The early diversification of ray-finned fishes (Actinopterygii

The early diversification of ray-finned
fishes (Actinopterygii)
an ecomorphological approach
Weronica
Klasson
Degree project in biology, 2008
Examensarbete i biologi, 20 p, 2008
Biology Education Center and Department of Physiology and Developmental Biology
Supervisor: Henning Blom
The early diversification of ray-finned fishes (Actinopterygii); an
ecomorphological approach
Weronica Klasson
Uppsala University, Subdepartment of Evolutionary Organismal Biology, Department of Physiology
and Developmental Biology. Examensarbete 30hp
Contents
Sammanfattning
Abstract
1. Introduction
2. Taxonomical and morphological framework
2.2 Shape, habitat and diet
2.3 Adaptation to Salt & freshwater
3. Environmental framework
3.1 Environment vs. morphology
3.2 Paleogeographic and paleoenvironments
3.3 Localities and there environments
3.3.1 Devonian
3.3.2 Carboniferous
4. Morphometrics analysis
4.1 Relative warp analysis
4.2 Disparity measures
5. Discussion
5.1 Ecomorphology
Acknowledgments
References
Appendix 1
List of Devonian taxa
List of Carboniferous taxa
Appendix 2
Relative Warp 1.1
Relative Warp 1.2
Appendix 3
Relative warp scores matrix
Relative warp scores
Landmarks
Appendix 4
Reconstructions of the Devonian and Carboniferous fishes
2
3
4
6
6
8
10
10
11
12
14
16
19
20
21
22
25
28
29
33
33
34
41
41
42
43
43
58
58
64
64
1
De strålfeniga fiskarnas (Actinopterygii) tidiga uppblomstring; en
ekomorfologisk studie
Sammanfattning
Strålfeniga fiskar är idag den största och mest framgångsrika gruppen av fiskar och omfattar omkring
27000 arter, och finns i nästan alla olika typer av miljöer (habitat). Dagens mångfald är ett resultat av
en rad uppblomstringar av vilka dom tidigaste verkar sammanfalla med såväl uppkomst och tidigaste
utveckling under devon (416-359.2 miljoner år sedan) och karbon (359.2-299 miljoner år sedan).
En morfometrisk analys (jämförande av kroppsformer) är gjord för att undersöka eventuella
evolutionära mönster som kan urskiljas bland de devonska och karbonska strålfeniga fiskarnas
kroppsformer (morfologier). Denna studie visar att den morfologiska mångfalden, som undersöks och
kvantifierats med hjälp av olika numeriska metoder, kan jämföras med den taxonomiska mångfalden.
Denna approach uppvisar en trend i vilken en jämn ökning av den morfologiska och taxonomiska
mångfalden under den senare hälften av Devon, med en efterföljande mer explosionsartad ökning under
tidig Karbon. Slutet av karbon uppvisar däremot en dramatisk minskning av såväl den morfologiska
som taxonomiska mångfalden, en händelse som är svår att förstå och som kräver ytterligare studier.
Denna studie har också visat att skillnader i kroppsform, även under dessa tidiga episoder av
evolution, snarare beror på hur fiskarna levde och jagade (d.v.s. s.k. mikrohabitat) snarare än fysiska
miljöfaktorer (t.ex. salinitet).
Sex ”ekologiska kroppsformsgrupper” (ekomorfologiska grupper) har föreslagits och genom
att jämföra dessa med motsvarande ”ekomorfologiska grupper” bland nulevande strålfeniga fiskar är
det möjligt att dra mer omfattande slutsatser om hur de levde och jagade under devon och karbon.
Noterbart med denna analys är att de devonska formerna hamnar i den ”ekomorfologiska grupper” som
anses överraska sina byten, s.k. ”ligga och vänta predatorer” (“lay-in-wait-predators”), eller de som
aktivt följer sina byten, s.k. ”följande predatorer” (“rover-predators”). Detta tyder på att de devonska
formerna troligtvis var fiskätare snarare än plankton- och bryozo-ätare, vilka verkar representera en
senare evolutionär utveckling.
2
The early diversification of ray-finned fishes (Actinopterygii); an
ecomorphological approach
Abstract
The actinopterygians are the now largest and most successful group of living fishes with about 27 000
species in almost every aquatic environment. This diversity is a result of numerous radiations through
time, including the origins and early diversification in the Devonian and Carboniferous.
Morphometric analyses have been performed in order to investigate patterns of morphological
diversity during these early episodes of actinopterygian evolution. This study shows that the disparity,
which has been quantified by various methods, can be correlated to the overall taxonomic diversity.
This pattern of morphological and taxonomical diversification starts with a steady increase in the
Devonian, followed by what appears to be a major radiation event in the early Carboniferous. However,
in the late Carboniferous both the diversity and disparity drastically decreases and the reason for this is
unknown.
This study also shows that there are no relation between body shape and the environments
salinity. Instead it seems to be the microhabitats and the way to hunt that have the most effect on body
shape.
Six ecomorphological groups have been detected in the studied data set, which can give clues
about feeding strategies when compared to ecomorphological groups established for recent fishes.
Interestingly, the ecomorphological groupings suggest that the Devonian fishes seem to be “lay-inwait-predators” and “rover-predators”. This means that the early ray-finned fishes probably were
piscivores, rather then browsers and plankton-eaters, which seems to be a later evolutionary invention.
3
1. Introduction
The Actinopterygii, or ray-finned
fishes, belong to the osteichthyans
(bony fishes) together with the sister
group
lobe-finned
fishes
(Sarcopterygii).
The actinopterygians are defined by
several characters, including the
median fin rays that are inserted
directly into the body, with no
intervening basal lobe. The primitive
diamond-shaped scales, covered with
ganoine, the pelvic girdle that are
replaced
with
part
of
the
metapterygium and soft tissue, and the
presence of acrodine (a transparent cap
of mineralized tissue on the tip of the
teeth) (Janvier 1996).
Ray-finned fishes are the
largest and most successful group of
living fishes. They are found in every
aquatic habitat, from the high-pressure
depth and salinity of the ocean to
freshwater streams and ponds, from the
artic coldness (-1.8C) to the tropical
warmth (+40C). They are also tolerant
to pH level from 4 to 10 and low
oxygen levels. Some can breathe air
and some can even cope without
oxygen for periods of time (Moyle et
al. 2004). There are even species that
can crawl on land.
The earliest record of possible
ray-finned fishes are isolated scales
and fragments from the Silurian, but
the
oldest
uncontested
actinopterygianas to be described
based on articulated material is
Cheriolepis (Agassiz 1835) from the
Eifelian and Frasnian of Scotland and
Canada (Friedman and Blom 2006).
Cheriolepis was followed by an
increased record of taxa in the late
Devonian, probably due to the
extension of floodplains and deltaic
environments. The diversification then
speeded up in the Early Carboniferous
(Viséan) when more ecological niches
became available after the placoderms
became extinct. Many niches also
become available when the tetrapods
went up on land and the sarcopterygian
decrease in the marine environments
(Janvier 1996). Today there are about
27 000 species of ray-finned fishes
(Hurley et al. 2007).
The phylogeny of the basic
(oldest) Actinopterygii is based on
different morphological characters
(Figure 1), while the recent and
younger is based on molecular data.
This makes it difficult to combine the
living forms with the fossil record in
phylogenetic analyses. The fossil
record may involve some problems in
that some taxa can be “misplaced”. For
example, two specimens of the same
species could be put in two different
taxa (or the contrary two different taxa
put in to one) on the basis of; sexual
dimorphism, different size in different
habitat
(young/adult),
local
morphology
changes
(ecological
species can be more common then first
realized) or the taphonmy (the
preservation of the fossil that could
alter the body shape) (Moyle et al.
2004).
4
Figure 1. Phylogenetic tree, showing the basal actinopterygians from the Devonian (bold) and
Carboniferous (C. wilidi & P. decorus are Permian), based on 185 morphological characters.
Also note the different environments in which the fishes lived: M = Marine F = freshwater and
B = Brackish (modified from Cloutier et al. 2004).
In this study the taxonomical and
morphological diversity, of several
Devonian
and
Carboniferous
actinopterygians were investigated in
an environmental and temporal context
to answer questions relating to the
early radiation of the group. The
morphological
diversity
between
species have been studied to show
differences in morphology depending
on the environment, more specifically
if the species lived in marine water or
fresh water environments have
different body shapes. Such questions
can be referred to the concept of
ecomorphology, which can be defined
as, “a study of the relationship between
the ecological role of an individual and
its
morphological
adaptations”
(Rickleffs 1990). One way to study
ecomorphology is to use morphometric
analysis (like relative warp analysis) in
order of quantify body shape variation
and then use the data to explore the
relevance in variables such as, salinity
and choice of habitat.
This type of patterns is
interesting to investigate, since the
phylogeny of the Devonian taxa did
not show any relationship between
ecology and phylogeny (Friedman and
Blom 2006). A similar approach has
been used by Friedman and Coates
(2006) who explore the early
morphological diversification in the
coelacanth clade.
These types of morphometrics
methods are not mainly used on fossils
but are frequently used on recent fishes
to test various hypotheses on
ecomorphological questions (Costa et
al. 2007). A link between morphology
and ecology has been shown in studies
on recent fish and Costa and
Cataudella
(2007)
showed
a
relationship between trophic ecology
and morphology. Ruben and Adams
(2001) showed that ecology control the
morphology more than the genes,
which means that the plasticity of the
fish was more than first expected. The
morphology of a species is then shaped
by many factors, such as trophic levels
and structure, habitat and motility
(Costa et al. 2007)
Norton (1991) showed in a
study on the Cottidae family that there
is a relationship between mouth size
and capture techniques and the sort of
prey.
The
predator’s
mouth
morphology and attack techniques
together play a central role in
determining how successful predators
were at catching prey and also helps to
constrain the range of prey for the fish.
5
and 17 (of 41) from the Pennsylvanian
(Figure 2). Many of the used
reconstructed taxa where made for
about 50-100 years ago. This may
affect the accuracy and since the scope
of this study is not to test the full
accuracy of previous work, one need to
accept all potential biases. One has to
be aware that there may also be
reconstructions made from incomplete
material, therefore completed by
interpolations,
and
qualified
assumptions. In some cases, this study
is using data directly from photographs
of
body
fossils.
2. Taxonomical and morphological
framework
The data used in this study (list of taxa
and available reconstructions) where
acquired from the literature. 18 species
(7 families) are known from the
Devonian and 115 species (33
families) from the Carboniferous
(Appendix 1). Of theses 8 Devonian
and 64 Carboniferous taxa had
reconstructions
useful
for
morphometrics
analysis.
The
Carboniferous taxa used include 49
species (of 74) from the Mississippian
80
70
60
50
40
30
20
10
0
Total (n)
Know n reconstructions
(n)
Dev.
Miss.
Penn.
Figure 2. Diagram showing the number of taxa and available reconstructions from the
Devonian (Dev.) and the two epochs of the Carboniferous; the Mississippian (Miss.) and the
Pennsylvanian (Penn.) (collected data from Appendix 1)
2.2 Shape, habitat and diet
The shape of a fish reveals a lot about
diet and habitat (Moyle et al. 2004;
Webb 1984). For example, the position
and size of the fins dictates movement
and speed, and can thus provide clues
abut hunting techniques (Webb 1984).
Speed is as well determined by the
environment
(accessibility/approachability) and the
water temperature (Moyle et al. 2004).
The size, position and shape of the
mouth and eyes can also provide clues
about diet. However in order to be
accurate you must find stomach and/or
intestinal contents (gut length and prey
residue), which are rarely preserved in
fossils. In many cases, it is only the
body form and tooth morphology that
yields information on what their diet
(Janvier 2002).
6
Figure 3. The different shape types/groups; 1-6 the modern fishes (generalize) (Moyle et al.
2004) and A-E the Devonian and Carboniferous equivalence (Appendix 1). The bottom
fishes seem not to have any observed equivalence in the Devonian and Carboniferous time.
1, Rover-predator. 2, Lay-in-wait-predator. 3, Surface-originated fish. 4, Eel-like fish. 5,
Deep-body fish. 6, Bottom fish (Bottom rover). A, Woodichthys bearsdeni B, Howqualepis
rostridens C, Pyritocephalus sculptus D, Tarrasius problematicus E, Platysomus superbus
According to Moyle and Cech (2004)
there are six different body types,
depending on lifestyle; rover-predator,
lay-in-wait-predator, surface-oriented
fish, bottom fish, deep-bodied fish and
eel-like fish (Figure 3). All six modern
groups are found in both marine and
fresh water environments.
Rover-predators have fusiform
bodies, pointed heads with terminal
mouths, forked tails and evenly
distributed fins. They are constantly
moving and capture prey by pursuit.
They are living in open water or in
moving water (stream), i.e., the fresh
water
bass (Centrarchidae and
Moronidae) and the marine tuna
(Thunnus sp.).
Lay-in-wait-predators
have
fusiform, torpedo-like bodies with
flattened heads, large mouths and
many sharp teeth. They also have large
caudal fins, in addition to dorsal and
anal fins positioned far back on the
body, and give the fish thrust used for
ambushing fast-moving prey (i.e.,
freshwater pikes (Esocidae) and the
marine barracuda (Sphyraenidae)).
Surface-oriented fishes are a
small with an upward-pointing mouth,
a dorsal flatten head and large eyes.
They have a fusiform to deep body and
stocky-bodied with the dorsal fin
7
placed far back on the body. They are
often living in stagnant fresh- to
brackish-waters. Capture plankton,
insects and small fishes (i.e., the fresh
water Mosquitofish (Gambusia) and
the marine and fresh water Killerfish
(Fundulidae)).
Eel-like fishes have elongated
bodies and a blunt or wedge-shaped
heads. The tail is tapering or rounded.
They are adapted to live in crevices
and holes in reefs and rocks and
maneuvering thru tight beds of plants.
There is also some living borrowed in
soft sediment and some free swimming
in open waters (i.e., the marine and
fresh water Eels (Anguilliformes) and
the fresh water Loaches (Cobitidae)).
Deep-body fishes are laterally
flattened (compressiform) with a deep
body, long dorsal and anal fin. The
head has large eyes, a short snout with
a small and posterior mouth. They are
adapted to maneuver in tight
environments, like coral reef, dense
beds of plants or tight schools (of own
species). They are picking small
invertebrates off the bottom or water
column.
Many
deep-body
are
associated with the bottom but some
are associated with the open water, the
planktivores (Herrings (Clupea sp)).
The open water deep-body fishes use
the
flattened
body-shape
for
camouflage, which makes them less
visible from below.
Bottom fishes have many
different forms but all adapted to a life
on the bottom and in most the swim
bladder is reduced or absent. The
bodies is flatten in one or another
directions and there are five main
forms of bottom fishes; bottom rovers,
bottom clingers, bottom hiders, flatfish
and rattails.
2.3 Adaptation to salinity
It can be difficult to determine in
which paleoenvironmental conditions
the fossils lived (Appendix 1) not only
because the sediments themselves may
be hard to interpret, but also because of
other ecological and taphonomic
variables such as migration and postdepositional transportation.
Many recent species are not
obligate salt- or fresh-water and have
parts of there life cycles in salt- or/and
fresh-water
environments
and
migration through different salinities is
common. For recent fish there are three
main ways for to migrate; 1)
Potamondromy, through freshwater
and they are incapable of passing
through long distances of saltwater,
with salinity over 3% salt (>25-30 ppt).
2) Oceanodromy, through saltwater,
but can also be found in freshwater,
mainly for continental dispersal. 3)
Diadromy migrates through both, but
spends different parts of their life cycle
in salt- or/and fresh-water (Moyle et al.
2004). All tree of these ways of
migrate would also probably exist for
the fossil species.
There are five broad types of
recent
estuarine
(transitional
environments between salt water and
fresh water) fishes that are good
examples of how different fish group
lives and may have lived; 1)
Freshwater fish, fishes that lives in
water with less then 0.5% salt (3-5ppt
(until 15ppt)) i.e., catfish (Ictalurus
catus). 2) Diatromous fish, fish that
spend different parts of their life cycle
in salt- or/and fresh-water i.e., salmon
(Salmonidae). 3) True estuarine fish,
fish that spent there life cycle entire in
the estuarine i.e., white perch (Morone
americana).
4)
Nondependent marine fish, commonly
found in the lower parts of the
estuarine, but only seasonally and are
important fore the shallow-water
marine environments i.e., herring
(Clupea). 5) Dependent marine fish,
only use the lower parts of the eustrine
(shallow marine water) for spawning
i.e., croakers (Sciaenidae) (Moyle et al.
8
2004). This means that most marine
(water with more than 3% salt) fishes
live in the shallow water near
continental shelves and fresh water
fishes lives in upper parts of streams,
rivers and in lakes on the continent.
Two variables can be used to explain
the distribution of marine fishes, the
richness of species decreases with 1)
water depth and 2) latitude. For
example, forty percent of all recent
marine fishes live in the tropics
shallow water. Marine environments
are not as frequently studied as
freshwater ones and are mainly divided
into temperature regions (tropic,
subtropics, temperate, sub-artic and
arctic) (Moyle et al. 2004).
