Biochemical Journal: this is an Accepted Manuscript, not the final Version of Record. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date version is available at http://dx.doi.org/10.1042/BCJ20161030. Please cite using the DOI 10.1042/BCJ20161030 BIOCHEMICAL JOURNAL ACCEPTED MANUSCRIPT ×Ǧ ±ǡǤ Cite as Biochemical Journal (2017) DOI: 10.1042/BCJ20161030 Copyright 2017 The Author(s). Use of open access articles is permitted based on the terms of the specific Creative Commons Licence under which the article is published. Archiving of non-open access articles is permitted in accordance with the Archiving Policy of Portland Press (http://www.portlandpresspublishing.com/content/open-access-policy#Archiving). Use of open access articles is permitted based on the terms of the specific Creative Commons Licence under which the article is published. Archiving of non-open access articles is permitted in accordance with the Archiving Policy of Portland Press ( http://www.portlandpresspublishing.com/content/open-access-policy#Archiving). ACCEPTED MANUSCRIPT Ǥǡǡ Ǧ Ǧ Ǥ ǡ ǦǡǦ Ǥǡ ȋ Ȍ Ǥ Ǥ Ǥ ǡ Ǥ Sugarnucleotidequantificationbyliquidchromatographytandemmassspectrometryrevealsa distinctprofileinPlasmodiumfalciparumsexualstageparasites BorjaLópezͲGutiérrez1,RhoelR.Dinglasan2andLuisIzquierdo1* [1]ISGlobal,BarcelonaCtr.Int.HealthRes.(CRESIB),HospitalClínic–UniversitatdeBarcelona, Barcelona,Spain [2]TheUniversityofFloridaEmergingPathogensInstitute,DepartmentofInfectiousDiseases &Pathology,Gainesville,Florida32611,USA *Towhomcorrespondenceshouldbeaddressed([email protected]) 1 Abstract The obligate intracellular lifestyle of Plasmodium falciparum and the difficulties to obtain sufficient amounts of biological material has hampered the study of specific metabolic pathwaysinthemalariaparasite.Thus,forexample,thepoolsofsugarnucleotidesrequiredto fuel glycosylation reactions have never been studied inͲdepth in wellͲsynchronized asexual parasites or in other stages of its life cycle. These metabolites are of critical importance, especiallyconsideringtherenewedinterestinthepresenceofNͲ,OͲandotherglycansinkey parasite proteins. In this work, we adapted a liquid chromatography tandem mass spectrometry method based on the use of porous graphitic carbon (PGC) columns and MSͲ friendly solvents to quantify sugar nucleotides in the malaria parasite. We report on the thorough quantification of the pools of these metabolites throughout the intraerythrocytic cycle of P. falciparum. The sensitivity of the method enabled for the first time the targeted analysisoftheseglycosylationprecursorsingametocytes,theparasitesexualstagesthatare transmissibletothemosquitovector. Summarystatement APGCͲbasedLCͲMS/MSmethodhasbeendeployedforthequantificationofsugarnucleotides inthemalariaparasite.Plasmodiumfalciparumgametocytesdisplayremarkablyhighlevelsof somesugarnucleotides,comparabletotheextracellularformsofotherprotozoanparasites. Shorttitle ThesugarnucleotidepoolsofPlasmodiumfalciparumsexualstageparasites Keywords Glycobiology,Parasitology,Malaria,SugarNucleotides,Plasmodiumfalciparum,Gametocytes 2 Abbreviationsused ESI, electrospray ionization; GDPͲFuc, GDPͲfucose; GDPͲGlc, GDPͲglucose; GDPͲMan, GDPͲ mannose;GPI,glycosylphosphatidylinositol;GIPL,glycoinositolphospholipid;LCͲMS/MS,liquid chromatography tandem mass spectrometry; MSPͲ1, merozoite surface protein 1; MSPͲ2, merozoite surface protein 2; MRM, multiple reaction monitoring; PGC, porous graphitic carbon;RP,reversedphase;SPE,solidphaseenrichment;TSR,thrombospondintype1repeat; UDPͲGal, UDPͲgalactose; UDPͲGlc, UDPͲglucose; UDPͲGlcNAc, UDPͲNͲacetylglucosamine; uRBC,uninfectedredbloodcell. 3 Introduction: Plasmodiumfalciparumisthecausativeagentofthedeadliestformofhumanmalaria anditisresponsibleforthemajorityofthemalariaͲrelateddeaths[1].Withapproximatelyhalf oftheworldlivingatriskofmalaria,theemergenceofparasiteresistancetothecurrentlastͲ lineofantimalarialsposesaseriousthreattomalariacontrolandeliminationefforts[2].The developmentofnoveldrugsisstilllimitedbyourincompleteunderstandingofthebiologyof theparasite[3].Thecharacterizationofparasitemetabolicpathways,newproteinfunctions, postͲtranslational modifications and the identification of cognate receptors on human and vectorhostcellscanultimatelyguidethedesignofselectiveinhibitorstopreventdiseaseand parasitetransmissionthroughthevector. ThefrequencyofglycosylationmodificationsforP.falciparumisgenerallyassumedto be low in the blood stages of the parasite [4,5] except