The early diversification of ray-finned fishes (Actinopterygii) an ecomorphological approach Weronica Klasson Degree project in biology, 2008 Examensarbete i biologi, 20 p, 2008 Biology Education Center and Department of Physiology and Developmental Biology Supervisor: Henning Blom The early diversification of ray-finned fishes (Actinopterygii); an ecomorphological approach Weronica Klasson Uppsala University, Subdepartment of Evolutionary Organismal Biology, Department of Physiology and Developmental Biology. Examensarbete 30hp Contents Sammanfattning Abstract 1. Introduction 2. Taxonomical and morphological framework 2.2 Shape, habitat and diet 2.3 Adaptation to Salt & freshwater 3. Environmental framework 3.1 Environment vs. morphology 3.2 Paleogeographic and paleoenvironments 3.3 Localities and there environments 3.3.1 Devonian 3.3.2 Carboniferous 4. Morphometrics analysis 4.1 Relative warp analysis 4.2 Disparity measures 5. Discussion 5.1 Ecomorphology Acknowledgments References Appendix 1 List of Devonian taxa List of Carboniferous taxa Appendix 2 Relative Warp 1.1 Relative Warp 1.2 Appendix 3 Relative warp scores matrix Relative warp scores Landmarks Appendix 4 Reconstructions of the Devonian and Carboniferous fishes 2 3 4 6 6 8 10 10 11 12 14 16 19 20 21 22 25 28 29 33 33 34 41 41 42 43 43 58 58 64 64 1 De strålfeniga fiskarnas (Actinopterygii) tidiga uppblomstring; en ekomorfologisk studie Sammanfattning Strålfeniga fiskar är idag den största och mest framgångsrika gruppen av fiskar och omfattar omkring 27000 arter, och finns i nästan alla olika typer av miljöer (habitat). Dagens mångfald är ett resultat av en rad uppblomstringar av vilka dom tidigaste verkar sammanfalla med såväl uppkomst och tidigaste utveckling under devon (416-359.2 miljoner år sedan) och karbon (359.2-299 miljoner år sedan). En morfometrisk analys (jämförande av kroppsformer) är gjord för att undersöka eventuella evolutionära mönster som kan urskiljas bland de devonska och karbonska strålfeniga fiskarnas kroppsformer (morfologier). Denna studie visar att den morfologiska mångfalden, som undersöks och kvantifierats med hjälp av olika numeriska metoder, kan jämföras med den taxonomiska mångfalden. Denna approach uppvisar en trend i vilken en jämn ökning av den morfologiska och taxonomiska mångfalden under den senare hälften av Devon, med en efterföljande mer explosionsartad ökning under tidig Karbon. Slutet av karbon uppvisar däremot en dramatisk minskning av såväl den morfologiska som taxonomiska mångfalden, en händelse som är svår att förstå och som kräver ytterligare studier. Denna studie har också visat att skillnader i kroppsform, även under dessa tidiga episoder av evolution, snarare beror på hur fiskarna levde och jagade (d.v.s. s.k. mikrohabitat) snarare än fysiska miljöfaktorer (t.ex. salinitet). Sex ”ekologiska kroppsformsgrupper” (ekomorfologiska grupper) har föreslagits och genom att jämföra dessa med motsvarande ”ekomorfologiska grupper” bland nulevande strålfeniga fiskar är det möjligt att dra mer omfattande slutsatser om hur de levde och jagade under devon och karbon. Noterbart med denna analys är att de devonska formerna hamnar i den ”ekomorfologiska grupper” som anses överraska sina byten, s.k. ”ligga och vänta predatorer” (“lay-in-wait-predators”), eller de som aktivt följer sina byten, s.k. ”följande predatorer” (“rover-predators”). Detta tyder på att de devonska formerna troligtvis var fiskätare snarare än plankton- och bryozo-ätare, vilka verkar representera en senare evolutionär utveckling. 2 The early diversification of ray-finned fishes (Actinopterygii); an ecomorphological approach Abstract The actinopterygians are the now largest and most successful group of living fishes with about 27 000 species in almost every aquatic environment. This diversity is a result of numerous radiations through time, including the origins and early diversification in the Devonian and Carboniferous. Morphometric analyses have been performed in order to investigate patterns of morphological diversity during these early episodes of actinopterygian evolution. This study shows that the disparity, which has been quantified by various methods, can be correlated to the overall taxonomic diversity. This pattern of morphological and taxonomical diversification starts with a steady increase in the Devonian, followed by what appears to be a major radiation event in the early Carboniferous. However, in the late Carboniferous both the diversity and disparity drastically decreases and the reason for this is unknown. This study also shows that there are no relation between body shape and the environments salinity. Instead it seems to be the microhabitats and the way to hunt that have the most effect on body shape. Six ecomorphological groups have been detected in the studied data set, which can give clues about feeding strategies when compared to ecomorphological groups established for recent fishes. Interestingly, the ecomorphological groupings suggest that the Devonian fishes seem to be “lay-inwait-predators” and “rover-predators”. This means that the early ray-finned fishes probably were piscivores, rather then browsers and plankton-eaters, which seems to be a later evolutionary invention. 3 1. Introduction The Actinopterygii, or ray-finned fishes, belong to the osteichthyans (bony fishes) together with the sister group lobe-finned fishes (Sarcopterygii). The actinopterygians are defined by several characters, including the median fin rays that are inserted directly into the body, with no intervening basal lobe. The primitive diamond-shaped scales, covered with ganoine, the pelvic girdle that are replaced with part of the metapterygium and soft tissue, and the presence of acrodine (a transparent cap of mineralized tissue on the tip of the teeth) (Janvier 1996). Ray-finned fishes are the largest and most successful group of living fishes. They are found in every aquatic habitat, from the high-pressure depth and salinity of the ocean to freshwater streams and ponds, from the artic coldness (-1.8C) to the tropical warmth (+40C). They are also tolerant to pH level from 4 to 10 and low oxygen levels. Some can breathe air and some can even cope without oxygen for periods of time (Moyle et al. 2004). There are even species that can crawl on land. The earliest record of possible ray-finned fishes are isolated scales and fragments from the Silurian, but the oldest uncontested actinopterygianas to be described based on articulated material is Cheriolepis (Agassiz 1835) from the Eifelian and Frasnian of Scotland and Canada (Friedman and Blom 2006). Cheriolepis was followed by an increased record of taxa in the late Devonian, probably due to the extension of floodplains and deltaic environments. The diversification then speeded up in the Early Carboniferous (Viséan) when more ecological niches became available after the placoderms became extinct. Many niches also become available when the tetrapods went up on land and the sarcopterygian decrease in the marine environments (Janvier 1996). Today there are about 27 000 species of ray-finned fishes (Hurley et al. 2007). The phylogeny of the basic (oldest) Actinopterygii is based on different morphological characters (Figure 1), while the recent and younger is based on molecular data. This makes it difficult to combine the living forms with the fossil record in phylogenetic analyses. The fossil record may involve some problems in that some taxa can be “misplaced”. For example, two specimens of the same species could be put in two different taxa (or the contrary two different taxa put in to one) on the basis of; sexual dimorphism, different size in different habitat (young/adult), local morphology changes (ecological species can be more common then first realized) or the taphonmy (the preservation of the fossil that could alter the body shape) (Moyle et al. 2004). 4 Figure 1. Phylogenetic tree, showing the basal actinopterygians from the Devonian (bold) and Carboniferous (C. wilidi & P. decorus are Permian), based on 185 morphological characters. Also note the different environments in which the fishes lived: M = Marine F = freshwater and B = Brackish (modified from Cloutier et al. 2004). In this study the taxonomical and morphological diversity, of several Devonian and Carboniferous actinopterygians were investigated in an environmental and temporal context to answer questions relating to the early radiation of the group. The morphological diversity between species have been studied to show differences in morphology depending on the environment, more specifically if the species lived in marine water or fresh water environments have different body shapes. Such questions can be referred to the concept of ecomorphology, which can be defined as, “a study of the relationship between the ecological role of an individual and its morphological adaptations” (Rickleffs 1990). One way to study ecomorphology is to use morphometric analysis (like relative warp analysis) in order of quantify body shape variation and then use the data to explore the relevance in variables such as, salinity and choice of habitat. This type of patterns is interesting to investigate, since the phylogeny of the Devonian taxa did not show any relationship between ecology and phylogeny (Friedman and Blom 2006). A similar approach has been used by Friedman and Coates (2006) who explore the early morphological diversification in the coelacanth clade. These types of morphometrics methods are not mainly used on fossils but are frequently used on recent fishes to test various hypotheses on ecomorphological questions (Costa et al. 2007). A link between morphology and ecology has been shown in studies on recent fish and Costa and Cataudella (2007) showed a relationship between trophic ecology and morphology. Ruben and Adams (2001) showed that ecology control the morphology more than the genes, which means that the plasticity of the fish was more than first expected. The morphology of a species is then shaped by many factors, such as trophic levels and structure, habitat and motility (Costa et al. 2007) Norton (1991) showed in a study on the Cottidae family that there is a relationship between mouth size and capture techniques and the sort of prey. The predator’s mouth morphology and attack techniques together play a central role in determining how successful predators were at catching prey and also helps to constrain the range of prey for the fish. 5 and 17 (of 41) from the Pennsylvanian (Figure 2). Many of the used reconstructed taxa where made for about 50-100 years ago. This may affect the accuracy and since the scope of this study is not to test the full accuracy of previous work, one need to accept all potential biases. One has to be aware that there may also be reconstructions made from incomplete material, therefore completed by interpolations, and qualified assumptions. In some cases, this study is using data directly from photographs of body fossils. 2. Taxonomical and morphological framework The data used in this study (list of taxa and available reconstructions) where acquired from the literature. 18 species (7 families) are known from the Devonian and 115 species (33 families) from the Carboniferous (Appendix 1). Of theses 8 Devonian and 64 Carboniferous taxa had reconstructions useful for morphometrics analysis. The Carboniferous taxa used include 49 species (of 74) from the Mississippian 80 70 60 50 40 30 20 10 0 Total (n) Know n reconstructions (n) Dev. Miss. Penn. Figure 2. Diagram showing the number of taxa and available reconstructions from the Devonian (Dev.) and the two epochs of the Carboniferous; the Mississippian (Miss.) and the Pennsylvanian (Penn.) (collected data from Appendix 1) 2.2 Shape, habitat and diet The shape of a fish reveals a lot about diet and habitat (Moyle et al. 2004; Webb 1984). For example, the position and size of the fins dictates movement and speed, and can thus provide clues abut hunting techniques (Webb 1984). Speed is as well determined by the environment (accessibility/approachability) and the water temperature (Moyle et al. 2004). The size, position and shape of the mouth and eyes can also provide clues about diet. However in order to be accurate you must find stomach and/or intestinal contents (gut length and prey residue), which are rarely preserved in fossils. In many cases, it is only the body form and tooth morphology that yields information on what their diet (Janvier 2002). 6 Figure 3. The different shape types/groups; 1-6 the modern fishes (generalize) (Moyle et al. 2004) and A-E the Devonian and Carboniferous equivalence (Appendix 1). The bottom fishes seem not to have any observed equivalence in the Devonian and Carboniferous time. 1, Rover-predator. 2, Lay-in-wait-predator. 3, Surface-originated fish. 4, Eel-like fish. 5, Deep-body fish. 6, Bottom fish (Bottom rover). A, Woodichthys bearsdeni B, Howqualepis rostridens C, Pyritocephalus sculptus D, Tarrasius problematicus E, Platysomus superbus According to Moyle and Cech (2004) there are six different body types, depending on lifestyle; rover-predator, lay-in-wait-predator, surface-oriented fish, bottom fish, deep-bodied fish and eel-like fish (Figure 3). All six modern groups are found in both marine and fresh water environments. Rover-predators have fusiform bodies, pointed heads with terminal mouths, forked tails and evenly distributed fins. They are constantly moving and capture prey by pursuit. They are living in open water or in moving water (stream), i.e., the fresh water bass (Centrarchidae and Moronidae) and the marine tuna (Thunnus sp.). Lay-in-wait-predators have fusiform, torpedo-like bodies with flattened heads, large mouths and many sharp teeth. They also have large caudal fins, in addition to dorsal and anal fins positioned far back on the body, and give the fish thrust used for ambushing fast-moving prey (i.e., freshwater pikes (Esocidae) and the marine barracuda (Sphyraenidae)). Surface-oriented fishes are a small with an upward-pointing mouth, a dorsal flatten head and large eyes. They have a fusiform to deep body and stocky-bodied with the dorsal fin 7 placed far back on the body. They are often living in stagnant fresh- to brackish-waters. Capture plankton, insects and small fishes (i.e., the fresh water Mosquitofish (Gambusia) and the marine and fresh water Killerfish (Fundulidae)). Eel-like fishes have elongated bodies and a blunt or wedge-shaped heads. The tail is tapering or rounded. They are adapted to live in crevices and holes in reefs and rocks and maneuvering thru tight beds of plants. There is also some living borrowed in soft sediment and some free swimming in open waters (i.e., the marine and fresh water Eels (Anguilliformes) and the fresh water Loaches (Cobitidae)). Deep-body fishes are laterally flattened (compressiform) with a deep body, long dorsal and anal fin. The head has large eyes, a short snout with a small and posterior mouth. They are adapted to maneuver in tight environments, like coral reef, dense beds of plants or tight schools (of own species). They are picking small invertebrates off the bottom or water column. Many deep-body are associated with the bottom but some are associated with the open water, the planktivores (Herrings (Clupea sp)). The open water deep-body fishes use the flattened body-shape for camouflage, which makes them less visible from below. Bottom fishes have many different forms but all adapted to a life on the bottom and in most the swim bladder is reduced or absent. The bodies is flatten in one or another directions and there are five main forms of bottom fishes; bottom rovers, bottom clingers, bottom hiders, flatfish and rattails. 2.3 Adaptation to salinity It can be difficult to determine in which paleoenvironmental conditions the fossils lived (Appendix 1) not only because the sediments themselves may be hard to interpret, but also because of other ecological and taphonomic variables such as migration and postdepositional transportation. Many recent species are not obligate salt- or fresh-water and have parts of there life cycles in salt- or/and fresh-water environments and migration through different salinities is common. For recent fish there are three main ways for to migrate; 1) Potamondromy, through freshwater and they are incapable of passing through long distances of saltwater, with salinity over 3% salt (>25-30 ppt). 2) Oceanodromy, through saltwater, but can also be found in freshwater, mainly for continental dispersal. 3) Diadromy migrates through both, but spends different parts of their life cycle in salt- or/and fresh-water (Moyle et al. 2004). All tree of these ways of migrate would also probably exist for the fossil species. There are five broad types of recent estuarine (transitional environments between salt water and fresh water) fishes that are good examples of how different fish group lives and may have lived; 1) Freshwater fish, fishes that lives in water with less then 0.5% salt (3-5ppt (until 15ppt)) i.e., catfish (Ictalurus catus). 2) Diatromous fish, fish that spend different parts of their life cycle in salt- or/and fresh-water i.e., salmon (Salmonidae). 3) True estuarine fish, fish that spent there life cycle entire in the estuarine i.e., white perch (Morone americana). 4) Nondependent marine fish, commonly found in the lower parts of the estuarine, but only seasonally and are important fore the shallow-water marine environments i.e., herring (Clupea). 5) Dependent marine fish, only use the lower parts of the eustrine (shallow marine water) for spawning i.e., croakers (Sciaenidae) (Moyle et al. 8 2004). This means that most marine (water with more than 3% salt) fishes live in the shallow water near continental shelves and fresh water fishes lives in upper parts of streams, rivers and in lakes on the continent. Two variables can be used to explain the distribution of marine fishes, the richness of species decreases with 1) water depth and 2) latitude. For example, forty percent of all recent marine fishes live in the tropics shallow water. Marine environments are not as frequently studied as freshwater ones and are mainly divided into temperature regions (tropic, subtropics, temperate, sub-artic and arctic) (Moyle et al. 2004). The biggest problem that marine fish encounter is low oxygen solubility in saltwater that increases with both temperature and salinity (Moyle et al. 2004). To overcome the problem with the salinity, a species must adapt to new conditions, which may take some time. Westoll (1944) suggested, based on this observation, that the majority of Devonian and Carboniferous fishes was freshwater fishes and that the ones found in marine sediment where transported after death and/or that only a few was successfully adapted to salt waters. This is hard to prove and would be a challenge for future studies. The adaptations necessary to survive in higher salinity included a more efficient ways to take in oxygen and modify the internal salt balance. It can also involve chancing the morphology since saltwater has higher buoyancy and altering the morphology/fin size (heterocercal tail) and/or reducing the swim bladder (Westoll 1944) is necessary to the mobility. Teleost fish use two main strategies to tolerate different salinity levels. The marine teleosts use a hypoosmotically system, which means that they actively drink water to replace the water lost through osmosis. Contrary to marine teleosts, freshwater teleosts are hyperosmotic and have an internal salt concentration is 1/3-1/4 (of the surrounding fresh water) which means that they actively get rid of water and take up salt. Basically, the teleost take up water and get rid of salts, or the other way around, using modified gills and kidneys (Moyle et al. 2004). Usually the marine fish are more tolerant of freshwater than freshwater fishes are of saltwater. There are other adaptation strategies to increase salt concentration, such as Osmoregulation, which means that their body fluids adapt to match the environment, but they can only tolerate slight changes in salinity. Hagfish mainly use this strategy. Another strategy maintains inorganic internal salinity (approximately 1/3 of the seawater) by balancing a large concentration of organic salts (urea and Trimethylamine oxide (TMAO)) in the blood. This means that, to some extent, the fish can actively alter the concentration of organic salt in the blood, by modified gills and the movement of urea. This strategy is used by most elasmobranches (Moyle et al. 2004). 