The biggest problem that
marine fish encounter is low oxygen
solubility in saltwater that increases
with both temperature and salinity
(Moyle et al. 2004). To overcome the
problem with the salinity, a species
must adapt to new conditions, which
may take some time. Westoll (1944)
suggested, based on this observation,
that the majority of Devonian and
Carboniferous fishes was freshwater
fishes and that the ones found in
marine sediment where transported
after death and/or that only a few was
successfully adapted to salt waters.
This is hard to prove and would be a
challenge for future studies.
The adaptations necessary to
survive in higher salinity included a
more efficient ways to take in oxygen
and modify the internal salt balance. It
can also involve chancing the
morphology since saltwater has higher
buoyancy
and
altering
the
morphology/fin size (heterocercal tail)
and/or reducing the swim bladder
(Westoll 1944) is necessary to the
mobility. Teleost fish use two main
strategies to tolerate different salinity
levels. The marine teleosts use a
hypoosmotically system, which means
that they actively drink water to
replace the water lost through osmosis.
Contrary to marine teleosts, freshwater
teleosts are hyperosmotic and have an
internal salt concentration is 1/3-1/4
(of the surrounding fresh water) which
means that they actively get rid of
water and take up salt. Basically, the
teleost take up water and get rid of
salts, or the other way around, using
modified gills and kidneys (Moyle et
al. 2004). Usually the marine fish are
more tolerant of freshwater than
freshwater fishes are of saltwater.
There are other adaptation
strategies
to
increase
salt
concentration,
such
as
Osmoregulation, which means that
their body fluids adapt to match the
environment, but they can only tolerate
slight changes in salinity. Hagfish
mainly use this strategy.
Another strategy maintains
inorganic
internal
salinity
(approximately 1/3 of the seawater) by
balancing a large concentration of
organic salts (urea and Trimethylamine
oxide (TMAO)) in the blood. This
means that, to some extent, the fish can
actively alter the concentration of
organic salt in the blood, by modified
gills and the movement of urea. This
strategy
is
used
by
most
elasmobranches (Moyle et al. 2004).
9
3. Environmental framework
3.1 Environment vs morphology
Different
environments
demand
different adaptations and studies on
recent groups have provided a better
understanding of how the body-shape
relates to habitats. From this general
understanding, Moyle and Cech (2004)
formed a generalized model for bodyshape and habitat relationship for
fishes in streams, lakes, costal habitats
and reefs.
Stream habitats, fish species
that inhabit streams must be able to
adapt
to
this
ever-changing
environment because temperatures and
flow rates fluctuate depending on
seasonality and the time of year. Three
main zones exist in association with
temperate streams;
1) The erosional zone is
characterized by high-gradients, rocky
bottoms and pools of cold water. The
fish that inhabit this environment are
usually streamlined and active (Trout
(Salmonidae)) or small bottom
dwellers (i.e. sculpins (Cottoidea) and
dace (Cyprinidea)).
2) The intermediate zone, or
the long middle reaches of tributary
streams, typically have moderate
gradients, warmer water temperatures,
equal amounts of shallow riffles and
deep and rock or mud-bottomed pools.
The fish associated with this
environment are typically not deepbodied and have a body plan that is
somewhere in between streamlined and
deep-bodied (i.e. suckers (Catostomus)
and darters (Etheostomatinae)).
3) The depositional zone occurs
in the warm, turbid and sluggish lower
part of the stream system, where the
bottoms are muddy and have aquatic
plants. The fish found here are
typically deep-bodied forms that are
adopted for, picking small invertebrate
from plants (sunfish), plankton feeding
(shads (Dorosoma)) or bottom feeding
(carpsuckeres (Carpiodes)), the fishes
in the streams bottom are very similar
to the “bottom-fishes” found in the
lakes.
Lake habitats, can be divided in
to three main zones and include the
aquatic plant zone, which is
characterized by the presence of dense
vegetation small fish and invertebrates.
The main lay-in-wait-predators are
found here and are associated with logs
and rocks. Deepwater zones are
located below the vegetation, aquatic
plant zone and are distinguished by
dark, cold water with silty-bottom
(White
sucker,
Catostomus
commersoni).
Open-water
zones
are
characterized by large schools of
juveniles, plankton and large predators
(Walleye (Percidae)).
Costal habitats or estuaries are
transitional environments, mostly
between freshwater and marine
ecosystems and usually have varying
salinity depending on the season and
amount of freshwater input. Estuaries
commonly have large populations of
zooplankton, their predators and other
invertebrates.
Reefs have a vast diversity of
fishes and microhabitats, which has
made it a prosperous place for the rayfinned fishes. There are three different
types of feeding strategies and body
plans in the reefs; 1) Generalized
carnivores, 2) specialized carnivores
and 3) Herbivores.
In group 1 they are classic
rover-predators,
a
generalized
carnivore that eats large preys, which
is most noticed on the reef and is small
and colorful, in small family groups or
large in large schools browse over the
reefs, which are divided in to tree
groups a) nocturnal, b) crepuscular and
c) diurnal types.
In group 2, the specializes
carnivore they are eight different
10
groups; 1) Ambushers that use
elaborate camouflage to surprise the
prey
(i.e.,
scorpionfish
(Scorpaenidae)). 2) Water-column
stalker that is a group that is silvery,
elongated and has a pointed snout full
of sharp teethes, that surprises the prey
by looking invisible in the watercolumn. They have a fin structure that
is typical fore lay-in-wait predators
(i.e., trumpetfishes (Aulostomidea)). 3)
Crevice predators and 4) Concealedprey feeders which actively seek their
prey, Concealed-prey feeders with the
barbells, like the goatfish (Mullidea)
and Crevice predators in crevices and
small caves, they have therefore
elongated bodies and small heads, like
moray eels (Muraenidae). 5) Diurnal
predators on benthic invertebrates are
among the most colorful and particular
looking fiches, they are mainly deepbodied, with a elongated snout and
tiny, sharp teethes (i.e., butterflyfish
(Chaetodontidae)). 6) Cleaners are
small, specialized invertebrate feeders
and are eating ectoparasites and dead
or diseased tissue from other fishes,
like Gobies (Gobiidea). Planktivors
that are feeding on zooplankton are of
two types, the 7) Diural planktivors
which has a streamlined (between
rover-predators and deep-body fishes)
body, deeply forked or lunate tail, fine
gill rakers and a small, flexible
upturned
mouths
(example,
Pomacentridae). In addition, the 8)
Naturnal planktivore is roughly the
same but have a large and less flexible
mouth and large eyes.
The last group, the herbivores
make up approximately 20 % of all
fishes inhabit the reefs and are small,
brightly colored, numerous, but
lacking in Varity, there main sources
of food is the algae covering the reefs,
i.e., surgeonfishes (Acanthuridae)
Figure 4. Map of landmass positions in the early Devonian (390Ma) (Scotese 1997)
3.2 Paleogeographic and
paleoenvironments
During the Devonian, the lands were
collected into two large continents
(Figure 4), Gondwana and Euramerica
(Laurussia), which later fused to one
super continent in the Permian. The sea
levels were relative high, but become
lower at the end of the Devonian. The
seas were producing large reef
complexes by stromatoporoids and
corals, and many new taxa of different
nektonic
invertebrates
(i.e.,
ammonoides) and vertebrates appeared
in the Devonian seas. On land, the
plants and insects become more wide
spread and not restricted to the marshy
habitats.
The Devonian has been
regarded largely as warm and humid
period, with a drop in temperatures in
the Late Devonian, due to glaciations.
In the late Devonian cooling many taxa
seem to disappear, which left many
11
niches
open
fore
the
early
Carboniferous taxa (Stanley 1998).
The Stages in the middle/late
Devonian period is Givetian 391.8-
385.3 Ma, Frasnian 385.3-374.5 Ma
and Famennian 374.5-359.2 Ma
(Gradstein et al. 2005).
Figure 5. Map of the landmasses during the Carboniferous (Scotese 1997).
In the Carboniferous, the two
continents collided and mountains
started to build up (Figure 5). The
Carboniferous started with ice on the
poles, which stayed during the whole
Carboniferous time period. The
latitudinal temperature gradient where
steep with glaciers until the latitude of
30o, the rest was warm and humid
equatorial environments. The sea
levels started to rise in the early
Carboniferous, so warm shallow seas
spread
out
during
the
early
Carboniferous. The transition from
Early
(Mississippian)
to
Late
(Pennsylvanian) Carboniferous is
marked with two main events, a global
decline in sea level and a heavy
extinction of the marina fauna,
probably due to an expansion of the
glaciers. The freshwater habitats
expanded and diversified. At the same
time the mollusks, sharks and rayfinned fishes were common members
in the freshwater faunas. The
Carboniferous is known for it massive
coal forming properties, which indicate
a warm and humid environment
(probably around the equator) and
many new kinds of plants. With the
new plant come also new “land
animals” such as flying insects
(Stanley 1998).
The period has been separated
into two, the Mississippian 359.2318.1Ma (Tournaisian 359.2-345.3Ma,
Viséan 345.3-326.4Ma, Namurian
326.4-315 Ma) and Pennsylvanian
318.1-299Ma (Westphalian 315-306.5
Ma, Stephanian 306.5-299 Ma)
(Gradstein et al. 2005)
3.3 Localities and their environments
In this study taxa from about 29
localities have been used (Table 1).
Common for all these are that the
localities have provided us with
specimens preserved well enough for
making reasonable reconstructions.
They are all found in the Devonian and
Carboniferous in a variety of
environments similar to the recent
lakes, lagoons, bays, rivers and
swamps.
12
Table 1. The Devonian and Carboniferous localities, name, age, freshwater/marine water and a short
description (data collected from 3.3.1-3.3.2).
F=Freshwater M=Marine water B=Brackish water
Locality
Period/ Stage
Marine /
Freshwater
Description
Scotland: Shetland, Exnaboe; Exnaboe
Devonian/ Givetian
F
Tropical basin
Scotland: Grampian, Tynet Burn; Orcadian lake
Devonian/ Eifelian-Givetian
F
Tropical lake
Germany: Cologne; Bergisch-Gladbach Paffrath Trough
Devonian/ Givetian-Frasnian
M
Deep sea
Belgium: Famenne Formation (Assise de
Mariembourg)
Devonian/ Famennian
M
Open sea
Canada: Quebec; Escuminac Bay
Devonian/ Famennian
M
Shallow bay
United States: Red Hill, Pennsylvania; Catskill
Formation,
Devonian/ Famennian
F
Assembly in a delta
United States: Skinners Run, Ohio; Ohio shale/
Cleveland shale,
Devonian/ Famennian
M
Deep basinal facies
Greenland: Obruschew Bjerg Formation
Devonian/ Famennian
F
Lake
Siberia: Krasnoyarski Kran
Devonian/ Famennian
M
-
Australia: Mount Howitt, Victoria; Avon Rriver
Group
Devonian/ Frasnian
M
Lagoon
Australia: Gogo station; Gogo Formation
Devonian/ Frasnian
M
Reef
Australia:, Williambury Station; Gneudna
Formation
Devonian/ Givetian-Frasnian
M
-
Scotland: Foulden
Carboniferous/ Viséan
F/B
Swamp
Scotland: Dumfries; Glencartholm Volcanic beds
Carboniferous/ Viséan
F(B/M)
Quiet delta
Scotland: Edinburg, Lothian; Wardie
Carboniferous/ Viséan
B
Deep and wide lagoon
Scotland: Glasgow, Bearsden; Manse Burn
Formation
Carboniferous/ Namurian
M(F)
Bay (probable)
United Kingdom: Lancashire; Coal Measures
Carboniferous/ Westphalian
B
Fluvio-delta
Carboniferous/ Westphalian
Carboniferous/ WestphalianStephanian
F
Swamp/ Old flood
F
Lake/ River system
Carboniferous/ Stephanian
F
Lake/ Swamp
South Africa: Soetendals Vlei/ Lake Mentz;
Upper Witteberg series
Carboniferous/
Mississippian
F(B)
Lake/ Wide river
United States: Montana; Bear Gulch Limestone
Carboniferous/ Namurian
M
United States: Illinois; Mazon Creek
Carboniferous/ Pennsylvannian
F(M/B)
Tropical Bay
Swampy lowlands,
Rivers and Bays
United States: Pennsylvania; Cannelton Member
United States: Linton, Ohio Jeffersson; Upper
Freeport Coal
Canada: Nova Scotia; Albert and Joggins
formations, parsboror
Carboniferous/Westphalian
F
Swamp
Carboniferous/Westphalian
F
Carboniferous
F(B)
Swamp
Subtropical Basin and
Swamps
Australia: Victoria; Mansfield Basin/group
Carboniferous
F
Basin with tides
United Kingdom: Newsham, Northumberland;
Low Main coal/Low Main seam
Czech Republic: Bohemian Massif; Kladno and
Slany Formation
France: Massif Central; Lake Commentery and
Montceau-les-Mines
13
Figure 6. The Devonian localities approximately location in the modern world (modified from
http://www.debian.net/devel/developers.loc.sv.html).
3.3.1 Devonian
Scotland: Shetland, Exnaboe
The fauna in Exnaboe fish bed is from
the late Givetian (Dineley et al. 1999).
The Exnaboe represents a non-marine
deposit, which form a part of the Old
Red Sandstone and has a range from
the Silurian to the Devonian.
Palaeogeographic
reconstructions
suggest that the continent lay in
tropical to sub-tropical latitudes from
the equator to about 30º south.
Scotland: Grampian, Tynet Burn;
Orcadian Lake
The Orcadian Basin was deposited in
the mid Devonian and are a part of the
south Old Red Sandstone. The basin
involved a series of large shallow
freshwater lakes (Dineley et al, 1999;
Stephenson et al. 2006) up to 50 000
km2 in area. The palaeolatitude of the
area was between 15° and 30° S. This
means a tropical climate, with periods
of drying (ephemeral) and refilling
from seasonal rainfall (in orders of
periods of thousand of years), which
resulted in a fluctuation in the lakes
depth and areal (Stephenson et al.
2006).
Germany:
Cologne;
BergischGladbach - Paffrath Trough
The Bergisch-Gladbach formation
dates back to the Devonian and may
represent
a
bathyal
marine
environment (Øving 1961).
Belgium: Famenne Formation (Assise
de Mariembourg)
The Famenne Formation has been
characterized as a relatively open
marine environment that was deposited
on a shallow epicontinental platform
(Thorez et al. 2006).
Canada: Quebec; Escuminac Bay
Escuminac Bay sediments represent a
shallow marine (or brackish (Chidiac
1996)) basin and may have been a part
of the epicontinental sea associated
with the ocean (Prichonnet et al. 1996).
Escuminac Bay is located on the Gaspé
Peninsula, Québec, and was formed
during the late Devonian in the latitude
of 10-12 south of the equator. The
latitude of the paleoenvironment
suggests a dry climate but the basin
was protected from drying out by
seasonal transport of water and
sediment
from
the
terrestrial
surrounding (Prichonnet et al. 1996).
14
United States: Red Hill, Pennsylvania;
Catskill Formation,
The Red Hill sediments represents a
shallow, fluvial assembly in the
Duncannon Member in the Catskill
Formation, which was a late Devonian
freshwater assemblage in a deltaic
system. Red Hill was located on
latitude 20 south of the equator in a
subtropical, seasonal climate. The
fossils show signs of being transported
but are preserved in tree-dimensions
and have been dated to the late
Famennien (Daeschler 2000).
United States: Skinners Run, Ohio;
Ohio Shale/Cleveland Shale
The Cleveland shale is a part of a deep
basinal facies of the Catskill delta and
has been interpreted as a deep marine
environment. It seems like that the
shale’s hade periods of flux in the
bottom oxygen level and under the
Devonian–Mississippian the black
shale were built up of terrestrial
sediment
under
dysoxic/anoxic
conditions. More recently a highenergy facies has been identified and
may have occurred locally at water
depths much shallower than first
suggested (Rimmer et al. 2004).
Skinners Run is a bed in the base of the
Cleveland shale, south of Cuyahoga
river and north of Willow. Skinners
Run is dated to the Late Famennian
(Dunkle 1964).
Greenland:
Obruschew
Bjerg
Formation
Obruschew Bjerg Formation is a Late
Famennian formation, now located in
eastern Greenland and is interpreted to
be a freshwater lake, probably with
low oxygen conditions on the bottom
(or in the water mass) (Friedman and
Blom 2006).
Siberia: Krasnoyarski Kran
The Krasnoyarski Kran is of marine
origin, from the Famennian. The
sediments is exposed in a quarry near
the
Atshinsk-Albakan
railroad
(Prokofiev 2002).
Australia: Mount Howitt, Victoria;
Avon Rriver Group
The Avon river group represents a
freshwater lagoon within a river
system and the sediment has been
dated to the Frasnian. It is located
along Howqua River at the base of
Mount Howitt, central Victoria (about
45 km east of Mansfield) (Long 1988).
Australia: Gogo station; Gogo
Formation
Gogo Formation is the inter-reef part
of a gigantic marine barrier reef. The
formation is known for its exceptional
soft tissue preservation and has
limestone nodules in shale deposits and
is from the Frasnian. Gogo station is
250 km SE of Derby in the Fritzroy
Trough. The Fritzroy Trough lies on
the nothen flank of Cunning basin,
which was near-shore shelf in the
middle Devonian (Gardiner 1984).