for the wellͲdescribed glycosylphosphatidylinositol (GPI) anchors [6]. GPI anchors attach essential proteins, such as merozoitesurfaceproteins1and2(MSPͲ1andMSPͲ2)[7],totheparasiteplasmamembrane. Following parasite egress from the red cell, GPI anchors are also thought to induce proinflamatory cytokine responses, which are a major contributing factor to malaria pathogenesis[8].Recentadvancesintheidentificationofnewglycosylatedstructuresbothin thehuman[9]andthemosquitostages[10],andthequantificationofsugarnucleotidesinthe bloodstagesofparasitedevelopment[11]haverenewedtheinterestintheglycobiologyofP. falciparum. Sugar nucleotides are high energy donors that feed the biosynthesis of glycoconjugates [12]. For instance, GDPͲmannose (GDPͲMan) and UDPͲNͲacetylglucosamine (UDPͲGlcNAc) are required for the synthesis of GPI anchors in eukaryotes [13,14]. Similarly, UDPͲGlcNAcisalsoinvolvedinthesynthesisofNͲglycans,whichinP.falciparumconsistofone ortworesiduesofNͲacetylͲglucosamine(GlcNAc)[9,15].Asobligateglycosylationprecursors, quantification of sugar nucleotide pools provide strong evidence of the presence of cellular glycosylation reactions [11,16]. Furthermore, the ability to identify and quantify these 4 metabolites remains an invaluable tool for functional analyses aimed at elucidating the mechanisms of sugar nucleotide biosynthesis [17–19]. However, a robust analytical method must take into consideration their highly polar nature, low in vivo concentration and rapid turnover.Moreover,structurallyanalogoussugarnucleotides,suchasUDPͲglucose(UDPͲGlc) andUDPͲgalactose(UDPͲGal),displaysimilarchromatographicprofiles,hinderinganadequate resolution. Sugar nucleotide pools of P. falciparum and other protozoan parasites have been previously quantified by ionͲpair reversedͲphase (RP) liquid chromatographyͲtandem mass spectrometry (LCͲMS/MS) [11,16]. In this approach, the weak retention displayed by polar compounds under RP conditions is solved with the addition of ionͲpairing solvents. Still, this strategyshouldbeavoidedwhentheinstrumentationisintendedtobeemployedindifferent applications,sincetraceamountsofionͲpairreagentscannotbefullyremoved[20].Moreover, thesereagentsreducesensitivitybypartiallysuppressingelectrosprayionization(ESI)[21,22]. In contrast to conventional columns used for RP chromatography, porous graphitic carbon (PGC)notonlyretainsnonͲpolarcompoundsbutalsoexhibitsastrongaffinitytowardspolar analytes.Thus,PGCisanexcellentchoiceformultipurposeMSinstrumentation(suchasthose housed in a shared facility) since it does not require the addition of ionͲpair reagents to achieveanefficientretentionofsugarnucleotides[20,23].Additionally,thecomplexretention mechanism displayed by PGC results in an increased selectivity with respect to other approaches;allowingtheseparationofstructurallysimilaranalytes[24]. In this work we used a PGCͲbased LCͲMS/MS technique [20] to identify and quantify thesugarnucleotidepoolsintightlysynchronizedP.falciparumparasites.Differentstagesof intraerythrocyticdevelopmentwereanalyzed,resultingingreaterprecisionintheestimatesof availabilityorabundanceoftheseobligatedonorsforglycosylationreactions.Thesensitivityof the analytical method allowed us to compare the sugar nucleotide content of gametocytes, which are intraerythrocytic, nonͲproliferative single parasite forms, to the multinucleated 5 erythrocytic schizonts containing between 12Ͳ18 merozoites. The P. falciparum gametocyte makes up less than 1% of the entire parasite biomass in an infected individual, retains a unique,falciformshape,sequestersinthehematopoieticsystemofhumanbonemarrowand doesnotegressfromitsredcellhomeuntilitisinsidethemosquitomidgut[25,26].Giventhis known biology, previous works suggested that gametocytes entered a quiescent phase associated to a lowͲmetabolic activity [27]. Thus, it was thought that sugar nucleotide biosynthesis in gametocytes would be lower (or even absent) in comparison to the more dynamic asexual blood stages. Nevertheless, our results seem to show that in fact the converseistrue,inagreementwithrecentstudiesthatindicateasignificantmetabolicactivity inP.falciparumgametocytes[28]. Experimental Chemicals.Allreagents,standardsandsolventsusedforchromatography(HPLCgrade)were purchasedfromSigmaͲAldrich(St.Louis,MO,USA),unlessotherwisespecified.Ammoniaand absolute ethanol were purchased from Merck (Darmstadt, Germany). High purity water was prepared with a Millipore MilliͲQ Plus system (Millipore, Bedford, MA, USA). Standard