9 3. Environmental framework 3.1 Environment vs morphology Different environments demand different adaptations and studies on recent groups have provided a better understanding of how the body-shape relates to habitats. From this general understanding, Moyle and Cech (2004) formed a generalized model for bodyshape and habitat relationship for fishes in streams, lakes, costal habitats and reefs. Stream habitats, fish species that inhabit streams must be able to adapt to this ever-changing environment because temperatures and flow rates fluctuate depending on seasonality and the time of year. Three main zones exist in association with temperate streams; 1) The erosional zone is characterized by high-gradients, rocky bottoms and pools of cold water. The fish that inhabit this environment are usually streamlined and active (Trout (Salmonidae)) or small bottom dwellers (i.e. sculpins (Cottoidea) and dace (Cyprinidea)). 2) The intermediate zone, or the long middle reaches of tributary streams, typically have moderate gradients, warmer water temperatures, equal amounts of shallow riffles and deep and rock or mud-bottomed pools. The fish associated with this environment are typically not deepbodied and have a body plan that is somewhere in between streamlined and deep-bodied (i.e. suckers (Catostomus) and darters (Etheostomatinae)). 3) The depositional zone occurs in the warm, turbid and sluggish lower part of the stream system, where the bottoms are muddy and have aquatic plants. The fish found here are typically deep-bodied forms that are adopted for, picking small invertebrate from plants (sunfish), plankton feeding (shads (Dorosoma)) or bottom feeding (carpsuckeres (Carpiodes)), the fishes in the streams bottom are very similar to the “bottom-fishes” found in the lakes. Lake habitats, can be divided in to three main zones and include the aquatic plant zone, which is characterized by the presence of dense vegetation small fish and invertebrates. The main lay-in-wait-predators are found here and are associated with logs and rocks. Deepwater zones are located below the vegetation, aquatic plant zone and are distinguished by dark, cold water with silty-bottom (White sucker, Catostomus commersoni). Open-water zones are characterized by large schools of juveniles, plankton and large predators (Walleye (Percidae)). Costal habitats or estuaries are transitional environments, mostly between freshwater and marine ecosystems and usually have varying salinity depending on the season and amount of freshwater input. Estuaries commonly have large populations of zooplankton, their predators and other invertebrates. Reefs have a vast diversity of fishes and microhabitats, which has made it a prosperous place for the rayfinned fishes. There are three different types of feeding strategies and body plans in the reefs; 1) Generalized carnivores, 2) specialized carnivores and 3) Herbivores. In group 1 they are classic rover-predators, a generalized carnivore that eats large preys, which is most noticed on the reef and is small and colorful, in small family groups or large in large schools browse over the reefs, which are divided in to tree groups a) nocturnal, b) crepuscular and c) diurnal types. In group 2, the specializes carnivore they are eight different 10 groups; 1) Ambushers that use elaborate camouflage to surprise the prey (i.e., scorpionfish (Scorpaenidae)). 2) Water-column stalker that is a group that is silvery, elongated and has a pointed snout full of sharp teethes, that surprises the prey by looking invisible in the watercolumn. They have a fin structure that is typical fore lay-in-wait predators (i.e., trumpetfishes (Aulostomidea)). 3) Crevice predators and 4) Concealedprey feeders which actively seek their prey, Concealed-prey feeders with the barbells, like the goatfish (Mullidea) and Crevice predators in crevices and small caves, they have therefore elongated bodies and small heads, like moray eels (Muraenidae). 5) Diurnal predators on benthic invertebrates are among the most colorful and particular looking fiches, they are mainly deepbodied, with a elongated snout and tiny, sharp teethes (i.e., butterflyfish (Chaetodontidae)). 6) Cleaners are small, specialized invertebrate feeders and are eating ectoparasites and dead or diseased tissue from other fishes, like Gobies (Gobiidea). Planktivors that are feeding on zooplankton are of two types, the 7) Diural planktivors which has a streamlined (between rover-predators and deep-body fishes) body, deeply forked or lunate tail, fine gill rakers and a small, flexible upturned mouths (example, Pomacentridae). In addition, the 8) Naturnal planktivore is roughly the same but have a large and less flexible mouth and large eyes. The last group, the herbivores make up approximately 20 % of all fishes inhabit the reefs and are small, brightly colored, numerous, but lacking in Varity, there main sources of food is the algae covering the reefs, i.e., surgeonfishes (Acanthuridae) Figure 4. Map of landmass positions in the early Devonian (390Ma) (Scotese 1997) 3.2 Paleogeographic and paleoenvironments During the Devonian, the lands were collected into two large continents (Figure 4), Gondwana and Euramerica (Laurussia), which later fused to one super continent in the Permian. The sea levels were relative high, but become lower at the end of the Devonian. The seas were producing large reef complexes by stromatoporoids and corals, and many new taxa of different nektonic invertebrates (i.e., ammonoides) and vertebrates appeared in the Devonian seas. On land, the plants and insects become more wide spread and not restricted to the marshy habitats. The Devonian has been regarded largely as warm and humid period, with a drop in temperatures in the Late Devonian, due to glaciations. In the late Devonian cooling many taxa seem to disappear, which left many 11 niches open fore the early Carboniferous taxa (Stanley 1998). The Stages in the middle/late Devonian period is Givetian 391.8- 385.3 Ma, Frasnian 385.3-374.5 Ma and Famennian 374.5-359.2 Ma (Gradstein et al. 2005). Figure 5. Map of the landmasses during the Carboniferous (Scotese 1997). In the Carboniferous, the two continents collided and mountains started to build up (Figure 5). The Carboniferous started with ice on the poles, which stayed during the whole Carboniferous time period. The latitudinal temperature gradient where steep with glaciers until the latitude of 30o, the rest was warm and humid equatorial environments. The sea levels started to rise in the early Carboniferous, so warm shallow seas spread out during the early Carboniferous. The transition from Early (Mississippian) to Late (Pennsylvanian) Carboniferous is marked with two main events, a global decline in sea level and a heavy extinction of the marina fauna, probably due to an expansion of the glaciers. The freshwater habitats expanded and diversified. At the same time the mollusks, sharks and rayfinned fishes were common members in the freshwater faunas. The Carboniferous is known for it massive coal forming properties, which indicate a warm and humid environment (probably around the equator) and many new kinds of plants. With the new plant come also new “land animals” such as flying insects (Stanley 1998). The period has been separated into two, the Mississippian 359.2318.1Ma (Tournaisian 359.2-345.3Ma, Viséan 345.3-326.4Ma, Namurian 326.4-315 Ma) and Pennsylvanian 318.1-299Ma (Westphalian 315-306.5 Ma, Stephanian 306.5-299 Ma) (Gradstein et al. 2005) 3.3 Localities and their environments In this study taxa from about 29 localities have been used (Table 1). Common for all these are that the localities have provided us with specimens preserved well enough for making reasonable reconstructions. They are all found in the Devonian and Carboniferous in a variety of environments similar to the recent lakes, lagoons, bays, rivers and swamps. 12 Table 1. The Devonian and Carboniferous localities, name, age, freshwater/marine water and a short description (data collected from 3.3.1-3.3.2). F=Freshwater M=Marine water B=Brackish water Locality Period/ Stage Marine / Freshwater Description Scotland: Shetland, Exnaboe; Exnaboe Devonian/ Givetian F Tropical basin Scotland: Grampian, Tynet Burn; Orcadian lake Devonian/ Eifelian-Givetian F Tropical lake Germany: Cologne; Bergisch-Gladbach Paffrath Trough Devonian/ Givetian-Frasnian M Deep sea Belgium: Famenne Formation (Assise de Mariembourg) Devonian/ Famennian M Open sea Canada: Quebec; Escuminac Bay Devonian/ Famennian M Shallow bay United States: Red Hill, Pennsylvania; Catskill Formation, Devonian/ Famennian F Assembly in a delta United States: Skinners Run, Ohio; Ohio shale/ Cleveland shale, Devonian/ Famennian M Deep basinal facies Greenland: Obruschew Bjerg Formation Devonian/ Famennian F Lake Siberia: Krasnoyarski Kran Devonian/ Famennian M - Australia: Mount Howitt, Victoria; Avon Rriver Group Devonian/ Frasnian M Lagoon Australia: Gogo station; Gogo Formation Devonian/ Frasnian M Reef Australia:, Williambury Station; Gneudna Formation Devonian/ Givetian-Frasnian M - Scotland: Foulden Carboniferous/ Viséan F/B Swamp Scotland: Dumfries; Glencartholm Volcanic beds Carboniferous/ Viséan F(B/M) Quiet delta Scotland: Edinburg, Lothian; Wardie Carboniferous/ Viséan B Deep and wide lagoon Scotland: Glasgow, Bearsden; Manse Burn Formation Carboniferous/ Namurian M(F) Bay (probable) United Kingdom: Lancashire; Coal Measures Carboniferous/ Westphalian B Fluvio-delta Carboniferous/ Westphalian Carboniferous/ WestphalianStephanian F Swamp/ Old flood F Lake/ River system Carboniferous/ Stephanian F Lake/ Swamp South Africa: Soetendals Vlei/ Lake Mentz; Upper Witteberg series Carboniferous/ Mississippian F(B) Lake/ Wide river United States: Montana; Bear Gulch Limestone Carboniferous/ Namurian M United States: Illinois; Mazon Creek Carboniferous/ Pennsylvannian F(M/B) Tropical Bay Swampy lowlands, Rivers and Bays United States: Pennsylvania; Cannelton Member United States: Linton, Ohio Jeffersson; Upper Freeport Coal Canada: Nova Scotia; Albert and Joggins formations, parsboror Carboniferous/Westphalian F Swamp Carboniferous/Westphalian F Carboniferous F(B) Swamp Subtropical Basin and Swamps Australia: Victoria; Mansfield Basin/group Carboniferous F Basin with tides United Kingdom: Newsham, Northumberland; Low Main coal/Low Main seam Czech Republic: Bohemian Massif; Kladno and Slany Formation France: Massif Central; Lake Commentery and Montceau-les-Mines 13 Figure 6. The Devonian localities approximately location in the modern world (modified from http://www.debian.net/devel/developers.loc.sv.html). 3.3.1 Devonian Scotland: Shetland, Exnaboe The fauna in Exnaboe fish bed is from the late Givetian (Dineley et al. 1999). The Exnaboe represents a non-marine deposit, which form a part of the Old Red Sandstone and has a range from the Silurian to the Devonian. Palaeogeographic reconstructions suggest that the continent lay in tropical to sub-tropical latitudes from the equator to about 30º south. Scotland: Grampian, Tynet Burn; Orcadian Lake The Orcadian Basin was deposited in the mid Devonian and are a part of the south Old Red Sandstone. The basin involved a series of large shallow freshwater lakes (Dineley et al, 1999; Stephenson et al. 2006) up to 50 000 km2 in area. The palaeolatitude of the area was between 15° and 30° S. This means a tropical climate, with periods of drying (ephemeral) and refilling from seasonal rainfall (in orders of periods of thousand of years), which resulted in a fluctuation in the lakes depth and areal (Stephenson et al. 2006). Germany: Cologne; BergischGladbach - Paffrath Trough The Bergisch-Gladbach formation dates back to the Devonian and may represent a bathyal marine environment (Øving 1961). Belgium: Famenne Formation (Assise de Mariembourg) The Famenne Formation has been characterized as a relatively open marine environment that was deposited on a shallow epicontinental platform (Thorez et al. 2006). Canada: Quebec; Escuminac Bay Escuminac Bay sediments represent a shallow marine (or brackish (Chidiac 1996)) basin and may have been a part of the epicontinental sea associated with the ocean (Prichonnet et al. 1996). Escuminac Bay is located on the Gaspé Peninsula, Québec, and was formed during the late Devonian in the latitude of 10-12 south of the equator. The latitude of the paleoenvironment suggests a dry climate but the basin was protected from drying out by seasonal transport of water and sediment from the terrestrial surrounding (Prichonnet et al. 1996). 14 United States: Red Hill, Pennsylvania; Catskill Formation, The Red Hill sediments represents a shallow, fluvial assembly in the Duncannon Member in the Catskill Formation, which was a late Devonian freshwater assemblage in a deltaic system. Red Hill was located on latitude 20 south of the equator in a subtropical, seasonal climate. The fossils show signs of being transported but are preserved in tree-dimensions and have been dated to the late Famennien (Daeschler 2000). United States: Skinners Run, Ohio; Ohio Shale/Cleveland Shale The Cleveland shale is a part of a deep basinal facies of the Catskill delta and has been interpreted as a deep marine environment. It seems like that the shale’s hade periods of flux in the bottom oxygen level and under the Devonian–Mississippian the black shale were built up of terrestrial sediment under dysoxic/anoxic conditions. More recently a highenergy facies has been identified and may have occurred locally at water depths much shallower than first suggested (Rimmer et al. 2004). Skinners Run is a bed in the base of the Cleveland shale, south of Cuyahoga river and north of Willow. Skinners Run is dated to the Late Famennian (Dunkle 1964). Greenland: Obruschew Bjerg Formation Obruschew Bjerg Formation is a Late Famennian formation, now located in eastern Greenland and is interpreted to be a freshwater lake, probably with low oxygen conditions on the bottom (or in the water mass) (Friedman and Blom 2006). Siberia: Krasnoyarski Kran The Krasnoyarski Kran is of marine origin, from the Famennian. The sediments is exposed in a quarry near the Atshinsk-Albakan railroad (Prokofiev 2002). Australia: Mount Howitt, Victoria; Avon Rriver Group The Avon river group represents a freshwater lagoon within a river system and the sediment has been dated to the Frasnian. It is located along Howqua River at the base of Mount Howitt, central Victoria (about 45 km east of Mansfield) (Long 1988). Australia: Gogo station; Gogo Formation Gogo Formation is the inter-reef part of a gigantic marine barrier reef. The formation is known for its exceptional soft tissue preservation and has limestone nodules in shale deposits and is from the Frasnian. Gogo station is 250 km SE of Derby in the Fritzroy Trough. The Fritzroy Trough lies on the nothen flank of Cunning basin, which was near-shore shelf in the middle Devonian (Gardiner 1984). Australia:, Williambury Station; Gneudna Formation Gneudna formation is a marine assemblage of Givetian-Frasnian age in Western Australia (Gardiner 1984). 15 Figure 7. The Carboniferous localitys approximately location in the modern world (modified from http://www.debian.net/devel/developers.loc.sv.html). 3.3.2 Carboniferous Scotland: Foulden The Foulden area was perhaps a swamp that became submerged into a semi-permanent, relatively deep (5m) lake with occasional marine flooding. The lake is interpreted to be fresh- to brackish-water, with some marine influence and dates back to the Viséan (Dineley et al. 1999). Scotland: Dumfries; Glencartholm Volcanic Bed The Glencartholm Volcanic Bed is interpreted to be a relatively quiet freshwater environment with some influence of brackish- and deltaicwater. There are also some marine invertebrates, but not in the same beds as the fishes. The fossils represent a death-assemblage that suggests rapid burial in addition to low pH and oxygen levels. The Glencartholm Volcanic Bed is from the early Viséan (Dineley et al. 1999). Scotland: Edinburgh, Lothian; Wardie The sedements at Wardie was formed in a lagoonal setting and is estimated to be approximately 50 km diameter (Dineley et al. 1999) and dates back to the Viséan. The lagoon were relative stagnant and was frequently isolated from the sea. The water in the lagoon where probably brackish with more or less salinity from time to time (Dineley et al. 1999). Scotland: Glasgow, Bearsden; Manse Burn Formation, The Manse Burn fish beds fauna tells us about sequential marine and nonmarine environments with varying salinity and oxygenation, with “seasonal” changes (seasonal can in this context mean in periods of thousand of years). The bed is of Numurian age (Dineley et al. 1999). United Kingdom: Lancashire; Coal Measures The Coal Measures sediments represent a brackish, fluvio-deltic setting from the Westphalian (Anderson et al. 1997). United Kingdom: Northumberland, Newsham; Low Main coal/Low Main seam Low Main seam sediments seems to have been an old flood channel filled with peat, that had re-flooded and become a large and deep freshwater lake. The lake was probably surrounded by a swamp-forest at the 16 time of the fishes. From Westphalian B (Boyd 1984). the the Stephanian (Racheboeuf et al. 2002). Czech Republic: Bohemian Massif In the Stephanian the Bohemian Massif was a freshwater lake, of over 5000 km2 in size. The lake where positioned 2-3 north of the equator, and has been interpreted as a tropical climate. The Carboniferous sediments were deposited in a relatively humid, stable, fluvial, lacustrine environment. The lake had a large fauna and flora and persisted into the lower Permian (Stamberg 2006). The Kladno Formation (Kladno-Rakovník Basin) (Westphalian D) and the belonging Nany Member is a part of the western and central Bohemian basin. The deposits of the Nany Member (Westphalian D-Early Stephanian B) are fluvial and represent the base of a braided river system. The Slany Formation (Stephanian B) and the belonging Member Konov is a part of the central and western part of the Massif (Oplutil et al. 2005). South Africa: Soetendals Vlei/ Lake Mentz; Upper Witteberg series Soetendals Vlei and Lake Mentz with surroundings are representing in the Upper Witteberg series from the Lower Carboniferous time. These areas are interpreted to have been a freshwater lake or river deposit. The Lake Mentz area may have been in contact with the sea and show evidence of some brackish (or estuarine) influence. The area around Lake Mentz may have been fluxing in bottom oxygen level probably due to rapid shallowing leading to mass fish mortality, which support the idea that the area may have been an estuary (Gardiner 1969) France: Massif Central La grande couche, Lake Commentery Lake Commentery lies in the Commentery Basin, within Massif Central. The environment was fluvial, lacustrine and swampy with a tropical climate (Rolfe et al. 1982). The lake was a freshwater basin that covered