Australia:,
Williambury
Station;
Gneudna Formation
Gneudna formation is a marine
assemblage of Givetian-Frasnian age
in Western Australia (Gardiner 1984).
15
Figure 7. The Carboniferous localitys approximately location in the modern world (modified
from http://www.debian.net/devel/developers.loc.sv.html).
3.3.2 Carboniferous
Scotland: Foulden
The Foulden area was perhaps a
swamp that became submerged into a
semi-permanent, relatively deep (5m)
lake with occasional marine flooding.
The lake is interpreted to be fresh- to
brackish-water, with some marine
influence and dates back to the Viséan
(Dineley et al. 1999).
Scotland: Dumfries; Glencartholm
Volcanic Bed
The Glencartholm Volcanic Bed is
interpreted to be a relatively quiet
freshwater environment with some
influence of brackish- and deltaicwater. There are also some marine
invertebrates, but not in the same beds
as the fishes. The fossils represent a
death-assemblage that suggests rapid
burial in addition to low pH and
oxygen levels. The Glencartholm
Volcanic Bed is from the early Viséan
(Dineley et al. 1999).
Scotland: Edinburgh, Lothian; Wardie
The sedements at Wardie was formed
in a lagoonal setting and is estimated to
be approximately 50 km diameter
(Dineley et al. 1999) and dates back to
the Viséan. The lagoon were relative
stagnant and was frequently isolated
from the sea. The water in the lagoon
where probably brackish with more or
less salinity from time to time (Dineley
et al. 1999).
Scotland: Glasgow, Bearsden; Manse
Burn Formation,
The Manse Burn fish beds fauna tells
us about sequential marine and nonmarine environments with varying
salinity and oxygenation, with
“seasonal” changes (seasonal can in
this context mean in periods of
thousand of years). The bed is of
Numurian age (Dineley et al. 1999).
United Kingdom: Lancashire; Coal
Measures
The
Coal
Measures
sediments
represent a brackish, fluvio-deltic
setting
from
the
Westphalian
(Anderson et al. 1997).
United Kingdom: Northumberland,
Newsham; Low Main coal/Low Main
seam
Low Main seam sediments seems to
have been an old flood channel filled
with peat, that had re-flooded and
become a large and deep freshwater
lake. The lake was probably
surrounded by a swamp-forest at the
16
time of the fishes. From
Westphalian B (Boyd 1984).
the
the Stephanian (Racheboeuf et al.
2002).
Czech Republic: Bohemian Massif
In the Stephanian the Bohemian Massif
was a freshwater lake, of over 5000
km2 in size. The lake where positioned
2-3 north of the equator, and has been
interpreted as a tropical climate. The
Carboniferous
sediments
were
deposited in a relatively humid, stable,
fluvial, lacustrine environment. The
lake had a large fauna and flora and
persisted into the lower Permian
(Stamberg 2006).
The Kladno Formation
(Kladno-Rakovník
Basin)
(Westphalian D) and the belonging
Nany Member is a part of the
western and central Bohemian basin.
The deposits of the Nany Member
(Westphalian D-Early Stephanian B)
are fluvial and represent the base of a
braided river system.
The
Slany
Formation
(Stephanian B) and the belonging
Member Konov is a part of the central
and western part of the Massif
(Oplutil et al. 2005).
South Africa: Soetendals Vlei/ Lake
Mentz; Upper Witteberg series
Soetendals Vlei and Lake Mentz with
surroundings are representing in the
Upper Witteberg series from the Lower
Carboniferous time. These areas are
interpreted to have been a freshwater
lake or river deposit. The Lake Mentz
area may have been in contact with the
sea and show evidence of some
brackish (or estuarine) influence. The
area around Lake Mentz may have
been fluxing in bottom oxygen level
probably due to rapid shallowing
leading to mass fish mortality, which
support the idea that the area may have
been an estuary (Gardiner 1969)
France: Massif Central
La grande couche, Lake
Commentery
Lake Commentery lies in the
Commentery Basin, within Massif
Central. The environment was fluvial,
lacustrine and swampy with a tropical
climate (Rolfe et al. 1982). The lake
was a freshwater basin that covered an
area of 10x3km in the Stephanian
(Dietze 2000)
Bassin
d´Autun,
Bourbon
l´Archambault, Montceau-les-Mines
The Blanzy-Montceau-les-Mines Basin
is located in the north-east part of the
Massif Central (central France). The
sediments is interpreted to have been a
freshwater lake (maybe brackish) from
United States: Montana; Bear Gulch
Limestone
The Bear Gulch Limestone sediment is
interpreted to have been a shallow,
tropical marine bay with many fish and
few marine invertebrates, probably like
bays today. The bay where 12 north of
the equator and the climatic conditions
due to the latitude would have been,
deserts in the north and tropical
conditions in the south, characterized
by a monsoonal climatic regime of
rainy and dry seasons. The bay shows
evidence of a hypersaline bottom
alternative top water due to dry and
wet seasons. The Bear Gulch material
is from the Namurian, Upper
Mississippian (Lower Carboniferous)
(Grogan et al. 2002).
United States: Illinois; Mazon Creek
The Mazon Creek, sediments show a
mixture of sediments represents,
swampy lowlands and shallow marine
bays, located a few degrees north of
the equator (tropical). From the
northeast flows at least one major river
system. The river(s) built large deltas
through the low swamps and into the
17
shallow bays. The mud that the river(s)
carried was deposited in these deltas
and bays. The water shifted between
marine, freshwater and brackish
environments, including a coalforming swamp forest. Mazon creek
sediments was deposit in the
Westphalian (Baird et al. 1985).
United
States:
Pennsylvania;
Cannelton Member
Cannelton is a member in the
Kittanning Formation and has been
interpreted as being deposit in a
freshwater channel (about 3.5 miles
wide and 600 feet deep). The
sediments was deposit in the
Westphalian D (Baird 1978).
United States: Linton, Ohio Jeffersson;
Upper Freeport Coal
The Upper Freeport Coal bed in Ohio
was deposit in a freshwater swamp.
The origin of the Linton beds was a
fluvial lake that started to accumulate
peat and in the Westphalian it had
become a swamp (Hook et al. 1988).
Canada; Nova Scotia
New
Brunswick,
Albert
Formation
is considered to be a shallow, fresh
water basin, in a rift valley or faultblock basin. The basin was located in a
subtropical environment within 15 of
the equator and had high sulphur
content and a stagnant bottom, which
probably became poisonous for deepdwelling fish. The formation ranges in
age from the Late Devonian until the
Lower Carboniferous (Mississippian)
(Greiner 1974).
Joggins
Formation
was
probably a freshwater swampy forest
or a brackish bay on a poorly drained
costal plain, with a surrounding
tropical forest (a warm and humid
environment) from the Westphalian B
(Falcon-Lang et al 2006).
Parrsboro has been interpreted
as a stagnant freshwater swamp in the
Westphalian A, based on relative age
dates from fossil fish assemblages.
Australia:
Victoria;
Mansfield
Basin/Group
Mansfield Basin is the northernmost
structural sub-basin of the Mt. Howitt
province of east-central Victoria. The
basin was deposited during the Late
Devonian to Early Carboniferous and
has been divided into two groups by a
volcanic layer: the Marine Delatite
Group (late Devonian) and the nonmarine Mansfield Group (Early
Carboniferous). The first part (oldest)
of Mansfield Group is a conglomerate
that indicate a channel with fast
moving water and periods of flooding
in a costal environment, this part of the
basin seem to be under influence of the
tides and may have marine influence.
The second part of Mansfield is a
sandstone with waves and turbulence
marks, mud cracks and migrating bar
and dune forms. All this indicates a
recession in the tides influence (inchannel flow regime levels) and
marine influence (O´Hallorian et al.
1995).
18
4. Morphometrics analysis
A
morphometic
analysis
was
conducted on the reconstructions of the
Devonian and Carboniferous rayfinned fish to investigate the
relationship between body shape and
environment. Thirteen homologous
landmarks and one sliding landmark
were chosen on the reconstructions
(Figure 8) and a relative warp analysis
was performed using tpsRelw v.1.42
(Rohlf 2005).
Various numbers of landmarks
where tested to give an ultimate
representation of the body shape and at
the same time easy to find in all
various body shapes. Landmark
representing the position of pelvic fin
have not been used, mainly because
not all of the fishes have that fin.
Figure 8. Cheirolepis canadensis, illustrating landmark positions. 1, the lower/posterior part of
the Maximilla. 2, tip of the snout. 3, posterior part of the skull roof. 4, anterior insertion of
dorsal fin. 5, posterior insertion of dorsal fin. 6, anterior (dorsal) part of caudal fin. 7, tip of
caudal fin. 8, anterior (ventral) insertion of (hypochordal lobe) caudal fin. 9, posterior insertion
of anal fin. 10, the ventral margin of head and body. 11, pectoral fin insertion. 12, anterior
margin of the eye. 13, posterior margin of the eye. 14, a sliding landmark, on the back between
landmark 3 & 4.
Some landmarks (numbers 5, 6, 8 and
9) on Tarrasius problematics and
Paratarrasius hibbardi, which have
eel-like bodies, where not easy to
establish, so “fictional” landmarks
were assigned. (Figure 9). This makes
T. problematics and P. hibbardi not
completely comparable to the other
taxa. The Relative Warp 1.2 and Warp
1.1 were then looked on in more detail
(Appendix
2).
Figure 9. Tarrasius problematics, illustrating landmark positions, one the two eel-shaped fishes.
Here are landmark 5, 6, 8 and 9 invented. 1, the lower/posterior part of the Maximilla. 2, tip of the
snout. 3, posterior part of the skull roof. 4, anterior insertion of dorsal fin. 5, fiction; posterior
insertion of dorsal fin. 6, fiction; anterior (dorsal) part of caudal fin. 7, tip of caudal fin 8 & 9,
anterior part of ventral back fin ( 8, fiction; anterior (ventral) insertion of (hypochordal lobe) caudal
fin. 9, fiction; posterior insertion of anal fin) 10, the ventral margin of head and body. 11, pectoral fin
insertion. 12, anterior margin of the eye. 13, posterior margin of the eye. 14, a sliding landmark on
the back between landmark 3 & 4.
19
Figure 10. The morphometric analysis of the Devonian and Carboniferous fishes shown in Rew
(Relativ Warp) 1.2 (to the left) and the diversity in a schematic picture (to the right) Red: The
Devonian fishes, Black: The Mississippian fishes, Green: The Pennsylvanian fishes. (See Appendix
2 for location of the species in the plot and Appendix 1for name and description)
4.1 Relative Warp Analysis
In figure 10 & 11 we can see the result
from the morphometric analysis,
displaying the diversity and disparity
through
the
Devonian
and
Carboniferous.
When looking at the diversity
of the Actinopterygii from Devonian
and Carboniferous (Figures 10, 11, 12
& 14), you can see an explosion of
new taxa in the Mississippian and a
decrease in taxa in the Pennsylvanian.
This is especially visible in the
schematic picture of Figure 10, were
the red cube symbolize the Devonian
taxa, the black line figure the main
diversity of the Mississippian taxa and
the green circle the decreasing
Pennsylvanian diversity.
When
looking
at
the
morphological diversity in the context
of different body-shape in saltwater,
freshwater and brackish environments
(Figure 11) we can not see any
clusters, which means that there seems
not do be any relation between body
shape and the environments salinity.
20
Figure 11. Salinity diversity, plotting of the fully marine (Blue), fully freshwater (Green)
and the fresh/brackish/marine fishes (Turquoise), from Rew 1.2 (See Appendix 2 and
Appendix 1 for name and description).
4.2 Disparity measures
Based on the data (Warp Score) from
the relative warps analysis two
analyses where made to measure the
disparity, cumulative variance and
hyper cube volume.
Cumulative variance or sum of
variance provides an estimate of the
amount
of
difference
between
character states among specimens in
morphospace (Ciampaglio et al. 2001).
A good thing with this test is that is not
biased by sample size. Here the
relative warps score matrix (Appendix
3) where used to calculate the sum for
the different taxa and “time groups”
(Figure 13 (A)). The sum of variance is
0.0057 for the Devonian, 0.049 for the
Mississippian and 0.013 for the
Pennsylvanian.
The hypercube volume method
is a method that use more than three
dimensions
to
describe
the
morphospace, in other words the
morphological differences and thereby
also the disparity (Foote 1993). Here
the data is based on the variance span
on the different “time groups”
(Devonian,
Mississippian
and
Pennsylvanian) (Figure 13 (B)). A
possible weakness with this method is
that it may be biased by sample size
(Foote 1993). The hypercube is 9.03E38 for the Devonian, 2.81E-30 for the
Mississippian and, 8.09E-34 for the
Pennsylvanian.
21
to different feeding- and livingstrategies and there by getting different
body shapes.
The hypotheses that the salinity
would affect the body shape is
rejected. The observation of the
salinity shows no affect on the body
shape, probably due to that their ability
to live in different salinities, is more an
internal (physiological) adaptations,
than external morphological. However,
it is possible to observe a slight
tendency that more deep-bodied forms
are more common in more saline
environment and more fusiform in
fully fresh water environments. This
can be due to the fact that the
reconstructed deep-body fishes at that
time were living in reefs and therefore
in more saline environments, but this
needs to be more closely investigated
and tested to be conclusive.
5. Discussion
It seems to be a relationship between
the environment and the morphology.
For example the lifestyle (feeding- and
living- strategies) appears to have the
largest influence on body shape. This
is supported by this study and can be
shown when looking at individual
localities, in which there are examples
off different shape-groups found. This
is especially visible in the big localities
like the Bear gulch (M) and
Glencartholm (F (B/M)), where
examples from each shape-group can
be found. Among the recent fishes we
can also see that the feeding- and
living- strategies have an effect on
body shape (Costa et al. 2007; Ruben
et al. 2001) and there is no obvious
reason way it should not be the same in
Devonian and Carboniferous. To avoid
competition they would have adapted
25
20
15
10
5
0
A
Au
C
Taxa(n)
G
W
Fo
Ma
B
Mississippan Rec.(n)
NS
UK
Mz
No
O
Cz
F
Pennsylvanian Rec.(n)
Figure 12. Bar graph showing the total number of taxa and known reconstructions from the various
Carboniferous localities. The Mississippian localities are; A; South Africa, upper Witteberg series,
Soetendals Vlei (5/4) and Lake Mentz (6/4), Au; Australia, Mansfield group(2/2), C; Canada, Nova
Scotia, Mississippian (1/0) New Brunswick, Albert for (4/0) , G; Scotland, Glencartholm (25/20), W;
Scotland, Wardie (10/3), Fo; Scotland, Foulden (4/3), Ma; Scotland, Manse Burn for. (6/4), B; North
America, Bear gulch limestone (11/10) And the Pennsylvanian localities are; NS; Canada, Nova Scotia,
Pennsylvania (2/0), UK; UK, Lancashire & Staffordshire (4/2), Mz; North America, Mazon Creek
(4/0), No; UK, Northumberland (6/0), O; North America, Ohio, Linton (6/3), Cz; Czech Republic,
Bohemian Massif (10/5), F; France (7/3) (data collected from table Appendix 1)
22
Marine fishes in the Devonian (1001000 mm) were generally bigger than
freshwater fishes (40-700 mm), which
is surprising when one considers that
the Carboniferous marine fish (44-180
mm) were generally smaller than the
Carboniferous freshwater (70-600 mm)
and Devonian marine fish. Small body
size in marine environments is
beneficial especially when they
probably not have the effective system
to cope with the salinity that they have
today, and need to preserve oxygen
and energy, which can be achieved by
having a small size and/or being less
active. A small size can also be
beneficial in crowded places (both with
animals or vegetation) but we need
more information how the oceans may
have looked like in Devonian and
Carboniferous to make an accurate
conclusion. However, the reasons why
the Devonian marine fishes were
generally larger, and why it seems like
the marine fish disappear in the late
Carboniferous (Pennsylvanian) need to
be tested to see if it is due to true
evolutionary patterns or if it could all
be a consequence of a locality and
preservation bias. We have not yet
identified any good actinopterygian
fossils
within
the
marine
Pennsylvanian sediment. Probably do
to the low frequency of found localities
and that the preservation potential at
these localities was to low to create
useful reconstructions. In figure 12 it
can be seen that not all localities has
provide material good enough for
reconstructions. Moreover, climatic
events, such as glaciations, occurring
at the end of the Carboniferous, may
have decreased the preservation
potential and/or reduced the marine
environments.
Figur 13. A generalized graphic presentation of taxonomical diversity and morphological diversity
(disparity) observed in the Devonian (Dev.) Mississippian (Miss.) and Pennsylvanian (Penn.). A;
Disparity by the cumulative variance B; Disparity by hypercube volume C; Diversity by number taxa
(all taxa N (species)) (see also Figure 12).
23
Both measures of the disparity
(variance and hypercube volume) and
the taxonomical diversity show a initial
radiation in the late Devonian, after the
still poorly understood early records in
the early Devonian. The diversification
even is amplified in the Carboniferous
with what appears to be a peak in the
end of the Mississippian (Figure 13).
