Univariate Calculus Professor Peter Cramton Economics 300 Outline • Rules of differentiation – – – – – – – – Sum rule Scale rule Product rule Power rule Exponential rule Chain rule Quotient rule Logarithmic rule Outline • Second derivatives and convexity • Economic applications – – – – Risk aversion and utility functions Elasticities Total revenue Average, marginal, and total cost Rules of differentiation • Used to evaluate derivative of any function • Much easier than working with basic definition dy f ( x x) f ( x) lim dx x0 x Sum rule y h( x ) f ( x ) g ( x ) dy h( x) f ( x) g ( x) dx Scale rule y h( x) kf ( x) dy h( x) kf ( x) dx Product rule y h( x ) f ( x ) g ( x ) dy h( x) f ( x) g ( x) f ( x) g ( x) dx Power rule y h( x) kx dy n 1 h( x) nkx dx n Exponential rule y h( x ) e dy kx h( x) ke dx kx Chain rule y h( x) g ( f ( x)) dy h( x) g ( f ( x)) f ( x) dx y g (u ) u f ( x) dy dy du dx du dx Quotient rule f ( x) y h( x ) g ( x) dy f ( x) g ( x) f ( x) g ( x) h( x) 2 dx g ( x) Logarithmic rule y f ( x) ln x dy 1 f ( x) dx x y f ( x) log b x dy 1 1 f ( x) dx x ln b Exercise y x y 25 7 y 4 4x 2 y 8 x 3 x 14 1 2 y x 2x 3 3 dy 3 x dx 2 dy 5 7 x dx dy 3 1/2 16 x x dx 2 dy 2 3 x 2 dx 3 Exercise y 4 20 x 4 x ye y 3ln x 2x y 2( x 1) 2 2 dy 20 8 x dx dy 2x 2e dx dy 3 dx x dy 4( x 1) dx f ( x) ( x 1) ( x 2 x) 5 2 2 f ( x) 3( x 1) 2( x 2 x)(2 x 2) 3 f ( x) (2 x 4) 2 99 2 98 f ( x) 99(2 x 4) 2 f ( x) ab(e ) x ab 1 x f ( x ) (e ) x ab e abe abx f ( x ) (e ) x a b 1 x a a 1 x a b a 1 f ( x) b(e ) e ax ab(e ) x xa b f ( x ) (e a bx cx 2 10 ) f ( x) 10(e a bx cx 2 10 ) (b 2cx) Exercise y log 2 (2 x 3) y log 4 (8 x ) 2 y x log 2 x 3 log 3 x y 2x 2 1 y 2 x 3 ln 2 16 x 1 2 1 y 2 8 x ln 4 x ln 4 1 1 y 3x log 2 x x x ln 2 2 3 1 2 1 1 1 y x log 3 x 2 2 x x ln 3 Second derivative • First derivative – Rate of change – Slope of the function – Velocity dy f ( x) dx • Second derivative – Rate of change of the rate of change – Rate of change of the slope of the function – Acceleration 2 d dy d y 2 f ( x) dx dx dx Example: square-root utility U (c) ac 1 2 1 dU U (c) 12 ac 2 dc 2 3 dU 1 2 U ( c ) ac 4 2 dc Square-root utility function U (c ) c 1 dU U (c) 12 c 2 dc 1 2 2 3 dU 1 2 U ( c ) c 4 2 dc Example: logarithmic utility U ( x) ln x dU U ( x) dx x dU U ( x) 2 2 dx x 2 Logarithmic utility function Second derivative and convexity • Strictly convex – Slope strictly increasing – Second derivative positive: f”(x) > 0 • Strictly concave – Slope strictly decreasing – Second derivative negative: f”(x) < 0 Second derivative and convexity • Convex – Slope increasing – Second derivative f”(x) 0 • Concave – Slope decreasing – Second derivative f”(x) 0 Concave and convex functions Strictly concave Strictly convex Which do you prefer? • $12 for sure • 50-50 chance of $6 or $18 • Expected value of both is $12 .5($6) + .5($18) = $12 • Risk averse – Prefer sure thing – U(12) > .5U(6) + .5U(18) – Concave utility • Risk seeking – Prefer gamble – U(12) < .5U(6) + .5U(18) – Convex utility Risk-averse and risk-loving utility Exercise: Concave or convex? y 18 12 x 6 x x 2 y 12 12 x 3x y 12 6 x 3 30 25 Concave y”<0 Convex y”>0 20 1 2 3 4 2 Elasticities • How sensitive is demand to a change in price? • Does revenue increase or decrease when price is raised? • Depends on price elasticity of demand • % change in quantity / % change in price Q / Q P / P Elasticities dQ Q 0, percentage change in Q is Q dP P 0, percentage change in P is P Price elasticity of demand dQ / Q dQ P dP / P dP Q Elasticities • < -1 demand is price elastic – quantity falls by more than 1% if price increases by 1% • > -1 demand is price inelastic – quantity falls by less than 1% if price increases by 1% • Elasticities in different markets are comparable, since based on % change P P Elastic Inelastic D D Q Q Elasticities with linear demand q p dq p p dp q q 1 q p p p Elastic Inelastic p ,q 2 2 Arc elasticity for discrete changes arc QB QA (QA QB ) / 2 PB PA ( PA PB ) / 2 Alternative form for elasticity Price elasticity of demand dQ / Q dQ P dP / P dP Q d ln Q 1 dQ d ln Q dQ Q Q d ln P 1 dP d ln P dP P P dQ P d ln Q dP Q d ln P Log-linear demand Infant mortality and income/capita Elasticity and other economic concepts • Substitutes – Products with good substitutes are more elastic • Complements – Products with many complements are less elastic • Luxury goods tend to be more elastic • Necessities tend to be less elastic Do consumers or producers bear a tax? • Depends on elasticity of demand and supply – Party least able to substitute away pays more of tax PC PP T dPC dPP dT QD ( PC ) QS ( PP ) dQS dQD dPC dPP dPC dPP dQD P dQS P dQD P dT dPP dPC Q dPC Q dPP Q dPC S dPP D and dT S D dT S D Impact of quantity change on revenue • Depends on elasticity of demand – Producer wants to reduce quantity if it faces inelastic demand R PQ dP Q dR dP 1 Q P P 1 P 1 dQ dQ dQ P • > -1 then revenue declines when produce more • < -1 then revenue increases when produce more • Monopolist allows produces in elastic portion of demand ( < -1) P = 100 – Q; R = (100 – Q)Q 2500 2000 1500 < -1 > -1 1000 500 20 40 60 80 100 Exercise: Find elasticity y 100 2 x, x 4 dy x 4 2 8 / 92 dx y 92 y 16 8 x x , x 1.5 2 x 2 x (8 2 x) 3 / 2.5 y 4 x ln y 6 .5ln x, x 3 .5 2 y 50 x , x 2 3 50 x x 2 2 2 50 x Total, average, and marginal • Total product • Average product • Marginal product Q 100 L 1/2 Q / L 100 L 1/2 dQ / dL 50 L 1/2 800 Total product Q 600 Average product > marginal product since concave 400 200 10 20 30 40 50 60 L Total, average, and marginal C Q 15 Q 93 Q 100 Total cost Average cost C / Q 3 2 • • dC 2 3 Q 30Q 93 • Marginal cost dQ $ Total cost 700 600 500 400 Average cost = marginal cost at minimum average cost 300 200 2 4 6 8 10 12 Q Average cost = marginal cost at min 300 Marginal cost 250 200 150 Competitive firm size Average cost 100 50 5 10 15
© Copyright 2026 Paperzz