stock solutionsofsugarnucleotideswerepreparedinwaterat2μMandstoredatͲ80oCpriortouse. Further dilutions were prepared in 25% acetonitrile + formate buffer (0.1 % formic acid adjustedtopH9withammonia). P. falciparum culture and synchronization. P. falciparum asexual stages were cultured in an atmosphereof92%N2,3%O2and5%CO2 withB+humanerythrocytesat2Ͳ4%haematocritin RPMImediumsupplementedwith0.5%AlbumaxII.Humanerythrocyteswerepurchasedfrom theBancdeSangiTeixits(Catalonia,Spain),afterapprovalfromtheComitèÈticInvestigació Clínica Hospital Clínic de Barcelona. For the analysis of asexual blood stages, P. falciparum strain 3D7 (BEI Resources/MR4/American Type Culture Collection, Manassas, VA, USA) was 6 tightly synchronized to a 5Ͳhour window by combining Percoll purification of schizonts [29] followedbysorbitollysis5hourslater[30].Toreducebiologicalvariation,asingleculturewas splitandparasiteswereharvestedat18,25,32,35and37±2.5hourspostͲinvasion. Gametocytogenesis. The previously described 3D7ͲB subclone E5 [31] was cultured in RPMI medium supplemented with 10% human serum for gametocyte production. Sorbitol synchronizedrings(day0)weretreatedwith50mMNͲacetylglucosamine(GlcNAc)[32]that was maintained for the remainder of the experiment. On day 10, asexual late stages were removed by sorbitol lysis and gametocytes (mostly stage IV) were enriched from uninfected redbloodcells(uRBCs)andresidualringstagesbymagneticcellsortingusingMACScolumns (MiltenyiBiotech,Germany). Metabolite extraction and preanalytical purification. Harvested parasites were released by osmoticlysisin60volumesofcolderythrocytelysisbuffer(from10xstocksolutionconsisting of 0.15M NH4Cl, 0.1M KHCO3, 0.01M EDTA) and incubated in ice for 10 minutes [33]. As a control,4x109uRBCsweresubjectedtothesametreatment.Hostredbloodcellmaterialwas washedthricewithiceͲcoldphosphateͲbufferedsalineandreleasedparasiteswerelysedwith 500 μLs of Ͳ20°C 70% ethanol and spiked with 20 pmols of internal standard GDPͲglucose (GDPͲGlc). Cell debris wasremoved by centrifugation (20,000 x g for 10 minutes at 4ºC) and supernatantsweredriedundernitrogenorinaSavantTMSPD1010SpeedVacTMconcentrator (Thermo Scientific) at room temperature. For comparison purposes, some samples were further processed to reduce complexity. Briefly, lipids were extracted by nͲbutanol:water partition, and sugar nucleotides enriched by solid phase enrichment (SPE) with SupelcleanTM EnviTMͲCarb columns (Supelco), as described previously [16,34]. Extracted metabolites were finallyresuspendedin80Ͳ100μLsof25%acetonitrile+0.1%formicacidadjustedtopH9with ammonia.10μLswereinjectedforLCͲMS/MSanalysis. 7 LiquidchromatographyͲelectrosprayionizationͲtandemmassspectrometry(LCͲMS/MS).The LCͲMS/MS method was carried out on an Agilent 1290 Infinity LC System equipped with a Hypercarb PGC column (5 μm, 2.1 x 100mm; ThermoFisher Scientific) coupled by ESI to a QTRAP6500(ABSciex).Thecolumnwasmaintainedat60ºCandsamples(10μLvolume)were injectedataconstantflowrateof150μL/min.Thebinarymobilephasewascomposedof0.1% formicacidadjustedtopH9withammonia(A)andacetonitrile(B).TheLCrunstartedwitha 30 minute gradient from 2% acetonitrile to 15%, ramping linearly to 50% at minute 42 and followedbya1minutegradientto100%,whichwasmaintainedfor2minutes.Beforerunning the next sample, the column was reͲequilibrated by returning to the initial conditions of 2% acetonitrilefor35minutes(Fig.S1).Themassspectrometerwasoperatedinthenegativeion mode with the following settings: ion spray voltage: Ͳ4200V, declustering potential: Ͳ80V, entrancepotential:Ͳ10V,sourcetemperature:600ºC.Parentandfragmentionsweredetected in multiple reaction monitoring (MRM) mode for mass transitions described in Table 1. Peak identitieswereverifiedbytheanalysisofcommercialsugarnucleotidestandardsandselected areaswereintegratedwiththeAnalyst®1.6.2software.Sugarnucleotideswerequantifiedby correlating the known amount of commercial sugar nucleotides in the calibration curve and theratiobetweenmetaboliteandinternalstandardMSsignals. Results Validation of a PGC chromatography LCͲMS/MS method for the quantification of sugar nucleotides in asexual P. falciparum blood stages. Commercial sugar nucleotide standards were subjected to chromatographic separation on a PGC column and identified by their characteristicelutiontimeswhenMRMfailedtoselectbetweenanalyzedcompoundsasinthe caseofstereoisomers,suchasUDPͲGlcandUDPͲGalorGDPͲManandGDPͲGlc(Fig.1A).Allof the standards could be well resolved