MCEN 4173/5173 Chapter 7 Linear Elasticity and Energy Method Fall, 2006 1 Linear Elasticity Linear elasticity is the most common problem in a variety of engineering applications Machine Design Bio-Mechanics 2 Linear Elasticity Linear Elasticity What is linear elasticity about? P P deformed undeformed X2 Question: If we apply a force on a material, what are the stresses, strains and displacements? X2 X1 X1 Object: Linear Elastic Body (Machine elements; Human hard tissue……) Input Boundary conditions (Applied force; Applied displacement …) Output Stresses, strains, displacements, at each material point (x1,x2,x3) ??? 3 Linear Elasticity σ 33 Stresses: σ 32 σ 31 ⎡σ 11 σ 12 σ 13 ⎤ σ = ⎢⎢σ 21 σ 22 σ 23 ⎥⎥ ⎢⎣σ 31 σ 32 σ 33 ⎥⎦ σ 23 σ 13 σ 12 X3 σ 21 σ 22 σ 11 X2 X1 Normal Stresses: σ 11 σ 22 σ 33 Shear Stresses: σ 12 σ 21 σ 23 σ 32 σ 13 σ 31 σ ij = σ ji 6 independent stress components 4 Linear Elasticity Strains: γ L ΔL εx = L Normal strain ΔL γ xy = γ Shear strain 5 Linear Elasticity (x1 , x2 , x3 ) ⇔ (x, y, z ) (u1 , u2 , u3 ) ⇔ (u, v, w) Strains: Normal Strains ∂u1 ∂u ε 11 = = ∂x1 ∂x ε 22 ∂u 2 ∂v = = ∂x2 ∂y ∂u3 ∂w ε 33 = = ∂x3 ∂z Shear Strains ∂u1 ∂u2 ∂u ∂v 2ε 12 = γ xy = + = + ∂x2 ∂x1 ∂y ∂x ∂u2 ∂u3 ∂v ∂w 2ε 23 = γ yz = + = + ∂x3 ∂x2 ∂z ∂y ∂u1 ∂u3 ∂u ∂w 2ε 13 = γ xz = + = + ∂x3 ∂x1 ∂z ∂x 6 Linear Elasticity Strains (kinematics) : 1 ⎛⎜ ∂ui ∂u j ⎞⎟ ε ij = ⎜ + 2 ⎝ ∂x j ∂xi ⎟⎠ ∂u1 ∂u = i=j=1 ε 11 = ∂x1 ∂x i=1, j=2 ∂u 2 ∂v = = ∂x2 ∂y i=2, j=3 ∂u3 ∂w = i=j=3 ε 33 = ∂x3 ∂z i=1, j=3 i=j=2 ε 22 A letter in a subscript is an index, such as i, j, k, … In 3D solid mechanics problems, an index runs from 1 to 3. In 2D solid mechanics problems, an index runs from 1 to 2. 1 ⎛ ∂u1 ∂u2 ⎞ ⎟⎟ ε 12 = ⎜⎜ + 2 ⎝ ∂x2 ∂x1 ⎠ 1 ⎛ ∂u2 ∂u3 ⎞ ⎟⎟ + ε 23 = ⎜⎜ 2 ⎝ ∂x3 ∂x2 ⎠ 1 ⎛ ∂u1 ∂u3 ⎞ ⎟⎟ + ε 13 = ⎜⎜ 2 ⎝ ∂x3 ∂x1 ⎠ 7 Linear Elasticity Strains (kinematics) : u1 = 1 + 2 x1 + 3 x2 + 4 x1 x2 u2 = 5 + 6 x1 + 7 x2 + 8 x1 x2 u3 = 0 8 Linear Elasticity Strains (kinematics) : ∂u1 = 2 + 4 x2 ε 11 = ∂x1 u1 = 1 + 2 x1 + 3 x2 + 4 x1 x2 6 2 1.8 5 1.6 4 1.4 3 1.2 1 2 0.8 0.6 1 S10 0 S10 0.4 S7 S7 0.2 S4 -1 1 2 3 4 5 6 7 8 9 S1 10 11 2nd order polynomial function S4 0 1 2 3 4 5 6 7 8 S1 9 10 11 Linear function 9 Linear Elasticity Constitutive equations (stress-strain relations) 1 e11 = [σ 11 −ν (σ 22 + σ 33 )] E 1 e22 = [σ 22 − ν (σ 11 + σ 33 )] E 1 e33 = [σ 33 − ν (σ 11 + σ 22 )] E 1 e12 = σ 12 2G 1 e23 = σ 23 2G 1 e13 = σ 13 2G 1 ⎞ ⎛ ⎜ γ xy = τ xy ⎟ G ⎠ ⎝ 1 ⎞ ⎛ ⎜ γ yz = τ yz ⎟ G ⎠ ⎝ 1 ⎞ ⎛ ⎜ γ xz = τ xz ⎟ G ⎠ ⎝ 1 +ν ν σ ij − (σ 11 + σ 22 + σ 33 )δ ij eij = E E ⎧0 i ≠ j δ ij = ⎨ ⎩1 i = j σ ij = 2Geij + λ (e11 + e22 + e33 )δ ij λ= νE (1 +ν )(1 − 2ν ) 10 Linear Elasticity Equilibrium Equations f d X2 d X1 X2 X1 11 Linear Elasticity Equilibrium Equations ∂σ 11 ∂σ 12 ∂σ 13 + + + f1 = 0 ∂X 1 ∂X 2 ∂X 3 ∂σ 21 ∂σ 22 ∂σ 23 + + f2 = 0 + ∂X 1 ∂X 2 ∂X 3 ∂σ 31 ∂σ 32 ∂σ 33 + + + f3 = 0 ∂X 1 ∂X 2 ∂X 3 σ 12 = σ 21 σ 13 = σ 31 σ 23 = σ 32 If we denote ∂ (•) = (•) ,i ∂X i σ ij , j + f i = 0 12 Linear Elasticity Summation Convention: When an index repeats itself in one term, we mean it is a summation. 3 ai bi = ∑ ai bi = a1b1 + a2b2 + a3b3 i =1 3 σ ij , j = ∑ σ ij , j = σ i1,1 + σ i 2, 2 + σ i 3,3 j =1 13 Linear Elasticity Summary of Linear Elasticity Kinematics: Constitutive: eij = eij = 1 (ui, j + u j ,i ) 2 ν 1 +ν σ ij − σ kk δ ij E E 6 equations σ ij = 2Geij + λekk δ ij 6 equations σ ij , j + f i = 0 Equilibrium: 3 equations Totally: 15 equations Unknowns: Stresses: σ 11 σ 22 σ 33 σ 12 σ 21 σ 23 Strains: ε 11 ε 22 ε 33 ε 12 ε 21 ε 23 Displacements: u1 u 2 u3 Totally: 15 unknowns 14 Linear Elasticity Good news: We have 15 unknowns, and we have 15 equations. So with proper boundary conditions, we have a unique (one, and only one) solution to this problem. Bad news: How to get the solution? 15 Linear Elasticity u1 u2 u3 Start with displacements, eij = 1 (ui, j + u j ,i ) 2 Strains in terms of displacements σ ij = 2Geij + λekk δ ij Stresses in terms of displacements σ ij , j + f i = 0 Equilibrium equations in terms of displacements σ (u1 , u2 , u3 )ij , j + f i = 0 These equations are second order partial differential equations!! 16 Linear Elasticity P deformed eij = 1 (ui, j + u j ,i ) 2 σ ij = 2Geij + λekk δ ij σ ij , j + f i = 0 X2 Boundary conditions X1 What we mean by saying a solution to a linear elasticity problem? A solution that satisfies above equations and boundary conditions at EACH material point. This is a very strong requirement!! 17 Linear Elasticity Since finding a precise solution is too difficult, we step back a little. σ (u1 , u2 , u3 )ij , j + f i = 0 P deformed In stead of asking above equations are satisfied at each material point, we ask the above equations to be satisfied in the sense of integral, i.e. X2 Ω X1 This is a big release, because 18 Linear Elasticity Weighted Residual Method [∫ σ (u~ , u~ , u~ ) 1 2 3 ij , j ] + f i dV = 0 V 19 Linear Elasticity Weighted Residual Method By choosing different weight functions, we obtained different numerical approximation methods. Point-Collocation Method Subdomain Collocation Method Method of Moment Least Squares Methods Method Galerkin Method 20 Linear Elasticity Weighted Residual Method