an area of 10x3km in the Stephanian (Dietze 2000) Bassin d´Autun, Bourbon l´Archambault, Montceau-les-Mines The Blanzy-Montceau-les-Mines Basin is located in the north-east part of the Massif Central (central France). The sediments is interpreted to have been a freshwater lake (maybe brackish) from United States: Montana; Bear Gulch Limestone The Bear Gulch Limestone sediment is interpreted to have been a shallow, tropical marine bay with many fish and few marine invertebrates, probably like bays today. The bay where 12 north of the equator and the climatic conditions due to the latitude would have been, deserts in the north and tropical conditions in the south, characterized by a monsoonal climatic regime of rainy and dry seasons. The bay shows evidence of a hypersaline bottom alternative top water due to dry and wet seasons. The Bear Gulch material is from the Namurian, Upper Mississippian (Lower Carboniferous) (Grogan et al. 2002). United States: Illinois; Mazon Creek The Mazon Creek, sediments show a mixture of sediments represents, swampy lowlands and shallow marine bays, located a few degrees north of the equator (tropical). From the northeast flows at least one major river system. The river(s) built large deltas through the low swamps and into the 17 shallow bays. The mud that the river(s) carried was deposited in these deltas and bays. The water shifted between marine, freshwater and brackish environments, including a coalforming swamp forest. Mazon creek sediments was deposit in the Westphalian (Baird et al. 1985). United States: Pennsylvania; Cannelton Member Cannelton is a member in the Kittanning Formation and has been interpreted as being deposit in a freshwater channel (about 3.5 miles wide and 600 feet deep). The sediments was deposit in the Westphalian D (Baird 1978). United States: Linton, Ohio Jeffersson; Upper Freeport Coal The Upper Freeport Coal bed in Ohio was deposit in a freshwater swamp. The origin of the Linton beds was a fluvial lake that started to accumulate peat and in the Westphalian it had become a swamp (Hook et al. 1988). Canada; Nova Scotia New Brunswick, Albert Formation is considered to be a shallow, fresh water basin, in a rift valley or faultblock basin. The basin was located in a subtropical environment within 15 of the equator and had high sulphur content and a stagnant bottom, which probably became poisonous for deepdwelling fish. The formation ranges in age from the Late Devonian until the Lower Carboniferous (Mississippian) (Greiner 1974). Joggins Formation was probably a freshwater swampy forest or a brackish bay on a poorly drained costal plain, with a surrounding tropical forest (a warm and humid environment) from the Westphalian B (Falcon-Lang et al 2006). Parrsboro has been interpreted as a stagnant freshwater swamp in the Westphalian A, based on relative age dates from fossil fish assemblages. Australia: Victoria; Mansfield Basin/Group Mansfield Basin is the northernmost structural sub-basin of the Mt. Howitt province of east-central Victoria. The basin was deposited during the Late Devonian to Early Carboniferous and has been divided into two groups by a volcanic layer: the Marine Delatite Group (late Devonian) and the nonmarine Mansfield Group (Early Carboniferous). The first part (oldest) of Mansfield Group is a conglomerate that indicate a channel with fast moving water and periods of flooding in a costal environment, this part of the basin seem to be under influence of the tides and may have marine influence. The second part of Mansfield is a sandstone with waves and turbulence marks, mud cracks and migrating bar and dune forms. All this indicates a recession in the tides influence (inchannel flow regime levels) and marine influence (O´Hallorian et al. 1995). 18 4. Morphometrics analysis A morphometic analysis was conducted on the reconstructions of the Devonian and Carboniferous rayfinned fish to investigate the relationship between body shape and environment. Thirteen homologous landmarks and one sliding landmark were chosen on the reconstructions (Figure 8) and a relative warp analysis was performed using tpsRelw v.1.42 (Rohlf 2005). Various numbers of landmarks where tested to give an ultimate representation of the body shape and at the same time easy to find in all various body shapes. Landmark representing the position of pelvic fin have not been used, mainly because not all of the fishes have that fin. Figure 8. Cheirolepis canadensis, illustrating landmark positions. 1, the lower/posterior part of the Maximilla. 2, tip of the snout. 3, posterior part of the skull roof. 4, anterior insertion of dorsal fin. 5, posterior insertion of dorsal fin. 6, anterior (dorsal) part of caudal fin. 7, tip of caudal fin. 8, anterior (ventral) insertion of (hypochordal lobe) caudal fin. 9, posterior insertion of anal fin. 10, the ventral margin of head and body. 11, pectoral fin insertion. 12, anterior margin of the eye. 13, posterior margin of the eye. 14, a sliding landmark, on the back between landmark 3 & 4. Some landmarks (numbers 5, 6, 8 and 9) on Tarrasius problematics and Paratarrasius hibbardi, which have eel-like bodies, where not easy to establish, so “fictional” landmarks were assigned. (Figure 9). This makes T. problematics and P. hibbardi not completely comparable to the other taxa. The Relative Warp 1.2 and Warp 1.1 were then looked on in more detail (Appendix 2). Figure 9. Tarrasius problematics, illustrating landmark positions, one the two eel-shaped fishes. Here are landmark 5, 6, 8 and 9 invented. 1, the lower/posterior part of the Maximilla. 2, tip of the snout. 3, posterior part of the skull roof. 4, anterior insertion of dorsal fin. 5, fiction; posterior insertion of dorsal fin. 6, fiction; anterior (dorsal) part of caudal fin. 7, tip of caudal fin 8 & 9, anterior part of ventral back fin ( 8, fiction; anterior (ventral) insertion of (hypochordal lobe) caudal fin. 9, fiction; posterior insertion of anal fin) 10, the ventral margin of head and body. 11, pectoral fin insertion. 12, anterior margin of the eye. 13, posterior margin of the eye. 14, a sliding landmark on the back between landmark 3 & 4. 19 Figure 10. The morphometric analysis of the Devonian and Carboniferous fishes shown in Rew (Relativ Warp) 1.2 (to the left) and the diversity in a schematic picture (to the right) Red: The Devonian fishes, Black: The Mississippian fishes, Green: The Pennsylvanian fishes. (See Appendix 2 for location of the species in the plot and Appendix 1for name and description) 4.1 Relative Warp Analysis In figure 10 & 11 we can see the result from the morphometric analysis, displaying the diversity and disparity through the Devonian and Carboniferous. When looking at the diversity of the Actinopterygii from Devonian and Carboniferous (Figures 10, 11, 12 & 14), you can see an explosion of new taxa in the Mississippian and a decrease in taxa in the Pennsylvanian. This is especially visible in the schematic picture of Figure 10, were the red cube symbolize the Devonian taxa, the black line figure the main diversity of the Mississippian taxa and the green circle the decreasing Pennsylvanian diversity. When looking at the morphological diversity in the context of different body-shape in saltwater, freshwater and brackish environments (Figure 11) we can not see any clusters, which means that there seems not do be any relation between body shape and the environments salinity. 20 Figure 11. Salinity diversity, plotting of the fully marine (Blue), fully freshwater (Green) and the fresh/brackish/marine fishes (Turquoise), from Rew 1.2 (See Appendix 2 and Appendix 1 for name and description). 4.2 Disparity measures Based on the data (Warp Score) from the relative warps analysis two analyses where made to measure the disparity, cumulative variance and hyper cube volume. Cumulative variance or sum of variance provides an estimate of the amount of difference between character states among specimens in morphospace (Ciampaglio et al. 2001). A good thing with this test is that is not biased by sample size. Here the relative warps score matrix (Appendix 3) where used to calculate the sum for the different taxa and “time groups” (Figure 13 (A)). The sum of variance is 0.0057 for the Devonian, 0.049 for the Mississippian and 0.013 for the Pennsylvanian. The hypercube volume method is a method that use more than three dimensions to describe the morphospace, in other words the morphological differences and thereby also the disparity (Foote 1993). Here the data is based on the variance span on the different “time groups” (Devonian, Mississippian and Pennsylvanian) (Figure 13 (B)). A possible weakness with this method is that it may be biased by sample size (Foote 1993). The hypercube is 9.03E38 for the Devonian, 2.81E-30 for the Mississippian and, 8.09E-34 for the Pennsylvanian. 21 to different feeding- and livingstrategies and there by getting different body shapes. The hypotheses that the salinity would affect the body shape is rejected. The observation of the salinity shows no affect on the body shape, probably due to that their ability to live in different salinities, is more an internal (physiological) adaptations, than external morphological. However, it is possible to observe a slight tendency that more deep-bodied forms are more common in more saline environment and more fusiform in fully fresh water environments. This can be due to the fact that the reconstructed deep-body fishes at that time were living in reefs and therefore in more saline environments, but this needs to be more closely investigated and tested to be conclusive. 5. Discussion It seems to be a relationship between the environment and the morphology. For example the lifestyle (feeding- and living- strategies) appears to have the largest influence on body shape. This is supported by this study and can be shown when looking at individual localities, in which there are examples off different shape-groups found. This is especially visible in the big localities like the Bear gulch (M) and Glencartholm (F (B/M)), where examples from each shape-group can be found. Among the recent fishes we can also see that the feeding- and living- strategies have an effect on body shape (Costa et al. 2007; Ruben et al. 2001) and there is no obvious reason way it should not be the same in Devonian and Carboniferous. To avoid competition they would have adapted 25 20 15 10 5 0 A Au C Taxa(n) G W Fo Ma B Mississippan Rec.(n) NS UK Mz No O Cz F Pennsylvanian Rec.(n) Figure 12. Bar graph showing the total number of taxa and known reconstructions from the various Carboniferous localities. The Mississippian localities are; A; South Africa, upper Witteberg series, Soetendals Vlei (5/4) and Lake Mentz (6/4), Au; Australia, Mansfield group(2/2), C; Canada, Nova Scotia, Mississippian (1/0) New Brunswick, Albert for (4/0) , G; Scotland, Glencartholm (25/20), W; Scotland, Wardie (10/3), Fo; Scotland, Foulden (4/3), Ma; Scotland, Manse Burn for. (6/4), B; North America, Bear gulch limestone (11/10) And the Pennsylvanian localities are; NS; Canada, Nova Scotia, Pennsylvania (2/0), UK; UK, Lancashire & Staffordshire (4/2), Mz; North America, Mazon Creek (4/0), No; UK, Northumberland (6/0), O; North America, Ohio, Linton (6/3), Cz; Czech Republic, Bohemian Massif (10/5), F; France (7/3) (data collected from table Appendix 1) 22 Marine fishes in the Devonian (1001000 mm) were generally bigger than freshwater fishes (40-700 mm), which is surprising when one considers that the Carboniferous marine fish (44-180 mm) were generally smaller than the Carboniferous freshwater (70-600 mm) and Devonian marine fish. Small body size in marine environments is beneficial especially when they probably not have the effective system to cope with the salinity that they have today, and need to preserve oxygen and energy, which can be achieved by having a small size and/or being less active. A small size can also be beneficial in crowded places (both with animals or vegetation) but we need more information how the oceans may have looked like in Devonian and Carboniferous to make an accurate conclusion. However, the reasons why the Devonian marine fishes were generally larger, and why it seems like the marine fish disappear in the late Carboniferous (Pennsylvanian) need to be tested to see if it is due to true evolutionary patterns or if it could all be a consequence of a locality and preservation bias. We have not yet identified any good actinopterygian fossils within the marine Pennsylvanian sediment. Probably do to the low frequency of found localities and that the preservation potential at these localities was to low to create useful reconstructions. In figure 12 it can be seen that not all localities has provide material good enough for reconstructions. Moreover, climatic events, such as glaciations, occurring at the end of the Carboniferous, may have decreased the preservation potential and/or reduced the marine environments. Figur 13. A generalized graphic presentation of taxonomical diversity and morphological diversity (disparity) observed in the Devonian (Dev.) Mississippian (Miss.) and Pennsylvanian (Penn.). A; Disparity by the cumulative variance B; Disparity by hypercube volume C; Diversity by number taxa (all taxa N (species)) (see also Figure 12). 23 Both measures of the disparity (variance and hypercube volume) and the taxonomical diversity show a initial radiation in the late Devonian, after the still poorly understood early records in the early Devonian. The diversification even is amplified in the Carboniferous with what appears to be a peak in the end of the Mississippian (Figure 13). After the initial diversification (both by number of taxa and morphology), there appears to be a drastic decrease in diversity in the end of the Carboniferous. This trend is seen conclusive in the Pennsylvanian with a reduction, not in only the number of taxa, but also in the morphological variability. The cause to the decreasing number of actinopterygian taxa is an unanswered question well worth looking into. One reason for this could be the climate changes, in the middle Carboniferous. The glacier were growing and the sea level dropped, which probably reducing the habitats for the fishes and directly or/and indirectly caused the decrease in actroptergyian diversity. This can be clearly seen in Figure 14 divided in the different stages of the Devonian and Carboniferous. 40 30 20 10 0 Giv. Fra. Fam . Devonian taxa(n) Tou. Vi. Na. Carboniferous taxa(n) West. Step. Reconstruktions(n) Figure 14. Diagram showing the diversity of taxa and reconstructions available from the different stages of the Devonian and Carboniferous; Giv; Givetian, Fra; Frasnian, Fam; Famennian, Tou; Tournaisian Vi; Viséan, Na; Namurian West; Westphalian, Step; Stephanian (collected from Appendix 1). 24 5.1 Ecomorphology Figure 15. The six shape groups from Devonian (in bold) and Carboniferous fishes in Rew (Relativ warp) 1.2, divided using Rew 1.1 (Appendix 2).Green: Paleo-Deep-body fish; Aesopichthys erinaceus, Adroichthys tuberculatus, Cheirodopsis geikei, Chirodus granulosus, Discoserra pectinodo , Frederichthys musadentatus, Guildayichthys carnegiei, Paramesolepis rhombus, Paramesolepis tuberculata , Platysomus superbus, Platysomus Parvulus, Proceramala montanensis, Protoeurynotus traquairi, Soetendalichths cromptoni. Pink: Paleo-Maneuvering rover; Aeduella blainvillei, Aesopichthys fulcratus, Aetheretmon valentiacum , Australichthys longidorsalis, Canobius elegantulus , Canobius ramsay , Elonichtys pulcherrimus, Elonichtys spaerosideriarum, Gonatodus punctatus, Holurus parki, Mesopoma crassum, Mesopoma pulchellum , Platysella lallyi , Sceletophorus biserialis, Sphaerolepis kounoviensis, Strepheoschema fouldenensis , Sundayichthys elegantulus, Wendyichthys lautreci, Willomorichthys striatulus. Blue: Paleo-Rover-fish; Cuneognathus gardineri, Limnomis deleneyi, Mimia toombsi, Moythomasia nitida, Stegotrachelus finlayi Acrolepis gigas, Bourbonella guilloti, Mesopoma politum, Microhapolepis serrata, Rhadinichthys fusiformis, Woodichthys bearsdeni. Orange: Paleo-Active lay-in-wait fish; Haplolepis ovoidea, Cryphiolepis striatus, Elonichtys serratus, Kalops diophrys, Kalops monophrys, Melanecta anneae, Mansfieldiscus sweeti, Novogonatodus kazantsevae, Phanerorthynchus armatus, Phanerosteon ovensi, Phanerosteon mirabile. Purpur: PaleoLay-in-wait fish; Howqualepis rostridens, Cycloptychius concentricus, Cyranorhis bergeraci, Haplolepis corrugata, Haplolepis tuberculata, Mentzichthys walchi , Mentzichthys jubbi, Mesopoma carricki, Mesopoma planti, Pyritocephalus sculptus , Pyritocephalus lineatus, Rhadinichthys canobiensis, Wendyichthys Dicksoni. Black: Two outsider groups; Cheirolepis sp. and eel-like; Paratarrasius hibbardi, Tarrasius problematicus. 25 In the morphometric analysis, a division in the scatter plots of the relative warp 1.1 and warp 1.2 (Appendix 2) were recognized (Figure 15), which could be translated to six different ecomorphological-shapes, similar to the Moyle and Cech (2004) body shapes on modern fishes and from this a proposal was constructed on how they may have lived and what they may have eaten. The groups have been decided to be called; Paleo-layin-wait fish, Paleo-active lay-in-wait fish, Paleo-rover-fish, Paleomaneuvering rover, Paleo-deep-body fish and the outsiders, and these groups can bee seen even if taxa are take away Paleo-lay-in-wait fishes are predators that surprise their prey and are commonly found in habitats with a lot of hiding (within plants and rock) and are mainly eating fish (i.e., Howqualepis rostridens (Figure 16), Mentzichthys walchi, Rhadinichthys canobiensis and Wendyichthys dicksoni). In this group we also find Haplolepidea, which where a freshwater fishes that include Haplolepis sp. (Figure 16) and Pyritocephalus sp. from the Westphalian (-Stephanian). The characters of Haplolepidea are the strong hetercercal tail, the collapse and far back dorsal fin (Westoll 1944) and the slightly upward turned mouth. This suggests a life in the surface waters, probably feeding on plankton and insects. They were living in swamps, probably with low oxygen bottoms and would have been adapted to the low oxygen levels and probably using the air bladder like a lung (Westoll 1944). Both I and Westoll (1944) want them to be there own group and the fact that they did not group-out in the “relative warp analysis” may be due to that they only had started to be divided from the Paleo-Lay-in-wait group(s). Poplin and Lund (1997) suggest that Cyranorhis bergeraci and Wendyichthys dicksoni was plankton-eater but this has not supported there’s model, but it can be that they may group with the surfaceoriented and thereby eats plankton. Paleo-active lay-in-wait fishs are predators similar to the Paleo-layin-wait fishes. Their bodies are fusiform, explosive but they probably were living in more open environment, with fewer hiding places causing them to be more mobile to catch their prey (i.e., Elonichtys serratus, Kalops diophrys (Figure 16) and Phanerosteon ovensi). In the literature for the fishes in this group there are no described diet except for Haplolepis. Haplolepis has the rest of the family (Haplolepidea) with the surfaceoriented fishes in the Paleo-Lay-inwait fishes and they are not that different from the rest which may indicate that the two Lay-in-wait groups maybe only one with an “ingroup”, the surface-oriented fishes, that are eating plankton, insects and small fishes. Paleo-rover-fishes hunts by active pursuit and most likely lived in open water or streams. They were probably hunting small fish, zooplankton and soft-body invertebrates. Many of the Devonian and Carboniferous fishes have been previously described as predators on other fishes and invertebrates, which correspond with this grouping (i.e., Cuneognathus gardineri, Mimia toombsi, Moythomasia nitida, Acrolepis gigas, Mesopoma politum, Woodichthys bearsdeni). An interesting observation is that according to the analysis most of the Devonian fishes is located in this group, which indicate that early fishes may have been predators. 