to baseline. Linearity, limits of detection and 8 quantificationandintraͲdayandinterͲdayvariabilityofretentiontimesareincludedinTable1. PreviouslydescribedmethodsinvolvedapreanalyticalpurificationstepconsistingofbutanͲ1Ͳ ol[16]delipidationandSPE[16,20,34]toreducesamplecomplexity.Toassesswhethertheuse ofthissamplepreparationstepcouldbecircumventedinintraerythrocyticstages,7.3x107P. falciparum3D7trophozoites(30±2.5hpi)wereanalyzedwithorwithoutdelipidationandSPE. Sugar nucleotide levels displayed no significant difference between both sample treatments (Fig.1B),allowingforafasterandlesslaboriousmethod.Furthermore,backgroundsignalfor each MRM transition remained unaltered and thus the low limits of quantification observed using standards were maintained (Table S1). Remarkably, under these conditions we did not observeanydecreaseinthechromatographicperformanceofthecolumn(i.e.peakresolution oftheanalytes)inmorethan5differentrunswithseveralsamplesoveraperiodofmorethan ayear. Quantifying sugar nucleotide levels at different stages of P. falciparum asexual intraerythrocytic development. In its human host,P. falciparumgoes through a cycle of repeatedinvasionoferythrocytes,exhibitingasynchronyofabout48Ͳhduration.Inculture,P. falciparumgrowninculturelosessynchronicityquickly,makingitmoredifficulttoanalyzeand compare sugar nucleotide levels across specific intraerythrocytic developmental stages. Different synchronization methods, based on selective lysis [30] or physical separation of specific stages [29] generate synchronization windows as wide as the duration of that stage, whichisnotoptimaltothoroughlydescribetheregulationofspecificmetabolitesthroughout the parasite intraerythrocytic life cycle. Higher degrees of synchrony can be achieved by successivecombinationofdifferentmethods,suchasPercollpurificationfollowedbysorbitol lysis [35]. However, these procedures require significant amounts of culture reagents or the reduction of the quantity of parasites in culture, making more difficult the analysis of lowͲ abundantmetabolites.Thelowquantificationlimits(0.8Ͳ2.6nM;Table1)achievedbythisLCͲ 9 MS/MSmethodpromptedustoanalyzetightlysynchronizedparasitecultures(0Ͳ5hwindow) with~1Ͳ4x108parasitescells.Theseanalysesresultedinacomprehensivequantificationofthe sugar nucleotide levels along the in vitro asexual intraerythrocytic development of P. falciparum(Fig.2B). Oneof the mainissues whenanalyzingtheintraerythrocyticstagesofthe malariaand other intracellular parasites is the extent of hostͲcell contamination. Human red blood cells (RBCs) contain pools of sugar nucleotides (Fig. S2A) and the LCͲMS/MS method could detect significant amounts of these metabolites carried over from the parasite host cells. To assess thedegreeofthiscontamination,weanalyzedthesugarnucleotidesdetectedinlyseduRBCs and established a contamination threshold that may be carried over from the host cell (see dashedlinesinFig.2B).OnlyGDPͲFuc,UDPͲGlcandUDPͲGlcNAcweredetectedabovethelimit of quantification when high numbers of uRBCs (a4x109) were lysed (Fig. S2B). Nevertheless, even in that case the background levels were negligible when compared with sugar nucleotidesdetectedinparasitesinthetrophozoitestagesandlater(from32±2.5hpi,seeFig. 2B). Sugar nucleotide levels in sexual gametocytes of P. falciparum. After establishing infection, less than 1% of intraerythrocytic P. falciparum differentiate to gametocytes [36]. Gametocytogenesisisanessentialprocessforparasitetransmission,sincegametocytesarethe only stages that can fertilize and establish the sporogonic cycle in the anopheline mosquito vector. Recent metabolomic studies reveal that despite entering a nonͲproliferative state, gametocytesexhibitincreasedlevelsofglucoseutilizationandhighenergyrequirements[28], indicating significant metabolic activity in these life stages. The gametocytes are known to harbor many transcripts while in the human host that are rapidly translated into proteins following gametogenesis in the mosquito, which occurs within a 10Ͳ15 minute time period, followed by macrogamete fertilization to form the mosquitoͲinfective ookinete stage. 