2 2[ Fe3+ ] * β 22 α 0 = 1 + + + + 2 + + 2 [H ] [H ] [H ] −1 2α 0 [ Fe3+ ] * β 22 * β2 * K1 + + + α 1 −1 = 0 0 + + 2 [ H + ]2 [ ] [ ] H H α 22 = 2 [[ H ]] α 0 Fe3+ β 22 + 2 α1 = α 0 * K1 [H + ] α0 * β 2 α2 = [ H + ]2 FeT = [ Fe3+ ](1 + β1[OH − ] + β 2 [OH − ]2 + 2 β 22 [ Fe3+ ][OH − ]2 ) α 0 = (1 + β1[OH − ] + β 2 [OH − ]2 + 2 β 22 [ Fe3+ ][OH − ]2 ) −1 α 0 (1 + β1[OH − ] + β 2 [OH − ]2 ) + α 0 (2 β 22 [ Fe3+ ][OH − ]2 ) = 1 49 FeT = [ Fe3+ ](1 + β1[OH − ] + β 2[OH − ]2 + β 3[OH − ]3 + β 4 [OH − ]4 + 2[ Fe3+ ]β 22 [OH − ]2 + β 43[ Fe3+ ]2 [OH − ]4 ) 50 Fe(III) =10-9 M 51 Fe(III)= 10-4 M Fe(III) = 10-2 M 52 53 54 55 6.0 Chelates 56 57 58 59 60 Stumm & Morgan 61 62 63 64 7.0 Conditional Stability Constant [CuY 2− ] K= [Cu2+ ][ Y 4 − ] [CuY 2− ] = Y CuT α Cu Y α 0 T 4 [CuY 2− ] Y = Kα Cu α o 4 = K' CuT YT 65 66 67 68 Example Calculate the conditional stability of Al(III)-EDTA complexes at pH 10 Al(III): log K1 = 9.01; log β2 = 17.8; log β3 = 25.5 log β4 = 33.4 Y(IV): log K1 =2.07; log K2 = 2.74; log K3=6.24; log K4 = 10.34 At pH = 10 K=1016.1 1.57x10 −2 [ AlY −1 ] = AlT YT α0 = 1 1 + K1[OH− ] + β 2 [OH− ]2 + β 3 [OH− ]3 + β 4 [OH− ]4 = 3.98x10 −18 α Y4 = K 1K 2K 3K 4 [H+ ]4 + K 1[H+ ]3 + K 1K 2 [H+ ]2 + K 1K 2K 3 [H+ ] + K 1K 2K 3K 4 = 0.3137 K' = Kα 0Alα 0Y = 1016.110 −17.4 (0.3137) = 1.57x10 −2 69 8.0 pM as a Master Variable pM = -log[M] M + L = ML LT = [L] + [ML] MT = [M] + [ML] MT = [M] + [ML] = [M] + K[M][L] = [M] (1+ K[L]) 70 pM as a Master Variable pM = -log[M] M + L = ML LT = [L] + [ML] MT = [M] + [ML] MT = [M] + [ML] = [M] + K[M][L] = [M] (1+ K[L]) 71 Metal ion buffers 72 Mg + L = MgL; K=108.69 α(L) = 0.45 73 ∑ [H Y ] = [Y i T − CaT ] [Ca2+] = 4.12x10-5 (pCa=4.39) 74 75 76 CaT = 9.82x10-3 M CaT = 9.80x10-3 M dCaT= 2x10-5 M [Ca2+] = 4.12x10-5 M [Ca2+] = 4.027x10-5 M pCa = 4.395 dpCa = 0.005 pCa= 4.390 =(2x10-5)/(0.005) = 4x10-3 M/pCa 77 Metal ion buffer capacity dL T dMT βM = − = dpM dpM MT = [M ] + [ML] = [M ] + LT α ML = [M ] + MT α ML α ML = [M ] 1 + [M ] K = [L ] 1 + [L ] K pM = − log[M] d[M] dpM = − 2.3[M] 1 1 + [M] − [M] dα ML K K = = 2 2 d[M] 1 1 + [M] + [M] K K 1 2.3[M ] LT dα ML K = −2.3L α α =− T ML L 2 dpM 1 + [M ] K dMT d [M ] d [ML] βM = − =− − dpM dpM dpM = 2.3([M ] + LT α MLα L ) = 2.3([M ] + LT α ML (1 − α ML )) 78 Metal ion buffer capacity K = 105 K = 103 79 80
© Copyright 2026 Paperzz