After the initial diversification (both by
number of taxa and morphology),
there appears to be a drastic decrease
in diversity in the end of the
Carboniferous. This trend is seen
conclusive in the Pennsylvanian with a
reduction, not in only the number of
taxa, but also in the morphological
variability. The cause to the decreasing
number of actinopterygian taxa is an
unanswered question well worth
looking into. One reason for this could
be the climate changes, in the middle
Carboniferous. The glacier were
growing and the sea level dropped,
which probably reducing the habitats
for the fishes and directly or/and
indirectly caused the decrease in
actroptergyian diversity. This can be
clearly seen in Figure 14 divided in the
different stages of the Devonian and
Carboniferous.
40
30
20
10
0
Giv.
Fra.
Fam .
Devonian taxa(n)
Tou.
Vi.
Na.
Carboniferous taxa(n)
West.
Step.
Reconstruktions(n)
Figure 14. Diagram showing the diversity of taxa and reconstructions available from the different
stages of the Devonian and Carboniferous; Giv; Givetian, Fra; Frasnian, Fam; Famennian, Tou;
Tournaisian Vi; Viséan, Na; Namurian West; Westphalian, Step; Stephanian (collected from Appendix
1).
24
5.1 Ecomorphology
Figure 15. The six shape groups from Devonian (in bold) and Carboniferous fishes in Rew (Relativ
warp) 1.2, divided using Rew 1.1 (Appendix 2).Green: Paleo-Deep-body fish; Aesopichthys erinaceus,
Adroichthys tuberculatus, Cheirodopsis geikei, Chirodus granulosus, Discoserra pectinodo ,
Frederichthys musadentatus, Guildayichthys carnegiei, Paramesolepis rhombus, Paramesolepis
tuberculata , Platysomus superbus, Platysomus Parvulus, Proceramala montanensis, Protoeurynotus
traquairi, Soetendalichths cromptoni. Pink: Paleo-Maneuvering rover; Aeduella blainvillei,
Aesopichthys fulcratus, Aetheretmon valentiacum , Australichthys longidorsalis, Canobius elegantulus ,
Canobius ramsay , Elonichtys pulcherrimus, Elonichtys spaerosideriarum, Gonatodus punctatus,
Holurus parki, Mesopoma crassum, Mesopoma pulchellum , Platysella lallyi , Sceletophorus biserialis,
Sphaerolepis kounoviensis, Strepheoschema fouldenensis , Sundayichthys elegantulus, Wendyichthys
lautreci, Willomorichthys striatulus. Blue: Paleo-Rover-fish; Cuneognathus gardineri, Limnomis
deleneyi, Mimia toombsi, Moythomasia nitida, Stegotrachelus finlayi Acrolepis gigas, Bourbonella
guilloti, Mesopoma politum, Microhapolepis serrata, Rhadinichthys fusiformis, Woodichthys bearsdeni.
Orange: Paleo-Active lay-in-wait fish; Haplolepis ovoidea, Cryphiolepis striatus, Elonichtys serratus,
Kalops diophrys, Kalops monophrys, Melanecta anneae, Mansfieldiscus sweeti, Novogonatodus
kazantsevae, Phanerorthynchus armatus, Phanerosteon ovensi, Phanerosteon mirabile. Purpur: PaleoLay-in-wait fish; Howqualepis rostridens, Cycloptychius concentricus, Cyranorhis bergeraci,
Haplolepis corrugata, Haplolepis tuberculata, Mentzichthys walchi , Mentzichthys jubbi, Mesopoma
carricki, Mesopoma planti, Pyritocephalus sculptus , Pyritocephalus lineatus, Rhadinichthys
canobiensis, Wendyichthys Dicksoni. Black: Two outsider groups; Cheirolepis sp. and eel-like;
Paratarrasius hibbardi, Tarrasius problematicus.
25
In the morphometric analysis, a
division in the scatter plots of the
relative warp 1.1 and warp 1.2
(Appendix 2) were recognized (Figure
15), which could be translated to six
different
ecomorphological-shapes,
similar to the Moyle and Cech (2004)
body shapes on modern fishes and
from this a proposal was constructed
on how they may have lived and what
they may have eaten. The groups have
been decided to be called; Paleo-layin-wait fish, Paleo-active lay-in-wait
fish,
Paleo-rover-fish,
Paleomaneuvering rover, Paleo-deep-body
fish and the outsiders, and these groups
can bee seen even if taxa are take away
Paleo-lay-in-wait fishes are
predators that surprise their prey and
are commonly found in habitats with a
lot of hiding (within plants and rock)
and are mainly eating fish (i.e.,
Howqualepis rostridens (Figure 16),
Mentzichthys walchi, Rhadinichthys
canobiensis
and
Wendyichthys
dicksoni). In this group we also find
Haplolepidea,
which
where
a
freshwater
fishes
that
include
Haplolepis sp. (Figure 16) and
Pyritocephalus
sp.
from
the
Westphalian
(-Stephanian).
The
characters of Haplolepidea are the
strong hetercercal tail, the collapse and
far back dorsal fin (Westoll 1944) and
the slightly upward turned mouth. This
suggests a life in the surface waters,
probably feeding on plankton and
insects. They were living in swamps,
probably with low oxygen bottoms and
would have been adapted to the low
oxygen levels and probably using the
air bladder like a lung (Westoll 1944).
Both I and Westoll (1944) want them
to be there own group and the fact that
they did not group-out in the “relative
warp analysis” may be due to that they
only had started to be divided from the
Paleo-Lay-in-wait group(s). Poplin and
Lund (1997) suggest that Cyranorhis
bergeraci and Wendyichthys dicksoni
was plankton-eater but this has not
supported there’s model, but it can be
that they may group with the surfaceoriented and thereby eats plankton.
Paleo-active lay-in-wait fishs
are predators similar to the Paleo-layin-wait fishes.
Their bodies are
fusiform, explosive but they probably
were living in more open environment,
with fewer hiding places causing them
to be more mobile to catch their prey
(i.e., Elonichtys serratus, Kalops
diophrys
(Figure
16)
and
Phanerosteon ovensi). In the literature
for the fishes in this group there are no
described diet except for Haplolepis.
Haplolepis has the rest of the family
(Haplolepidea) with the surfaceoriented fishes in the Paleo-Lay-inwait fishes and they are not that
different from the rest which may
indicate that the two Lay-in-wait
groups maybe only one with an “ingroup”, the surface-oriented fishes,
that are eating plankton, insects and
small fishes.
Paleo-rover-fishes hunts by
active pursuit and most likely lived in
open water or streams. They were
probably
hunting
small
fish,
zooplankton
and
soft-body
invertebrates. Many of the Devonian
and Carboniferous fishes have been
previously described as predators on
other fishes and invertebrates, which
correspond with this grouping (i.e.,
Cuneognathus
gardineri,
Mimia
toombsi,
Moythomasia
nitida,
Acrolepis gigas, Mesopoma politum,
Woodichthys
bearsdeni).
An
interesting
observation
is
that
according to the analysis most of the
Devonian fishes is located in this
group, which indicate that early fishes
may have been predators.
26
Figure 16. Exampels of different “shape-group” members.A) Paleo -Lay-in-wait fish, Howqualepis
rostridens, B) Paleo -Active lay-in-wait fish, Kalops diophrys and C) the surface-oriented fishes,
Haplolepis corrugata.
Paleo-maneuvering
rovers
also
actively hunt by pursuit but are
probably more maneuverable and live
in more dense environments, like in
plants and reefs. They feed on small
invertebrates, fishes and zooplankton.
Some even seems to be filter feeders
and possible bottom feeders (i.e.,
Aeduella
blainvillei,
Elonichtys
spaerosideriarum,
Gonatodus
punctatus,
Holurus
parki
and
Mesopoma pulchellum).
Initially,
members of this group have been
described as predators on plankton and
filter feeders (Canobius sp). However,
Sceletophorus
biserialis
(among
others) seems to have been eating fish
and this would suggest that it is a
“between” group. The group probably
later gave rise to many of the bottom
feeders and the different reef-fishes
(like the deep-body one).
Paleo-deep-body
fish
are
adapted to maneuver in tight
environments, like coral reefs, plants
or schools (of own species). They feed
on small invertebrates of the reefs,
bottom and/or water column and many
are considered benthic feeders, but
some deep body fishes may also be
open water planktivores (i.e. Chirodus
granulosus, Discoserra pectinodo ,
Frederichthys
musadentatu
and
Guildayichthys carnegiei).
Good examples on Paleo-deep-body
fishes are Aesopichthys erinaceus and
Proceramala montanensis (Figure 17),
which seem to be adapted for
maneuvering in geometrically complex
environments. The fins, position and
size are adapted to stabilize and
maneuver the fish gently. A. erinaceus
had a very strong and sharp bite and it
probably lived near shore in shallow
water, where it hunted after small
nektonic preys, shrimps, worms, larvae
and browsing on attached organisms,
bryozoans, conulariids and algae
(Popline et al. 2000). An interesting
observation is that among the shape
groups established for the Devonian
and Carboniferous actinopterygian it is
the deep bodied forms that have the
largest morphospace and therefore also
show the greatest morphological
diversity. Considering this group seem
to be adapted to complex habitat
(probably also diverse habitats) is very
surprising and need to be more closely
looked at.
Bottom fishes did not group-out
in this analysis. However, there seem
to be some early bottom feeders
grouped in the paleo-maneuvering
rovers and deep-body fishes. They are
not as strongly adapted as the modern
bottom fishes (like flatfish) and
therefore do not provide any clear
signals in this analysis.
27
Figure 17. Exampels of different “shape-group” members. A) Paleo-Rover-fish, Mimia toombsi, B)
Paleo -Maneuvering rover, Canobius elegantulus, C) Paleo-Deep-body fish, Proceramala montanensis
and the Outsiders D) Cheirolepis tralli and E) Paratarrasius hibbardi.
The outsiders include Cheirolepis sp.
and the eel-like; Paratarrasius
hibbardi (Figure 17), Tarrasius
problematicus. Many scientists want
to assign Cheirolepis sp. as a stemgroup Actinopterygian, which this
study supports, However, close to the
Pale-lay-in-wait
fish
group.
Cheirolepis sp. would have preyed on
other fish, which is supported by
Arratia and Cloutier (1996), Pearson
and Westoll (1979) and this study, by
the fact that they group close to Palelay-in-wait fishes.
Paratarrasius hibbardi and
Tarrasius problematicus are so
different
from
the
other
Actinopterygians in that they do not
have the same homological landmarks
than the others. These would probably
lived like the recent Eels and Moray
eels (Muraenidae) and be ambushers in
a rocky environment or pursuer in a
more plant dense environment.
It is interesting to see that when
comparing the recent shape groups
with the suggested shape groups for
the fossil form (Figures 10,11). It
appears that the “basic actinopterygian
shape” seems to be the “lay-in-waitpredator-shape” and “rover-predatorshape”. This means that the early rayfinned
fishes
probably
were
fusiformed, piscivores, rather then
deep-body, browsers and planktoneater, which seems to be a later
evolutionary invention. However, the
various
fishes'
anatomy
and
morphology need to be more closely
studied to give a more conclusive
result.
Acknowledgments
I would like to say tanks to; Dr. Henning Blom
fore supervision, Professor Per Ahlberg for all
help. Matt Friedman fore pictures of Kentuckia
and all help with the statistic, Dr. Brian Swartz
for sharing his unpublished reconstruction on
Stegotrachelus finlayi. Dr. Michael Streng for
help with translations. Martin Brazeau for
information on some localities in Canada.
Acknowledements also to my friends Barbro
Bornsäter-Mellbin (Magister-studerande i
palontologi),
Anna
Winnersjö-Ahlgren
(Kandidat i biologi) and especially PhDstudent Anna Jerve for reading and
commenting my work. Finally, I will also say
thanks to Patricia Hall (PhD-student) for all the
help, and to every one I may have forgotten.
28
References
Agassiz, L. 1835. Recherches sur les poisons
fossils, II. Imprimerie de petitpierre et prince,
Neuchatel, 115p.
Anderson, L. I., J. A. Dunlop, C. A. Horrocks,
H. M. Winkelmann, and R. M. C. Eagar,
1997. Exceptionally preserved fossils from
Brickershaw,
Lancashire
UK
(Upper
Carboniferous, Westphalian A (Langsettian)),
Geological journal, 32; 197-210
Arratia, G., and R. Cloutier. 1996.
Reassessment of the morphology of
Cheirolepis canadensis (Actinopterygii), p.
165-197. In Schultze H.-P. and R.Cloutier
(eds.), Devonian Fishes and Planst of
Miguasha, Quebec, Canada. Verlag Dr F.Pfeil,
Munchen.
Baird, D. 1962. A Haplolepis fish fauna in the
Early Pennsylvanian of Nova Scotia,
Palaeontology, 5(1); 22-29
Baird, D. 1978. Studies on Carboniferous
Freshwater Fishes, American Museum
Novitates, 2641, 1978
Baird, G. C., S. D. Sroka, C. W. Shabica, T. L.
Beard, A. C. Scott and F. M. Broadhurst.
1985. Mazon Creek-Type Fossil Assemblages
in the U.S. Midcontinent Pennsylvanian: Their
Recurrent Character and Palaeoenvironmental
Significance [and Discussion], Philosophical
Transactions of the Royal Society of London.
Series B, Biological Sciences, 311 (1148);8799
Boyd, M. J. 1984. The Upper Carboniferous
Tetrapod Assemblage from Newsham,
Northumberland, Paleontology 27(2); 367-392
Chidiac,
Y.
1996.
Paleoenvironmental
interpretetiton of the escuminac formation
based on geochemical evidence p47-52, In
Schultze H.-P. and R.Cloutier (eds.), Devonian
Fishes and Planst of Miguasha, Quebec,
Canada. Verlag Dr F.Pfeil, Munchen
Ciampaglio, C. N., M. Kemp and D. W.
McShea. 2001. Detacting changes in
morphospace occupation patterns in the fossil
record: characterization and analysis of
measures of disparity, paleobiology, 27(4);
695-715
Cloutier, R. and G. Arratia. 2004. Early
diversification of actinopterygians, Reasent
Advances in the Orgin and Early Radiation of
Vertebrates, pp. 217-270, Germany, ISBN 389937-052-X
Costa, C. and S. Cataudella. 2007. Relationship
between shape and trofic ecology of selected
species of Sparids of the Caprolace costal
lagoon (Central Tyrrhenian sea), Environ.
Biol. Fish 78; 115-123
Coates, M.I. 1993. New Actinoperygian fish from
the Namurian Manse Burn Formation of
Bearsden, Scotland, P aleontology, Vol.
36(1);123-146
Coates, M. I. 1998. Actinopterygians from the
Namurian of Bearsden, Scotland, with
comments
on
early
actinopterygian
neurocrania, Zoological Journal of the Linnean
Society, 122;27-59
Coates, M. I. 1999. Endocranial preservation of
Carboniferous
actinoperygian
from
Lancashire, UK, and the interrelationships of
primitive actinoperygians, Phil. Trans. R. Soc.
Lond. B 354;435-462
Daeschler, E. B. 2000. An early actinopterygian
fish from the Catskill Formation (Late
Devonian, Famennian) in Pennsylvania,
U.S.A. Proceedings of the Academy of Natural
Sciences of Philadelphia, 150:181–192.
Dineley, D. L. and S. J. Metcalf. 1999. Fossil
Fishes of Great Britain, joint nature
conservation committee, UK, ISBN 1 86107
470 0
Dietze, K. 2000. A revision of Paramblypterid and
Amblypterid Actinopterygian from upper
Carboniferous- lower Permian Lacustrine
Deposits of central Europe, Palaeontology,
Vol.43(5);927-966
Dunkle, D. H. 1964. Preliminary description of a
palaeoniscoid fish from the Upper Devonian of
Ohio. Scientific Publications of the Cleveland
Museum of Natural History, 3:1–24.
Falcon-Lang, H. J., M.J. Benton, S. J. Braddy
and S. J. Davies. 2006. Pennsylvanian tropical
biome reconstructer from the Joggins
Formation of Nova Scotia, Canada, Journal of
the Geological Soceity, Maj
29
Friedman, M. and H. Blom. 2006. A new
Actinopterygian from the famennian of east
Greenland and the interrelationships of
Devonian Ray-finned fishes, J. Paleont., 80(6),
pp. 1186–1204
Friedman, M. and M. I. Coates. 2006. A newly
recognized fossil coelacanth highlights the
early morphological diversification of the
clade, Proceedings of the Royal Society, Series
B, 273; 245-250.
Foote, M. 1993. Discordance and concordance
between morphological and taxonomic
diversity, Paleobiology, 19(2); 185-204
Gardiner, B. G. 1963. Certain palaeoniscoid
fishes and the evolution of the snout in
Actinopterygians, Bulletin of the British
museum (natural history) geology, London,
vol.8 No. 6
Gardiner, B. G. 1969. New palaeoniscoid fish
from the Witteberg series of South Africa,
Zool. J. Linn. Soc., 48; 423-452
Gardiner, B. G. 1984. The relationships of the
palaeoniscid fishes, a review based on new
specimens of Mimia and Moythomasia from
the Upper Devonian of Western Australia.
Bulletin of the British Museum (Natural
History): Geology, 37:173–428.