10 FertilizedzygotesandmotileookinetesexpresstwomajorGPIͲanchoredproteins,P25andP28 [37].WehypothesizethatsugarnucleotidepoolsarerampedͲupandstoredinpreparationfor gametogenesis inside the mosquito vector. To date, the pools of sugar nucleotides in gametocytes have not been analyzed. The sensitivity of the HPLCͲMS/MS method designed enabledtherobustanalysisofsamplescontaininglessthan1x108P.falciparumgametocytes (seeTableS2).Weobservedthatsomeofthesugarnucleotidesdetectedinthislifestagewere presentatmuchhigherlevelsthanintheasexualbloodstages(Fig.3B). Discussion In this work we used a LCͲESIͲMS/MSͲbased methodology for the quantification of sugar nucleotideintheintraerythrocyticstagesofP.falciparumusinganiontrapinstrument(QTRAP 6500 AB Sciex), a PGC column and a MS compatible solvent system [20]. The low limit of detectionforthetargetedanalytes,between0.3Ͳ0.8nM,allowsforareductioninthenumber ofparasitesrequiredforanalysis(seeTableS2).Thisiscriticalwhenworkingwithorganisms such as P. falciparum, which poses significant problems for obtaining sufficient amounts of parasites that are tightly synchronized or from specific life stages (i.e. gametocytes, or ookinetes). The analysis showed (1) a dramatic increase of the pools of different sugar nucleotidesinthematurestagesoftheintraerythrocyticasexualdevelopmentoftheparasite, and(2)remarkablyhigherlevelsofthesemetabolitesinstageIVgametocytes.Weanticipate leveraging the sensitivity of this method to analyze sugar nucleotides in other important parasitelifestages,suchastheintrahepaticstagesofP.falciparum,whichislessamenablefor largeͲscalepurification. Aspreviouslyobserved[11],theavailabilityofsugarnucleotidesintheringstagesseemstobe scarce(Fig.2B),suggestingthatglycosylationreactionsmightoccurlaterintheparasitecycle. However,itcouldalsobearguedthatthehighdemandofthesemetabolitesduringtheinitial stageskeepsthepoolsatalowerlevel.Throughoutasexualdevelopment,thereisasignificant increaseinparasitesizewithintheredbloodcell[38].Itsrateofmultiplication,with10to20 11 merozoitesproducedevery48h,involveshighmetabolicandbiosyntheticactivity.Theparasite assemblesavarietyofglycoconjugates,mostlyfreeGPIsorglycoinositolphospholipids(GIPLs), andGPIͲanchoredproteins,severalofwhichareessentialforinvasion[6,39,40].Regardlessof thepresenceofNͲglycans[9]andotheruncharacterizedglycosylations[19],GPIbiosynthesis requires UDPͲGlcNAc and GDPͲMan donors [41]. Accordingly, the pools of these metabolites (Fig.2B),butalsoothersugarnucleotides,expandexponentiallyalongtheasexuallifecycleof theparasite,eitherreflectinganincreasedbiosynthesistofuelthedemandofUDPͲGlcNAcand GDPͲMan during the mature stages of the asexual life cycle; or indicating a decrease on the need of these metabolites, due to a decline of glycoconjugate synthesis at the final stages. Data on gene expression of UDPͲNͲacetylglucosamine pyrophosphorylase and mannoseͲ1Ͳ phosphateguanyltransferasemightshedmorelightintothismatter,buttheirRNAtranscripts aredecreasedandincreased,respectively,towardstheendofthelifecycle[42]. ThelevelsofGDPͲfucose(GDPͲFuc)aresteadybetween32±2.5and35±2.5hourspostͲinvasion suggesting a possible extra consumption of this metabolite by the parasite glycosylation machineryduringthistimeperiod(Fig.2B).Interestingly,P.falciparumisknowntoexpressa ProteinOͲfucosyltransferase2(PoFUT2)homolog,aGDPͲFucͲdependentOͲfucosyltransferase that fucosylates thrombospondin type 1 repeat (TSR) domains in other organisms [43]. Accordingly, the transcription of PfPoFUT2 and potential OͲfucose acceptors, the TSRͲ containingproteinsMTRAPandTRAMP,increaseduringthatsameperiod[42]. Finally, gametocytes present significantly higher levels of sugar nucleotides than the asexual bloodstages(Fig.3B).Theliteraturesuggeststhatthecellvolumeofgametocytesandasexual schizontsissimilar[38].Therefore,theobservedlevelsofUDPͲGlcNAc,UDPͲGlcandGDPͲMan above one order of magnitude in comparison to asexual parasites shows a much higher concentration and availability of these metabolites in gametocytes (i.e. 65.7, 98.8 and 7.8 pmols/107 parasites cell for UDPͲGlc, UDPͲGlcNAc and GDPͲMan). Indeed, the levels of UDPͲ GlcNAc, UDPͲGlc and GDPͲMan in gametocytes are comparable to the extracellular forms of 12 otherparasites,suchasTrypanosomabrucei,TrypanosomacruziorLeishmaniamajor[16]that present more varied and profuse glycosylation patterns [44]. This could reflect a distinct glycosylation status in P. falciparum gametocytes in contrast to asexual blood stages and supports the contention that the gametocytes are preparing for an extracellular existence in themosquito.Gametocytesegressfromtheredbloodcellandbecomeextracellulargametes in the mosquito midgut, where they could make use of the pools accumulated in the gametocytestage.Thus,glycosylationcouldbemorerelevantintheseextracellularformsand possibly also in other mosquito stages (such as oocysts and sporozoites). Further studies on theglycosylationspresentinthesurfaceofP.falciparumextracellularstageswillhelptocast lightonthisissue. Acknowledgements The authors thank Hernando A. del Portillo and Alfred Cortés for support and helpful discussionsthroughoutthisproject.WethankAlfredCortésandcolleaguesforthegenerous giftofP.falciparumstrain3D7ͲBsubcloneE5usedingametocytestudies.Wearealsograteful toM.Ramírez,M.Cova,S.SanzandCCiTUB(ScientificandTechnologicalCentersUniversitat deBarcelona)fortechnicalsupport,advice,assistanceandusefulsuggestions. Declarationsofinterest Theauthorsdeclarethatnoconflictofinterestexists. Fundinginformation LIthanksfundingfromSpanishMinistryofEconomy(grantSAF2013Ͳ43656ͲRsupportingBLͲG). LI and RRD are grateful for National Institutes of Health grant 1R21AI115063Ͳ01. LI is a member of the GlycoParͲEU FP7 funded Marie Curie Initial Training Network (GA 608295). ISGlobalissupportedbytheCERCAProgramme(GeneralitatdeCatalunya). 13 Authorcontributionstatement BLͲG collected samples and carried out sugar nucleotide analysis. BLͲG and LI conceived the work, designed the method and performed data analysis. BLͲG, LI and RRD outlined the documentandcontributedtothewritingandreviewofthismanuscript. References: 1 (2016)WHO|WorldMalariaReport2015.WHO,WorldHealthOrganization. 2 Fairhurst,R.M.andDondorp,A.M.(2016)ArtemisininͲResistantPlasmodium falciparumMalaria.Microbiol.Spectr.4,EI10Ͳ0013Ͳ2016. 3 ThemalERAConsultativeGrouponBasicScienceandEnablingTechnologies.(2011)A researchagendaformalariaeradication:basicscienceandenablingtechnologies.PLoS Med.8,e1000399. 4 Cova,M.,Rodrigues,J.A.,Smith,T.K.andIzquierdo,L.(2015)Sugaractivationand glycosylationinPlasmodium.Malar.J.14,427. 5 VonItzstein,M.,Plebanski,M.,Cooke,B.M.andCoppel,R.L.(2008)Hot,sweetand sticky:theglycobiologyofPlasmodiumfalciparum.TrendsParasitol.24,210–8. 6 Naik,R.S.,Branch,O.H.,Woods,A.S.,Vijaykumar,M.,Perkins,D.J.,Nahlen,B.L.,Lal, A.A.,Cotter,R.J.,Costello,C.E.,Ockenhouse,C.F.,etal.(2000) GlycosylphosphatidylinositolAnchorsofPlasmodiumfalciparum:Molecular CharacterizationandNaturallyElicitedAntibodyResponseThatMayProvideImmunity toMalariaPathogenesis.J.Exp.Med.192,1563–1576. 7 Sanders,P.R.,Kats,L.M.,Drew,D.R.,O’Donnell,R.A.,O’Neill,M.,Maier,A.G.,Coppel, R.L.andCrabb,B.S.(2006)ASetofGlycosylphosphatidylInositolͲAnchoredMembrane ProteinsofPlasmodiumfalciparumIsRefractorytoGeneticDeletion.Infect.Immun.74, 4330–4338. 8 Schofield,L.andHackett,F.(1993)Signaltransductioninhostcellsbya glycosylphosphatidylinositoltoxinofmalariaparasites.J.Exp.Med.177,145–53. 9 Bushkin,G.G.,Ratner,D.M.,Cui,J.,Banerjee,S.,Duraisingh,M.T.,Jennings,C.V, Dvorin,J.D.,Gubbels,M.ͲJ.,Robertson,S.D.,Steffen,M.,etal.(2010)Suggestive evidenceforDarwinianSelectionagainstasparagineͲlinkedglycansofPlasmodium falciparumandToxoplasmagondii.Eukaryot.Cell9,228–41. 10 Swearingen,K.E.,Lindner,S.E.,Shi,L.,Shears,M.J.,Harupa,A.,Hopp,C.S.,Vaughan, A.M.,Springer,T.A.,Moritz,R.L.,Kappe,S.H.I.,etal.(2016)Interrogatingthe PlasmodiumSporozoiteSurface:IdentificationofSurfaceͲExposedProteinsand DemonstrationofGlycosylationonCSPandTRAPbyMassSpectrometryͲBased Proteomics.PLoSPathog.12,e1005606. 11 Sanz,S.,Bandini,G.,Ospina,D.,Bernabeu,M.,Marino,K.,FernandezͲBecerra,C.and Izquierdo,L.(2013)BiosynthesisofGDPͲfucoseandOtherSugarNucleotidesinthe BloodStagesofPlasmodiumfalciparum.J.Biol.Chem.288,16506–16517. 14 12 Varki,A.,Cummings,R.D.,Esko,J.D.,Freeze,H.H.,Stanley,P.,Bertozzi,C.R.,Hart,G. W.andEtzler,M.E.(2009)EssentialsofGlycobiology,ColdSpringHarborLaboratory Press. 13 Takeda,J.andKinoshita,T.(1995)GPIͲanchorbiosynthesis.TrendsBiochem.Sci.20, 367–371. 14 Ferguson,M.A.(1999)Thestructure,biosynthesisandfunctionsof glycosylphosphatidylinositolanchors,andthecontributionsoftrypanosomeresearch.J. CellSci.112,2799–809. 15 Samuelson,J.,Banerjee,S.,Magnelli,P.,Cui,J.,Kelleher,D.J.,Gilmore,R.andRobbins, P.W.(2005)ThediversityofdolicholͲlinkedprecursorstoAsnͲlinkedglycanslikely resultsfromsecondarylossofsetsofglycosyltransferases.Proc.Natl.Acad.Sci.U.S.A. 102,1548–53. 16 Turnock,D.C.andFerguson,M.A.J.(2007)SugarnucleotidepoolsofTrypanosoma brucei,Trypanosomacruzi,andLeishmaniamajor.Eukaryot.Cell6,1450–63. 17 Turnock,D.C.,Izquierdo,L.andFerguson,M.A.J.(2007)ThedenovosynthesisofGDPͲ fucoseisessentialforflagellaradhesionandcellgrowthinTrypanosomabrucei.J.Biol. Chem.282,28853–63. 