Example: d 2u +u + x = 0 2 dx 0 ≤ x ≤1 Boundary conditions x=0 u=0 Accurate solution: x=1 u=0 sin x u= −x sin 1 Assuming an approximate solution is: u = x(1 − x)(a1 + a2 x + a3 x 2 + L) 1 Weighted Residual is: ∫ W Rdx = 0 0 i 21 Linear Elasticity Weighted Residual Method: example d 2u +u + x = 0 2 dx 0 ≤ x ≤1 First order approximation: n=1 u = a1 x(1 − x) Second order approximation n=2 u = x(1 − x)(a1 + a2 x) 22 Linear Elasticity Weighted Residual Method: example Point collocation method: Allocate several points within the domain (0 ≤ x ≤ 1) R( xi ) = 0 n=1, we choose the mid-point x = 1/ 2 ( ) R1 ( x = 1 / 2 ) = x + a1 − 2 + x − x 2 = 0 2 a1 = 7 1 7 − a1 = 0 2 4 n=2, we choose x = 1/ 3 2 u1 = x(1 − x) 7 x = 2/3 1 16 2 R2 ( x = 1 / 3) = − a1 + a2 = 0 3 9 27 2 16 50 R2 ( x = 2 / 3) = − a1 − a2 = 0 3 9 27 a1 = 0.1948 a2 = 0.1731 u 2 = x(1 − x)(0.1948 + 0.1731x ) 23 Linear Elasticity Weighted Residual Method: example n Galerkin method u = ∑ N i ai Wi = N i i =1 First order approximation: W1 = N1 = x(1 − x ) u = a1 x(1 − x) n=1 ( R1 = x + a1 − 2 + x − x 2 ( ( ) )) 2 ( ) W Rdx = 0 = x 1 − x x + a − 2 + x − x dx 1 ∫ 1 ∫ 1 1 0 0 a1 = 5 = 0.2727 18 u = 0.2727 x(1 − x) 24 Linear Elasticity Weighted Residual Method: example n Galerkin method u = ∑ N i ai Wi = N i i =1 Second order approximation: W1 = N1 = x(1 − x ) u = x(1 − x)(a1 + a2 x) W2 = N 2 = x 2 (1 − x ) ( ) ( R = x + a1 − 2 + x − x 2 + a2 2 − 6 x + x 2 − x 3 ) [ ( ) ( ∫ W Rdx = ∫ x (1 − x )[x + a (− 2 + x − x ) + a (2 − 6 x + x )] − x )]dx = 0 2 2 3 ( ) W Rdx = x 1 − x x + a − 2 + x − x + a 2 − 6 x + x − x dx = 0 1 2 ∫ 1 ∫ 1 1 0 0 1 0 1 2 0 2 2 1 2 2 3 u = x(1 − x)(0.1924 + 1707 x) 25 Linear Elasticity Weighted Residual Method: example Errors Solution u= x=0.25 sin x −x sin 1 Point coll. n=1 2 u1 = x(1 − x) 7 Galerkin, n=1 u1 = 0.2727 x(1 − x) Error % 0.04401 x=0.5 Error % 0.06975 x=0.75 Error % 0.06006 0.05355 21.7 0.07143 2.4 0.05357 -10.8 0.05208 18.3 0.06944 -0.4 0.05208 -13.3 0.04464 1.4 0.07034 0.8 0.06087 1.3 0.04408 0.2 0.06944 -0.4 0.06008 0.03 Point coll. n=2 u 2 = x(1 − x)(0.1948 + 0.1731x ) Galerkin, n=1 u = x(1 − x)(0.1924 + 1707 x) 26 Linear Elasticity Principle of Virtual Displacements Concepts Admissible Admissible displacements P A set of displacements that satisfy the geometric constraints. S P1 Virtual displacements S P2 A set of small displacement variations upon which the geometric constraints are satisfied. δui dui t u Su X2 Β X1 Not Admissible 27 Linear Elasticity Principle of Virtual Displacements Some math: a, j b = (ab ), j − ab, j (ab ), j = a, j b + ab, j Green Theorems: ∫ a dB =∫ B ,i ∂B a ni dS 28 Linear Elasticity Principle of Virtual Displacements σ ij , j + f i = 0 B.C.: σ ij n j − Ti = 0 P in B S P1 on ∂B T Now, we want to use weighted residual method to obtain the integral form of equilibrium equations. We use the virtual displacements δ ui as weight function ∫ (σ B ij , j u Su X2 Β X1 + f i )δui dV − ∫ (σ ij n j − Ti )δui dS = 0 ∂B 29 Linear Elasticity Principle of Virtual Displacements ∫ (σ B ij , j + f i )δui dV − ∫ (σ ij n j − Ti )δui dS = 0 ∂B 30 Linear Elasticity Principle of Virtual Displacements ∫ σ δu B ij i, j dV 31 Linear Elasticity Principle of Virtual Displacements ∫B σ ij , jδui dV = ∫∂B (σ ijδui )n j dS − ∫B σ ijδeij dV ∫ (σ B ij , j + f i )δui dV − ∫ (σ ij n j − Ti )δui dS = 0 ∂B ∫B (σ ijδeij − f iδui )dV = ∫∂B Tiδui dS Internal work on virtual displacements External work on virtual displacements Principle of virtual displacement: The work done by external force on virtual displacements is equal to the work done by the internal force on virtual displacements. 32 Linear Elasticity Principle of Minimum Potential Energy General form of linear elastic constitutive equations σ ij = 2Geij + λekk δ ij σ ij = Dijkl ekl Dijkl = Dklij From principle of virtual displacements ∫B (σ ijδeij − f iδui )dV − ∫∂B Tiδui dS = 0 33 Linear Elasticity Principle of Minimum Potential Energy ⎡ ⎛1 ⎤ ⎞ ∫B ⎢⎣δ ⎜⎝ 2 Dijkl ekl eij ⎟⎠ − f iδui ⎥⎦ dV − ∫∂B Tiδui dS = 0 ( ) 1 Dijkl ekl eij = U eij = U (ui ) 2 Strain energy density Stored energy density Stress Strain 34 Linear Elasticity Principle of Minimum Potential Energy Conservative force: If a force acting on an object is a function of position only, it is said to be a conservative force, and it can be represented by a potential energy function. dV Fi = − dui V is a potential Fi dui = −dV Examples of conservative forces: Examples of non-conservative forces: In linear elasticity, we only consider conservative forces. 35 Linear Elasticity Principle of Minimum Potential Energy ∫ [δU (u ) − f δu ]dV − ∫ B We say both fi and i i i ∂B Tiδui dS = 0 Ti are conservative forces. − f iδui = δΦ (ui ) − Tiδui = δΨ (ui ) 36 Linear Elasticity Principle of Minimum Potential Energy System potential energy Π p = ∫ [U (ui ) + Φ(ui )]dV + ∫ Ψ (ui )dS ∂B B δΠ p = 0 Among all the possible displacements, the true solution (real displacements) results in the smallest system potential energy. In other words, any approximate solutions give larger system potential energy than the real solution does. ⎡1 ⎤ Π p = ∫ ⎢ Dijkl eij ekl − f i ui ⎥ dV − ∫ Ti ui dS B 2 ∂B ⎣ ⎦ 37
© Copyright 2026 Paperzz