26 Figure 16. Exampels of different “shape-group” members.A) Paleo -Lay-in-wait fish, Howqualepis rostridens, B) Paleo -Active lay-in-wait fish, Kalops diophrys and C) the surface-oriented fishes, Haplolepis corrugata. Paleo-maneuvering rovers also actively hunt by pursuit but are probably more maneuverable and live in more dense environments, like in plants and reefs. They feed on small invertebrates, fishes and zooplankton. Some even seems to be filter feeders and possible bottom feeders (i.e., Aeduella blainvillei, Elonichtys spaerosideriarum, Gonatodus punctatus, Holurus parki and Mesopoma pulchellum). Initially, members of this group have been described as predators on plankton and filter feeders (Canobius sp). However, Sceletophorus biserialis (among others) seems to have been eating fish and this would suggest that it is a “between” group. The group probably later gave rise to many of the bottom feeders and the different reef-fishes (like the deep-body one). Paleo-deep-body fish are adapted to maneuver in tight environments, like coral reefs, plants or schools (of own species). They feed on small invertebrates of the reefs, bottom and/or water column and many are considered benthic feeders, but some deep body fishes may also be open water planktivores (i.e. Chirodus granulosus, Discoserra pectinodo , Frederichthys musadentatu and Guildayichthys carnegiei). Good examples on Paleo-deep-body fishes are Aesopichthys erinaceus and Proceramala montanensis (Figure 17), which seem to be adapted for maneuvering in geometrically complex environments. The fins, position and size are adapted to stabilize and maneuver the fish gently. A. erinaceus had a very strong and sharp bite and it probably lived near shore in shallow water, where it hunted after small nektonic preys, shrimps, worms, larvae and browsing on attached organisms, bryozoans, conulariids and algae (Popline et al. 2000). An interesting observation is that among the shape groups established for the Devonian and Carboniferous actinopterygian it is the deep bodied forms that have the largest morphospace and therefore also show the greatest morphological diversity. Considering this group seem to be adapted to complex habitat (probably also diverse habitats) is very surprising and need to be more closely looked at. Bottom fishes did not group-out in this analysis. However, there seem to be some early bottom feeders grouped in the paleo-maneuvering rovers and deep-body fishes. They are not as strongly adapted as the modern bottom fishes (like flatfish) and therefore do not provide any clear signals in this analysis. 27 Figure 17. Exampels of different “shape-group” members. A) Paleo-Rover-fish, Mimia toombsi, B) Paleo -Maneuvering rover, Canobius elegantulus, C) Paleo-Deep-body fish, Proceramala montanensis and the Outsiders D) Cheirolepis tralli and E) Paratarrasius hibbardi. The outsiders include Cheirolepis sp. and the eel-like; Paratarrasius hibbardi (Figure 17), Tarrasius problematicus. Many scientists want to assign Cheirolepis sp. as a stemgroup Actinopterygian, which this study supports, However, close to the Pale-lay-in-wait fish group. Cheirolepis sp. would have preyed on other fish, which is supported by Arratia and Cloutier (1996), Pearson and Westoll (1979) and this study, by the fact that they group close to Palelay-in-wait fishes. Paratarrasius hibbardi and Tarrasius problematicus are so different from the other Actinopterygians in that they do not have the same homological landmarks than the others. These would probably lived like the recent Eels and Moray eels (Muraenidae) and be ambushers in a rocky environment or pursuer in a more plant dense environment. It is interesting to see that when comparing the recent shape groups with the suggested shape groups for the fossil form (Figures 10,11). It appears that the “basic actinopterygian shape” seems to be the “lay-in-waitpredator-shape” and “rover-predatorshape”. This means that the early rayfinned fishes probably were fusiformed, piscivores, rather then deep-body, browsers and planktoneater, which seems to be a later evolutionary invention. However, the various fishes' anatomy and morphology need to be more closely studied to give a more conclusive result. Acknowledgments I would like to say tanks to; Dr. Henning Blom fore supervision, Professor Per Ahlberg for all help. Matt Friedman fore pictures of Kentuckia and all help with the statistic, Dr. Brian Swartz for sharing his unpublished reconstruction on Stegotrachelus finlayi. Dr. Michael Streng for help with translations. Martin Brazeau for information on some localities in Canada. Acknowledements also to my friends Barbro Bornsäter-Mellbin (Magister-studerande i palontologi), Anna Winnersjö-Ahlgren (Kandidat i biologi) and especially PhDstudent Anna Jerve for reading and commenting my work. Finally, I will also say thanks to Patricia Hall (PhD-student) for all the help, and to every one I may have forgotten. 28 References Agassiz, L. 1835. Recherches sur les poisons fossils, II. Imprimerie de petitpierre et prince, Neuchatel, 115p. Anderson, L. I., J. A. Dunlop, C. A. Horrocks, H. M. Winkelmann, and R. M. C. Eagar, 1997. Exceptionally preserved fossils from Brickershaw, Lancashire UK (Upper Carboniferous, Westphalian A (Langsettian)), Geological journal, 32; 197-210 Arratia, G., and R. Cloutier. 1996. Reassessment of the morphology of Cheirolepis canadensis (Actinopterygii), p. 165-197. In Schultze H.-P. and R.Cloutier (eds.), Devonian Fishes and Planst of Miguasha, Quebec, Canada. Verlag Dr F.Pfeil, Munchen. Baird, D. 1962. A Haplolepis fish fauna in the Early Pennsylvanian of Nova Scotia, Palaeontology, 5(1); 22-29 Baird, D. 1978. Studies on Carboniferous Freshwater Fishes, American Museum Novitates, 2641, 1978 Baird, G. C., S. D. Sroka, C. W. Shabica, T. L. Beard, A. C. Scott and F. M. Broadhurst. 1985. Mazon Creek-Type Fossil Assemblages in the U.S. Midcontinent Pennsylvanian: Their Recurrent Character and Palaeoenvironmental Significance [and Discussion], Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 311 (1148);8799 Boyd, M. J. 1984. The Upper Carboniferous Tetrapod Assemblage from Newsham, Northumberland, Paleontology 27(2); 367-392 Chidiac, Y. 1996. Paleoenvironmental interpretetiton of the escuminac formation based on geochemical evidence p47-52, In Schultze H.-P. and R.Cloutier (eds.), Devonian Fishes and Planst of Miguasha, Quebec, Canada. Verlag Dr F.Pfeil, Munchen Ciampaglio, C. N., M. Kemp and D. W. McShea. 2001. Detacting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity, paleobiology, 27(4); 695-715 Cloutier, R. and G. Arratia. 2004. Early diversification of actinopterygians, Reasent Advances in the Orgin and Early Radiation of Vertebrates, pp. 217-270, Germany, ISBN 389937-052-X Costa, C. and S. Cataudella. 2007. Relationship between shape and trofic ecology of selected species of Sparids of the Caprolace costal lagoon (Central Tyrrhenian sea), Environ. Biol. Fish 78; 115-123 Coates, M.I. 1993. New Actinoperygian fish from the Namurian Manse Burn Formation of Bearsden, Scotland, P aleontology, Vol. 36(1);123-146 Coates, M. I. 1998. Actinopterygians from the Namurian of Bearsden, Scotland, with comments on early actinopterygian neurocrania, Zoological Journal of the Linnean Society, 122;27-59 Coates, M. I. 1999. Endocranial preservation of Carboniferous actinoperygian from Lancashire, UK, and the interrelationships of primitive actinoperygians, Phil. Trans. R. Soc. Lond. B 354;435-462 Daeschler, E. B. 2000. An early actinopterygian fish from the Catskill Formation (Late Devonian, Famennian) in Pennsylvania, U.S.A. Proceedings of the Academy of Natural Sciences of Philadelphia, 150:181–192. Dineley, D. L. and S. J. Metcalf. 1999. Fossil Fishes of Great Britain, joint nature conservation committee, UK, ISBN 1 86107 470 0 Dietze, K. 2000. A revision of Paramblypterid and Amblypterid Actinopterygian from upper Carboniferous- lower Permian Lacustrine Deposits of central Europe, Palaeontology, Vol.43(5);927-966 Dunkle, D. H. 1964. Preliminary description of a palaeoniscoid fish from the Upper Devonian of Ohio. Scientific Publications of the Cleveland Museum of Natural History, 3:1–24. Falcon-Lang, H. J., M.J. Benton, S. J. Braddy and S. J. Davies. 2006. Pennsylvanian tropical biome reconstructer from the Joggins Formation of Nova Scotia, Canada, Journal of the Geological Soceity, Maj 29 Friedman, M. and H. Blom. 2006. A new Actinopterygian from the famennian of east Greenland and the interrelationships of Devonian Ray-finned fishes, J. Paleont., 80(6), pp. 1186–1204 Friedman, M. and M. I. Coates. 2006. A newly recognized fossil coelacanth highlights the early morphological diversification of the clade, Proceedings of the Royal Society, Series B, 273; 245-250. Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity, Paleobiology, 19(2); 185-204 Gardiner, B. G. 1963. Certain palaeoniscoid fishes and the evolution of the snout in Actinopterygians, Bulletin of the British museum (natural history) geology, London, vol.8 No. 6 Gardiner, B. G. 1969. New palaeoniscoid fish from the Witteberg series of South Africa, Zool. J. Linn. Soc., 48; 423-452 Gardiner, B. G. 1984. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bulletin of the British Museum (Natural History): Geology, 37:173–428. Gardiner, B. G. 1985. Actinopterygian fish from the Dinantian of Foulden, Berwickshire, Scotland, Transactions of the Royal Society of Edinburgh,Earth Sciences, 76;61-66 Gradstein F. M., J. G. Ogg and A. G. Smith. 2005. A Geologic Time Scale 2004, Cambridge University Press, ISBN-10: 0521786738 Greiner, H. 1974. The Albert Formation of New Brunswick: a Paleozoie lacustrine model, International Journal of Earth Sciences, 63(3); 1102-1113 Grogan E. D. and R.Lund. 2002. The geological and biological environment of the Bear Gulch Limestone (Mississippian of Montana, USA) and a model for its deposition, Geodiversitas 24 (2); 295-315. Hook, R. W. and D. Baird. 1988. An Overview of the Upper Carboniferous Fossil Deposit at Linton, Ohio1, OHIO J. SCI. 88 (1): 55-60 Hurley, I. A., R. L. Mueller, K. A. Dunn, E. J. Schmidt, M. Frieman, R. K. Ho, V. E. Prince, Z. Yang, M. G. Thomas and M. I. Coatses. 2007. A new time-scale fore rayfinned fish evolution, Proceedings of the Royal Society B, 274; 489-498 Janvier, P. 1996. Early Vertebrates, Clarendon press, Oxford, ISBN; 0-19-852646-6 Jessen, H. 1968. Moythomasia nitida Gross und M. cf. striata Gross, Devonische palaeonisciden aus dem oberen Plattenkalk der Bergisch-Gladbach-Paffrather Mulde (Rheinisches Schiefergebirge). Palaeontographica Abteilung A, 128:87–114. Jubb, R.A. 1965. A New Palaenoniscid fish from the Witteberg Series(Lower Carboniferous) of South Africa, Ann. S. Afr. Mus. 48(15); 267272 Loweny, K. A. 1980. A Revision of the Family Haplolepidae(Actinopterygii, Paleonisciformes) from Linton, Ohio(Westphalian D, Pennsylvanian), Journal of Paleontology, 54(5);942-953 Long, J. A. 1988. New palaeoniscoid fishes from the Late Devonian and Early Carboniferous of Victoria. Memoirs of the Association of Australasian Palaeontologists, 7:1–68. Lund, R. and C. Poplin. 1997. The Rhadinichthyids (Paleoniscoid Actinopterygians) from the Bear Gulch Limestone of Montana(USA, Lower Carboniferous), Journal of Vertebrate Paleontology 17(3);466-486 Lund, R. and C. Poplin. 2002. Cladistic analysis of the relationships of the Tarrasiids (Lower Carboniferus Actinopterygians), Journal of Vertebrate Paleontology 22(3);480-486 Moyle, P. and J. Cech. 2004. Fishes: An Introduction to Ichthyology - fifth edition, Prentice-Hall Inc. Upper Saddle River, ISBN 0-13-100847-1 Moy-Thomas, J.A. and M. B. Dyne. 1938. The Actinotryptergyan Fishes from the Lower Carboniferus of Glencartholm, Eskdale, Dumfriesshire, Transactions of the Royal Society of Edinburgh, Earth Sciences, 59:437480. 30 Moy-Thomas, J. A. and R. S. Miles. 1971. Palaeozoic Fishes, Chapman and Hall LTD, London (SBN 412 10310 9) Murry, A. M. 2000. The Palaeozoic, Mesozoic and Early Cenozoic fishes of Africa, Fish and Fisheries, 1;111-145 O'Hallorian, G. J. and R. A. F. Cas. 1995. Evidence for syndepositional deformation from the Late Devonian of the Mansfield Basin, east-central Victoria, Australian Journal of Earth Sciences 42, 581-596 Oplutil, S., K. Martínek and Z. Tasáryová. 2005. Facies and architectural analysis of fluvial deposits of the Nany Member and the Tnec Formation (Westphalian D – Barruelian) in the Kladno-Rakovník and Pilsen basins, Bulletin of Geosciences, 80(1); 45–66, Pearson, D. M. and T.S. Westoll. 1979. The Devonian actinopterygian Cheirolepis Agassiz. Transactions of the Royal Society of Edinburgh, Earth Sciences, 70:337–399. Poplin, C. and D. B. Dutheil. 2005. Las Aeduellidae (Pisces, Actinopterygii) Carbonifères et permiens: systématique et étude phylogénétique préliminaire, Geodiversitas, 27(1);17-33 Poplin, C. and R. Lund. 2000. Two new deepbodied Palaeoniscoid Actinopterygians from Bear Gulch (Montana, USA, Lower Carboniferous), Journal of Vertebrate Paleontology 20(3); 428-449 Poplin, C. and R. Lund. 2002. Two Carboniferous fine-eyed Palaeoniscoids (Pisces, Actinopterygii) from Bear Gulch (USA), J. Paleont., 76(6);1014-1028 Prichonnet, G., M. Di Vergillo and Y. Chidiac. 1996. Stratigraphical, sedimentological and paleontological context of the Escuminac Formation: Paleoenvirmental hypotheses p2334. In Schultze H.-P., Cloutier R.,(eds.), Devonian Fishes and Planst of Miguasha, Quebec, Canada. Verlag Dr F.Pfeil, Munchen Racheboeuf, P. R., J. Vannier and L. I. Anderson. 2002. A New Three-Dimensionally Preserved Xiphosuran Chelicerate from the Montceau-Les-Mines Lagerstätte (Carboniferous, France), Palaeontology, 45(1); 125-147 Ricklefs, R. E. 1990. Ecology (3rd Edition). W.H. Freeman & Co Ltd. New York, ISBN 0716720779 Rimmer, S. M., J. A. Thompson, S.A. Goodnight and T.L. Robl. 2004. Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: geochemical and petrographic evidence, Palaeogeography, Palaeoclimatology, Palaeoecology 215; 125– 154 Rohlf F. J., 2005. tpsRelw, Version: 1.42, Stone Brook, New York: Department of Ecology and Evolution Rolfe, W. D. I., F. R. Schram, G. Pacaud, D. Scotty and S. Secretan. 1982. A Remarkable Stephanian Biota from Montceau-les-mines, France, Journal of Paleontology, 56(2);426428 Ruber, L. and D. C. Adams. 2001. Evolutionary convergence of body shape and trophic morphology in cichlids from Lake Tanganyika, J. Evol. Biol. 14; 325-332 Schaeffer, B. 1973. Interrelationships of chondrosteans, Interrelationships of fishes, London; supplement to the zoological journal of the linnean society Vol.53, pp.207.-226 Scotese, C. R., 1997. Paleogeographic Atlas, PALEOMAP Progress Report 90-0497, Department of Geology, University of Texas at Arlington, Arlington, Texas, 37 pp. Retrieved juni 2007 from US Geological survey, http://www2.nature.nps.gov/geology/usgsnps/p ltec/sc390ma.html Stanley, S. M. 1998. Earth system history, W. H. Freeman and Company, New York, ISBN 07167-2882-6 Prokofiev, A. M. 2002. First finding of an articulated actinopterygian skeleton from the Upper Devonian of Siberia and a reappraisal of the family Moythomasiiidae Kazantseva, 1971 (Osteichthyes). Paleontological Research, 6:321–327 31 Stamberg, S. 2006. Carboniferous-Permian actinopterygian fishes of the continental basins of the Bohemian Massif, Czech Republic: an overview, From. Lucas, S. G., Cassing, G. & Schnieder, J. W. (eds), Non-Marine Permian Biostratigraphy and Biochronology. Geological Society, London, Special Publications, 265, 217-230.0305-8719/06/. Stephenson, M. H., M. J. Leng, U. Michie and C. H. Vane. 2006. Palaeolimnology of Palaeozoic lakes, focussing on a single lake cycle in the Middle Devonian of the Orcadian Basin, Scotland, Earth-Science Reviews, 75(14);177-197 Taverne, L. 1997. Osorioichthys marginis, “Paleonisciform” from the Famennian of Belgum, and the phylogeny of the Devonian actinopterygians (Pisces), Bulletine Delínstitut royal des naturelles de Belgique, Sciences de la terre, 67;57-78 Thorez, J., R. Dreesen and M. Streel. 2006. Famennian, Geologica Belgica, 9/1-2:27-45 Webb, P. W. 1984. Body form, locomotion and foraging in aquatic vertebrates, American Zoology, 24;107-120 White, E.I. 1927. The fish-fauna of the Cementstones of Foulden, Berwickshire, Transactions of the Royal Society of Edinburgh,Earth Sciences, 55;255-289 Woodward, A. S. and E. I. White. 