18 Marino,K.,Guther,M.L.S.,Wernimont,A.K.,Qiu,W.,Hui,R.andFerguson,M.A.J. (2011)Characterization,Localization,Essentiality,andHighͲResolutionCrystalStructure ofGlucosamine6ͲPhosphateNͲAcetyltransferasefromTrypanosomabrucei.Eukaryot. Cell10,985–997. 19 Sanz,S.,LópezͲGutiérrez,B.,Bandini,G.,Damerow,S.,Absalon,S.,Dinglasan,R.R., Samuelson,J.andIzquierdo,L.(2016)ThedisruptionofGDPͲfucosedenovo biosynthesissuggeststhepresenceofanovelfucoseͲcontainingglycoconjugatein Plasmodiumasexualbloodstages.Sci.Rep.6,37230. 20 Pabst,M.,Grass,J.,Fischl,R.,Léonard,R.,Jin,C.,Hinterkörner,G.,Borth,N.and Altmann,F.(2010)NucleotideandnucleotidesugaranalysisbyliquidchromatographyͲ electrosprayionizationͲmassspectrometryonsurfaceͲconditionedporousgraphitic carbon.Anal.Chem.82,9782–8. 21 Antignac,J.ͲP.,deWasch,K.,Monteau,F.,DeBrabander,H.,Andre,F.andLeBizec,B. (2005)Theionsuppressionphenomenoninliquidchromatography–massspectrometry anditsconsequencesinthefieldofresidueanalysis.Anal.Chim.Acta529,129–136. 22 Jessome,L.andVolmer,D.A.IonSuppression:AMajorConcerninMassSpectrometry. LCͲGCNorthAm.24,498–510. 23 Antonio,C.,Larson,T.,Gilday,A.,Graham,I.,Bergström,E.andThomasͲOates,J.(2007) QuantificationofsugarsandsugarphosphatesinArabidopsisthalianatissuesusing porousgraphiticcarbonliquidchromatographyͲelectrosprayionizationmass spectrometry.J.Chromatogr.A1172,170–178. 24 West,C.,Elfakir,C.andLafosse,M.(2010)Porousgraphiticcarbon:Aversatile stationaryphaseforliquidchromatography.J.Chromatogr.A1217,1217–3201. 25 Joice,R.,Nilsson,S.K.,Montgomery,J.,Dankwa,S.,Egan,E.,Morahan,B.,Seydel,K.B., Bertuccini,L.,Alano,P.,Williamson,K.C.,etal.(2014)Plasmodiumfalciparum 15 transmissionstagesaccumulateinthehumanbonemarrow.Sci.Transl.Med.6, 244re5. 26 Alano,P.(2007)Plasmodiumfalciparumgametocytes:stillmanysecretsofahidden life.Mol.Microbiol.66,291–302. 27 Adjalley,S.H.,Johnston,G.L.,Li,T.,Eastman,R.T.,Ekland,E.H.,Eappen,A.G., Richman,A.,Sim,B.K.L.,Lee,M.C.S.,Hoffman,S.L.,etal.(2011)Quantitative assessmentofPlasmodiumfalciparumsexualdevelopmentrevealspotent transmissionͲblockingactivitybymethyleneblue.Proc.Natl.Acad.Sci.U.S.A.108, E1214Ͳ23. 28 MacRae,J.I.,Dixon,M.W.,Dearnley,M.K.,Chua,H.H.,Chambers,J.M.,Kenny,S., Bottova,I.,Tilley,L.andMcConville,M.J.(2013)Mitochondrialmetabolismofsexual andasexualbloodstagesofthemalariaparasitePlasmodiumfalciparum.BMCBiol.11, 67. 29 Rivadeneira,E.M.,Wasserman,M.andEspinal,C.T.(1983)Separationand concentrationofschizontsofPlasmodiumfalciparumbyPercollgradients.J.Protozool. 30,367–70. 30 Lambros,C.andVanderberg,J.P.(1979)SynchronizationofPlasmodiumfalciparum erythrocyticstagesinculture.J.Parasitol.65,418–20. 31 Kafsack,B.F.C.,RoviraͲGraells,N.,Clark,T.G.,Bancells,C.,Crowley,V.M.,Campino,S. G.,Williams,A.E.,Drought,L.G.,Kwiatkowski,D.P.,Baker,D.A.,etal.(2014)A transcriptionalswitchunderliescommitmenttosexualdevelopmentinmalaria parasites.Nature507,248–52. 32 Ribaut,C.,Berry,A.,Chevalley,S.,Reybier,K.,Morlais,I.,Parzy,D.,Nepveu,F.,BenoitͲ Vical,F.andValentin,A.(2008)Concentrationandpurificationbymagneticseparation oftheerythrocyticstagesofallhumanPlasmodiumspecies.Malar.J.7,45. 33 DiGirolamo,F.,Raggi,C.,Birago,C.,Pizzi,E.,Lalle,M.,Picci,L.,Pace,T.,Bachi,A.,De Jong,J.,Janse,C.J.,etal.(2008)Plasmodiumlipidraftscontainproteinsimplicatedin vesiculartraffickingandsignallingaswellasmembersofthePIRsuperfamily, potentiallyimplicatedinhostimmunesysteminteractions.Proteomics8,2500–2513. 34 Räbinä,J.,Mäki,M.,Savilahti,E.M.,Järvinen,N.,Penttilä,L.andRenkonen,R.(2001) AnalysisofnucleotidesugarsfromcelllysatesbyionͲpairsolidͲphaseextractionand reversedͲphasehighͲperformanceliquidchromatography.Glycoconj.J.18,799–805. 35 Radfar,A.,Méndez,D.,Moneriz,C.,Linares,M.,MarínͲGarcía,P.,Puyet,A.,Diez,A.and Bautista,J.M.(2009)SynchronouscultureofPlasmodiumfalciparumathigh parasitemialevels.Nat.Protoc.4,1828–1844. 36 Sinden,R.E.(1983)Sexualdevelopmentofmalarialparasites.Adv.Parasitol.22,153– 216. 37 Martinez,A.P.,Margos,G.,Barker,G.andSinden,R.E.(2000)Therolesofthe glycosylphosphatidylinositolanchorontheproductionandimmunogenicityof recombinantookinetesurfaceantigenPbs21ofPlasmodiumbergheiwhenpreparedin abaculovirusexpressionsystem.ParasiteImmunol.22,493–500. 38 Hanssen,E.,Knoechel,C.,Dearnley,M.,Dixon,M.W.A.A.,LeGros,M.,Larabell,C.and 16 Tilley,L.(2012)SoftXͲraymicroscopyanalysisofcellvolumeandhemoglobincontentin erythrocytesinfectedwithasexualandsexualstagesofPlasmodiumfalciparum.J. Struct.Biol.177,224–32. 39 Sanders,P.R.,Kats,L.M.,Drew,D.R.,O’Donnell,R.A.,O’Neill,M.,Maier,A.G.,Coppel, R.L.andCrabb,B.S.(2006)AsetofglycosylphosphatidylinositolͲanchoredmembrane proteinsofPlasmodiumfalciparumisrefractorytogeneticdeletion.Infect.Immun.74, 4330–8. 