Rotational Motion Examples Example-Calculating Moments of Inertia Moment of Inertia Of a Rigid Rod Rotating Around CM y dx CM x 0 L x dm = I= X mi Ri2 i = XM i L dx L −x 2 M L dx 2 3 x=L M L = −x 3L 2 0 x=0 3 3 M L M L M 2 − = L = − 3L 2 3L 2 12 M = L Altuğ Özpineci ( METU ) Z L L −x 2 2 Phys109-MECHANICS PHYS109 168 / 175 Rotational Motion Examples Parallel Axis Theorem Proof Let ICM be the moment of inertia around an axes going through the CM. Choose z axis to be along the this axes. Choose a second axes that goes through the point (x0 , y0 ). The distance of point with coordinates (xi , yi , zi ) from the second axis is R 2 = (xi − x0 )2 + (yi − y0 )2 The moment of inertial with respect to the second axis is i X h (125) I= mi (xI − x0 )2 + (yi − y0 )2 i = X mi (xi2 + yi2 ) + i X mi (x02 + y02 ) − 2 i X mi (xi x0 + yi y0 ) (126) i = ICM + Md 2 where d 2 = x02 + y02 and Altuğ Özpineci ( METU ) (127) P i mi xi = P Phys109-MECHANICS i mi yi = 0 PHYS109 169 / 175 Rotational Motion Examples Parallel Axis Theorem Example y dx 0 CM x L x dm = M L dx, ICM = 21 ML2 Moment of inertia of a thin rod around one end: I = ICM Altuğ Özpineci ( METU ) 2 L 1 1 1 +M = ML2 + ML2 = ML2 2 12 4 3 Phys109-MECHANICS PHYS109 169 / 175 Rotational Motion Examples Example: Thin Rod Rotating Around One End dx x L The net torque on the rod around the fixed axes: ! X X ~ri × (mi ~g ) = ~ mi~ri × ~g = (M~rCM ) × ~g = ~rCM × w ~τ = i i (125) Hence the center of gravity for an object in uniform gravitational field is its CM. τ = MgL 2 α= τ I = MgL 2 1 ML2 3 = 3g 2L CM = α L = 3 g < g If the rod is initially at rest: aCM = atan 2 4 ext aCM = FM . Which other force is acting on the rod? Altuğ Özpineci ( METU ) Phys109-MECHANICS PHYS109 170 / 175 Rotational Motion Examples Perpendicular Axis Theorem Proof Consider a very thin object in the xy plane. For any point in the object zi ' 0 P P Ix = i mi (yi2 + zi2 ) ' i mi yi2 P P Similarly Iy = i mi (xi2 + zi2 ) ' i mi xi2 P P P Then Iz = i mi (xi2 + yi2 ) = i mi xi2 + i mi yi2 = Ix + Iy Altuğ Özpineci ( METU ) Phys109-MECHANICS PHYS109 171 / 175 Rotational Motion Examples Perpendicular Axis Theorem Example The moment of inertia of a loop of mass M and radius R for rotations around an axis that to its plane and Pis perpendicular 2 2 going through its CM: Iz = i mi R = MR Its moment of inertia around any axis that goes through its CM and is in its plane: If x and y axes are the two axes in the plane of the loop, due to symmetry Ix = Iy By perpendicular axis theorem: Iz = Ix + Iy = 2Ix Hence Ix = 12 MR 2 . Moment of inertia for rotation around an axis that goes through the edge and is in the plane of the loop: I 0 = ICM + Md 2 = 12 MR 2 + MR 2 = 32 MR 2 Altuğ Özpineci ( METU ) Phys109-MECHANICS PHYS109 171 / 175 Rotational Motion Examples Heavy Pulley Since the pulley has a mass, the tensions at each end of the pulley will be different. m1 m2 Altuğ Özpineci ( METU ) ~1 T ~2 T m1 m2 ~1 w ~1 ~ 2 −T w z ~2 −T Let x axis be out of the screen Phys109-MECHANICS PHYS109 172 / 175 Rotational Motion Examples Heavy Pulley ~1 T ~2 T m1 m2 ~1 w ~1 ~ 2 −T w z ~2 −T The net forces acting on mass m1 and m2 are: m1 m2 Altuğ Özpineci ( METU ) ~ 1T = (T1 − m1 g)ẑ F ~ 2T = (T2 − m2 g)ẑ F Phys109-MECHANICS PHYS109 (126) (127) 172 / 175 Rotational Motion Examples Heavy Pulley ~1 T ~2 T m1 m2 ~1 w ~1 ~ 2 −T w z ~2 −T The torque acting on the pulley is ~τ = R(T1 − T2 )x̂ m1 m2 Altuğ Özpineci ( METU ) Phys109-MECHANICS PHYS109 172 / 175 Rotational Motion Examples Heavy Pulley Let ~a1 = ai ẑ and α ~ = α~x . Then T1 − m1 g = m1 a1 (126) T2 − m2 g = m2 a2 (127) R(T1 − T2 ) = Iα (128) Unkowns: T1 , T2 , a1 , a2 , and α: 5 unknowns The remaining two eqns are: m1 m2 Altuğ Özpineci ( METU ) Phys109-MECHANICS a1 = −a2 (129) αR = −a1 (130) PHYS109 172 / 175 Rotational Motion Examples Heavy Pulley The solutions of these equations are: (m2 − m1 )R 2 g I + (m1 + m2 )R 2 (126) (m1 − m2 )R α= g (127) I + (m1 + m2 )R 2 m1 g(I + 2m2 R 2 ) T1 = (128) I + (m1 + m2 )R 2 m2 g(I + 2m1 R 2 ) T2 = (129) I + (m1 + m2 )R 2 a1 = −a2 = m1 m2 Altuğ Özpineci ( METU ) Phys109-MECHANICS PHYS109 172 / 175
© Copyright 2026 Paperzz