1926. The fossil fishes of the Old Red Sandstone of the Shetland Islands. Transactions of the Royal Society of Edinburgh, Earth Sciences, 54:567– 571. Øving, T. 1961. A note on fish fauna associated with the phyllocarid Montecarlis lehmanni jux in the Devonian strata of Bergisch Gladbach, Western Germany, Journal of Plaeontology, 35(5) 32 Appendix 1 List of Devonian taxa. Devonian ray-finned fishes, body length, diet, location, age and reference. Fore environmental descriptions see 3.3.1, and Appendix 4 for reconstructions. M= Marin F= Freshwater * Pearson et al 1979 ** Daeschler 2000 *** Gardiner 1963 **** Janvier 2002 1 has been inferred from this study (p) Taxa Length (mm) Cheirolepis Canadensis (Cheirolepididae) 50* Cheirolepis trailli (Cheirolepididae) 360 Cuneognathus gardineri Howqualepis rostridens (Rhabdolepididae) Diet Small Predator, canna-balism* Scotland, lake Orcadie 40-100 F Greenland, Obruschew Berg For. Late Famennian Fridman et al. 2006 300-700 **** Fish 1 F Arratia et al. 1996 Frasnian Long 1988 Late Famennian Daeschler 2000 Frasnian Gardiner 1984 Pearson et al. 1979 M Australia, Avon river group, Victoria, North America, Pennsylvania, catskill for., Red hill Australia, Gogo for., Canning Basin /Gneuda for. Germany, BergischGladbach - Paffrath Trough, 160 Fish, soft-body invertebrates & zooplankto1 F Scotland, Shetland Givetian Jessen 1968 Swartz Brian 2007/ Woodward et al. 1926 Devonian M Late Famennian 104 M 100 M North America North America; Ohio, Clevland shale North America, Ohio, Cleveland shale, Skinners Run Siberia, Krasnoyarski Kran, Famennian Fridman et al. 2006/ Dunkle 1964 Prokofiev 2002 Australia Devonian 100** M Australia, Gogo for. / Gneuda for. Frasnian Australia Germany, Wildungen, Devonian Lower upper Devonian (Famennian) M M Mimia toombsi (Moythomasiidae) 100** Moythomasia nitida (Moythomasiidae) Osorioichthys marginis (Osorioichthyidae) Tegeolepis clarki (Tegeolepididae) Canada, Quebec, Escuminac Bay References F Soft-body invertibrates Fish, soft-body invertebrates & zooplankto1 Fish, soft-body invertebrates & zooplankto1 Moythomasia Striata (Moythomasiidae) M Age Small Predator Fish, soft-body invertebrates & zooplankto1 60 Kentuckia hlavini (Osorioichthyidae) Krasnoyarichthys jesseni Ligulalepis toombsi (Dialipinidae) Moythomasia durgaringa (Moythomasiidae) Moythomasia performata (Moythomasiidae) Location Devonian , Famennian Mid Devonian (Eifelian/ Givetian) Limnomis deleneyi (Rhabdolepididae) Stegotrachelus finlayi (Stegotrachelidae) No complete reconstructions Cheirolepis schultzei (Cheirolepididae) Kentuckia deani (Osorioichthyidae) M/F 1000*** F M Belgium , Famenne for. North America, Ohio shale/ Cleveland shale Late GivetianEarly Frasnian Late Famennian Famennian Jessen 1968 Fridman et al. 2006/ Taverne 1997 Early Famennian Fridman et al. 2006 33 List of Carboniferous taxa. Carboniferous ray-finned fishes, body length, diet, family, location, age and reference. Fore environmental descriptions see 3.3.2, and Appendix 4 for the reconstructions. M= Marin F= Freshwater B=Brackish water 1 No reconstructions 2Body fossils (picture) 3has been concluded from this study (p) * Westoll 1944 ** Dineley et al 1999 Taxa Adroichthys tuberculatus (Amphicentridae) Acrolepis gigas (Acrolepididae) Acrolepis hopkinsii1 (Acrolepidae) Acrolepis hortonensis1 (Acrolepididae) Acrolepis ortholepis1 (Acrolepididae) Aeduella blainvillei (Aeduellidae) Aesopichthys erinaceus (Aesopichthyida e) Aesopichthys fulcratus (Atherstoniidae) Aetheretmon valentiacum (Strepheoschemi dae) Amphicentrum crassum1 (Amphicentridae) Australichthys longidorsalis (Australichthyidae) Bourbonella guilloti (Aeduellidae) Canobius elegantulus (Canobiidae) Canobius modulus1 (Canobiidae) Canobius ramsayi (Canobiidae) Cheirodopsis Lengt h (mm) Diet M/F Location Age Reference Lower carboniferous, Mississippian Moy-Thomas et al. 1971/ Gardiner 1969 Stephanian B-C, Pennsylvanian Stamberg 2006 1250 Small invertebrates (plankton)3 Preditor/ Fish, softbody invertebrates & zooplankton3 F South Africa, upper Witteberg series, Soetendals Vlei Czech Repobublic, Bohemian Massif, Slany For. UK, Northumberland, Low Main Seam Canada, Nova Scotia Westphalian B, Pennsylvanian Lower Carboniferus, Mississppian F (B/M) Scotland, Glencartholm volcanic beds Viséan, Mississippian F France, Montceau-lesMines, Massif central Stephanian, Pennsylvanian Dineley et al. 1999/MoyThomas et al. 1938 Poplin & Dutheil 2005/MoyThomas & Miles 1971 Namurian E2b, Mississppian Poplin & Lund 2000 600 650 90 Small fish, invertebrates & plankton3 Preditor, Small shrimps, worms, larvae (nectonic) & Browsed on bryozoans conulari-ids, algae 105 Small fish, invertebrates & plankton2 50200 F F F North America, Bear gulch limestone South Africa, upper Witteberg series, Soetendals Vlei/ Lake Mentz Lower carboniferous, Mississippian Viséan, Mississippian Gardiner 1969 White1927/ Dineley et al. 1999/Gardiner 1985/Schaeffer 1973 M 50-90 Predator, Arthropods & soft-body animals F/B Scotland, Foulden (Cemenstone Group) Predator, Hardshelled prey Scotland South Africa, Upper Witteberg Series, Lake Mentz France, Bourbon l´Archambault, Massif central Lower carboniferous, Mississippian Autunien/Stephan ien, Pennsylvanian Viséan, Mississippian Lower Carboniferus, Mississppian 120160 Small fish, invertebrates & plankton3 Fish, soft-body invertebrates & zooplankton3 F 140 Plankton/filter 3 feeder F (B/M) 70 Plankton/filter 3 feeder F Scotland, Glencartholm volcanic beds Canada, New Brunswick, Albert for. F (B/M) F Scotland, Glencartholm volcanic beds Scotland, 150 70 150 Plankton/filter 3 feeder Small invertebrates Newman et al. 2007 F(B) Viséan, Mississippian Viséan, Gardiner 1969 Poplin & Dutheil 2005 Moy-Thomas et al. 1938/Dineley et al. 1999 Moy-Thomas et al. 1938/ Dineley et al. 1999 Moy-Thomas 34 (plankton)3 geikei (Amphicentridae) Chirodus granulosus (Amphicentrum) (Chirodontidae) Chirodus striatus1 (Chirodontidae) Coccocephalus wildi1 (Osorioichthyidae) Cosmoptychius striatus1 (Cosmoptychidae) Cryphiolepis striatus (Cryphiolepidae) Cycloptychius concentricus (Rhadinichthyidae) Cyranichthys bergeraci (Rhadinichthyidae) Cyranorhis Bergerac (Rhadinichthyidae) Discoserra pectinodon2 (Guildayichthyidae) Dwykia analensis1 (Dwykiidae) Elonichthys browni1 (Elonichthyidae) Small invertebrates (plankton)3 Fish, soft-body invertebrates, insects & zooplankton3 (B/M) Glencartholm volcanic beds F UK, North Staffordshire; Fenton, Knowles Shale/Longton, Deep Mine Seam UK, Northumberland, Low Main Seam B UK, Lancashire, F 280** F/B B/F Scotland, Edingburgh, Wardie / Foulden Scotland, Edinburgh ( & nearby ), Wardie, Oil shale group F (B/M) Scotland, Glencartholm volcanic beds North America M North America, Bear gulch limestone 130 Fish 3 Plankton Small invertebrates (plankton)3 M F F F 1 North America, Bear gulch limestone South Africa, upper Wittberg series, Soetendals Vlei Canada, New Brunswick, Albert for. Canada, New Brunswick, Albert for. Mississippian et al. 1938/Dineley et al. 1999 Westphalian A/B, Carboniferous Moy-Thomas et al. 1971 Westphalian B, Pennsylvanian Newman et al. 2007 Upper carboniferus, Pennsylvanian Coates 1999 Viséan, Mississippian Gradiner 1985 Viséan, Mississippian Viséan, Mississippian Namurian, Mississippian Poplin & Lund 1997 Namurian, Mississippian Lund 2000 Lower Carboniferus, Mississppian Lower Carboniferus, Mississppian Lower Carboniferus, Mississppian Elonichthys ellsi (Elonichthyidae) Elonichthys krejcii1 (Acrolepis) (Elonichthyidae) 150 Small predator F Elonichthys robisoni1 (Elonichthyidae) F (B/M) Elonichtys peltigerus1 (Elonichthyidae) F Czech Repobublic, Bohemian Massif, Slany For. Scotland, Glencartholm volcanic beds / Wardie North America, Ohio, Linton, Upper Freeport Coal 150 Small fish, invertebrates & plankton3 F (B/M) Scotland, Glencartholm volcanic beds Viséan, Mississippian Fish, soft-body invertebrates, insects & zooplankton3 F (B/M) Scotland, Glencartholm volcanic beds Viséan, Mississippian Elonichtys pulcherrimus (Elonichthyidae) Elonichtys serratus (Elonichthyidae) 12 0 Moy-Thomas et al. 1971 Moy-Thomas et al. 1938/Dineley et al .1999 Gardiner 1969 Stephanian B, Pennsylvanian Stamberg 2006 Viséan, Mississippian Westphalian , Pennsylvanian Baird 1978 Moy-Thomas et al. 1938/Dineley et al. 1999 Moy-Thomasr et al. 1938/ Dineley et al. 1999 35 Elonichtys spaerosideriaru m (Acrolepis) (Elonichthyidae) Elonichtys striatulutus (Elonichthyidae) Frederichthys musadentatus (Palaeoniscimorpha) Gonatodus punctatus (Elonichthyidae) Guildayichthys carnegiei2 (Guildayichthyidae) Haplolepis aff. Angelica1 (Parahaplolepis) (Haplolepidae) Haplolepis aff. Ovoidea1 (Haplolepidae) Haplolepis angelica 1 (Parahaplolepis) (Haplolepidae) Haplolepis attheyi1 (Paleodopsis newshami) (Haplolepidae) Haplolepis Canadensis1 (H.aff. angelica, Parahaplolepis) (Haplolepidae) Haplolepis cf. Corrugata1 (Haplolepidae) Haplolepis cf. ovoidea1 (Haplolepidae) Haplolepis cf.tuberculata1 (Parahapolepis) (Haplolepidae) Haplolepis corrugate (Macolepis) (Haplolepidae) Haplolepis ovoidea (Haplolepidae) Haplolepis tuberculata (Parahaplolepis) (Haplolepidae) Holurus parki (Holuridae) Kalops diophrys (Indeterminate/Tegeolepid idae) Kalops monophrys 150 Small predator/ Small fish, invertebrates & plankton3 F Czech Repobublic, Bohemian Massif, Slany For. Stephanian B, Pennsylvanian Stamberg 2006 B Scotland, Wardie Viséan, Mississippian M(F) (sesona l) Scotland, Manse Burn for.,Bearsden Basal numurian, Mississippian Coates 1993 B Scotland, Wardie Viséan, Mississippian Dineley et al. 1999 Namurian, Mississippian Lund 2000 Westphalian B, Pennsylvanian Baird 1962 Pennsylvanian Westoll 1944 140200 Small invertebrates (plankton)3 Small fish, invertebrates & plankton3 Small invertebrates (plankton)3 M Zooplankton, larva* F 25 Zooplankton, larva* F North America, Bear gulch limestone UK, Northumberland, Newsham, Low Main coal North America, Cannelton, Pennsylvanian F UK, Staffordshire,Longt on, Ash coal Westphalian C , Pennsylvanian Baird 1962/ Westoll 1944 F UK, Northumberland, Newsham, Low Main coal Westphalian B, Pennsylvanian Westoll 1944 Westphalian A, Pennsylvanian Lowney 1980 /Baird 1962 Westphalian B, Pennsylvanian Baird 1978 Pennsylvanian Westoll 1944 Pennsylvanian Westoll 1944 Westphalian , Pennsylvanian Lowney 1980/ Westoll 1944 Westphalian , Pennsylvanian Lowney 1980/ Westoll 1944 Westphalian D, Pennsylvanian 57 Zooplankton, larva* Zooplankton, larva* Zooplankton, larva* F F 30 Zooplankton, larva* F Canada, Nova Scotia, Parrsboro For. Riversdale group Canada, Nova Scotia, Joggins, Forty Brine seam North America, Mazon creek, Illinois Zooplankton, larva* F 31-73 Preditor;larva/inverte bret F 20-45 Zooplankton, larva* F 45-75 Zooplankton, larva* F North America, Mazon creek, Illinois North America, Ohio, Linton, Upper Freeport Coal North America, Ohio, Linton, Upper Freeport Coal North America, Ohio, Linton, Upper Freeport Coal 130 Small fish, invertebrates & plankton1 F (B/M) Scotland, Glencartholm volcanic beds Viséan, Mississippian Lowney 1980/ Westoll 1944 Moy-Thomas et al. 1938/ Dineley et al. 1999 50-96 44116 Fish, soft-body invertebrates, insects & zooplankton3 Fish, soft-body invertebrates, insects North America, Bear gulch limestone North America, Bear gulch Namurian E2b/ upper Mississppian Namurian E2b/ upper Poplin & Lund 2002 Poplin & Lund 2002 M M 36 (Indeterminate/Tegeolepid idae) Mansfieldiscus sweeti (Rhabdolepididae) Melanecta anneae (Rhabdolepididae) Mentzichthys jubbi (Australichthyidae) Mentzichthys maraisi1 (Rhadinichthyidae) Mentzichthys theroni1 (Rhadinichthyidae) Mentzichthys walchi (Rhadinichthyidae) Mesopoma carricki (Stegotrachelidae) Mesopoma crassum (Stegotrachelidae) Mesopoma macrocephalun1 (Stegotrachelidae) Mesopoma plancheni1 (Stegotrachelidae) Mesopoma planti (Stegotrachelidae) Mesopoma politum (Stegotrachelidae) Mesopoma pulchellum (Stegotrachelidae) Mesopoma smithsoni1 (Stegotrachelidae) Microhapolepis serrata (Haplolepis aff.ovoidea) (Haplolepidae) Nematoptychius greenocki1 (Pygopteridae) Novogonatodus kazantsevae (Elonichthyidae) Paramblypterus comblei1 (Amblypteridae) & zooplankton3 limestone Mississppian Fish, soft-body invertebrates, insects & zooplankton3 F Australia, Mansfield Basin/group Lower carboniferous, Mississippian Long 1988 50 Fish, soft-body invertebrates, insects & zooplankton3 M(F) (sesona l) Basal numurianE1, Mississippian Coates 1998 Lower Carboniferus, Mississppian Gardiner 1969 Lower Carboniferus, Mississppian Murry 2000/ Gardiner 1969 Lower Carboniferus, Mississppian Murry 2000/ Gardiner 1969 Lower Carboniferus, Mississppian Jubb 1965/ Murry 2000 Fish 3 F(B) Scotland, Manse Burn for., Bearsden South Africa, Upper Witteberg Series, Lake Mentz South Africa, Upper Witteberg Series, Lake Mentz South Africa, Upper Witteberg Series, Lake Mentz South Africa, Upper Witteberg Series, Lake Mentz 70 Fish 3 M(F) (sesona l) Scotland, Manse Burn for., Bearsden Basal Namurian; Mississippian 110 Small fish, invertebrates & plankton3 F (B/M) Scotland, Glencartholm volcanic beds Viséan, Mississippian F (B/M) Scotland, Glencartholm volcanic beds Viséan, Mississippian M(F) (sesona l) Scotland, Manse Burn for., Bearsden Basal Namurian, Mississippian B UK, Lancashire Upper carboniferus, Pennsylvanian 400 180 120 180 55 Fish 3 F(B) F(B) F 3 Coates 1993/ Coates 1999 Moy-Thomas et al. 1938/ Dineley et al. 1999 Coates 1999/ Coates 1993 70 Fish 80 Fish, soft-body invertebrates & zooplankton3 F (B/M) Scotland, Glencartholm volcanic beds Viséan, Mississippian Coates 1999 Dineley et al. 1999/ MoyThomas et al. 1938 80 Small fish, invertebrates & plankton3 F (B/M) Scotland, Glencartholm volcanic beds Viséan, Mississippian Moy-Thomas et al. 1938/ Cotes 1993 80 M(F) (sesona l) Scotland, Manse Burn for., Bearsden Basal Namurian, Mississippian Coates 1993 15-21 Fish, soft-body invertebrates & zooplankton3 Westphalian D, Pennsylvanian Lowney 1980 F B Fish, soft-body invertebrates, insects & zooplankton3 F 480 F North America, Ohio, Linton, Upper Freeport Coal Scotland, Wardie shalesupper limestone series Australia, Mansfield group France, Autun Basin, Faisceau de Molloy Viséan, Mississippian Lower carboniferous, Mississippian StephanienC, Pennsylvanian Gardiner 1963 Long 1988 Dietze 2000 37 Paramblypterus decorus1 (Amblypteridae) Paramblypterus gaudryi1 (Amblypteridae) Paramesolepis rhombus (Platysomiformis) Paramesolepis tuberculata (Platysomiformis) Paratarrasius hibbardi (Tarrasiidae) Phanerorthynch us armatus Phanerosteon mirabile (Carbovelidae) Phanerosteon ovensi (Carboveles) (Carbovelidae) Platysella lallyi (Aeduellidae) Platysomus Parvulus (Platysomidae) Platysomus superbus (Platysomidae) Proceramala montanensis (Aesopichthyidae) Progyrolepis speciosus1 (Pygopteridae) Protoeurynotus traquairi (Platysomiformis) Pyritocephalus compus1 (Haplolepidae) Pyritocephalus gracilis1 (Rhadinichthys) (Haplolepidae) Pyritocephalus lineatus (Haplolepidae) Pyritocephalus rudis1 (Haplolepidae) Pyritocephalus sculptus (Haplolepidae) 66245 F France, la grande couche, lake Commentery Mid stephanian, Pennsylvanian Dietze 2000 StephanienD/Aut unian, Pennsylvanian Dietze 2000 Viséan, Mississippian Moy-Thomas & Dyne 1938 Viséan, Mississippian Namurian E2b/ upper Mississppian Upper carboniferus, Pennsylvanian Moy-Thomas et al. 1938 F France, Autun Basin, la grande d´Igornay 130 Small invertebrates (plankton)3 F (B/M) Scotland, Glencartholm volcanic beds 130 Small invertebrates (plankton)3 F (B/M) M Predator Fish, soft-body invertebrates, insects & zooplankton3 Scotland, Glencartholm volcanic beds North America, bear gulch limestone 120 Fish, soft-body invertebrates, insects & zooplankton3 130 Lund & Poplin 2002 Moy-Thomas et al. 1971 White 1927/ Moy-Thomas et al.1971/ Dineley et al. 1999/ Moy-Thomas et al. 1938/ Gardiner 1985 F Scotland, Glencartholm volcanic beds Scotland, Berwickshire, Foulden, Cemenstone Group France, Massif central, Bassin d´Autun Plankton/filter 3 feeder M/ F** 200 Plankton/filter 3 feeder F (B/M) Scotland, Glencartholm volcanic beds Viséan, Mississippian Moy-Thomas et al. 1971 Moy-Thomas et al. 1938/ Dineley et al. 1999 100 Small invertebrates (plankton)3 M Namurian E2b/ upper Mississppian Poplin & Lund 2000 500600 Large predator F 150 Small invertebrates (plankton)3 F (B/M) F (M/B) Scotland, Glencartholm volcanic beds North America, Mazon creek, Illinois F (M/B) North America, Mazon creek, Illinois 150 Fish, soft-body invertebrates, insects & zooplankton3 Small fish, invertebrates & plankton3 180 75 25-43 50-7 0 40-70 F (B/M) F/B Fish and/or insects & zoo-plankton3 F F Plankton F North America, Bear gulch limestone Czech Repobublic, Bohemian Massif, Slany For. North America, Ohio, Linton, Upper Freeport Coal UK, Northumberland, Newsham, Low Main coal Czech Repobublic, Bohemian Massif, Kladno For./Nrany Viséan, Mississippian Viséan, Mississippian Stephanien/Autun ien, Pennsylvanian Stephanian B, Pennsylvanian White 1927/ Gardiner 1985 Poplin & Dutheil 2005 Viséan, Mississippian Stamberg 2006 Moy-Thomas et al. 1938/ Dineley et al. 1999 Pennsylvanian Westoll 1944 Pennsylvanian Westphalian , Mid Pennsylvanian Westoll 1944 Moy-Thomas et al. 1971/Loweny 1980/ Westoll 1944 Westphalian B, Pennsylvanian Westoll 1944 Westphalian DStephanian, Pennsylvanian Westoll 1944/ Stamberg 2006 38 Radinichthys ferox1 (Rhadinichthyidae) Rhadinichthys alberti1 (Rhadinichthyidae) Rhadinichthys brevis1 (Rhadinichthyidae) Rhadinichthys canobiensis (Rhadinichthyidae) Rhadinichthys carinatus (Rhadinichthyidae) Rhadinichthys fusiformis (Rhadinichthyidae) Rhadinichthys hancocki1 (Rhadinichthyidae) Rhadinichthys macconochii1 (Rhadinichthyidae) Rhadinichthys ornatissimus1 (Rhadinichthyidae) Rhadinichthys tuberculatus1 (Rhadinichthyidae) Sceletophorus biserialis (Sceletophoridae) Sceletophorus verrucosus1 (Amblypterus) (Sceletophoridae) Setlikia bohemica1 (Igornichthyidae) Viséan, Mississippian F Scotland, Wardie Canada, New Brunswick, Albert for./ Nova Scotia , Horton Bluff For. Mississippian B Scotland, Wardie Viséan, Mississippian 120 Fish (insects & zooplankton)3 F (B/M) Scotland, Glencartholm volcanic beds Viséan, Mississippian B Scotland, Wardie Viséan, Mississippian 150 Fish, soft-body invertebrates & zooplankton3 F (B/M) Scotland, Glencartholm volcanic beds Viséan, Mississippian Moy-Thomas et al. 1938/Dineley et al. 1999 F UK, Northumberland, Low Main Seam Westphalian B, Pennsylvanian Newman et al. 2007 120 F (B/M) Scotland, Glencartholm volcanic beds Viséan, Mississippian Moy-Thomas et al. 1938 B Scotland, Wardie Viséan, Mississippian 210 F (B/M) Scotland, Glencartholm volcanic beds Viséan, Mississippian Moy-Thomas et al. 1938 140 Small predator/ Small fish, invertebrates & plankton3 F Czech Repobublic, Bohemian Massif, Nrany Westphalian D, Pennsylvanian Stamberg 2006 F Czech Repobublic, Bohemian Massif, Nrany Westphalian D, Pennsylvanian Stamberg 2006 Stephanian B, Pennsylvanian Stamberg 2006 Lower carboniferous, Mississippian Gardiner 1969 Stephanian, Pennsylvanian Stamberg 2006 Stephanien B-C, Pennsylvanian Poplin & Dutheil 2005/ Stamberg 2006 Viséan, Mississippian Viséan, White 1927/ Dineley et al. 1999/ Gardiner 1985 White 1927/ 300 ** B 100 ** 140 Small predator 80100 Small arthropods/insects Soetendalichths cromptoni (Platysomidae) 210 Small invertebrates (plankton)1 F Sphaerolepis kounoviensis (Trissolepididae) 150 Invertebrates F 80-10 Small arthropods/insects 180 100 Small fish, invertebrates & plankton3 Spinarichthys disperses1 (Aeduellidae) Strepheoschema fouldenensis (Strepheoschemidae) Styracopterus F F F/B F Czech Repobublic, Bohemian Massif, Slany For. South Africa, upper Wittberg series, Soetendals Vlei Czech Repobublic, Bohemian Massif, krkonse Piedmont Basin France, Tchéque/ Czech Repobublic, Slany For. & Line For. Scotland, Berwickshire, Foulden (Cemenstone Group) Scotland, Moy-Thomas et al. 1938/ Dineley et al. 1999 39 fulcratus1 (Fouldenia ottadinica) (Styracopteridae) Sundayichthys elegantulus (Canobiidae) Tarrasius problematicus (Tarrasiidae) Wardichthys cyclosoma1 (Platysomidae) Wendyichthys dicksoni (Rhadinichthyidae) Wendyichthys lautreci (Rhadinichthyidae) Willomorichthys striatulus (Willomorichthy idae) Woodichthys bearsdeni (Stegotrachelidae) Zaborichthys fragmentalis1 (Pygopteridae) (B/M) & F/B Foulden/Glencarth olm volcanic beds Mississippian Gardiner 1985 Lower Carbonifeous, Mississippian Gardiner 1969 Viséan, Mississippian Lund & Poplin 2002 Viséan, Mississippian Dineley et al 1999 Namurian, Mississippian Lund & Poplin 1997 Namurian, Mississippian Lund & Poplin 1997 Lower carboniferous, Mississippian Gardiner 1969 Basal NamurianE1, Mississippian Coates 1998 Stephanian B, Pennsylvanian Stamberg 2006 100 Small fish, invertebrates & plankton3 F(B) 100 Predator F (B/M) 80 B South Africa, Upper Wittberg Series, Lake Mentz Scotland, Glencartholm volcanic beds Scotland, East Lothian, Wardie M North America, Bear gulch limestone 90100 Plankton Plankton 250 Small fish, invertebrates & plankton3 F 110 Fish, soft-body invertebrates & zooplankton3 M(F) (sesona l) Large predator F M North America, Bear gulch limestone South Africa, upper Wittberg series, Soetendals Vlei/ Lake Mentz Scotland, Manse Burn for., Bearsden Czech Repobublic, Bohemian Massif, Slany For. Newman, A., S. McLean and D. Hudson. 