MATH 204 Example 6: Undetermined Coefficients Dr. TeBeest Solve the nonhomogeneous ODE y 00 − y 0 − 6y = 18x2 − 52 cos 2x . (N) NOTE: The input function is g(x) = 18x2 − 52 cos 2x. STEP 1: Solve the associated homogeneous problem: y 00 − y 0 − 6y = 0 . (H) We did this in Example 1, so the complementary solution of (N) is yc = c1 e3x + c2 e−2x . (C) STEP 2: Construct a particular solution yp of (N) by Undetermined Coefficients. Input Function: Terms g = 18x2 − 52 cos 2x g 0 = 36x + 104 sin 2x g 00 = 36 + 208 cos 2x x2 , cos 2x x, sin 2x a, cos 2x List: a, x, x2 , cos 2x, sin 2x Q: Do any terms in the List already appear in yc ? A: No, so we need not modify any terms in the List. So we seek a particular solution of (N) that is a linear combination of terms in the List: yp = a + bx + cx2 + d cos 2x + e sin 2x . (P) We will substitute yp into (N), but first yp = a + bx + cx2 + d cos 2x + e sin 2x , yp0 = b + 2cx − 2d sin 2x + 2e cos 2x , yp00 = 2c − 4d cos 2x − 4e sin 2x . c 2000-14 Prof. K.G. TeBeest Kettering University 1 file: ex6.tex 05/06/2014 Plug these into (N) to obtain yp00 − yp0 − 6 yp ≡ 18x2 − 52 cos 2x , 2c − 4d cos 2x − 4e sin 2x − ( b + 2cx − 2d sin 2x + 2e cos 2x ) − 6 ( a + bx + cx2 + d cos 2x + e sin 2x ) ≡ 18 x2 − 52 cos 2x . Collect like terms: (−4d − 2e − 6d) cos 2x + (−4e + 2d − 6e) sin 2x − 6c x2 + (−2c − 6b) x + (2c − b − 6a) ≡ 18 x2 − 52 cos 2x . simplify: (−10d − 2e) cos 2x + (2d − 10e) sin 2x − 6c x2 + (−2c − 6b) x + (2c − b − 6a) ≡ 0 + 0 x + 18 x2 − 52 cos 2x + 0 sin 2x . Equate like terms: x2 x k cos 2x sin 2x : : : : : −6c ≡ 18 −2c − 6b ≡ 0 2c − b − 6a ≡ 0 −10d − 2e ≡ −52 2d − 10e ≡ 0 The latter two equations give d=5 and =⇒ =⇒ =⇒ c = −3 b = (−1/3) c = 1 a = (2c − b)/6 = −7/6 e = 1. Litmus Test: Note that these terms are exactly those terms that were in the “List”. So by (P), a particular solution of (N) is yp = a + bx + cx2 + d cos 2x + e sin 2x 7 = − + x − 3x2 + 5 cos 2x + sin 2x . 6 STEP 3: Then the general solution of the nonhomogeneous problem (N) is y = yc + yp = c1 e3x + c2 e−2x − 7 + x − 3x2 + 5 cos 2x + sin 2x . 6 It is a 2–parameter family of solutions of (N). STEP 4: Apply initial conditions to the general solution found in Step 3, NOT to solution (C). c 2000-14 Prof. K.G. TeBeest Kettering University 2 file: ex6.tex 05/06/2014
© Copyright 2026 Paperzz