40 Gilson,P.R.,Nebl,T.,Vukcevic,D.,Moritz,R.L.,Sargeant,T.,Speed,T.P.,Schofield,L. andCrabb,B.S.(2006)IdentificationandstoichiometryofglycosylphosphatidylinositolͲ anchoredmembraneproteinsofthehumanmalariaparasitePlasmodiumfalciparum. Mol.Cell.proteomics5,1286–99. 41 McConville,M.J.andFerguson,M.A.(1993)Thestructure,biosynthesisandfunctionof glycosylatedphosphatidylinositolsintheparasiticprotozoaandhighereukaryotes. Biochem.J.294,305–24. 42 RoviraͲGraells,N.,Gupta,A.P.,Planet,E.,Crowley,V.M.,Mok,S.,RibasdePouplana, L.,Preiser,P.R.,Bozdech,Z.andCortes,A.(2012)Transcriptionalvariationinthe malariaparasitePlasmodiumfalciparum.GenomeRes.22,925–938. 43 Luo,Y.,Koles,K.,Vorndam,W.,Haltiwanger,R.S.andPanin,V.M.(2006)ProteinOͲ Fucosyltransferase2AddsOͲFucosetoThrombospondinType1Repeats.J.Biol.Chem. 281,9393–9. 44 Rodrigues,J.A.,AcostaͲSerrano,A.,Aebi,M.,Ferguson,M.A.J.,Routier,F.H.,Schiller, I.,Soares,S.,Spencer,D.,Titz,A.,Wilson,I.B.H.,etal.(2015)ParasiteGlycobiology:A BittersweetSymphony.PLOSPathog.11,e1005169. 17 565ї323 606ї385 604ї424 604ї362 588ї442 UDPͲGlc UDPͲGlcNAc GDPͲMan GDPͲGlc GDPͲFuc 34.21 33.57 31.18 22.40 21.68 20.38 tR (min) 1.04 1.22 1.94 1.54 1.51 1.57 tRintraͲdaySD (min)b 2.90 2.57 2.95 3.11 3.44 2.21 tRinterͲdaySD (min)c 0.44 0.20 0.77 0.30 0.77 0.25 LoD (nM)d 0.84 0.68 2.56 2.56 1.48 1.02 LoQ (nM)e 0.9985 1.0000 0.9966 0.9973 0.9987 0.9968 f R2 18 a.Themajorproductionforeverysugarnucleotidecorrespondstoitsnucleotidicmoiety,sinceionfragmentationtakesplacearoundtheunstablebondbetweenthesugar andthenucleotide(i.e.atthesugarͲ1Ͳphosphateorpyrophosphatelinkages)[16]. b.IntraͲdaystandarddeviationofretentiontimes(n=12measurements). c.InterͲdaystandarddeviationofretentiontimes(n=3measurements). d.Limitofdetection(LoD)wascalculatedatasignalͲtoͲnoiseratio(S/N)of3. e.Limitofquantification(LoQ)wascalculatedatasignalͲtoͲnoiseratio(S/N)of10. f.CorrelationcoefficientsoftheknownamountofcommercialsugarnucleotidesinthecalibrationcurveandtheanalyteMSsignalrelativetotheGDPͲglucoseinternal standard. 565ї323 MRMtransition (m/z)a UDPͲGal Analyte Table1.Retentiontimes,limitsofdetectionandquantificationandlinearityofstandardcalibrationcurves Figurelegends Figure 1. Development of the PGC LCͲMS/MS quantification method for sugar nucleotides analysis.(A)Representativeextractedionchromatograms(XIC)oftargetedsugarnucleotides fromanextractofP.falciparum3D7trophozoites(30±2.5hpi).(B)Sugarnucleotidepoolsof 7.3x107P.falciparum3D7trophozoites(30±2.5hpi)analyzedbyPGCLCͲMS/MSbefore(white bars)orafter(greybars)apreanalyticalpurificationconsistingofbutanͲ1Ͳoldelipidationand solidphaseenrichment.Valuesofeachsugarnucleotideindicatetheaverageofthreedifferent extractions.ErrorbarsdisplayS.D. Figure 2. Sugar nucleotide pools of P. falciparum asexual blood stages. (A) Schematic representationofthesynchronizationstrategyandsamplingtimeͲpoints.(B)Quantificationof sugarnucleotidesfromextractsofP.falciparum3D7tightlysynchronizedasexualbloodstages. Values are the average of three extractions at different timeͲpoints. Error bars display S.D. Uninfected red blood cells were lysed as a negative control and were used to estimate the maximumcontaminationthresholdexpectedfromhostredbloodcells(dashedline)according totheamountofredbloodcellsineachsample(exceptfornonͲquantifiableanalyteswitha signalͲtoͲnoiseratio<10,i.e.UDPͲGalandGDPͲMan). Figure3.SugarnucleotidepoolsofP.falciparumgametocytes.(A)Schematicrepresentation ofgametocyteinductionandsamplingtimeͲpoint.(B)Quantificationofsugarnucleotidesfrom an extract of P. falciparum 3D7B E5 subclone. Values are the average of three technical replicates.ErrorbarsdisplayS.D. 19 Fig. 1 A. UDP-Glc 100% 565 ї 323 Relative intensity UDP-Gal 0% 100% 606 ї 385 UDP-GlcNAc 0% 100% GDP-Glc 604 ї 424 GDP-Fuc 588 ї 442 GDP-Man 0% 100% 0% 0 pmols/1x107 parasite cells B. 20 0,6 0,4 0,2 0,0 40 Time (min) 60 80 Fig. 2 A. B. 37±2.5 hpi 0,4 32±2.5 hpi 35±2.5 hpi 25±2.5 hpi 18±2.5 hpi pmols/107 parasite cells 0,3 UDP-Gal 3,0 UDP-Glc 3,0 2,0 2,0 1,0 1,0 UDP-GlcNAc 0,2 0,1 0,0 0,8 0,6 0,0 0,0 15 20 25 30 35 40 GDP-Man 15 20 25 30 35 40 0,3 GDP-Fuc 0,2 0,4 0,1 0,2 0,0 0,0 15 20 25 30 35 40 15 20 25 30 35 40 Time post-invasion (hours) 15 20 25 30 35 40 Fig. 3 A. STAGE I (Day 3) LC-MS/MS (Day 10) STAGE III (Day ay 6) GlcNAc induction MACS + sorbitol RING STAGE (Day 0) pmols/1x107 cells B. STAGE II (Day 4) STAGE IV (Day 8) 125 0.40 100 0.20 75 0.00 50 25 0
© Copyright 2026 Paperzz