2007, Hancock Museum, http://www.ncl.ac.uk/hancock/publications/vertebrate/cata4.htm 40 Appendix 2 Relativ Warp 1.2 with numbers, 1-8 Devonian taxa, 9-72 Carboniferous taxa; 1, Cheirolepis Canadensis 2, Cuneognathus gardineri 3, Howqualepis rostridens 4, Limnomis deleneyi 5, Mimia toombsi 6, Moythomasia nitida 7, Stegotrachelus finlayi 8, Cheirolepis trailli 9, Acrolepis gigas 10, Adroichthys tuberculatus 11, Aeduella blainvillei 12, Aesopichthys erinaceus 13, Aesopichthys fulcratus 14, Aetheretmon valentiacum 15, Australichthys longidorsalis 16, Bourbonella guilloti 17, Canobius elegantulus 18, Canobius ramsayi 19, Cheirodopsis geikei 20, Chirodus granulosus 21, Cryphiolepis striatus 22, Cycloptychius concentricus 23, Cyranohis bergeraci 24, Discoserra pectinodon 25, Elonichtys pulcherrimus 26, Elonichtys serratus 27, Elonichtys spaerosideriarum 28, Frederichthys musadentatus 29, Gonatodus punctatus 30, Guildayichthys carnegiei 31, Haplolepis corrugate 32, Haplolepis ovioidea 33, Haplolepis tuberculata 34, Paratarrasius hibbardi 35, Holurus parki 36, Kalops diophrys 37, Kalops monophrys 38, Melanecta anneae sp.nov 39, Mentzichthys walchi 40, Mentzichthys jubbi 41, Mesopoma carricki 42, Mesopoma crassum 43, Mesopoma planti 44, Mesopoma politum 45, Microhapolepis serrata 46, Mesopoma pulchellum 47, Mansfieldiscus sweeti 48, Novogonatodus kazantsevae 49, Paramesolepis rhombus 50, Paramesolepis tuberculata 51, Phanerorthynchus armatus 52, Phanerosteon ovensi (Carboveles) 53, Phanerosteon mirabile 54, Platysella lallyi 55, Platysomus superbus 56, PlatysomuspParvulus 57, Tarrasius problematicus 58, Proceramala montanensis 59, Protoeurynotus traquairi 60, Pyritocephalus Sculptus 61, Pyritocephalus lineatus 62, Rhadinichthys canobiensis 63, Rhadinichthys fusiformis 64, Sceletophorus biserialis 65, Soetendalichths cromptoni 66, Sphaerolepis kounoviensis 67, Strepheoschema fouldenensis 68, Sundayichthys elegantulus 69, Wendyichthys lautreci 70, Wendyichthys dicksoni 71, Willomorichthys striatulus 72, Woodichthys bearsdeni 41 Relativ Warp 1.1 with numbers, 1-8 Devonian taxa, 9-72 Carboniferous taxa. 1, Cheirolepis Canadensis 2, Cuneognathus gardineri 3, Howqualepis rostridens 4, Limnomis deleneyi 5, Mimia toombsi 6, Moythomasia nitida 7, Stegotrachelus finlayi 8, Cheirolepis trailli 9, Acrolepis gigas 10, Adroichthys tuberculatus 11, Aeduella blainvillei 12, Aesopichthys erinaceus 13, Aesopichthys fulcratus 14, Aetheretmon valentiacum 15, Australichthys longidorsalis 16, Bourbonella guilloti 17, Canobius elegantulus 18, Canobius ramsayi 19, Cheirodopsis geikei 20, Chirodus granulosus 21, Cryphiolepis striatus 22, Cycloptychius concentricus 23, Cyranohis bergeraci 24, Discoserra pectinodon 25, Elonichtys pulcherrimus 26, Elonichtys serratus 27, Elonichtys spaerosideriarum 28, Frederichthys musadentatus 29, Gonatodus punctatus 30, Guildayichthys carnegiei 31, Haplolepis corrugate 32, Haplolepis ovioidea 33, Haplolepis tuberculata 34, Paratarrasius hibbardi 35, Holurus parki 36, Kalops diophrys 37, Kalops monophrys 38, Melanecta anneae sp.nov 39, Mentzichthys walchi 40, Mentzichthys jubbi 41, Mesopoma carricki 42, Mesopoma crassum 43, Mesopoma planti 44, Mesopoma politum 45, Microhapolepis serrata 46, Mesopoma pulchellum 47, Mansfieldiscus sweeti 48, Novogonatodus kazantsevae 49, Paramesolepis rhombus 50, Paramesolepis tuberculata 51, Phanerorthynchus armatus 52, Phanerosteon ovensi (Carboveles) 53, Phanerosteon mirabile 54, Platysella lallyi 55, Platysomus superbus 56, PlatysomuspParvulus 57, Tarrasius problematicus 58, Proceramala montanensis 59, Protoeurynotus traquairi 60, Pyritocephalus Sculptus 61, Pyritocephalus lineatus 62, Rhadinichthys canobiensis 63, Rhadinichthys fusiformis 64, Sceletophorus biserialis 65, Soetendalichths cromptoni 66, Sphaerolepis kounoviensis 67, Strepheoschema fouldenensis 68, Sundayichthys elegantulus 69, Wendyichthys lautreci 70, Wendyichthys dicksoni 71, Willomorichthys striatulus 72, Woodichthys bearsdeni 42 Appendix 3 Relative warp scores matrix The relative warp scores matrix consist of 24 warps fore every taxa and were used to do the Cumulative Variance and Hypercube volume tests. 1-8 Devonian taxa, 9-72 Carboniferous taxa. 1, Cheirolepis Canadensis 1.47702314949216E-001 7.76970232559585E-002 -9.14800559580341E-002 3.80910108397424E-002 -3.26504374350668E-002 6.90927706054322E-003 3.08187867254436E-002 2.37787503237896E-002 4.86081562239253E-003 1.55025867678666E-002 1.69002214010146E-003 -4.03950589443996E-003 3.73615384426422E-003 1.67415828714445E-003 -8.50977768291891E-003 -1.09402023640898E-002 8.77376371328731E-003 -1.08534226907252E-003 1.41135978001820E-003 6.22606715787736E-003 2.17873885602268E-003 1.49114347638818E-003 4.36934058471305E-004 7.35089381941104E-004 2, Cuneognathus gardineri 3.73204936686494E-002 -2.76327607113955E-002 5.40004367376416E-003 -5.28714750497824E-002 1.45841207989998E-002 -9.11861719174432E-003 9.41354274101812E-003 -2.06796627205119E-003 2.20855995885462E-003 5.19742534524821E-003 -2.13415657424514E-002 5.93841229072881E-003 -4.22527133055125E-003 7.16919103427323E-003 2.39724887102157E-003 -5.85477471442104E-003 8.42034394302481E-004 8.77807885780545E-002 -9.71402717272909E-003 -2.20381698948271E-003 -8.01305246311813E-004 -4.53132382442520E-003 -2.92613481362250E-003 -1.40841452663159E-003 - 3, Howqualepis rostridens 9.65179677427757E-002 3.71335082423025E-003 5.51052456775173E-003 1.24033973229542E-002 1.80553468233953E-003 3.22295726848346E-002 7.99452000031080E-003 -6.26328105182195E-003 1.07660284764424E-002 2.00505833839931E-002 -5.22632002101923E-003 -5.15859261055317E-003 -1.26382590968658E-003 1.41908455226897E-002 -1.66880506212428E-003 -1.44568717808659E-002 4.03778722745566E-003 -1.49435863073566E-003 3.82755690551396E-004 3.52584871293953E-003 1.91155294721814E-003 -2.76940617181465E-003 1.03269174350640E-003 7.19573076229272E-004 4, Limnomis deleneyi 3.61029490994080E-002 -3.17622569448343E-002 3.88496610574259E-002 -1.67939044570819E-002 1.02954192520669E-002 -2.91462305950585E-002 5.96908092318027E-003 -6.25649753763694E-003 5.41730453320168E-003 1.13338778068643E-002 -7.17287082755412E-003 6.96504300970560E-003 -5.83838777481440E-003 2.08572388054364E-003 2.24388367568777E-003 -8.12088844800053E-003 1.26708001734628E-003 4.98228712819656E-002 1.57369718188892E-002 -2.10426610756044E-002 -6.19247215005423E-003 2.83856591205793E-003 3.75160758797067E-003 2.03251809427732E-003 5, Mimia toombsi 4.41756089364850E-002 -1.26621861450188E-002 -1.90577059718379E-002 1.09906647836816E-003 -2.02635686982447E-002 3.24517994026876E-002 4.71054955556473E-002 -1.99377745205523E-002 4.69694018602533E-004 7.11475855799215E-003 43 -4.53459964068412E-003 3.09512187727671E-002 1.08601643512105E-002 8.88294759449782E-003 4.10603320978028E-003 -2.56092355665571E-003 6.30413533693775E-003 -2.58323560030068E-003 -2.88227727056627E-003 6.04079894098288E-003 -3.69066188277844E-003 -2.63854545559644E-003 5.20069879730440E-004 6.62326461471438E-004 6, Moythomasia nitida 3.95528977207354E-002 3.33073647770004E-002 4.26080671775446E-002 2.55387484741782E-003 4.74863934306992E-003 7.70530392317998E-003 4.81464308390757E-003 1.58205711268809E-003 9.19762463235646E-003 1.15569983950639E-003 3.51244514592175E-002 5.54973075575694E-002 -4.78654325285496E-002 3.96093455926506E-002 2.42765030996746E-003 -3.53312184939029E-002 -4.57444023074974E-003 2.10834359560401E-002 8.99335237273102E-004 2.67651374166309E-003 -1.07170429031569E-002 -3.54275225970469E-003 1.24900761340024E-003 3.61261477048946E-004 - 7, Stegotrachelus finlayi 2.44359705104772E-002 -5.81431630302180E-003 -9.45348189001080E-003 2.12153698520744E-003 2.31263761850448E-002 -1.81065294744563E-003 4.78495635047496E-002 2.25891560736931E-002 -8.01382733892071E-003 1.58353330044102E-002 -1.34667901648258E-003 1.18178128663031E-003 1.41851905311568E-002 1.99235038170168E-003 -2.42927864366797E-003 -6.67359769673751E-003 7.16537517140485E-003 -2.28072491567167E-003 -6.64078853198686E-003 3.52678240776863E-003 1.72335964969291E-005 2.03547628529542E-003 -1.29849192013087E-003 1.13107122901251E-003 8, Cheirolepis trailli 1.45338870114994E-001 2.13352409385973E-002 -8.24562313168980E-002 2.05012545540034E-003 -9.90395461451624E-003 -1.41988618580833E-002 9.90258042273085E-003 3.20004483628456E-002 2.38030030607199E-002 6.24080705698195E-005 -1.61904833960516E-002 -4.64459639600295E-003 -1.19202066543767E-002 -7.74701351211312E-003 5.24866796947421E-004 -1.50803687443620E-002 8.82071738044107E-003 -1.29416386129296E-002 -1.06326993766716E-002 7.46593141342191E-003 -3.61721850920371E-003 -6.83715764107979E-005 -7.66097401695437E-004 1.55763396181046E-003 9, Acrolepis gigas 3.75321513582969E-002 -3.25410096369482E-003 3.33269722555113E-002 8.80269255034214E-002 3.74395876740220E-002 3.13088229385228E-002 2.02690841023083E-002 5.29542127485999E-003 6.90363271506393E-003 1.43407488048645E-002 2.98563946605686E-003 1.75853223568120E-003 -1.60308593668838E-002 2.41761394866338E-003 6.59510653008885E-004 -7.12003474998404E-003 4.06087991246735E-003 -7.30807130535494E-003 3.15332992563393E-003 2.91377199296080E-003 -3.50698972137588E-003 1.26334843166111E-003 6.90908496260037E-004 7.49812263812129E-004 10, Adroichthys tuberculatus -6.54500384235986E-002 9.49383276991587E-002 -1.06218040979493E-001 8.16646552435092E-003 6.03907723215345E-003 -1.93557365648242E-002 3.58470499814553E-002 -5.14480844728781E-002 2.40221536216809E-002 1.98050987281761E-002 44 2.97127933448176E-003 -1.35247844900395E-002 3.44962876911575E-003 2.38734044158427E-002 -2.99057442140640E-002 -4.38901277782132E-003 5.79684813281884E-003 7.85121748537564E-003 -1.41344846087876E-002 1.06714005257982E-003 -4.66873906780084E-003 7.39288549866942E-003 -2.47291724597647E-004 1.11346162662696E-003 11, Aeduella blainvillei -3.68169069188596E-003 1.70760483996509E-002 8.99448221737512E-002 1.76655461448359E-003 2.18158921496117E-002 -2.36945160939335E-003 2.44957698048276E-002 -2.95161357318790E-002 9.42514472332840E-003 1.62967534384465E-002 1.80220855103712E-002 1.79660701937372E-003 9.06783259744474E-005 1.21224755881515E-002 9.57319899635337E-003 -1.80379081557929E-003 3.03844741473166E-003 3.47153431670014E-003 4.05003813233826E-003 8.33643450119597E-003 4.09138543777318E-003 1.20994524584963E-003 -2.88704831296894E-004 1.44078144755154E-003 12, Aesopichthys erinaceus -1.00402491189095E-001 -5.54686545637862E-002 1.14913266033541E-003 2.35720401436099E-002 -2.61076394408646E-002 -1.32598227153254E-002 2.71518086367345E-003 -4.20782182992029E-002 -6.84946724878476E-003 9.88176675070227E-003 -8.89800464816835E-003 -4.01517768449828E-003 3.11514242311364E-002 9.66987069840425E-003 9.63031104139729E-003 -1.15586471397516E-002 1.76755590199163E-002 1.76343724647860E-003 1.51649889758568E-003 6.10198524338540E-003 -1.21326629089848E-003 -7.98324176161172E-005 -1.44027432114524E-003 2.68009061204188E-003 13, Aesopichthys fulcratus -3.29796056425237E-002 -1.54005900596916E-002 -2.32902636606533E-002 2.86338512793244E-002 1.95588608595200E-002 -3.14745543869980E-002 2.10877082853165E-003 -3.25752290126935E-003 8.13980955789657E-003 2.61093577805846E-002 1.77397051132053E-002 4.76952694039384E-003 4.11318008435435E-004 3.91586689520084E-003 -1.24458827140164E-002 2.57468095296816E-003 5.68091417421279E-003 3.72703082230670E-003 2.06243691584890E-003 1.29244961985037E-002 4.04353060338379E-004 -6.01412289653427E-003 -3.51113298170234E-004 8.58364699980819E-004 14, Aetheretmon valentiacum -9.48244991811522E-003 -3.39472664437710E-003 1.38313468428690E-002 1.70131588752602E-003 2.04884987409656E-002 -1.09579338062452E-003 6.99265264010233E-003 -2.08230403501986E-003 -9.18630369703011E-003 3.34040493538257E-002 -8.65654888698793E-003 9.52218113312467E-003 -8.88194317168711E-004 9.87453787500465E-003 -7.97926359587603E-003 1.08478700895144E-002 1.17702428151444E-003 -8.66064917125951E-003 -1.55480360304624E-004 2.14991765435687E-003 1.74239961079664E-003 -3.35198691461314E-003 -2.20832734015312E-003 1.52142591102713E-003 15, Australichthys longidorsalis -2.77071657748101E-002 -1.10855210489450E-001 9.64194643016371E-003 6.78899618653410E-002 2.80613512737592E-002 -5.29952383779959E-002 1.60528691716365E-002 9.38733810447034E-003 -3.42771127282180E-003 1.05275735830463E-002 45 -2.34033257247578E-002 -8.66769422427980E-003 1.45883779254606E-002 6.97693452189810E-003 -1.94281154926756E-003 5.34221727626268E-003 6.29272230990109E-003 -3.95354352475744E-003 -5.60860694559179E-004 2.19024964014610E-003 -4.75503330019800E-003 7.25092688249706E-003 -6.30225676948545E-004 2.04070232561228E-003 16, Bourbonella guilloti 2.73061571301787E-002 1.34179269486633E-002 2.76888794703271E-002 2.03940634868942E-003 5.26788099455046E-002 3.17975875163503E-002 1.23700946455683E-002 -4.49730764443111E-002 -9.82700538620923E-003 5.66049616326451E-003 3.74700511650742E-003 -7.57326379596720E-003 -1.01046343934740E-002 9.27387931878983E-003 1.40706440853017E-002 6.53989441456676E-003 5.63440438769541E-003 -5.94920527667513E-003 -9.29993842064377E-003 3.96621652847950E-003 4.34669190231814E-003 -2.33601478149075E-003 -3.94045594561132E-003 8.09484766374995E-005 17, Canobius elegantulus -2.70082304590353E-002 -2.18682633402879E-002 3.07774988690733E-002 5.66842770787800E-002 2.48524660041859E-002 5.33150756681810E-003 1.98514551663967E-002 3.45492115958367E-003 3.13490156775314E-002 1.30594316917690E-002 3.80999691962973E-003 6.33374392002980E-003 5.17481080518776E-003 4.90498898597992E-003 1.74892568078121E-002 -4.36535551428046E-003 2.58233609671302E-003 2.80601788009313E-003 -8.39954239888295E-004 3.17348047282560E-003 2.61991624334150E-003 -3.74976813148338E-004 -2.32495035052685E-003 5.32322725128246E-004 18, Canobius ramsayi -3.39844586234901E-002 -2.96237315714167E-002 3.38767569555730E-002 5.19095928868736E-002 1.99173673109304E-002 -1.28204541563435E-002 1.70125410085500E-002 9.50492508684912E-003 3.70158259762147E-002 1.92993485239962E-003 9.17510743858241E-003 6.50822823817436E-003 -2.66695041043967E-003 2.16648124010143E-003 1.44001390449232E-002 2.62175059051405E-003 1.54197961208864E-003 -3.55194796733367E-003 -3.50166283520967E-003 1.58956346648943E-003 4.70794630029036E-003 4.42781979916689E-004 -4.22741069795987E-003 1.02471839989964E-004 19, Cheirodopsis geikei -1.73153210648037E-001 6.74018695933019E-003 2.02058462156416E-002 3.84186899597471E-002 -8.94844012269879E-003 -4.78995298587017E-003 1.07100627133845E-002 2.23035638878055E-002 -1.11224935931440E-002 1.25425806911582E-003 -4.56468513569313E-003 8.92533168656426E-003 -2.49921325142524E-002 6.66298705086372E-003 -3.57606705791003E-003 -6.86344748977806E-003 4.50619491287639E-003 1.42579081515720E-002 1.32105580509340E-003 3.60387624116991E-003 9.00384604953682E-004 -2.25135400210658E-003 2.38833054693525E-003 4.10610855763894E-003 20, Chirodus granulosus -1.84792149626105E-001 1.08165190499378E-001 -5.79298994911114E-002 1.93408409700114E-002 -7.06688918092855E-003 2.24809400108198E-002 4.44309219060038E-002 -6.94201574482850E-003 -1.69154569787197E-002 2.59025018189675E-002 46 -1.06133311508939E-002 9.64157948787444E-003 -7.15663954536802E-003 3.03569702414926E-002 1.91088646094928E-002 3.44943336782827E-003 1.46225714296709E-002 6.12856384175423E-003 -1.17708624020636E-002 3.43866914639045E-003 -2.99773592917469E-003 -1.52659097527454E-003 -3.82070287849058E-004 3.03214551433694E-004 21, Cryphiolepis striatus 5.44431545312039E-002 6.81495338978560E-003 3.54204250393082E-002 3.07402289610678E-002 4.48872783542401E-003 -9.31742084190105E-003 5.01561492575839E-003 1.76940449940972E-002 1.22433779295884E-002 8.68551695381435E-003 5.86987529278156E-004 -2.04254754081264E-002 -8.29540940727484E-003 1.00119869291897E-002 -1.65307638365158E-003 -1.43001204791618E-002 3.00100803518609E-003 -6.36301356769213E-003 -2.93589834951294E-003 8.32941520854551E-003 3.73398213129240E-003 -5.52382383956140E-004 1.04233565043398E-003 6.23731850364784E-004 22, Cycloptychius concentricus 1.16641493457409E-001 3.43954751314955E-004 -3.89934950657916E-002 1.41726136815297E-002 -1.14654236482935E-002 -2.21742260714387E-002 4.92232223782127E-003 -2.66603730010335E-003 -1.69367504314957E-002 1.86673237129768E-003 -1.26678044418548E-002 1.03440913742243E-002 2.89646161497480E-003 2.65424290522240E-003 1.04439631866751E-002 8.81016672699868E-003 6.59988353344943E-003 -6.35955765552087E-003 -1.67945618839543E-003 1.54151684340036E-003 6.90665820941335E-004 -1.46481016972069E-003 1.24033987885013E-003 3.03147913220445E-004 23, Cyranohis bergeraci 1.07686580291381E-001 2.88531698021793E-002 -3.70092893225979E-002 4.37348411645453E-002 -2.54967031496735E-002 3.10206389645138E-002 1.67115286024010E-002 -4.87425310509838E-003 -1.04154342654463E-002 2.12830288605589E-002 -2.02275182845043E-003 -1.64583041128748E-002 6.23596736009868E-003 7.94493904882231E-003 7.50404849149382E-003 1.04805976362866E-002 4.64451394528203E-003 -9.23264453246986E-003 7.65642776400396E-003 3.49910963290011E-003 -7.30038027786227E-003 5.54637429513937E-003 3.90660269063974E-004 6.09426771793095E-005 24, Discoserra pectinodon -2.21416000006169E-001 4.28302729727890E-002 -8.20479199935974E-002 2.75276287300762E-002 -1.06740593306255E-002 3.80817579767151E-003 8.44855775341346E-003 2.95986737482430E-002 -3.06624422458327E-002 3.39552454550301E-002 3.01325310270562E-002 7.60057828916713E-003 -7.47953654991754E-003 4.58748919896252E-003 -8.78256368156505E-003 2.44990964569089E-004 7.42053411595497E-003 3.35387090528948E-003 -5.49490780982945E-003 1.78957094789384E-003 -2.71010444116189E-003 3.19765925866711E-003 -2.66734479343674E-003 6.00496365981684E-004 25, Elonichtys pulcherrimus -3.37795939167167E-002 -2.58276302680663E-002 5.84171849213756E-002 1.61865626082063E-003 -5.38818309564808E-003 -2.63335412709222E-002 3.13013972036058E-002 3.97329938604974E-003 6.66174415623596E-003 1.43892815134483E-002 47 -3.00524589070101E-003 1.07071134848355E-002 1.33186329357096E-002 2.39530141487943E-003 8.21982991664539E-003 -2.78672715957166E-004 5.41448515434126E-003 -1.62533121178953E-003 -1.36630623567095E-003 1.89519910279807E-004 -4.77870839805406E-003 8.31537742231225E-004 7.74642423600024E-004 6.53592906470112E-004 26, Elonichtys serratus 5.37968593489650E-002 -3.13647526086039E-002 1.47131425124158E-002 1.04477654540835E-002 2.38398381538308E-002 -8.93362319831704E-003 7.42665779822503E-003 3.78174035694631E-003 8.81378720616499E-003 8.58526152986178E-004 -9.20583405831974E-003 -4.66759062558675E-003 3.93629940984716E-003 6.28793099188076E-004 1.70098183482170E-002 1.01084856648067E-003 8.39528207136526E-004 1.54714317626932E-002 1.03273820332210E-003 2.31906530799063E-003 -2.46216674934329E-003 -3.87151113331453E-003 -1.19422117544923E-003 -1.48452273475938E-003 27, Elonichtys spaerosideriarum -2.03655226134128E-002 2.23498286079283E-002 6.15024028772474E-002 2.46526347943667E-002 -8.95277069634627E-003 3.10747936317020E-002 3.16882136595238E-002 1.19099843277656E-003 -4.03983545952303E-003 2.14394002715665E-002 -2.00778830206405E-002 2.22078503614722E-002 -2.02491648183750E-002 5.18901867448761E-003 -1.16824936218684E-002 5.03371189741213E-003 9.64013978854536E-003 -3.35049968963822E-003 1.22023207718563E-002 4.15993145860599E-003 5.41271064641101E-003 8.15531149165273E-003 -2.65232675145890E-003 1.65059952081595E-003 28, Frederichthys musadentatus -9.27073198846913E-002 4.02971532590262E-002 6.51951633234159E-002 7.65405067079577E-003 -4.38559534874596E-002 -1.76182612752266E-002 3.48711526378892E-002 1.56979809995488E-002 -2.10814173616795E-002 3.08652582465087E-002 2.86251092064606E-002 1.19731642999628E-003 -1.53050229568397E-003 2.39350421633278E-004 -8.17884746427754E-003 6.39705397833080E-003 7.15677070028007E-003 -9.59243400301218E-004 1.73765770342785E-003 1.00921288691309E-002 -2.49773851645378E-004 -1.40455211529894E-003 -4.48770446873779E-004 -4.29008277889749E-005 29, Gonatodus punctatus -1.31863679277726E-002 7.52341337898236E-003 1.15503282335636E-002 2.98029334110992E-002 1.44924745862456E-003 -3.28317546533832E-002 2.70450888162548E-003 -1.20577218840999E-002 -1.17617103087585E-002 2.04064576575421E-002 3.23231427989490E-003 7.38110855456786E-004 -7.35161092239738E-003 1.07805832882750E-002 1.63612463992147E-003 -6.89680435412281E-003 1.15059288145221E-003 5.35992916377910E-003 8.68849264114691E-003 7.18102102090098E-003 2.08880820891358E-003 -9.53549075420517E-004 -8.16236832078237E-004 1.49632061990849E-003 30, Guildayichthys carnegiei -1.91158797533109E-001 -2.35533452634672E-003 -4.40089555757315E-002 3.13455591974698E-002 1.53185438785560E-003 -3.32159425117532E-003 1.60337692619522E-002 -7.11257156527966E-003 -2.98881758361042E-002 2.75679098793447E-002 48 2.59927512852035E-002 1.18571701217503E-002 1.40046572117627E-002 1.73769059611464E-003 1.62673916587435E-003 1.32622197371122E-003 1.66847096137795E-002 -5.63691319868869E-004 5.80808039376272E-003 -7.11199229251459E-003 7.72078664011686E-003 -1.07824257194954E-002 9.93078599310066E-004 2.90410459023702E-003 - 31, Haplolepis corrugate 1.03197961781642E-001 4.65012345921705E-002 -4.59692655480830E-002 4.21479376995433E-002 3.34560444177135E-002 -9.73363444902786E-003 