Gardiner, B. G. 1985. Actinopterygian fish from
the Dinantian of Foulden, Berwickshire,
Scotland, Transactions of the Royal Society of
Edinburgh,Earth Sciences, 76;61-66
Gradstein F. M., J. G. Ogg and A. G. Smith.
2005. A Geologic Time Scale 2004,
Cambridge University Press, ISBN-10:
0521786738
Greiner, H. 1974. The Albert Formation of New
Brunswick: a Paleozoie lacustrine model,
International Journal of Earth Sciences, 63(3);
1102-1113
Grogan E. D. and R.Lund. 2002. The geological
and biological environment of the Bear Gulch
Limestone (Mississippian of Montana, USA)
and a model for its deposition, Geodiversitas
24 (2); 295-315.
Hook, R. W. and D. Baird. 1988. An Overview
of the Upper Carboniferous Fossil Deposit at
Linton, Ohio1, OHIO J. SCI. 88 (1): 55-60
Hurley, I. A., R. L. Mueller, K. A. Dunn, E. J.
Schmidt, M. Frieman, R. K. Ho, V. E.
Prince, Z. Yang, M. G. Thomas and M. I.
Coatses. 2007. A new time-scale fore rayfinned fish evolution, Proceedings of the Royal
Society B, 274; 489-498
Janvier, P. 1996. Early Vertebrates, Clarendon
press, Oxford, ISBN; 0-19-852646-6
Jessen, H. 1968. Moythomasia nitida Gross und
M.
cf.
striata
Gross,
Devonische
palaeonisciden aus dem oberen Plattenkalk der
Bergisch-Gladbach-Paffrather
Mulde
(Rheinisches
Schiefergebirge).
Palaeontographica Abteilung A, 128:87–114.
Jubb, R.A. 1965. A New Palaenoniscid fish from
the Witteberg Series(Lower Carboniferous) of
South Africa, Ann. S. Afr. Mus. 48(15); 267272
Loweny, K. A. 1980. A Revision of the Family
Haplolepidae(Actinopterygii,
Paleonisciformes)
from
Linton,
Ohio(Westphalian D, Pennsylvanian), Journal
of Paleontology, 54(5);942-953
Long, J. A. 1988. New palaeoniscoid fishes from
the Late Devonian and Early Carboniferous of
Victoria. Memoirs of the Association of
Australasian Palaeontologists, 7:1–68.
Lund, R. and C. Poplin. 1997. The
Rhadinichthyids
(Paleoniscoid
Actinopterygians) from the Bear Gulch
Limestone
of
Montana(USA,
Lower
Carboniferous),
Journal of Vertebrate
Paleontology 17(3);466-486
Lund, R. and C. Poplin. 2002. Cladistic analysis
of the relationships of the Tarrasiids (Lower
Carboniferus Actinopterygians), Journal of
Vertebrate Paleontology 22(3);480-486
Moyle, P. and J. Cech. 2004. Fishes: An
Introduction to Ichthyology - fifth edition,
Prentice-Hall Inc. Upper Saddle River, ISBN
0-13-100847-1
Moy-Thomas, J.A. and M. B. Dyne. 1938. The
Actinotryptergyan Fishes from the Lower
Carboniferus of Glencartholm, Eskdale,
Dumfriesshire, Transactions of the Royal
Society of Edinburgh, Earth Sciences, 59:437480.
30
Moy-Thomas, J. A. and R. S. Miles. 1971.
Palaeozoic Fishes, Chapman and Hall LTD,
London (SBN 412 10310 9)
Murry, A. M. 2000. The Palaeozoic, Mesozoic
and Early Cenozoic fishes of Africa, Fish and
Fisheries, 1;111-145
O'Hallorian, G. J. and R. A. F. Cas. 1995.
Evidence for syndepositional deformation
from the Late Devonian of the Mansfield
Basin, east-central Victoria, Australian Journal
of Earth Sciences 42, 581-596
Oplutil, S., K. Martínek and Z. Tasáryová.
2005. Facies and architectural analysis of
fluvial deposits of the Nany Member and the
Tnec Formation (Westphalian D –
Barruelian) in the Kladno-Rakovník and Pilsen
basins, Bulletin of Geosciences, 80(1); 45–66,
Pearson, D. M. and T.S. Westoll. 1979. The
Devonian actinopterygian Cheirolepis Agassiz.
Transactions of the Royal Society of
Edinburgh, Earth Sciences, 70:337–399.
Poplin, C. and D. B. Dutheil. 2005. Las
Aeduellidae
(Pisces,
Actinopterygii)
Carbonifères et permiens: systématique et
étude
phylogénétique
préliminaire,
Geodiversitas, 27(1);17-33
Poplin, C. and R. Lund. 2000. Two new deepbodied Palaeoniscoid Actinopterygians from
Bear Gulch (Montana, USA, Lower
Carboniferous),
Journal
of
Vertebrate
Paleontology 20(3); 428-449
Poplin, C. and R. Lund. 2002. Two
Carboniferous
fine-eyed
Palaeoniscoids
(Pisces, Actinopterygii) from Bear Gulch
(USA), J. Paleont., 76(6);1014-1028
Prichonnet, G., M. Di Vergillo and Y. Chidiac.
1996. Stratigraphical, sedimentological and
paleontological context of the Escuminac
Formation: Paleoenvirmental hypotheses p2334. In Schultze H.-P., Cloutier R.,(eds.),
Devonian Fishes and Planst of Miguasha,
Quebec, Canada. Verlag Dr F.Pfeil, Munchen
Racheboeuf, P. R., J. Vannier and L. I.
Anderson. 2002. A New Three-Dimensionally
Preserved Xiphosuran Chelicerate from the
Montceau-Les-Mines
Lagerstätte
(Carboniferous, France), Palaeontology, 45(1);
125-147
Ricklefs, R. E. 1990. Ecology (3rd Edition). W.H.
Freeman & Co Ltd. New York, ISBN
0716720779
Rimmer, S. M., J. A. Thompson, S.A.
Goodnight and T.L. Robl. 2004. Multiple
controls on the preservation of organic matter
in Devonian–Mississippian marine black
shales:
geochemical
and
petrographic
evidence,
Palaeogeography,
Palaeoclimatology, Palaeoecology 215; 125–
154
Rohlf F. J., 2005. tpsRelw, Version: 1.42, Stone
Brook, New York: Department of Ecology and
Evolution
Rolfe, W. D. I., F. R. Schram, G. Pacaud, D.
Scotty and S. Secretan. 1982. A Remarkable
Stephanian Biota from Montceau-les-mines,
France, Journal of Paleontology, 56(2);426428
Ruber, L. and D. C. Adams. 2001. Evolutionary
convergence of body shape and trophic
morphology in cichlids from Lake Tanganyika,
J. Evol. Biol. 14; 325-332
Schaeffer, B. 1973. Interrelationships of
chondrosteans, Interrelationships of fishes,
London; supplement to the zoological journal
of the linnean society Vol.53, pp.207.-226
Scotese, C. R., 1997. Paleogeographic Atlas,
PALEOMAP Progress Report 90-0497,
Department of Geology, University of Texas at
Arlington, Arlington, Texas, 37 pp. Retrieved
juni 2007 from US Geological survey,
http://www2.nature.nps.gov/geology/usgsnps/p
ltec/sc390ma.html
Stanley, S. M. 1998. Earth system history, W. H.
Freeman and Company, New York, ISBN 07167-2882-6
Prokofiev, A. M. 2002. First finding of an
articulated actinopterygian skeleton from the
Upper Devonian of Siberia and a reappraisal of
the family Moythomasiiidae Kazantseva, 1971
(Osteichthyes). Paleontological Research,
6:321–327
31
Stamberg, S. 2006. Carboniferous-Permian
actinopterygian fishes of the continental basins
of the Bohemian Massif, Czech Republic: an
overview, From. Lucas, S. G., Cassing, G. &
Schnieder, J. W. (eds), Non-Marine Permian
Biostratigraphy
and
Biochronology.
Geological
Society,
London,
Special
Publications, 265, 217-230.0305-8719/06/.
Stephenson, M. H., M. J. Leng, U. Michie and
C. H. Vane. 2006. Palaeolimnology of
Palaeozoic lakes, focussing on a single lake
cycle in the Middle Devonian of the Orcadian
Basin, Scotland, Earth-Science Reviews, 75(14);177-197
Taverne, L. 1997. Osorioichthys marginis,
“Paleonisciform” from the Famennian of
Belgum, and the phylogeny of the Devonian
actinopterygians (Pisces), Bulletine Delínstitut
royal des naturelles de Belgique, Sciences de
la terre, 67;57-78
Thorez, J., R. Dreesen and M. Streel. 2006.
Famennian, Geologica Belgica, 9/1-2:27-45
Webb, P. W. 1984. Body form, locomotion and
foraging in aquatic vertebrates, American
Zoology, 24;107-120
White, E.I. 1927. The fish-fauna of the
Cementstones of Foulden, Berwickshire,
Transactions of the Royal Society of
Edinburgh,Earth Sciences, 55;255-289
Woodward, A. S. and E. I. White. 1926. The
fossil fishes of the Old Red Sandstone of the
Shetland Islands. Transactions of the Royal
Society of Edinburgh, Earth Sciences, 54:567–
571.
Øving, T. 1961. A note on fish fauna associated
with the phyllocarid Montecarlis lehmanni jux
in the Devonian strata of Bergisch Gladbach,
Western Germany, Journal of Plaeontology,
35(5)
32
Appendix 1
List of Devonian taxa. Devonian ray-finned fishes, body length, diet, location, age and reference. Fore
environmental descriptions see 3.3.1, and Appendix 4 for reconstructions.
M= Marin F= Freshwater * Pearson et al 1979 ** Daeschler 2000 *** Gardiner 1963 **** Janvier 2002
1
has been inferred from this study (p)
Taxa
Length
(mm)
Cheirolepis
Canadensis
(Cheirolepididae)
50*
Cheirolepis trailli
(Cheirolepididae)
360
Cuneognathus
gardineri
Howqualepis
rostridens
(Rhabdolepididae)
Diet
Small Predator,
canna-balism*
Scotland, lake
Orcadie
40-100
F
Greenland,
Obruschew Berg For.
Late Famennian
Fridman et
al. 2006
300-700
****
Fish 1
F
Arratia et al.
1996
Frasnian
Long 1988
Late Famennian
Daeschler
2000
Frasnian
Gardiner
1984
Pearson et al.
1979
M
Australia, Avon river
group, Victoria,
North America,
Pennsylvania,
catskill for., Red hill
Australia, Gogo for.,
Canning Basin
/Gneuda for.
Germany, BergischGladbach - Paffrath
Trough,
160
Fish, soft-body
invertebrates &
zooplankto1
F
Scotland, Shetland
Givetian
Jessen 1968
Swartz Brian
2007/
Woodward et
al. 1926
Devonian
M
Late Famennian
104
M
100
M
North America
North America;
Ohio, Clevland shale
North America,
Ohio, Cleveland
shale, Skinners Run
Siberia, Krasnoyarski
Kran,
Famennian
Fridman et
al. 2006/
Dunkle 1964
Prokofiev
2002
Australia
Devonian
100**
M
Australia, Gogo for. /
Gneuda for.
Frasnian
Australia
Germany,
Wildungen,
Devonian
Lower upper
Devonian
(Famennian)
M
M
Mimia toombsi
(Moythomasiidae)
100**
Moythomasia nitida
(Moythomasiidae)
Osorioichthys
marginis
(Osorioichthyidae)
Tegeolepis clarki
(Tegeolepididae)
Canada, Quebec,
Escuminac Bay
References
F
Soft-body invertibrates
Fish, soft-body
invertebrates &
zooplankto1
Fish, soft-body
invertebrates &
zooplankto1
Moythomasia Striata
(Moythomasiidae)
M
Age
Small Predator
Fish, soft-body
invertebrates &
zooplankto1
60
Kentuckia hlavini
(Osorioichthyidae)
Krasnoyarichthys
jesseni
Ligulalepis toombsi
(Dialipinidae)
Moythomasia
durgaringa
(Moythomasiidae)
Moythomasia
performata
(Moythomasiidae)
Location
Devonian ,
Famennian
Mid Devonian
(Eifelian/
Givetian)
Limnomis deleneyi
(Rhabdolepididae)
Stegotrachelus finlayi
(Stegotrachelidae)
No
complete
reconstructions
Cheirolepis schultzei
(Cheirolepididae)
Kentuckia deani
(Osorioichthyidae)
M/F
1000***
F
M
Belgium ,
Famenne for.
North America, Ohio
shale/
Cleveland shale
Late GivetianEarly Frasnian
Late Famennian
Famennian
Jessen 1968
Fridman et
al. 2006/
Taverne
1997
Early Famennian
Fridman et
al. 2006
33
List of Carboniferous taxa. Carboniferous ray-finned fishes, body length, diet, family, location, age
and reference. Fore environmental descriptions see 3.3.2, and Appendix 4 for the reconstructions.
M= Marin F= Freshwater B=Brackish water
1
No reconstructions 2Body fossils (picture) 3has been concluded from this study (p)
* Westoll 1944 ** Dineley et al 1999
Taxa
Adroichthys
tuberculatus
(Amphicentridae)
Acrolepis gigas
(Acrolepididae)
Acrolepis
hopkinsii1
(Acrolepidae)
Acrolepis
hortonensis1
(Acrolepididae)
Acrolepis
ortholepis1
(Acrolepididae)
Aeduella
blainvillei
(Aeduellidae)
Aesopichthys
erinaceus
(Aesopichthyida
e)
Aesopichthys
fulcratus
(Atherstoniidae)
Aetheretmon
valentiacum
(Strepheoschemi
dae)
Amphicentrum
crassum1
(Amphicentridae)
Australichthys
longidorsalis
(Australichthyidae)
Bourbonella
guilloti
(Aeduellidae)
Canobius
elegantulus
(Canobiidae)
Canobius
modulus1
(Canobiidae)
Canobius
ramsayi
(Canobiidae)
Cheirodopsis
Lengt
h
(mm)
Diet
M/F
Location
Age
Reference
Lower
carboniferous,
Mississippian
Moy-Thomas
et al. 1971/
Gardiner 1969
Stephanian B-C,
Pennsylvanian
Stamberg 2006
1250
Small invertebrates
(plankton)3
Preditor/ Fish, softbody invertebrates &
zooplankton3
F
South Africa, upper
Witteberg series,
Soetendals Vlei
Czech Repobublic,
Bohemian Massif,
Slany For.
UK,
Northumberland,
Low Main Seam
Canada,
Nova Scotia
Westphalian B,
Pennsylvanian
Lower
Carboniferus,
Mississppian
F
(B/M)
Scotland,
Glencartholm
volcanic beds
Viséan,
Mississippian
F
France,
Montceau-lesMines, Massif
central
Stephanian,
Pennsylvanian
Dineley et al.
1999/MoyThomas et al.
1938
Poplin &
Dutheil
2005/MoyThomas &
Miles 1971
Namurian E2b,
Mississppian
Poplin & Lund
2000
600
650
90
Small fish,
invertebrates &
plankton3
Preditor, Small
shrimps, worms,
larvae
(nectonic) &
Browsed on bryozoans conulari-ids,
algae
105
Small fish,
invertebrates &
plankton2
50200
F
F
F
North America,
Bear gulch
limestone
South Africa, upper
Witteberg series,
Soetendals Vlei/
Lake Mentz
Lower
carboniferous,
Mississippian
Viséan,
Mississippian
Gardiner 1969
White1927/
Dineley et al.
1999/Gardiner
1985/Schaeffer
1973
M
50-90
Predator, Arthropods
& soft-body animals
F/B
Scotland,
Foulden
(Cemenstone
Group)
Predator, Hardshelled prey
Scotland
South Africa,
Upper Witteberg
Series, Lake Mentz
France, Bourbon
l´Archambault,
Massif central
Lower
carboniferous,
Mississippian
Autunien/Stephan
ien,
Pennsylvanian
Viséan,
Mississippian
Lower
Carboniferus,
Mississppian
120160
Small fish,
invertebrates &
plankton3
Fish, soft-body
invertebrates &
zooplankton3
F
140
Plankton/filter
3
feeder
F
(B/M)
70
Plankton/filter
3
feeder
F
Scotland,
Glencartholm
volcanic beds
Canada,
New Brunswick,
Albert for.
F
(B/M)
F
Scotland,
Glencartholm
volcanic beds
Scotland,
150
70
150
Plankton/filter
3
feeder
Small invertebrates
Newman et al.
2007
F(B)
Viséan,
Mississippian
Viséan,
Gardiner 1969
Poplin &
Dutheil 2005
Moy-Thomas
et al.
1938/Dineley
et al. 1999
Moy-Thomas
et al. 1938/
Dineley et al.