4.04959397932760E-003 -2.33107731512303E-003 -2.20385950847039E-002 1.24042227897113E-002 5.95517157951769E-003 -9.96161716491597E-003 -1.62305736424607E-002 1.25212333754327E-003 -5.54533272383963E-003 1.60260695707288E-003 3.54193172499094E-003 -1.10289166798233E-003 -1.28449936830327E-003 1.28959842945756E-003 -2.95551932812751E-003 4.51508635771452E-004 -1.77544453783537E-003 9.60204114837674E-004 32, Haplolepis ovioidea 6.91373197561835E-002 2.22514718828014E-002 3.60663624994100E-002 3.33390576301765E-002 1.41101116446559E-002 -5.49471354560308E-002 1.18700349823722E-002 -1.99938366131939E-002 -6.36151726636127E-003 2.54344546402227E-002 1.00303306541481E-002 7.55860691444177E-003 -7.65766599971822E-003 3.12594947429975E-003 -1.03978359861531E-002 3.19527409613668E-003 6.95329262627995E-003 -4.80707957674152E-003 2.89201292648488E-003 4.70093864094372E-003 -3.78116519848804E-003 -4.23950324467610E-003 -5.24825338774709E-004 -1.98452063328429E-004 33, Haplolepis tuberculata 9.23020724700052E-002 4.57875141193467E-002 -3.06118830757220E-002 5.98203217384886E-002 2.73798267375493E-002 -1.41804830953517E-002 1.21112270034864E-002 -1.65588263182281E-002 -1.02205891095366E-002 2.02315040101571E-002 1.02912702019914E-002 4.36251473756803E-003 -6.97541472577175E-004 1.17905092231456E-002 -7.46896889813691E-003 -1.70549699998815E-004 1.03658642422482E-002 -4.07122251840232E-003 5.48899197428389E-003 8.66437302008345E-004 -6.28824029664111E-004 -2.94241474928578E-004 2.32832928864847E-004 1.34160430633058E-003 34, Paratarrasius hibbardi -3.82492008105075E-002 -3.25454467659553E-001 -8.62328870474682E-002 -2.86823085694536E-002 3.43763147658558E-002 2.68980071193947E-002 1.47166884674030E-002 7.95853593722073E-003 -1.34482920230687E-002 4.46521738263848E-004 -1.82254411843089E-002 6.86978329182478E-003 1.82722171149498E-003 1.37083192893552E-003 -1.86723332426791E-002 3.83789142851795E-003 7.48427307271382E-003 3.47007162385582E-003 -3.43410644493394E-003 8.52403746423493E-003 6.28448013249387E-003 2.12911002951682E-003 7.35343460306877E-004 6.33661555504167E-004 35, Holurus parki 4.98841358258526E-003 -5.84990508767790E-002 -3.50020154375456E-002 3.50034911993719E-002 -1.56667486542072E-002 -4.40360248228754E-002 3.04223695515770E-002 7.74889431393738E-003 -1.24385897132943E-002 5.12259543905365E-003 49 -1.50839304166728E-002 -2.59474923713621E-002 5.33086093214612E-003 4.63967784800373E-003 4.48360007360754E-004 5.58449480501163E-003 1.58016464193652E-004 -1.41434400136706E-003 2.89117278340254E-003 5.94374068717993E-003 1.61261456694624E-004 1.01866336441121E-003 -2.60677168577694E-003 1.62879519156041E-003 36, Kalops diophrys 7.56622220361610E-002 -1.99112476411198E-002 -6.08088658085016E-002 3.16656840471782E-002 2.83360376561102E-003 -2.65830631697965E-003 2.86794263270857E-002 -1.07952140052672E-003 -4.52642668037601E-003 6.77124568010780E-003 -3.34569367600967E-003 7.08919801489473E-004 5.23893942652677E-003 1.42837236630000E-002 6.89978750851689E-003 -6.33776674724022E-004 3.25578445821084E-003 7.84187363468807E-003 5.31298720248616E-003 4.36600892348093E-003 1.39330131600533E-003 -2.57862394981450E-003 -1.85768145142351E-003 6.43569878600630E-004 37, Kalops monophrys 6.93556418694088E-002 -3.35217869634258E-002 -6.98650262751256E-002 7.36722998905509E-003 1.19265755251909E-002 1.23872954956864E-002 1.18971042095757E-002 -6.24494324873737E-003 -1.58946822680511E-002 9.04595536457638E-003 -9.49052687057960E-003 6.01571028249550E-003 -4.60463855122724E-003 1.38232243548480E-002 1.25552878706212E-002 4.79231750465598E-004 3.45199696136097E-003 7.31381294926229E-003 -5.71583878800560E-005 6.01616246343967E-003 -3.32970808048434E-003 -1.54759083507586E-004 -1.16674868015064E-003 1.24213580380354E-003 38, Melanecta anneae 6.86679894552939E-002 -2.01782611244633E-002 8.67829895719327E-002 2.79197098425920E-002 -8.69337870465016E-002 1.88570465186768E-002 1.78986547851415E-002 1.05066540724570E-002 -2.12934393272689E-002 9.15513078916491E-004 1.58067640514484E-003 -9.58047427403454E-003 -8.69436315602399E-003 1.86161239420627E-002 1.17479222129642E-002 -8.22346258328053E-003 1.11932989612768E-002 7.36767489950981E-003 1.39449479501469E-003 3.33127954040233E-003 -9.34779974208328E-004 5.14381681203995E-003 4.52122216567664E-004 1.16547925797598E-003 39, Mentzichthys walchi 9.80539457889568E-002 2.57901369924425E-003 1.00067473326066E-002 7.78927904792288E-003 -1.28171009839554E-002 1.55857114316774E-002 3.45277108820975E-002 -8.06432092976121E-003 -9.89346233856497E-003 5.29667045513025E-003 -4.69868666528032E-003 -1.12115417146950E-002 4.78600280013346E-003 7.85298358782870E-003 -5.84509059442629E-004 5.19284249727298E-003 6.31346700342824E-003 9.65295701908683E-003 6.72162964125289E-003 3.82449901840065E-003 -3.26621790699359E-003 4.28855776525974E-003 -1.97085325835315E-004 1.98357028435309E-003 40, Mentzichthys jubbi 8.93015432199666E-002 1.48540580922724E-002 -4.48562090975862E-002 1.56817561040303E-002 2.53566023413233E-003 -2.91695141656557E-002 2.62257248055659E-002 1.40153376137098E-003 -5.02730352208712E-003 3.08642034352851E-003 50 -1.07734095860281E-002 -2.34181108465109E-003 1.34114649814317E-002 2.17926228409651E-003 8.68681856467550E-004 4.61425843045135E-003 1.08041561574396E-002 -4.35624215190156E-003 -8.66366733200851E-005 1.32251669909144E-003 5.74955924360485E-003 2.88075334449310E-003 3.40797295492374E-003 9.74044631331868E-004 41, Mesopoma carricki 8.81664153114271E-002 2.25505271532729E-002 1.31870353600703E-002 2.44775385859324E-003 1.54344279404274E-002 3.98872542293818E-005 6.27111886744924E-003 2.97960747069373E-003 9.20987664991155E-004 1.03605097603233E-003 3.86948982206707E-002 -4.76609300377201E-002 -2.91978525989342E-003 2.85329170434459E-002 1.19331608175456E-002 2.47620921082321E-002 2.39026467295833E-002 1.44912516459549E-004 -1.87537134531509E-005 5.34933830690081E-003 4.99666960026567E-003 5.25674056562768E-003 6.30944845941790E-003 -5.81794645332282E-004 - 42, Mesopoma crassum -2.43904384907355E-002 2.21334467079096E-002 2.16459646516828E-003 – 2.17689385901334E-002 -5.43888205522293E-004 -2.68705844562575E-002 2.85580709327501E-002 -2.44948357524877E-003 6.23671230184937E-003 2.52429973193803E-002 -4.13460446108256E-003 -6.89054934927423E-003 -1.77855736822415E-002 -5.87662869191960E-003 1.09127638532612E-002 -2.15703801273213E-003 1.26557996397677E-003 1.63281251953917E-003 5.54625055817515E-004 1.38025909093444E-003 3.00381507249889E-003 4.82744422541802E-003 -4.59184092189823E-004 1.95185606824016E-004 43, Mesopoma planti 9.23156764599270E-002 2.49314274481329E-002 2.92588036328547E-003 1.17161621280167E-003 7.70716750087200E-003 6.86085554513034E-003 6.34758537420324E-003 3.65355491216345E-003 1.06203719213051E-003 5.16506467929171E-004 3.10920207993184E-002 -5.28118005280474E-002 -1.20957413607651E-003 3.08406286415602E-002 7.69401541048776E-003 1.85713726259159E-002 1.33101293591902E-002 -3.81912146004729E-003 -1.94799577619822E-003 3.57071259039853E-003 9.31051976941802E-003 5.87409560224397E-003 -1.19545240317967E-003 -7.14299576067999E-004 - 44, Mesopoma politum 4.54384130700111E-002 7.53123501861095E-003 -2.03728442650553E-002 1.20399565346141E-002 2.87278806126875E-003 4.42742029818712E-003 1.06471969421639E-002 1.26208420165980E-002 2.56526990823659E-002 1.01775641512881E-002 -8.08474654125604E-003 3.03749735432302E-003 -6.89561330328964E-003 7.73183362526223E-003 1.14402442325048E-002 1.38988643722193E-002 9.68651567976337E-003 1.46045358620238E-003 -2.48831278480692E-003 1.14681556013772E-003 3.81931325651437E-003 -4.99231348761776E-003 2.18521075295922E-003 1.44207597933957E-003 45, Microhapolepis serrata 3.75076822428453E-002 9.88341663136026E-003 5.20618048989704E-002 3.47506702776543E-002 7.04000479034574E-004 -1.56536347063254E-002 2.72546091951968E-002 -3.63353284905304E-002 2.51823319932678E-002 2.53942590623794E-002 51 3.71191354311874E-003 3.27714598668111E-002 -2.90676657381044E-003 1.56547719741789E-002 -1.09367280217505E-002 4.23616171241242E-003 3.38716443492556E-003 -6.98121893904640E-003 -4.26032210847477E-003 3.56429207795303E-003 -5.61136359802146E-003 3.77254468414882E-003 1.46451677488584E-003 3.87693688538013E-004 46, Mesopoma pulchellum 4.66780900477383E-003 1.38146004058096E-002 1.88921822306158E-002 1.59405396999925E-002 -6.13419790168188E-003 -1.95509561013597E-002 3.43018657957606E-003 -1.22295583018703E-002 1.23753211131954E-002 8.29502397100563E-003 8.86089604893629E-003 -2.14179131570333E-002 -9.50714288042164E-003 6.09635902602077E-004 3.81362028488102E-003 4.31506089008274E-003 8.36030453038249E-003 3.75552547228290E-003 1.35774686438637E-002 1.60440249250243E-003 -4.22580498523873E-003 -3.23279311356599E-003 3.40245880176912E-003 7.86210951651891E-004 47, Mansfieldiscus sweeti 6.96518158721748E-002 3.57872180290760E-002 3.47206203175387E-002 5.84504393566797E-002 -6.97349589932964E-002 -2.81856716048109E-003 1.06250384041180E-002 -1.96557616565861E-002 1.12426396626675E-002 7.36140561653715E-003 -6.36064611776492E-003 -1.17372374819336E-002 -9.51806355298458E-003 1.48244346055999E-002 -1.29886337725548E-002 5.00725930214411E-005 3.88754443337693E-003 -7.42658147295882E-004 -2.78711112256723E-003 1.98519179202890E-003 2.80634942105300E-003 -1.91376563685776E-003 -6.18203292159117E-004 1.27817178168986E-003 48, Novogonatodus kazantsevae 6.05266745127855E-002 4.09683952281375E-002 -8.36403837857583E-002 4.75879673093480E-002 -3.62730257181706E-003 1.32959280097940E-002 2.29807520422504E-002 -1.02188815781218E-002 2.15367470959883E-002 1.23868755327950E-003 8.97268944645789E-003 -3.55712936502743E-003 1.09467238607205E-002 1.58059311402473E-002 -9.68777295102432E-003 -3.83650710188894E-003 1.29097646008423E-004 -1.99747499847034E-003 -6.94387215387227E-003 4.38365806520363E-003 8.99594313317564E-003 -5.31163661327734E-003 1.72989386418814E-003 1.02713331323823E-003 49, Paramesolepis rhombus -2.16244716574167E-001 5.92080441308961E-002 3.17351443069272E-002 6.71593048028822E-002 1.89745378428620E-002 1.49619866934308E-002 5.35142389545384E-002 -1.36733259735802E-002 4.28374538438224E-003 1.00684103141037E-002 -4.52375692377414E-003 4.44723048123535E-003 -9.01977325372842E-003 2.63106182734101E-003 6.75980620678222E-003 -8.94198729705750E-003 7.35942788981898E-004 -1.39521338768089E-002 4.26294413724648E-003 1.18014656437430E-002 -4.67113276222273E-004 1.33197900539724E-002 3.78685306544206E-003 9.40544379309648E-004 50, Paramesolepis tuberculata -1.23740686992482E-001 2.36843458544941E-002 3.51032502379112E-002 1.86720374273116E-002 -7.29173021091097E-002 -1.62370906741305E-002 1.52477268198021E-002 2.27328743003938E-002 1.27295385352804E-002 3.43748762276745E-003 52 1.14163578649824E-002 1.56450993167925E-002 4.08815202118760E-003 2.51498656845742E-003 2.50553402187387E-003 1.20316293842572E-003 -4.58585543834307E-003 9.70841492370400E-003 1.67093331806549E-003 3.09900722587542E-002 3.04793293188332E-004 -6.25936136164450E-003 2.39131603457094E-003 -2.58787243618697E-004 51, Phanerorthynchus armatus 5.46086686261915E-002 2.18427804917820E-002 -1.16013690251358E-002 3.54933200605941E-002 -2.85730995266527E-002 3.92116334547729E-003 5.79439352406361E-002 -3.10743417566177E-002 -2.05165012963998E-003 1.90167904805048E-002 -2.85500964187351E-002 1.32060645311046E-003 -9.91269386320787E-003 2.14557798808359E-002 4.28861143976695E-003 -1.26910760799779E-002 3.60829780954031E-003 2.26137521355201E-002 3.94797824610718E-003 1.34908698837627E-005 -4.73314584651811E-004 -5.12150889893930E-004 2.98835278750370E-004 9.17092189303602E-005 52, Phanerosteon ovensi (Carboveles) 7.27521768027983E-002 2.40972330923944E-002 -1.45807777151191E-002 3.88360745316206E-002 -7.03535124502143E-003 2.50554474478680E-003 2.05982525972190E-004 2.28776620903316E-002 -2.41893738477018E-002 1.33308462982464E-002 2.00443270148414E-002 -7.92483987342611E-003 -1.51583902228615E-002 1.38621088498607E-002 8.23778879342751E-003 -8.80948637649283E-003 2.68177465678569E-003 -5.26915526004676E-003 -5.91845327776878E-003 4.24667653504356E-004 -1.45414703187108E-003 -3.98742665817879E-003 -3.30036109556410E-004 -2.36847100847260E-004 53, Phanerosteon mirabile 5.87607112557963E-002 -5.98085040412308E-003 5.75231160130953E-002 1.48137402722891E-002 3.30710695367935E-003 2.50349115171788E-003 1.72330105873039E-002 2.73510097071617E-002 -1.01779341592294E-002 1.65017742401170E-002 5.27987628471576E-004 3.11359205858051E-002 1.14653527553664E-002 9.64647718925939E-003 -1.12488233320372E-002 -6.41843566250119E-003 1.27953496528752E-003 -2.67701681171015E-003 5.63928703974883E-003 6.61650231727910E-004 -1.23613806616252E-002 -4.80869446091495E-003 -7.05259607077819E-004 -7.44727912087889E-004 54, Platysella lallyi -4.07561955095808E-002 5.75347506048294E-002 -3.42496406310748E-002 4.04682565167140E-002 8.97209658834772E-002 3.24731319134097E-002 3.47533729323076E-002 -5.24524983067248E-003 -1.71038263463047E-002 4.14489567169273E-003 2.16535906787313E-002 -2.41079897817050E-002 4.19562331580351E-003 6.28520185255632E-003 1.57576091011747E-003 1.45032289107318E-002 9.92977468115567E-003 -2.90703466555508E-003 9.31576383970693E-003 7.38105883424705E-004 -1.16554429438183E-003 -2.06523934427810E-003 2.23080524898710E-003 5.04051745521686E-004 55, Platysomus superbus -3.17240995644048E-001 1.14167671973883E-001 -2.53719809911582E-002 2.02145904491023E-002 -6.30845629329267E-003 3.77041743568133E-003 2.06983910424748E-002 -4.24775406162389E-003 -2.32230439971179E-003 4.63651534599509E-003 53 -2.62900778983202E-002 -1.42577217080702E-002 5.99935888553955E-003 8.97568943930306E-003 4.74249778781523E-004 -6.55191371598219E-003 2.21677354010415E-002 -1.00133447949578E-002 3.44474807215050E-003 6.68295654674559E-003 -5.78436622005539E-003 -9.42713523278379E-003 -4.50901170378618E-004 -1.13751877298189E-003 56, Platysomus Parvulus -2.20050343472336E-001 1.60198540053555E-001 -1.68188618332405E-002 3.26282493698329E-002 -1.12547115693263E-002 4.04761520344757E-002 2.41805647492499E-002 2.67992578583402E-002 3.34504376882323E-002 2.16168922798203E-002 -3.07172748801758E-002 -1.22306608927648E-002 1.85463820945609E-002 2.96422417623601E-002 -1.04966751555120E-002 3.24857192445496E-003 2.25041055189579E-002 6.39979535695203E-004 1.03556627797945E-002 8.27724823259393E-003 2.21419088272146E-003 -2.28206665337409E-003 -9.43711930841587E-005 2.69169815915004E-004 57, Tarrasius problematicus -9.85134303640507E-002 -3.08737389569396E-001 -9.14001445552779E-002 -6.40058774477784E-002 -5.59302091925193E-002 4.65674834926287E-002 1.62713253786848E-002 -1.26940207428404E-002 2.34949767406776E-002 5.28334003890706E-003 2.88851905481276E-002 -1.69828947533931E-002 -8.79696344668138E-003 2.90462029588505E-003 2.14322887598189E-003 -4.46199261441063E-004 1.23760351340204E-002 -8.88007792306683E-003 7.12327554400656E-003 6.50426668657701E-004 -5.66489979603250E-003 -2.35951955047141E-003 1.28333281347189E-003 7.00814274613305E-004 58, Proceramala montanensis -1.39088667912350E-001 -3.24774884191015E-002 -9.91623517625531E-003 7.92230399830222E-003 -2.40891267274882E-002 -8.79742481096674E-003 4.06158575026045E-002 -1.67218156188845E-002 1.41802852743311E-002 5.30914428729947E-004 2.35894292347899E-002 5.74723436458652E-003 2.20360464995530E-002 7.12789258306517E-003 1.03008666467003E-002 -1.26889267240396E-002 2.86784080884154E-003 -4.09835012583213E-003 1.25591941440985E-003 2.57207183316243E-003 3.23731255330303E-003 2.72967121321042E-004 -2.06369268117578E-003 5.27209634075206E-004 59, Protoeurynotus traquairi -5.89810783977254E-002 8.44640637479364E-003 2.95542038229712E-002 1.20130287244198E-002 7.77415302248148E-002 3.80853554401885E-003 1.02668459039941E-002 4.94062596114820E-002 -5.56733279134332E-003 7.22510180907275E-003 3.95527470995604E-003 8.69219714654193E-003 1.78677468915880E-002 1.82126621424347E-002 -7.82221361372427E-003 -9.22606721020150E-003 9.02958475780636E-003 5.84304168712317E-003 5.32841220226513E-003 6.42476006182878E-004 4.65992855534726E-003 -2.34681419622349E-003 1.66779977202000E-003 7.77200387004488E-004 60, Pyritocephalus Sculptus 1.15350806209872E-001 4.85741231939012E-002 -4.47339587483932E-002 7.13681373593384E-002 9.11782209709711E-003 -1.52291430365328E-002 1.07725053770286E-002 -5.93496707007647E-003 -2.07385506390489E-002 8.20200193680651E-003 54 -6.69543728898907E-003 5.77715922902695E-003 3.38445536597639E-003 1.79258359254896E-003 -8.72324220468229E-004 7.61784283175233E-003 8.39444087917666E-003 -1.18046634157632E-004 1.73390377212442E-003 4.40970074226833E-005 1.38350429055129E-003 9.52923299856633E-004 1.73263935242489E-003 8.66184023171167E-004 61, Pyritocephalus lineatus 1.15574937768477E-001 6.64708187711616E-002 -2.68587489010895E-002 7.15990263456784E-002 1.16741123367067E-002 -8.59824902960035E-003 1.81348254486243E-002 -6.50038432126306E-003 -1.40887096941906E-002 6.58412092035105E-003 5.91713095923063E-004 -6.62779549143978E-004 -4.55189488435629E-003 7.15296296276599E-003 -2.71936964316596E-003 5.72140891081597E-003 4.86291240033432E-003 1.54329741580329E-004 3.37218011151340E-003 1.75690895353452E-003 4.54663148786235E-003 9.56564742340846E-004 -1.53768208721997E-003 1.72907661558366E-003 62, Rhadinichthys canobiensis 1.06926604965415E-001 2.08379923298323E-002 -3.15302490098279E-002 4.56711746480856E-002 -2.41536589099422E-002 -3.59166147024626E-003 2.93384578245900E-002 2.58702015716704E-002 2.66609824666604E-002 1.09746240846964E-002 6.41879202456637E-003 2.66830840459268E-002 4.38750565125302E-003 1.30276386391670E-002 6.37068692255898E-003 5.43329410288927E-003 4.00957966522535E-003 -6.16213131132627E-004 1.99340000613138E-003 3.57472466721514E-003 -3.74022523329837E-003 3.82202747215347E-004 4.74654174852649E-004 7.84615182079519E-004 63, Rhadinichthys fusiformis 3.02763095990759E-002 -3.98756417280097E-003 -4.50794725305478E-003 1.44405178125952E-002 -1.55911150444886E-002 -4.13371752673147E-002 2.40311407664809E-002 2.20981701562176E-002 1.49930044017435E-002 1.33831990945569E-002 3.18840579495964E-004 -6.88324198826857E-003 -3.88455803732434E-003 7.64159902887746E-003 1.21967157147266E-002 1.26203799105274E-002 1.14297275569600E-003 4.86958338166582E-003 -9.50628523769882E-003 2.98581418614589E-003 -2.40967420183339E-003 -2.56651804606314E-003 3.79769736840961E-003 1.71563547264125E-003 - - - 64, Sceletophorus biserialis 1.34420602761240E-003 -4.14523868762946E-002 1.46327648847074E-001 1.00134494336293E-002 1.65849926181904E-002 3.05963067935785E-002 1.83780069324402E-002 6.87420231579607E-003 1.54556324787421E-002 2.36471608802676E-002 -3.57497642157661E-003 -1.28841235567694E-002 -1.00294514470262E-002 -9.61107112246667E-003 -1.15991119241372E-002 4.15157410360556E-003 1.03001204195572E-002 1.06381518010429E-002 -1.53009939911913E-002 9.95604330191692E-003 1.09097539310777E-004 -1.21478424639581E-003 1.76875279554860E-003 6.61540058224136E-004 65, Soetendalichths cromptoni -2.21003474243934E-001 -9.57708657825391E-002 -4.15176178126357E-002 6.22719366782937E-002 -2.59296306039149E-003 -3.01058651844269E-002 4.31648231309943E-003 1.00089808966542E-002 -1.41731260895585E-003 9.19659915643413E-003 55 -2.92851280447401E-002 1.10305512430898E-002 2.53605942733950E-003 -9.31036136020133E-004 4.81325736087649E-003 -6.72822968033990E-003 4.92009101428937E-004 3.46721664373717E-003 -1.53817235764036E-003 6.05067342351272E-003 -2.97051796160001E-002 6.27917490135382E-003 4.09255779263406E-003 -1.22178155368694E-003 - 66, Sphaerolepis kounoviensis 1.01162116263850E-002 -2.88379619655995E-002 1.03405820845782E-001 5.81652116545316E-004 4.70197909533694E-002 1.01009786497184E-002 1.75823275706688E-002 2.02799744777740E-002 1.37279126052486E-002 8.98214630098170E-003 4.74825766142124E-003 -1.90169201698906E-002 -3.93135450503431E-003 8.19146831761679E-003 -1.06399003983452E-003 -3.08019964414814E-003 4.91651587224400E-003 -6.41741905211643E-003 -3.78185916628580E-003 4.88676116778833E-004 -6.29033069648970E-003 5.84234731702388E-004 -1.54741689250311E-003 1.09442287677044E-003 67, Strepheoschema fouldenensis 1.13589899840232E-002 6.69698558384025E-003 3.53253528296287E-002 8.74742549281181E-003 2.94963643953924E-002 5.18797920358101E-002 2.40929339079535E-002 -8.62457314610876E-003 3.12348830966240E-003 2.49392477569555E-002 -6.69728896249291E-003 -1.38044417692916E-002 2.47550801494019E-003 6.84941179949583E-003 -7.77454368825872E-003 1.27722820328460E-002 4.33609111536213E-003 7.75053384823755E-003 -1.02191550878607E-002 3.01378077262651E-003 -5.50629273295415E-003 1.72038109751528E-003 -7.70653175906893E-004 3.42435731445227E-004 68, Sundayichthys elegantulus 5.75096649446188E-004 -2.53560916024527E-002 2.17970345749496E-002 2.77779981759568E-002 1.48471424528871E-002 -4.07349129394129E-002 4.84960458015837E-003 1.16296201738879E-002 6.73184679663114E-003 4.95095737039684E-004 1.72335576908537E-002 -1.62032296127200E-002 -9.72899950218509E-004 4.78463036289272E-003 -4.20303315683301E-003 -9.61912619112112E-003 3.91409272283611E-003 5.89474581868104E-003 6.28145144820890E-003 3.01295394576280E-003 4.88236227202143E-003 6.27675882406604E-003 6.96881943812273E-004 1.08762332269721E-004 69, Wendyichthys lautreci -4.85403821399446E-004 -7.46127101161313E-002 8.30420830594139E-002 2.66740980432755E-002 1.33423171612343E-002 -2.12322227371752E-003 2.76507346036880E-002 1.43026533978400E-003 -1.47352881613637E-002 1.60379217987087E-002 -6.85332670093472E-003 8.31334059730678E-004 2.45743778266751E-002 4.66964622677257E-005 -6.16202016268109E-003 4.36899708074015E-004 4.56087704855677E-003 1.31689290072973E-002 -9.49479871945548E-004 5.28708513174227E-003 -2.29660866457086E-003 1.34797640431968E-003 4.08207547578672E-004 7.87209446618438E-004 70, Wendyichthys dicksoni 1.00303261664030E-001 1.22012875175973E-003 -3.20102694550177E-003 2.44747079459717E-002 -1.66737098246214E-002 1.47968688995507E-002 1.64539496942635E-002 3.09521653428895E-002 -1.55281940485964E-002 2.41315745710697E-002 56 2.38899490105334E-003 -1.47529508985744E-002 5.97743619250631E-003 3.44903209276940E-003 6.67790666359933E-004 -8.05079157526307E-003 4.11413348220620E-003 -5.25840400344394E-004 -1.73892189631620E-003 1.12476590416021E-002 -1.45092540455004E-003 1.15709420567268E-003 -2.24508119756652E-003 5.83244939534836E-005 71, Willomorichthys striatulus -2.99366162049210E-002 1.27420772529003E-004 1.50342791834756E-003 5.39574384740668E-002 1.86458271391172E-002 -1.76402926202367E-002 5.79640238220382E-004 -2.66395902159164E-002 1.41919030663452E-002 1.63274547527823E-002 1.22800332351083E-002 -8.67067348859910E-004 4.64765620648514E-003 9.01066670851697E-004 3.20486010842478E-003 -1.12845526905023E-003 1.09542610075587E-002 -2.02694642869796E-003 6.39748807982623E-003 1.76529600714615E-003 2.39893081836214E-003 -1.69762262264710E-003 1.66953820592771E-004 3.68472143613545E-005 - - - 72, Woodichthys bearsdeni 4.44932948433608E-002 -2.01436202387986E-002 3.42002821918796E-002 3.02881779515157E-002 2.52509566079743E-002 -4.51739452378324E-003 3.31128619040526E-002 -2.86178566486607E-003 -1.52886003304236E-002 3.18735684814222E-003 -1.79330541697223E-002 8.86295720887736E-003 3.69682440129310E-003 7.39492466640634E-003 1.27490607918397E-002 -6.96467076523607E-003 8.61975685948437E-003 -1.24092894143001E-002 -9.31249244336979E-003 3.59232106729056E-003 1.83496165295796E-003 1.10936992732022E-003 3.28186781456296E-003 2.25747931915144E-004 57 Relative warp scores The relative warp scores that are available in the program (tpsRelw). RW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Percentage of total variance 44.03% 21.30% 11.94% 5.51% 4.06% 2.54% 2.50% 1.65% 1.24% 1.02% 0.83% 0.73% 0.56% 0.49% 0.40% 0.29% 0.26% 0.22% 0.16% 0.10% 0.07% 0.06% 0.01% 0.01% Cumulative variance 44.03% 65.33% 77.28% 82.79% 86.85% 89.39% 91.89% 93.54% 94.78% 95.81% 96.63% 97.36% 97.92% 98.40% 98.81% 99.10% 99.36% 99.58% 99.74% 99.85% 99.91% 99.98% 99.99% 100.00% Landmarks The x and y coordinates on the landmarks on the Devonian (1-8) and Carboniferous (9-72) fishes. There are fourteen landmarks, were the last one (number 14) is a sliding landmark. See also figure 8 and 9. 1, Cheirolepis Canadensis (417, 445)(52, 631)(424, 725)(1549, 608)(1738, 584)(1804, 584)(2372, 733)(1811, 480)(1646, 428)(521, 336)(519, 384)(116, 617)(177, 598)(881, 715) 2, Cuneognathus gardineri (561, 424)(87, 582)(566, 813)(1193, 804)(1587, 756)(1919, 775)(2801, 995)(1955, 481)(1757, 471)(778, 301)(792, 396)(174, 603)(295, 603)(853, 849) 3, Howqualepis rostridens (318, 282)(52, 379)(290, 490)(969, 535)(1153, 532)(1410,492)(1915, 626)(1351, 336)(1191, 313)(396, 216)(406, 249)(106, 384)(139, 377)(589, 525) 4, Limnomis deleneyi (703, 481)(111, 611)(599, 924)(1486, 979)(2011, 887)(2490, 839)(3478, 1170)(2575, 464)(2240, 474)(771, 361)(896, 472)(233, 655)(349, 651)(1030, 999) 58 5, Mimia toombsi (2297, 1354)(607, 1994)(2221, 2644)(5342, 3153)(7075, 2904)(8354, 2763)(10520, 3055)(8278, 1636)(6685, 1354)(2665, 1094)(2990, 1333)(1040, 1972)(1387, 1972)(3933, 3131) 6, Moythomasia nitida (766, 341)(110, 567)(803, 928)(1729, 981)(2075, 868)(2574, 780)(3484, 966)(2498, 448)(2103, 432)(863, 219)(1061, 357)(201, 551)(345, 551)(1223, 979) 7, Stegotrachelus finlayi (271, 250)(19, 369)(256, 483)(786, 583)(1028, 525)(1256, 469)(1649, 453)(1222, 317)(1092, 296)(330, 195)(382, 240)(66, 364)(126, 367)(530, 594) 8, Cheirolepis trailli (683, 552)(143, 879)(556, 1005)(2377, 752)(2784, 740)(3125, 756)(3968, 843)(3156, 596)(2825, 505)(870, 368)(877, 444)(239, 854)(327, 843)(1265, 961) 9, Acrolepis gigas (343, 356)(41, 427)(298, 632)(950, 725)(1155, 695)(1666, 615)(2165, 787)(1713, 420)(1483, 358)(347, 240)(465,300)(120, 480)(186, 480)(618, 706) 10, Adroichthys tuberculatus (300, 317)(81, 458)(296, 701)(1076, 829)(1376, 636)(1503, 602)(1768, 758)(1477, 396)(1342, 315)(457, 225)(454, 330)(161, 503)(238, 497)(656, 1009) 11, Aeduella blainvillei (319, 245)(96, 356)(334, 562)(834, 618)(999, 556)(1245, 498)(1858, 695)(1295, 311)(1181, 314)(453, 188)(491, 259)(158, 380)(300, 381)(571, 624) 12, Aesopichthys erinaceus (434, 155)(45, 417)(394, 799)(898, 992)(1714, 735)(1952, 688)(2596, 1027)(1945, 436)(1740, 395)(632, 146)(648, 329)(167, 419)(271, 436)(618, 916) 13, Aesopichthys fulcratus (488, 579)(90, 808)(490, 1029)(1424, 1258)(2054, 992)(2349, 918)(3117, 1008)(2320, 515)(2226, 515)(672, 409)(674, 478)(167, 812)(332, 793)(935, 1251) 14, Aetheretmon valentiacum (288, 304)(70, 400)(269, 532)(738, 548)(968, 418)(1098, 365)(1562, 373)(1091, 203)(994, 217)(313, 223)(334, 242)(102, 408)(165, 403)(490, 582) 15, Australichthys longidorsalis (435, 455)(70, 687)(399, 882)(1080, 1108)(1951, 783)(2372, 699)(3274, 841)(2413, 494)(2313, 487)(661, 368)(657, 430)(109, 666)(257, 662)(722, 1030) 16, Bourbonella guilloti (261, 298)(33, 358)(232, 582)(941, 627)(1124, 528)(1411, 467)(2017, 602)(1386, 243)(1224, 274)(308, 241)(417, 300)(88, 391)(212, 403)(530, 665) 17, Canobius elegantulus (347, 170)(142, 297)(409, 523)(912, 587)(1218, 506)(1438, 463)(1966, 480)(1354, 282)(1220, 268)(526, 120)(542, 165)(218, 330)(366, 330)(665, 579) 18, Canobius ramsayi (294, 268)(97, 426)(364, 609)(883, 628)(1206, 508)(1411, 453)(1958, 398)(1308, 254)(1202, 262)(472, 172)(479, 204)(144, 441)(314, 426)(647, 645) 19, Cheirodopsis geikei (257, 220)(37, 213)(230, 519)(440, 643)(785, 505)(850, 495)(1191, 620)(834, 370)(818, 351)(337, 133)(355, 193)(123, 339)(205, 343)(320, 594) 59 20, Chirodus granulosus (308, 561)(33, 604)(351, 978)(842, 1307)(1269, 787)(1329, 767)(1725, 1079)(1347, 615)(1245, 590)(339, 397)(417, 430)(189, 754)(263, 744)(722, 1250) 21, Cryphiolepis striatus (351, 288)(107, 436)(345, 523)(930, 514)(1085, 461)(1393, 362)(1869, 442)(1360, 233)(1265, 233)(437, 180)(470, 219)(160, 432)(207, 420)(662, 542) 22, Cycloptychius concentricus (212, 150)(34, 221)(176, 263)(606, 265)(744, 237)(816, 233)(1105, 268)(846, 153)(744, 156)(269, 132)(287, 143)(58, 206)(118, 201)(405, 276) 23, Cyranohis bergeraci (553, 324)(73, 510)(528, 719)(1616, 692)(1910, 650)(2399, 574)(2935, 882)(2404, 420)(2043, 329)(599, 280)(767, 311)(143, 469)(257, 462)(1055, 736) 24, Discoserra pectinodon (99, 115)(42, 127)(136, 221)(204, 261)(333, 162)(345, 155)(409, 179)(339, 118)(331, 104)(107, 74)(147, 101)(81, 160)(108, 160)(171, 248) 25, Elonichtys pulcherrimus (379, 201)(79, 373)(343, 540)(788, 656)(1105, 555)(1356, 511)(1887, 580)(1365, 321)(1220, 290)(511, 145)(517, 195)(136, 353)(243, 349)(549, 617) 26, Elonichtys serratus (334, 189)(44, 329)(285, 435)(883, 524)(1132, 479)(1416, 442)(1915, 524)(1392, 288)(1264, 281)(428, 167)(430, 195)(114, 307)(225, 307)(544, 500) 27, Elonichtys spaerosideriarum (283, 218)(98, 258)(262, 385)(521, 398)(630, 341)(792, 291)(1057, 332)(796, 190)(675, 168)(287, 152)(297, 174)(129, 296)(174, 293)(372, 404) 28, Frederichthys musadentatus (458, 384)(83, 549)(455, 782)(862, 879)(1157, 700)(1381, 608)(1884, 721)(1370, 393)(1285, 363)(526, 224)(600, 305)(170, 538)(269, 533)(655, 845) 29, Gonatodus punctatus (233, 302)(45, 394)(212, 485)(587, 549)(761, 445)(895, 377)(1214, 456)(900, 267)(842, 262)(300, 239)(306, 276)(98, 393)(145, 390)(395, 525) 30, Guildayichthys carnegiei (83, 84)(17, 101)(82, 202)(155, 253)(306, 187)(333, 182)(417, 217)(338, 130)(318, 117)(100, 53)(126, 102)(48, 129)(79, 132)(119, 231) 31, Haplolepis corrugate (296, 213)(51, 245)(271, 427)(1066, 437)(1192, 404)(1334, 386)(1805, 433)(1321, 251)(1250, 222)(404, 162)(452, 207)(110, 276)(212, 281)(636, 473) 32, Haplolepis ovioidea (266, 188)(42, 259)(277, 414)(909, 447)(1050, 417)(1196, 395)(1777, 480)(1271, 228)(1189, 215)(490, 139)(489, 178)(107, 266)(230, 269)(588, 466) 33, Haplolepis tuberculata (239, 178)(38, 213)(280, 390)(1023, 452)(1173, 425)(1275, 405)(1798, 486)(1297, 251)(1196,232)(426, 152)(452, 178)(98, 253)(212, 253)(651, 470) 34, Paratarrasius hibbardi (305, 205)(56, 177)(233, 377)(401, 461)(1990, 295)(2003, 295)(2589, 42)(1561, 133)(1552, 131)(312, 115)(372, 257)(95,200)(155, 227)(316, 424) 60 35, Holurus parki (240, 166)(45, 272)(239, 380)(616, 392)(914, 292) (023, 266)(1309, 254)(938, 179)(900, 181)(359, 146)(367, 169)(78, 267)(155, 264)(438, 412) 36, Kalops diophrys (460, 184)(57, 365)(397, 512)(1343, 569)(1824, 479)(2031, 460)(2666, 669)(2086, 266)(1899, 262)(514, 145)(565, 215)(139, 359)(271, 360)(836, 583) 37, Kalops monophrys (508, 317)(73, 472)(397, 638)(1395, 679)(1921, 551)(2088, 535)(2739, 607)(2034, 320)(1833, 310)(512, 291)(596, 345)(163, 491)(297, 486)(912, 706) 38, Melanecta anneae (512, 380)(66, 525)(432, 641)(858, 634)(1097, 621)(1372, 610)(1909, 858)(1388, 473)(1236, 454)(505, 310)(600, 380)(138, 530)(233, 522)(662, 633) 39, Mentzichthys walchi (504, 304)(75, 452)(476, 577)(1363, 613)(1653, 555)(1958, 492)(2725, 774)(1955, 332)(1779, 304)(586, 237)(625, 261)(148, 429)(259, 417)(858, 623) 40, Mentzichthys jubbi (518, 379)(108, 593)(488, 720)(1676, 783)(2069, 642)(2288, 601)(3105, 818)(2417, 408)(2202, 427)(706, 304)(722, 350)(152, 575)(306, 544)(1203, 844) 41, Mesopoma carricki (414, 353)(122, 489)(439, 605)(1239, 612)(1473, 584)(1688, 553)(2174, 691)(1739, 379)(1502, 309)(460, 237)(489, 277)(165, 487)(300, 470)(805, 632) 42, Mesopoma crassum (253, 181)(69, 271)(220, 389)(606, 430)(761, 344)(884, 300)(1164, 331)(845, 193)(785, 186)(322, 130)(328, 156)(107, 291)(184, 282)(420, 443) 43, Mesopoma planti (488,404)(89, 559)(507, 713)(1534, 709)(1829, 674)(2171, 624)(2717, 775)(2171, 400)(1871, 329)(551, 274)(584, 322)(182, 558)(315, 543)(999, 747) 44, Mesopoma politum (168,126)(3, 198)(155, 301)(539, 302)(684, 263)(835, 258)(1085, 304)(833, 164)(723, 153)(220, 78)(228, 97)(37, 201)(116, 192)(319, 318) 45, Microhapolepis serrata (306,192)(100, 256)(341, 443)(895, 512)(1073, 496)(1296, 492)(1818, 577)(1344, 300)(1135, 217)(555, 132)(536, 181)(161, 271)(287, 275)(607, 511) 46, Mesopoma pulchellum (382, 191)(101, 336)(363, 537)(972, 566)(1217, 484)(1445, 423)(1940, 556)(1381, 244)(1316, 231)(531, 141)(531, 163)(164, 345)(287,322)(649, 583) 47, Mansfieldiscus sweeti (423, 361)(78, 494)(408, 613)(1009, 610)(1177, 529)(1507, 515)(1953, 803)(1548, 364)(1350, 323)(558, 236)(558, 295)(148, 477)(206, 471)(705, 631) 48, Novogonatodus kazantsevae (316, 371)(122, 488)(369, 592)(1100, 664)(1366, 543)(1562, 538)(1906, 742)(1581, 373)(1413, 360)(417, 263)(436, 324)(170, 486)(220, 474)(731, 682) 49, Paramesolepis rhombus (267, 182)(129, 201)(283, 619)(569, 813)(955, 541)(987, 527)(1469, 754)(976, 358)(955, 346)(393, 121)(417, 158)(153, 388)(279, 379)(416, 739) 61 50, Paramesolepis tuberculata (349, 333)(110, 457)(445, 663)(697, 721)(1034, 488)(1139, 484)(1536, 620)(1110, 356)(1044, 346)(477, 206)(507, 228)(169, 468)(308, 451)(565, 699) 51, Phanerorthynchus armatus (428, 237)(87, 340)(432, 501)(1079, 527)(1277, 457)(1543, 396)(1910, 465)(1459, 267)(1227, 221)(609, 204)(597, 261)(234, 377)(311, 372)(749, 564) 52, Phanerosteon ovensi (Carboveles) (485, 283)(121, 425)(432, 580)(1200, 564)(1432, 514)(1591, 486)(2156, 510)(1538, 298)(1462, 298) (506, 201)(628, 258)(195, 440)(300, 432)(797, 593) 53, Phanerosteon mirabile (441, 208)(124, 356)(445, 469)(995, 474)(1221, 432)(1390, 401)(2082, 398)(1462, 211)(1314,178)(494, 134)(515, 161)(190, 351)(254, 342)(710, 474) 54, Platysella lallyi (301, 355)(105,440)(341, 736)(1045, 802)(1227, 633)(1561, 479)(1950, 530)(1493, 268)(1400, 266)(269, 301)(409, 338)(156, 479)(258, 462)(693, 860) 55, Platysomus superbus (224, 252)(89, 296)(258, 750)(441, 917)(833, 540)(866, 544)(1111, 730)(852, 418)(831, 400)(340, 196)(340, 236)(174, 465)(225, 458)(346, 859) 56, Platysomus Parvulus (367,260)(93, 364)(538, 952)(968, 1034)(1280, 682)(1440, 624)(1826, 839)(1446, 498)(1255, 453)(486, 165)(546, 182)(269, 596)(380, 575)(657, 1192) 57, Tarrasius problematicus (312, 188)(39, 347)(372, 552)(407, 565)(2123, 418)(2136, 415)(2495, 286)(1433, 154)(1427, 154)(395, 136)(601, 176)(110, 368)(243, 354)(387, 560) 58, Proceramala montanensis (321, 443)(45, 750)(476, 1106)(971, 1278)(1820, 846)(1908, 801)(2672, 1058)(1867, 4889(1768, 504)(512, 320)(589, 464)(146, 804)(325, 787)(709,1211) 59, Protoeurynotus traquairi (255, 230)(50, 247)(302, 570)(714, 834)(1014, 733)(1269, 700)(1834, 803)(1297, 537)(1240, 520)(380, 160)(410, 212)(125, 351)(212, 360)(473, 718) 60, Pyritocephalus Sculptus (448, 203)(104, 295)(434, 507)(1464, 495)(1655, 443)(1740, 443)(2422, 498)(1771, 276)(1608, 252)(634, 167)(637, 219)(165, 307)(318, 295)(910, 542) 61, Pyritocephalus lineatus (325, 158)(64, 222)(316, 399)(1115, 378)(1210, 359)(1299, 352)(1844, 422)(1318, 210)(1212, 201)(460, 121)(467, 158)(106, 246)(236, 243)(655, 436) 62, Rhadinichthys canobiensis (318, 322)(38, 508)(323, 553)(1000, 489)(1219, 461)(1391, 454)(1875, 576)(1521, 324)(1306, 282)(373, 225)(394, 256)(85, 468)(198, 447)(641, 524) 63, Rhadinichthys fusiformis (373, 244)(42, 419)(307, 536)(938, 600)(1217, 525)(1424, 520)(1884, 558)(1394, 352)(1295, 338)(505, 171)(507, 199)(94, 383)(241, 364)(628, 613) 64, Sceletophorus biserialis (162, 171)(16, 210)(180, 341)(382, 327)(487, 298)(697, 310)(1070, 360)(665, 195)(613, 189)(217, 113)(229, 158)(44, 239)(118, 232)(258, 349) 62 65, Soetendalichths cromptoni (364, 429)(78, 464)(324, 898)(542, 1099)(1426, 664)(1563, 633)(1947, 753)(1518, 448)(1452, 426)(460, 257)(472, 329)(205, 631)(314, 633)(449, 1017) 66, Sphaerolepis kounoviensis (166, 217)(57, 272)(196, 369)(453, 379)(554, 339)(746, 303)(1107, 325)(714, 211)(686, 211)(223, 170)(252, 179)(81, 290)(137, 284)(320, 382) 67, Strepheoschema fouldenensis (271, 299)(59, 361)(271, 510)(740, 563)(922, 453)(1170, 419)(1642, 541)(1107, 278)(1006, 257)(272, 212)(306, 236)(97,369)(153, 363)(496, 580) 68, Sundayichthys elegantulus (522, 428)(108, 669)(516, 922)(1405, 1095)(1923, 960)(2356, 847)(3210, 1052)(2329, 569)(2298, 553)(778, 292)(779, 419)(170, 678)(370, 664)(939, 1035) 69, Wendyichthys lautreci (468, 305)(51, 498)(472, 707)(1052, 828)(1590, 697)(1879, 629)(2925, 754)(1828, 383)(1729, 383)(614, 224)(604, 319)(127, 461)(253, 455)(768, 782) 70, Wendyichthys dicksoni (522, 245)(27, 448)(532, 635)(1458, 623)(1769, 590)(2249, 567)(2898, 686)(2222, 370)(1992, 321)(590, 175)(727, 271)(109, 446)(228, 448)(995, 634) 71, Willomorichthys striatulus (446, 557)(47, 808)(401, 1063)(1356, 1340)(1904, 1132)(2338, 1003)(3118, 1328)(2397, 635)(2183, 639)(626, 444)(676, 514)(131, 812)(294, 804)(839, 1316) 72, Woodichthys bearsdeni (354, 370)(58, 489)(268, 614)(868, 708)(1088, 650)(1400, 584)(1917, 639)(1447, 416)(1233, 414)(402, 320)(478, 379)(112, 492)(175, 489)(549, 698) 63 Appendix 4 Reconstruction of Devonian and Carboniferous fishes. Devonian: Cheirolepis Canadensis (Arratia et al 1996) Stegotrachelus finlayi (Swartz Brian 2007, not publish) Cheirolepis trailli (Pearson et al 1979) Carboniferous: Cuneognathus gardineri (Fridman et al 2006) Acrolepis gigas (Stamberg 2006) Howqualepis rostridens (Long 1988) Adroichthys tuberculatus (Gardiner 1969) Limnomis deleneyi (Daeschler 2000) Aeduella blainvillei (Poplin & Dutheil 2005) Mimia toombsi (Gardiner 1984) Aesopichthys erinaceus (Poplin & Lund 2000) Moythomasia nitida (Jessen 1968) 64 Aesopichthys fulcratus (Gardiner 1969) Cheirodopsis geikei (Moy-Thomas et al 1938) Aetheretmon valentiacum (White1927) Chirodus granulosus (Moy-Thomas et al 1971) Australichthys longidorsalis (Gardiner 1969) Cryphiolepis striatus (Moy-Thomas et al 1971) Bourbonella guilloti (Poplin & Dutheil 2005) Cycloptychius concentricus (Moy-Thomas et al 1938) Canobius elegantulus (Moy-Thomas et al 1938) Cyranohis bergeraci (Poplin & Lund 1997) Canobius ramsayi (Moy-Thomas et al 1938) 65 Discoserra pectinodon (Lund 2000) Haplolepis currugata (Lowney 1980) Elonichtys pulcherrimus (Moy-Thomas et al 1938) Haplolepis ovioidea (Lowney 1980) Elonichtys serratus (Moy-Thomas et al 1938) Haplolepis tuberculata (Lowney 1980) Elonichtys spaerosideriarum (Stamberg 2006) Paratarrasius hibbardi (Lund & Poplin 2002) Frederichthys musadentatus (Coates 1993) Holurus parki(Moy-Thomas et al 1938) Kalops diophrys (Lund & Poplin 2002) Gonatodus punctatus (Dineley et al 1999) Kalops monophrys (Lund & Poplin 2002) Guildayichthys carnegiei (Lund 2000) Melanecta anneae sp.nov (Coates 1998) 66 Mentzichthys walchi (Jubb 1965) Mansfieldiscus sweeti (Long 1988) Mentzichthys jubbi (Gardiner 1969) Novogonatodus kazantsevae (Long 1988) Mesopoma carricki (Coates 1993) Paramesolepis tuberculata (Moy-Thomas et al 1938) Mesopoma crassum (Dineley et al 1999) Mesopoma planti (Coates 1999) Paramesolepis rhombus (Moy-Thomas et al 1938) Mesopoma politum (Dineley et al 1999) Phanerorthynchus armatus (Moy-Thomas et al 1971) Microhapolepis serrata (Lowney 1980) Phanerosteon ovensi(Carboveles) (White 1927) Mesopoma pulchellum (Moy-Thomas et al 1938) 67 Phanerosteon mirabile (White 1927) Protoeurynotus traquairi (Moy-Thomas et al 1938) Platysella lallyi (Poplin & Dutheil 2005) Pyritocephalus lineatus (Moy-Thomas et al 1971) Pyritocephalus sculptus (Westoll 1944) Platysomus superbus (Moy-Thomas et al 1938) Platysomus Parvulus (Moy-Thomas et al 1971) Tarrasius problematicus (Lund & Poplin 2002) Rhadinichthys canobiensis (Dineley et al 1999) Rhadinichthys fusiformis (Dineley et al 1999) Sceletophorus biserialis (Stamberg 2006) Soetendalichths cromptoni (Gardiner 1969) Proceramala montanensis (Lund & Poplin 2002) 68 Sphaerolepis kounoviensis (Stamberg 2006) Strepheoschema fouldenensis (White 1927) Sundayichthys elegantulus (Gardiner 1969) Wendyichthys lautreci (Lund & Poplin 1997) Wendyichthys dicksoni (Lund & Poplin 1997) Willomorichthys striatulus (Gardiner 1969) Woodichthys bearsdeni sp.nov (Coates 1998) 69
© Copyright 2026 Paperzz