1999
Moy-Thomas
34
(plankton)3
geikei
(Amphicentridae)
Chirodus
granulosus
(Amphicentrum)
(Chirodontidae)
Chirodus
striatus1
(Chirodontidae)
Coccocephalus
wildi1
(Osorioichthyidae)
Cosmoptychius
striatus1
(Cosmoptychidae)
Cryphiolepis
striatus
(Cryphiolepidae)
Cycloptychius
concentricus
(Rhadinichthyidae)
Cyranichthys
bergeraci
(Rhadinichthyidae)
Cyranorhis
Bergerac
(Rhadinichthyidae)
Discoserra
pectinodon2
(Guildayichthyidae)
Dwykia
analensis1
(Dwykiidae)
Elonichthys
browni1
(Elonichthyidae)
Small invertebrates
(plankton)3
Fish, soft-body
invertebrates, insects
& zooplankton3
(B/M)
Glencartholm
volcanic beds
F
UK, North
Staffordshire;
Fenton,
Knowles
Shale/Longton,
Deep Mine Seam
UK,
Northumberland,
Low Main Seam
B
UK,
Lancashire,
F
280**
F/B
B/F
Scotland,
Edingburgh,
Wardie / Foulden
Scotland,
Edinburgh ( &
nearby ), Wardie,
Oil shale group
F
(B/M)
Scotland,
Glencartholm
volcanic beds
North America
M
North America,
Bear gulch
limestone
130
Fish
3
Plankton
Small invertebrates
(plankton)3
M
F
F
F
1
North America,
Bear gulch
limestone
South Africa,
upper Wittberg
series, Soetendals
Vlei
Canada,
New Brunswick,
Albert for.
Canada,
New Brunswick,
Albert for.
Mississippian
et al.
1938/Dineley
et al. 1999
Westphalian A/B,
Carboniferous
Moy-Thomas
et al. 1971
Westphalian B,
Pennsylvanian
Newman et al.
2007
Upper
carboniferus,
Pennsylvanian
Coates 1999
Viséan,
Mississippian
Gradiner 1985
Viséan,
Mississippian
Viséan,
Mississippian
Namurian,
Mississippian
Poplin & Lund
1997
Namurian,
Mississippian
Lund 2000
Lower
Carboniferus,
Mississppian
Lower
Carboniferus,
Mississppian
Lower
Carboniferus,
Mississppian
Elonichthys ellsi
(Elonichthyidae)
Elonichthys
krejcii1
(Acrolepis)
(Elonichthyidae)
150
Small predator
F
Elonichthys
robisoni1
(Elonichthyidae)
F
(B/M)
Elonichtys
peltigerus1
(Elonichthyidae)
F
Czech Repobublic,
Bohemian Massif,
Slany For.
Scotland,
Glencartholm
volcanic beds /
Wardie
North America,
Ohio, Linton,
Upper Freeport
Coal
150
Small fish,
invertebrates &
plankton3
F
(B/M)
Scotland,
Glencartholm
volcanic beds
Viséan,
Mississippian
Fish, soft-body
invertebrates, insects
& zooplankton3
F
(B/M)
Scotland,
Glencartholm
volcanic beds
Viséan,
Mississippian
Elonichtys
pulcherrimus
(Elonichthyidae)
Elonichtys
serratus
(Elonichthyidae)
12 0
Moy-Thomas
et al. 1971
Moy-Thomas
et al.
1938/Dineley
et al .1999
Gardiner 1969
Stephanian B,
Pennsylvanian
Stamberg 2006
Viséan,
Mississippian
Westphalian ,
Pennsylvanian
Baird 1978
Moy-Thomas
et al.
1938/Dineley
et al. 1999
Moy-Thomasr
et al. 1938/
Dineley et al.
1999
35
Elonichtys
spaerosideriaru
m
(Acrolepis)
(Elonichthyidae)
Elonichtys
striatulutus
(Elonichthyidae)
Frederichthys
musadentatus
(Palaeoniscimorpha)
Gonatodus
punctatus
(Elonichthyidae)
Guildayichthys
carnegiei2
(Guildayichthyidae)
Haplolepis aff.
Angelica1
(Parahaplolepis)
(Haplolepidae)
Haplolepis aff.
Ovoidea1
(Haplolepidae)
Haplolepis
angelica 1
(Parahaplolepis)
(Haplolepidae)
Haplolepis
attheyi1
(Paleodopsis
newshami)
(Haplolepidae)
Haplolepis
Canadensis1
(H.aff. angelica,
Parahaplolepis)
(Haplolepidae)
Haplolepis cf.
Corrugata1
(Haplolepidae)
Haplolepis cf.
ovoidea1
(Haplolepidae)
Haplolepis
cf.tuberculata1
(Parahapolepis)
(Haplolepidae)
Haplolepis
corrugate
(Macolepis)
(Haplolepidae)
Haplolepis
ovoidea
(Haplolepidae)
Haplolepis
tuberculata
(Parahaplolepis)
(Haplolepidae)
Holurus parki
(Holuridae)
Kalops diophrys
(Indeterminate/Tegeolepid
idae)
Kalops
monophrys
150
Small predator/ Small
fish, invertebrates &
plankton3
F
Czech Repobublic,
Bohemian Massif,
Slany For.
Stephanian B,
Pennsylvanian
Stamberg 2006
B
Scotland,
Wardie
Viséan,
Mississippian
M(F)
(sesona
l)
Scotland,
Manse Burn
for.,Bearsden
Basal numurian,
Mississippian
Coates 1993
B
Scotland,
Wardie
Viséan,
Mississippian
Dineley et al.
1999
Namurian,
Mississippian
Lund 2000
Westphalian B,
Pennsylvanian
Baird 1962
Pennsylvanian
Westoll 1944
140200
Small invertebrates
(plankton)3
Small fish,
invertebrates &
plankton3
Small invertebrates
(plankton)3
M
Zooplankton, larva*
F
25
Zooplankton, larva*
F
North America,
Bear gulch
limestone
UK,
Northumberland,
Newsham,
Low Main coal
North America,
Cannelton,
Pennsylvanian
F
UK,
Staffordshire,Longt
on, Ash coal
Westphalian C ,
Pennsylvanian
Baird 1962/
Westoll 1944
F
UK,
Northumberland,
Newsham,
Low Main coal
Westphalian B,
Pennsylvanian
Westoll 1944
Westphalian A,
Pennsylvanian
Lowney 1980
/Baird 1962
Westphalian B,
Pennsylvanian
Baird 1978
Pennsylvanian
Westoll 1944
Pennsylvanian
Westoll 1944
Westphalian ,
Pennsylvanian
Lowney 1980/
Westoll 1944
Westphalian ,
Pennsylvanian
Lowney 1980/
Westoll 1944
Westphalian D,
Pennsylvanian
57
Zooplankton, larva*
Zooplankton, larva*
Zooplankton, larva*
F
F
30
Zooplankton, larva*
F
Canada, Nova
Scotia, Parrsboro
For.
Riversdale group
Canada, Nova
Scotia, Joggins,
Forty Brine seam
North America,
Mazon creek,
Illinois
Zooplankton, larva*
F
31-73
Preditor;larva/inverte
bret
F
20-45
Zooplankton, larva*
F
45-75
Zooplankton, larva*
F
North America,
Mazon creek,
Illinois
North America,
Ohio, Linton,
Upper Freeport
Coal
North America,
Ohio, Linton,
Upper Freeport
Coal
North America,
Ohio, Linton,
Upper Freeport
Coal
130
Small fish,
invertebrates &
plankton1
F
(B/M)
Scotland,
Glencartholm
volcanic beds
Viséan,
Mississippian
Lowney 1980/
Westoll 1944
Moy-Thomas
et al. 1938/
Dineley et al.
1999
50-96
44116
Fish, soft-body
invertebrates, insects
& zooplankton3
Fish, soft-body
invertebrates, insects
North America,
Bear gulch
limestone
North America,
Bear gulch
Namurian E2b/
upper
Mississppian
Namurian E2b/
upper
Poplin & Lund
2002
Poplin & Lund
2002
M
M
36
(Indeterminate/Tegeolepid
idae)
Mansfieldiscus
sweeti
(Rhabdolepididae)
Melanecta
anneae
(Rhabdolepididae)
Mentzichthys
jubbi
(Australichthyidae)
Mentzichthys
maraisi1
(Rhadinichthyidae)
Mentzichthys
theroni1
(Rhadinichthyidae)
Mentzichthys
walchi
(Rhadinichthyidae)
Mesopoma
carricki
(Stegotrachelidae)
Mesopoma
crassum
(Stegotrachelidae)
Mesopoma
macrocephalun1
(Stegotrachelidae)
Mesopoma
plancheni1
(Stegotrachelidae)
Mesopoma
planti
(Stegotrachelidae)
Mesopoma
politum
(Stegotrachelidae)
Mesopoma
pulchellum
(Stegotrachelidae)
Mesopoma
smithsoni1
(Stegotrachelidae)
Microhapolepis
serrata
(Haplolepis
aff.ovoidea)
(Haplolepidae)
Nematoptychius
greenocki1
(Pygopteridae)
Novogonatodus
kazantsevae
(Elonichthyidae)
Paramblypterus
comblei1
(Amblypteridae)
& zooplankton3
limestone
Mississppian
Fish, soft-body
invertebrates, insects
& zooplankton3
F
Australia,
Mansfield
Basin/group
Lower
carboniferous,
Mississippian
Long 1988
50
Fish, soft-body
invertebrates, insects
& zooplankton3
M(F)
(sesona
l)
Basal
numurianE1,
Mississippian
Coates 1998
Lower
Carboniferus,
Mississppian
Gardiner 1969
Lower
Carboniferus,
Mississppian
Murry 2000/
Gardiner 1969
Lower
Carboniferus,
Mississppian
Murry 2000/
Gardiner 1969
Lower
Carboniferus,
Mississppian
Jubb 1965/
Murry 2000
Fish 3
F(B)
Scotland,
Manse Burn for.,
Bearsden
South Africa,
Upper Witteberg
Series,
Lake Mentz
South Africa,
Upper Witteberg
Series,
Lake Mentz
South Africa,
Upper Witteberg
Series,
Lake Mentz
South Africa,
Upper Witteberg
Series,
Lake Mentz
70
Fish 3
M(F)
(sesona
l)
Scotland,
Manse Burn for.,
Bearsden
Basal Namurian;
Mississippian
110
Small fish,
invertebrates &
plankton3
F
(B/M)
Scotland,
Glencartholm
volcanic beds
Viséan,
Mississippian
F
(B/M)
Scotland,
Glencartholm
volcanic beds
Viséan,
Mississippian
M(F)
(sesona
l)
Scotland,
Manse Burn for.,
Bearsden
Basal Namurian,
Mississippian
B
UK,
Lancashire
Upper
carboniferus,
Pennsylvanian
400
180
120
180
55
Fish 3
F(B)
F(B)
F
3
Coates 1993/
Coates 1999
Moy-Thomas
et al. 1938/
Dineley et al.
1999
Coates 1999/
Coates 1993
70
Fish
80
Fish, soft-body
invertebrates &
zooplankton3
F
(B/M)
Scotland,
Glencartholm
volcanic beds
Viséan,
Mississippian
Coates 1999
Dineley et al.
1999/ MoyThomas et al.
1938
80
Small fish,
invertebrates &
plankton3
F
(B/M)
Scotland,
Glencartholm
volcanic beds
Viséan,
Mississippian
Moy-Thomas
et al. 1938/
Cotes 1993
80
M(F)
(sesona
l)
Scotland,
Manse Burn for.,
Bearsden
Basal Namurian,
Mississippian
Coates 1993
15-21
Fish, soft-body
invertebrates &
zooplankton3
Westphalian D,
Pennsylvanian
Lowney 1980
F
B
Fish, soft-body
invertebrates, insects
& zooplankton3
F
480
F
North America,
Ohio, Linton,
Upper Freeport
Coal
Scotland,
Wardie shalesupper limestone
series
Australia,
Mansfield group
France,
Autun Basin,
Faisceau de Molloy
Viséan,
Mississippian
Lower
carboniferous,
Mississippian
StephanienC,
Pennsylvanian
Gardiner 1963
Long 1988
Dietze 2000
37
Paramblypterus
decorus1
(Amblypteridae)
Paramblypterus
gaudryi1
(Amblypteridae)
Paramesolepis
rhombus
(Platysomiformis)
Paramesolepis
tuberculata
(Platysomiformis)
Paratarrasius
hibbardi
(Tarrasiidae)
Phanerorthynch
us armatus
Phanerosteon
mirabile
(Carbovelidae)
Phanerosteon
ovensi
(Carboveles)
(Carbovelidae)
Platysella lallyi
(Aeduellidae)
Platysomus
Parvulus
(Platysomidae)
Platysomus
superbus
(Platysomidae)
Proceramala
montanensis
(Aesopichthyidae)
Progyrolepis
speciosus1
(Pygopteridae)
Protoeurynotus
traquairi
(Platysomiformis)
Pyritocephalus
compus1
(Haplolepidae)
Pyritocephalus
gracilis1
(Rhadinichthys)
(Haplolepidae)
Pyritocephalus
lineatus
(Haplolepidae)
Pyritocephalus
rudis1
(Haplolepidae)
Pyritocephalus
sculptus
(Haplolepidae)
66245
F
France,
la grande couche,
lake Commentery
Mid stephanian,
Pennsylvanian
Dietze 2000
StephanienD/Aut
unian,
Pennsylvanian
Dietze 2000
Viséan,
Mississippian
Moy-Thomas
& Dyne 1938
Viséan,
Mississippian
Namurian E2b/
upper
Mississppian
Upper
carboniferus,
Pennsylvanian
Moy-Thomas
et al. 1938
F
France,
Autun Basin, la
grande d´Igornay
130
Small invertebrates
(plankton)3
F
(B/M)
Scotland,
Glencartholm
volcanic beds
130
Small invertebrates
(plankton)3
F
(B/M)
M
Predator
Fish, soft-body
invertebrates, insects
& zooplankton3
Scotland,
Glencartholm
volcanic beds
North America,
bear gulch
limestone
120
Fish, soft-body
invertebrates, insects
& zooplankton3
130
Lund & Poplin
2002
Moy-Thomas
et al. 1971
White 1927/
Moy-Thomas
et al.1971/
Dineley et al.
1999/
Moy-Thomas
et al. 1938/
Gardiner 1985
F
Scotland,
Glencartholm
volcanic beds
Scotland,
Berwickshire,
Foulden,
Cemenstone Group
France,
Massif central,
Bassin d´Autun
Plankton/filter
3
feeder
M/ F**
200
Plankton/filter
3
feeder
F
(B/M)
Scotland,
Glencartholm
volcanic beds
Viséan,
Mississippian
Moy-Thomas
et al. 1971
Moy-Thomas
et al. 1938/
Dineley et al.
1999
100
Small invertebrates
(plankton)3
M
Namurian E2b/
upper
Mississppian
Poplin & Lund
2000
500600
Large predator
F
150
Small invertebrates
(plankton)3
F
(B/M)
F
(M/B)
Scotland,
Glencartholm
volcanic beds
North America,
Mazon creek,
Illinois
F
(M/B)
North America,
Mazon creek,
Illinois
150
Fish, soft-body
invertebrates, insects
& zooplankton3
Small fish,
invertebrates &
plankton3
180
75
25-43
50-7 0
40-70
F
(B/M)
F/B
Fish and/or insects &
zoo-plankton3
F
F
Plankton
F
North America,
Bear gulch
limestone
Czech Repobublic,
Bohemian Massif,
Slany For.
North America,
Ohio, Linton,
Upper Freeport
Coal
UK,
Northumberland,
Newsham,
Low Main coal
Czech Repobublic,
Bohemian Massif,
Kladno
For./Nrany
Viséan,
Mississippian
Viséan,
Mississippian
Stephanien/Autun
ien,
Pennsylvanian
Stephanian B,
Pennsylvanian
White 1927/
Gardiner 1985
Poplin &
Dutheil 2005
Viséan,
Mississippian
Stamberg 2006
Moy-Thomas
et al. 1938/
Dineley et al.
1999
Pennsylvanian
Westoll 1944
Pennsylvanian
Westphalian ,
Mid
Pennsylvanian
Westoll 1944
Moy-Thomas
et al.
1971/Loweny
1980/
Westoll 1944
Westphalian B,
Pennsylvanian
Westoll 1944
Westphalian DStephanian,
Pennsylvanian
Westoll 1944/
Stamberg 2006
38
Radinichthys
ferox1
(Rhadinichthyidae)
Rhadinichthys
alberti1
(Rhadinichthyidae)
Rhadinichthys
brevis1
(Rhadinichthyidae)
Rhadinichthys
canobiensis
(Rhadinichthyidae)
Rhadinichthys
carinatus
(Rhadinichthyidae)
Rhadinichthys
fusiformis
(Rhadinichthyidae)
Rhadinichthys
hancocki1
(Rhadinichthyidae)
Rhadinichthys
macconochii1
(Rhadinichthyidae)
Rhadinichthys
ornatissimus1
(Rhadinichthyidae)
Rhadinichthys
tuberculatus1
(Rhadinichthyidae)
Sceletophorus
biserialis
(Sceletophoridae)
Sceletophorus
verrucosus1
(Amblypterus)
(Sceletophoridae)
Setlikia
bohemica1
(Igornichthyidae)
Viséan,
Mississippian
F
Scotland,
Wardie
Canada, New
Brunswick, Albert
for./ Nova Scotia ,
Horton Bluff For.
Mississippian
B
Scotland,
Wardie
Viséan,
Mississippian
120
Fish (insects & zooplankton)3
F
(B/M)
Scotland,
Glencartholm
volcanic beds
Viséan,
Mississippian
B
Scotland,
Wardie
Viséan,
Mississippian
150
Fish, soft-body
invertebrates &
zooplankton3
F
(B/M)
Scotland,
Glencartholm
volcanic beds
Viséan,
Mississippian
Moy-Thomas
et al.
1938/Dineley
et al. 1999
F
UK,
Northumberland,
Low Main Seam
Westphalian B,
Pennsylvanian
Newman et al.
2007
120
F
(B/M)
Scotland,
Glencartholm
volcanic beds
Viséan,
Mississippian
Moy-Thomas
et al. 1938
B
Scotland,
Wardie
Viséan,
Mississippian
210
F
(B/M)
Scotland,
Glencartholm
volcanic beds
Viséan,
Mississippian
Moy-Thomas
et al. 1938
140
Small predator/ Small
fish, invertebrates &
plankton3
F
Czech Repobublic,
Bohemian Massif,
Nrany
Westphalian D,
Pennsylvanian
Stamberg 2006
F
Czech Repobublic,
Bohemian Massif,
Nrany
Westphalian D,
Pennsylvanian
Stamberg 2006
Stephanian B,
Pennsylvanian
Stamberg 2006
Lower
carboniferous,
Mississippian
Gardiner 1969
Stephanian,
Pennsylvanian
Stamberg 2006
Stephanien B-C,
Pennsylvanian
Poplin &
Dutheil 2005/
Stamberg 2006
Viséan,
Mississippian
Viséan,
White 1927/
Dineley et al.
1999/ Gardiner
1985
White 1927/
300 **
B
100 **
140
Small predator
80100
Small
arthropods/insects
Soetendalichths
cromptoni
(Platysomidae)
210
Small invertebrates
(plankton)1
F
Sphaerolepis
kounoviensis
(Trissolepididae)
150
Invertebrates
F
80-10
Small
arthropods/insects
180
100
Small fish,
invertebrates &
plankton3
Spinarichthys
disperses1
(Aeduellidae)
Strepheoschema
fouldenensis
(Strepheoschemidae)
Styracopterus
F
F
F/B
F
Czech Repobublic,
Bohemian Massif,
Slany For.
South Africa,
upper Wittberg
series, Soetendals
Vlei
Czech Repobublic,
Bohemian Massif,
krkonse Piedmont
Basin
France, Tchéque/
Czech Repobublic,
Slany For. & Line
For.
Scotland,
Berwickshire,
Foulden
(Cemenstone
Group)
Scotland,
Moy-Thomas
et al. 1938/
Dineley et al.
1999
39
fulcratus1
(Fouldenia
ottadinica)
(Styracopteridae)
Sundayichthys
elegantulus
(Canobiidae)
Tarrasius
problematicus
(Tarrasiidae)
Wardichthys
cyclosoma1
(Platysomidae)
Wendyichthys
dicksoni
(Rhadinichthyidae)
Wendyichthys
lautreci
(Rhadinichthyidae)
Willomorichthys
striatulus
(Willomorichthy
idae)
Woodichthys
bearsdeni
(Stegotrachelidae)
Zaborichthys
fragmentalis1
(Pygopteridae)
(B/M)
& F/B
Foulden/Glencarth
olm volcanic beds
Mississippian
Gardiner 1985
Lower
Carbonifeous,
Mississippian
Gardiner 1969
Viséan,
Mississippian
Lund & Poplin
2002
Viséan,
Mississippian
Dineley et al
1999
Namurian,
Mississippian
Lund & Poplin
1997
Namurian,
Mississippian
Lund & Poplin
1997
Lower
carboniferous,
Mississippian
Gardiner 1969
Basal
NamurianE1,
Mississippian
Coates 1998
Stephanian B,
Pennsylvanian
Stamberg 2006
100
Small fish,
invertebrates &
plankton3
F(B)
100
Predator
F
(B/M)
80
B
South Africa,
Upper Wittberg
Series, Lake Mentz
Scotland,
Glencartholm
volcanic beds
Scotland,
East Lothian,
Wardie
M
North America,
Bear gulch
limestone
90100
Plankton
Plankton
250
Small fish,
invertebrates &
plankton3
F
110
Fish, soft-body
invertebrates &
zooplankton3
M(F)
(sesona
l)
Large predator
F
M
North America,
Bear gulch
limestone
South Africa, upper
Wittberg series,
Soetendals Vlei/
Lake Mentz
Scotland,
Manse Burn for.,
Bearsden
Czech Repobublic,
Bohemian Massif,
Slany For.
Newman, A., S. McLean and D. Hudson. 2007, Hancock Museum,
http://www.ncl.ac.uk/hancock/publications/vertebrate/cata4.htm
40
Appendix 2
Relativ Warp 1.2 with numbers, 1-8 Devonian taxa, 9-72 Carboniferous taxa; 1, Cheirolepis
Canadensis 2, Cuneognathus gardineri 3, Howqualepis rostridens 4, Limnomis deleneyi 5, Mimia
toombsi 6, Moythomasia nitida 7, Stegotrachelus finlayi 8, Cheirolepis trailli 9, Acrolepis gigas 10,
Adroichthys tuberculatus 11, Aeduella blainvillei 12, Aesopichthys erinaceus 13, Aesopichthys
fulcratus 14, Aetheretmon valentiacum 15, Australichthys longidorsalis 16, Bourbonella guilloti 17,
Canobius elegantulus 18, Canobius ramsayi 19, Cheirodopsis geikei 20, Chirodus granulosus 21,
Cryphiolepis striatus 22, Cycloptychius concentricus 23, Cyranohis bergeraci 24, Discoserra
pectinodon 25, Elonichtys pulcherrimus 26, Elonichtys serratus 27, Elonichtys spaerosideriarum 28,
Frederichthys musadentatus 29, Gonatodus punctatus 30, Guildayichthys carnegiei 31, Haplolepis
corrugate 32, Haplolepis ovioidea 33, Haplolepis tuberculata 34, Paratarrasius hibbardi 35, Holurus
parki 36, Kalops diophrys 37, Kalops monophrys 38, Melanecta anneae sp.nov 39, Mentzichthys
walchi 40, Mentzichthys jubbi 41, Mesopoma carricki 42, Mesopoma crassum 43, Mesopoma planti 44,
Mesopoma politum 45, Microhapolepis serrata 46, Mesopoma pulchellum 47, Mansfieldiscus sweeti
48, Novogonatodus kazantsevae 49, Paramesolepis rhombus 50, Paramesolepis tuberculata 51,
Phanerorthynchus armatus 52, Phanerosteon ovensi (Carboveles) 53, Phanerosteon mirabile 54,
Platysella lallyi 55, Platysomus superbus 56, PlatysomuspParvulus 57, Tarrasius problematicus 58,
Proceramala montanensis 59, Protoeurynotus traquairi 60, Pyritocephalus Sculptus 61,
Pyritocephalus lineatus 62, Rhadinichthys canobiensis 63, Rhadinichthys fusiformis 64, Sceletophorus
biserialis 65, Soetendalichths cromptoni 66, Sphaerolepis kounoviensis 67, Strepheoschema
fouldenensis 68, Sundayichthys elegantulus 69, Wendyichthys lautreci 70, Wendyichthys dicksoni 71,
Willomorichthys striatulus 72, Woodichthys bearsdeni
41
Relativ Warp 1.1 with numbers, 1-8 Devonian taxa, 9-72 Carboniferous taxa. 1, Cheirolepis
Canadensis 2, Cuneognathus gardineri 3, Howqualepis rostridens 4, Limnomis deleneyi 5, Mimia
toombsi 6, Moythomasia nitida 7, Stegotrachelus finlayi 8, Cheirolepis trailli 9, Acrolepis gigas 10,
Adroichthys tuberculatus 11, Aeduella blainvillei 12, Aesopichthys erinaceus 13, Aesopichthys
fulcratus 14, Aetheretmon valentiacum 15, Australichthys longidorsalis 16, Bourbonella guilloti 17,
Canobius elegantulus 18, Canobius ramsayi 19, Cheirodopsis geikei 20, Chirodus granulosus 21,
Cryphiolepis striatus 22, Cycloptychius concentricus 23, Cyranohis bergeraci 24, Discoserra
pectinodon 25, Elonichtys pulcherrimus 26, Elonichtys serratus 27, Elonichtys spaerosideriarum 28,
Frederichthys musadentatus 29, Gonatodus punctatus 30, Guildayichthys carnegiei 31, Haplolepis
corrugate 32, Haplolepis ovioidea 33, Haplolepis tuberculata 34, Paratarrasius hibbardi 35, Holurus
parki 36, Kalops diophrys 37, Kalops monophrys 38, Melanecta anneae sp.nov 39, Mentzichthys
walchi 40, Mentzichthys jubbi 41, Mesopoma carricki 42, Mesopoma crassum 43, Mesopoma planti 44,
Mesopoma politum 45, Microhapolepis serrata 46, Mesopoma pulchellum 47, Mansfieldiscus sweeti
48, Novogonatodus kazantsevae 49, Paramesolepis rhombus 50, Paramesolepis tuberculata 51,
Phanerorthynchus armatus 52, Phanerosteon ovensi (Carboveles) 53, Phanerosteon mirabile 54,
Platysella lallyi 55, Platysomus superbus 56, PlatysomuspParvulus 57, Tarrasius problematicus 58,
Proceramala montanensis 59, Protoeurynotus traquairi 60, Pyritocephalus Sculptus 61,
Pyritocephalus lineatus 62, Rhadinichthys canobiensis 63, Rhadinichthys fusiformis 64, Sceletophorus
biserialis 65, Soetendalichths cromptoni 66, Sphaerolepis kounoviensis 67, Strepheoschema
fouldenensis 68, Sundayichthys elegantulus 69, Wendyichthys lautreci 70, Wendyichthys dicksoni 71,
Willomorichthys striatulus 72, Woodichthys bearsdeni
42
Appendix 3
Relative warp scores matrix
The relative warp scores matrix consist of 24 warps fore every taxa and were used to
do the Cumulative Variance and Hypercube volume tests.
1-8 Devonian taxa, 9-72 Carboniferous taxa.
1, Cheirolepis Canadensis
1.47702314949216E-001 7.76970232559585E-002 -9.14800559580341E-002 3.80910108397424E-002 -3.26504374350668E-002 6.90927706054322E-003
3.08187867254436E-002 2.37787503237896E-002 4.86081562239253E-003
1.55025867678666E-002
1.69002214010146E-003 -4.03950589443996E-003 3.73615384426422E-003
1.67415828714445E-003 -8.50977768291891E-003 -1.09402023640898E-002
8.77376371328731E-003 -1.08534226907252E-003 1.41135978001820E-003 6.22606715787736E-003
2.17873885602268E-003 1.49114347638818E-003 4.36934058471305E-004 7.35089381941104E-004
2, Cuneognathus gardineri
3.73204936686494E-002 -2.76327607113955E-002
5.40004367376416E-003 -5.28714750497824E-002
1.45841207989998E-002 -9.11861719174432E-003
9.41354274101812E-003
-2.06796627205119E-003 2.20855995885462E-003
5.19742534524821E-003 -2.13415657424514E-002
5.93841229072881E-003 -4.22527133055125E-003
7.16919103427323E-003
2.39724887102157E-003 -5.85477471442104E-003
8.42034394302481E-004
8.77807885780545E-002 -9.71402717272909E-003
-2.20381698948271E-003 -8.01305246311813E-004 -4.53132382442520E-003 -2.92613481362250E-003
-1.40841452663159E-003 -
3, Howqualepis rostridens
9.65179677427757E-002 3.71335082423025E-003 5.51052456775173E-003 1.24033973229542E-002 1.80553468233953E-003 3.22295726848346E-002
7.99452000031080E-003 -6.26328105182195E-003 1.07660284764424E-002
2.00505833839931E-002
-5.22632002101923E-003 -5.15859261055317E-003 -1.26382590968658E-003
1.41908455226897E-002 -1.66880506212428E-003 -1.44568717808659E-002
4.03778722745566E-003 -1.49435863073566E-003 3.82755690551396E-004 3.52584871293953E-003
1.91155294721814E-003 -2.76940617181465E-003 1.03269174350640E-003 7.19573076229272E-004
4, Limnomis deleneyi
3.61029490994080E-002 -3.17622569448343E-002
3.88496610574259E-002 -1.67939044570819E-002
1.02954192520669E-002 -2.91462305950585E-002
5.96908092318027E-003
-6.25649753763694E-003 5.41730453320168E-003
1.13338778068643E-002 -7.17287082755412E-003
6.96504300970560E-003 -5.83838777481440E-003
2.08572388054364E-003
2.24388367568777E-003 -8.12088844800053E-003
1.26708001734628E-003
4.98228712819656E-002
1.57369718188892E-002
-2.10426610756044E-002 -6.19247215005423E-003 2.83856591205793E-003 3.75160758797067E-003
2.03251809427732E-003
5, Mimia toombsi
4.41756089364850E-002 -1.26621861450188E-002 -1.90577059718379E-002
1.09906647836816E-003 -2.02635686982447E-002 3.24517994026876E-002 4.71054955556473E-002 -1.99377745205523E-002 4.69694018602533E-004
7.11475855799215E-003
43
-4.53459964068412E-003 3.09512187727671E-002 1.08601643512105E-002
8.88294759449782E-003 4.10603320978028E-003 -2.56092355665571E-003 6.30413533693775E-003 -2.58323560030068E-003 -2.88227727056627E-003
6.04079894098288E-003
-3.69066188277844E-003 -2.63854545559644E-003 5.20069879730440E-004 6.62326461471438E-004
6, Moythomasia nitida
3.95528977207354E-002
3.33073647770004E-002
4.26080671775446E-002
2.55387484741782E-003
4.74863934306992E-003
7.70530392317998E-003
4.81464308390757E-003
1.58205711268809E-003
9.19762463235646E-003
1.15569983950639E-003
3.51244514592175E-002 5.54973075575694E-002 -4.78654325285496E-002 3.96093455926506E-002 2.42765030996746E-003 -3.53312184939029E-002
-4.57444023074974E-003 2.10834359560401E-002
8.99335237273102E-004 2.67651374166309E-003
-1.07170429031569E-002 -3.54275225970469E-003
1.24900761340024E-003 3.61261477048946E-004 -
7, Stegotrachelus finlayi
2.44359705104772E-002 -5.81431630302180E-003 -9.45348189001080E-003 2.12153698520744E-003 2.31263761850448E-002 -1.81065294744563E-003 4.78495635047496E-002 2.25891560736931E-002 -8.01382733892071E-003
1.58353330044102E-002
-1.34667901648258E-003 1.18178128663031E-003 1.41851905311568E-002
1.99235038170168E-003 -2.42927864366797E-003 -6.67359769673751E-003 7.16537517140485E-003 -2.28072491567167E-003 -6.64078853198686E-003
3.52678240776863E-003
1.72335964969291E-005 2.03547628529542E-003 -1.29849192013087E-003 1.13107122901251E-003
8, Cheirolepis trailli
1.45338870114994E-001 2.13352409385973E-002 -8.24562313168980E-002
2.05012545540034E-003 -9.90395461451624E-003 -1.41988618580833E-002
9.90258042273085E-003 3.20004483628456E-002 2.38030030607199E-002
6.24080705698195E-005
-1.61904833960516E-002 -4.64459639600295E-003 -1.19202066543767E-002
-7.74701351211312E-003 5.24866796947421E-004 -1.50803687443620E-002
8.82071738044107E-003 -1.29416386129296E-002 -1.06326993766716E-002 7.46593141342191E-003
-3.61721850920371E-003 -6.83715764107979E-005 -7.66097401695437E-004
1.55763396181046E-003
9, Acrolepis gigas
3.75321513582969E-002 -3.25410096369482E-003 3.33269722555113E-002
8.80269255034214E-002 3.74395876740220E-002 3.13088229385228E-002 2.02690841023083E-002 5.29542127485999E-003 6.90363271506393E-003 1.43407488048645E-002
2.98563946605686E-003 1.75853223568120E-003 -1.60308593668838E-002
2.41761394866338E-003 6.59510653008885E-004 -7.12003474998404E-003 4.06087991246735E-003 -7.30807130535494E-003 3.15332992563393E-003 2.91377199296080E-003
-3.50698972137588E-003 1.26334843166111E-003 6.90908496260037E-004
7.49812263812129E-004
10, Adroichthys tuberculatus
-6.54500384235986E-002 9.49383276991587E-002 -1.06218040979493E-001
8.16646552435092E-003 6.03907723215345E-003 -1.93557365648242E-002 3.58470499814553E-002 -5.14480844728781E-002 2.40221536216809E-002
1.98050987281761E-002
44
2.97127933448176E-003 -1.35247844900395E-002 3.44962876911575E-003 2.38734044158427E-002 -2.99057442140640E-002 -4.38901277782132E-003 5.79684813281884E-003 7.85121748537564E-003 -1.41344846087876E-002
1.06714005257982E-003
-4.66873906780084E-003 7.39288549866942E-003 -2.47291724597647E-004 1.11346162662696E-003
11, Aeduella blainvillei
-3.68169069188596E-003 1.70760483996509E-002 8.99448221737512E-002 1.76655461448359E-003 2.18158921496117E-002 -2.36945160939335E-003
2.44957698048276E-002 -2.95161357318790E-002 9.42514472332840E-003 1.62967534384465E-002
1.80220855103712E-002 1.79660701937372E-003 9.06783259744474E-005 1.21224755881515E-002 9.57319899635337E-003 -1.80379081557929E-003 3.03844741473166E-003 3.47153431670014E-003 4.05003813233826E-003 8.33643450119597E-003
4.09138543777318E-003 1.20994524584963E-003 -2.88704831296894E-004 1.44078144755154E-003
12, Aesopichthys erinaceus
-1.00402491189095E-001 -5.54686545637862E-002 1.14913266033541E-003
2.35720401436099E-002 -2.61076394408646E-002 -1.32598227153254E-002
2.71518086367345E-003 -4.20782182992029E-002 -6.84946724878476E-003 9.88176675070227E-003
-8.89800464816835E-003 -4.01517768449828E-003 3.11514242311364E-002 9.66987069840425E-003 9.63031104139729E-003 -1.15586471397516E-002
1.76755590199163E-002 1.76343724647860E-003 1.51649889758568E-003 6.10198524338540E-003
-1.21326629089848E-003 -7.98324176161172E-005 -1.44027432114524E-003
2.68009061204188E-003
13, Aesopichthys fulcratus
-3.29796056425237E-002 -1.54005900596916E-002 -2.32902636606533E-002
2.86338512793244E-002 1.95588608595200E-002 -3.14745543869980E-002 2.10877082853165E-003 -3.25752290126935E-003 8.13980955789657E-003
2.61093577805846E-002
1.77397051132053E-002 4.76952694039384E-003 4.11318008435435E-004
3.91586689520084E-003 -1.24458827140164E-002 2.57468095296816E-003 5.68091417421279E-003 3.72703082230670E-003 2.06243691584890E-003
1.29244961985037E-002
4.04353060338379E-004 -6.01412289653427E-003 -3.51113298170234E-004
8.58364699980819E-004
14, Aetheretmon valentiacum
-9.48244991811522E-003 -3.39472664437710E-003 1.38313468428690E-002 1.70131588752602E-003 2.04884987409656E-002 -1.09579338062452E-003
6.99265264010233E-003 -2.08230403501986E-003 -9.18630369703011E-003
3.34040493538257E-002
-8.65654888698793E-003 9.52218113312467E-003 -8.88194317168711E-004 9.87453787500465E-003 -7.97926359587603E-003 1.08478700895144E-002 1.17702428151444E-003 -8.66064917125951E-003 -1.55480360304624E-004 2.14991765435687E-003
1.74239961079664E-003 -3.35198691461314E-003 -2.20832734015312E-003
1.52142591102713E-003
15, Australichthys longidorsalis
-2.77071657748101E-002 -1.10855210489450E-001 9.64194643016371E-003
6.78899618653410E-002 2.80613512737592E-002 -5.29952383779959E-002
1.60528691716365E-002 9.38733810447034E-003 -3.42771127282180E-003 1.05275735830463E-002
45
-2.34033257247578E-002 -8.66769422427980E-003 1.45883779254606E-002
6.97693452189810E-003 -1.94281154926756E-003 5.34221727626268E-003 6.29272230990109E-003 -3.95354352475744E-003 -5.60860694559179E-004
2.19024964014610E-003
-4.75503330019800E-003 7.25092688249706E-003 -6.30225676948545E-004
2.04070232561228E-003
16, Bourbonella guilloti
2.73061571301787E-002 1.34179269486633E-002 2.76888794703271E-002 2.03940634868942E-003 5.26788099455046E-002 3.17975875163503E-002
1.23700946455683E-002 -4.49730764443111E-002 -9.82700538620923E-003 5.66049616326451E-003
3.74700511650742E-003 -7.57326379596720E-003 -1.01046343934740E-002 9.27387931878983E-003 1.40706440853017E-002 6.53989441456676E-003 5.63440438769541E-003 -5.94920527667513E-003 -9.29993842064377E-003 3.96621652847950E-003
4.34669190231814E-003 -2.33601478149075E-003 -3.94045594561132E-003
8.09484766374995E-005
17, Canobius elegantulus
-2.70082304590353E-002 -2.18682633402879E-002 3.07774988690733E-002 5.66842770787800E-002 2.48524660041859E-002 5.33150756681810E-003 1.98514551663967E-002 3.45492115958367E-003 3.13490156775314E-002 1.30594316917690E-002
3.80999691962973E-003 6.33374392002980E-003 5.17481080518776E-003
4.90498898597992E-003 1.74892568078121E-002 -4.36535551428046E-003
2.58233609671302E-003 2.80601788009313E-003 -8.39954239888295E-004 3.17348047282560E-003
2.61991624334150E-003 -3.74976813148338E-004 -2.32495035052685E-003
5.32322725128246E-004
18, Canobius ramsayi
-3.39844586234901E-002 -2.96237315714167E-002 3.38767569555730E-002 5.19095928868736E-002 1.99173673109304E-002 -1.28204541563435E-002 1.70125410085500E-002 9.50492508684912E-003 3.70158259762147E-002
1.92993485239962E-003
9.17510743858241E-003 6.50822823817436E-003 -2.66695041043967E-003
2.16648124010143E-003 1.44001390449232E-002 2.62175059051405E-003
1.54197961208864E-003 -3.55194796733367E-003 -3.50166283520967E-003
1.58956346648943E-003
4.70794630029036E-003 4.42781979916689E-004 -4.22741069795987E-003
1.02471839989964E-004
19, Cheirodopsis geikei
-1.73153210648037E-001 6.74018695933019E-003 2.02058462156416E-002 3.84186899597471E-002 -8.94844012269879E-003 -4.78995298587017E-003
1.07100627133845E-002 2.23035638878055E-002 -1.11224935931440E-002 1.25425806911582E-003
-4.56468513569313E-003 8.92533168656426E-003 -2.49921325142524E-002 6.66298705086372E-003 -3.57606705791003E-003 -6.86344748977806E-003 4.50619491287639E-003 1.42579081515720E-002 1.32105580509340E-003 3.60387624116991E-003
9.00384604953682E-004 -2.25135400210658E-003 2.38833054693525E-003
4.10610855763894E-003
20, Chirodus granulosus
-1.84792149626105E-001 1.08165190499378E-001 -5.79298994911114E-002
1.93408409700114E-002 -7.06688918092855E-003 2.24809400108198E-002
4.44309219060038E-002 -6.94201574482850E-003 -1.69154569787197E-002
2.59025018189675E-002
46
-1.06133311508939E-002 9.64157948787444E-003 -7.15663954536802E-003
3.03569702414926E-002 1.91088646094928E-002 3.44943336782827E-003 1.46225714296709E-002 6.12856384175423E-003 -1.17708624020636E-002 3.43866914639045E-003
-2.99773592917469E-003 -1.52659097527454E-003 -3.82070287849058E-004
3.03214551433694E-004
21, Cryphiolepis striatus
5.44431545312039E-002 6.81495338978560E-003 3.54204250393082E-002
3.07402289610678E-002 4.48872783542401E-003 -9.31742084190105E-003 5.01561492575839E-003 1.76940449940972E-002 1.22433779295884E-002
8.68551695381435E-003
5.86987529278156E-004 -2.04254754081264E-002 -8.29540940727484E-003
1.00119869291897E-002 -1.65307638365158E-003 -1.43001204791618E-002 3.00100803518609E-003 -6.36301356769213E-003 -2.93589834951294E-003 8.32941520854551E-003
3.73398213129240E-003 -5.52382383956140E-004 1.04233565043398E-003 6.23731850364784E-004
22, Cycloptychius concentricus
1.16641493457409E-001 3.43954751314955E-004 -3.89934950657916E-002 1.41726136815297E-002 -1.14654236482935E-002 -2.21742260714387E-002
4.92232223782127E-003 -2.66603730010335E-003 -1.69367504314957E-002 1.86673237129768E-003
-1.26678044418548E-002 1.03440913742243E-002 2.89646161497480E-003 2.65424290522240E-003 1.04439631866751E-002 8.81016672699868E-003 6.59988353344943E-003 -6.35955765552087E-003 -1.67945618839543E-003
1.54151684340036E-003
6.90665820941335E-004 -1.46481016972069E-003 1.24033987885013E-003
3.03147913220445E-004
23, Cyranohis bergeraci
1.07686580291381E-001 2.88531698021793E-002 -3.70092893225979E-002
4.37348411645453E-002 -2.54967031496735E-002 3.10206389645138E-002 1.67115286024010E-002 -4.87425310509838E-003 -1.04154342654463E-002 2.12830288605589E-002
-2.02275182845043E-003 -1.64583041128748E-002 6.23596736009868E-003
7.94493904882231E-003 7.50404849149382E-003 1.04805976362866E-002
4.64451394528203E-003 -9.23264453246986E-003 7.65642776400396E-003 3.49910963290011E-003
-7.30038027786227E-003 5.54637429513937E-003 3.90660269063974E-004
6.09426771793095E-005
24, Discoserra pectinodon
-2.21416000006169E-001 4.28302729727890E-002 -8.20479199935974E-002
2.75276287300762E-002 -1.06740593306255E-002 3.80817579767151E-003 8.44855775341346E-003 2.95986737482430E-002 -3.06624422458327E-002 3.39552454550301E-002
3.01325310270562E-002 7.60057828916713E-003 -7.47953654991754E-003
4.58748919896252E-003 -8.78256368156505E-003 2.44990964569089E-004 7.42053411595497E-003 3.35387090528948E-003 -5.49490780982945E-003 1.78957094789384E-003
-2.71010444116189E-003 3.19765925866711E-003 -2.66734479343674E-003
6.00496365981684E-004
25, Elonichtys pulcherrimus
-3.37795939167167E-002 -2.58276302680663E-002 5.84171849213756E-002
1.61865626082063E-003 -5.38818309564808E-003 -2.63335412709222E-002 3.13013972036058E-002 3.97329938604974E-003 6.66174415623596E-003
1.43892815134483E-002
47
-3.00524589070101E-003 1.07071134848355E-002 1.33186329357096E-002 2.39530141487943E-003 8.21982991664539E-003 -2.78672715957166E-004
5.41448515434126E-003 -1.62533121178953E-003 -1.36630623567095E-003 1.89519910279807E-004
-4.77870839805406E-003 8.31537742231225E-004 7.74642423600024E-004 6.53592906470112E-004
26, Elonichtys serratus
5.37968593489650E-002 -3.13647526086039E-002 1.47131425124158E-002
1.04477654540835E-002 2.38398381538308E-002 -8.93362319831704E-003 7.42665779822503E-003 3.78174035694631E-003 8.81378720616499E-003
8.58526152986178E-004
-9.20583405831974E-003 -4.66759062558675E-003 3.93629940984716E-003
6.28793099188076E-004 1.70098183482170E-002 1.01084856648067E-003 8.39528207136526E-004 1.54714317626932E-002 1.03273820332210E-003
2.31906530799063E-003
-2.46216674934329E-003 -3.87151113331453E-003 -1.19422117544923E-003
-1.48452273475938E-003
27, Elonichtys spaerosideriarum
-2.03655226134128E-002 2.23498286079283E-002 6.15024028772474E-002
2.46526347943667E-002 -8.95277069634627E-003 3.10747936317020E-002 3.16882136595238E-002 1.19099843277656E-003 -4.03983545952303E-003
2.14394002715665E-002
-2.00778830206405E-002 2.22078503614722E-002 -2.02491648183750E-002 5.18901867448761E-003 -1.16824936218684E-002 5.03371189741213E-003
9.64013978854536E-003 -3.35049968963822E-003 1.22023207718563E-002
4.15993145860599E-003
5.41271064641101E-003 8.15531149165273E-003 -2.65232675145890E-003
1.65059952081595E-003
28, Frederichthys musadentatus
-9.27073198846913E-002 4.02971532590262E-002 6.51951633234159E-002
7.65405067079577E-003 -4.38559534874596E-002 -1.76182612752266E-002 3.48711526378892E-002 1.56979809995488E-002 -2.10814173616795E-002
3.08652582465087E-002
2.86251092064606E-002 1.19731642999628E-003 -1.53050229568397E-003 2.39350421633278E-004 -8.17884746427754E-003 6.39705397833080E-003
7.15677070028007E-003 -9.59243400301218E-004 1.73765770342785E-003 1.00921288691309E-002
-2.49773851645378E-004 -1.40455211529894E-003 -4.48770446873779E-004
-4.29008277889749E-005
29, Gonatodus punctatus
-1.31863679277726E-002 7.52341337898236E-003 1.15503282335636E-002
2.98029334110992E-002 1.44924745862456E-003 -3.28317546533832E-002 2.70450888162548E-003 -1.20577218840999E-002 -1.17617103087585E-002
2.04064576575421E-002
3.23231427989490E-003 7.38110855456786E-004 -7.35161092239738E-003
1.07805832882750E-002 1.63612463992147E-003 -6.89680435412281E-003
1.15059288145221E-003 5.35992916377910E-003 8.68849264114691E-003 7.18102102090098E-003
2.08880820891358E-003 -9.53549075420517E-004 -8.16236832078237E-004
1.49632061990849E-003
30, Guildayichthys carnegiei
-1.91158797533109E-001 -2.35533452634672E-003 -4.40089555757315E-002
3.13455591974698E-002 1.53185438785560E-003 -3.32159425117532E-003 1.60337692619522E-002 -7.11257156527966E-003 -2.98881758361042E-002 2.75679098793447E-002
48
2.59927512852035E-002
1.18571701217503E-002
1.40046572117627E-002
1.73769059611464E-003
1.62673916587435E-003
1.32622197371122E-003
1.66847096137795E-002 -5.63691319868869E-004 5.80808039376272E-003 -7.11199229251459E-003
7.72078664011686E-003 -1.07824257194954E-002 9.93078599310066E-004 2.90410459023702E-003 -
31, Haplolepis corrugate
1.03197961781642E-001 4.65012345921705E-002 -4.59692655480830E-002 4.21479376995433E-002 3.34560444177135E-002 -9.73363444902786E-003
4.04959397932760E-003 -2.33107731512303E-003 -2.20385950847039E-002 1.24042227897113E-002
5.95517157951769E-003 -9.96161716491597E-003 -1.62305736424607E-002
1.25212333754327E-003 -5.54533272383963E-003 1.60260695707288E-003
3.54193172499094E-003 -1.10289166798233E-003 -1.28449936830327E-003 1.28959842945756E-003
-2.95551932812751E-003 4.51508635771452E-004 -1.77544453783537E-003
9.60204114837674E-004
32, Haplolepis ovioidea
6.91373197561835E-002 2.22514718828014E-002 3.60663624994100E-002 3.33390576301765E-002 1.41101116446559E-002 -5.49471354560308E-002
1.18700349823722E-002 -1.99938366131939E-002 -6.36151726636127E-003 2.54344546402227E-002
1.00303306541481E-002 7.55860691444177E-003 -7.65766599971822E-003
3.12594947429975E-003 -1.03978359861531E-002 3.19527409613668E-003 6.95329262627995E-003 -4.80707957674152E-003 2.89201292648488E-003 4.70093864094372E-003
-3.78116519848804E-003 -4.23950324467610E-003 -5.24825338774709E-004
-1.98452063328429E-004
33, Haplolepis tuberculata
9.23020724700052E-002 4.57875141193467E-002 -3.06118830757220E-002 5.98203217384886E-002 2.73798267375493E-002 -1.41804830953517E-002
1.21112270034864E-002 -1.65588263182281E-002 -1.02205891095366E-002 2.02315040101571E-002
1.02912702019914E-002 4.36251473756803E-003 -6.97541472577175E-004
1.17905092231456E-002 -7.46896889813691E-003 -1.70549699998815E-004 1.03658642422482E-002 -4.07122251840232E-003 5.48899197428389E-003
8.66437302008345E-004
-6.28824029664111E-004 -2.94241474928578E-004 2.32832928864847E-004 1.34160430633058E-003
34, Paratarrasius hibbardi
-3.82492008105075E-002 -3.25454467659553E-001 -8.62328870474682E-002
-2.86823085694536E-002 3.43763147658558E-002 2.68980071193947E-002
1.47166884674030E-002 7.95853593722073E-003 -1.34482920230687E-002 4.46521738263848E-004
-1.82254411843089E-002 6.86978329182478E-003 1.82722171149498E-003 1.37083192893552E-003 -1.86723332426791E-002 3.83789142851795E-003
7.48427307271382E-003 3.47007162385582E-003 -3.43410644493394E-003 8.52403746423493E-003
6.28448013249387E-003 2.12911002951682E-003 7.35343460306877E-004 6.33661555504167E-004
35, Holurus parki
4.98841358258526E-003 -5.84990508767790E-002 -3.50020154375456E-002 3.50034911993719E-002 -1.56667486542072E-002 -4.40360248228754E-002 3.04223695515770E-002 7.74889431393738E-003 -1.24385897132943E-002 5.12259543905365E-003
49
-1.50839304166728E-002 -2.59474923713621E-002 5.33086093214612E-003
4.63967784800373E-003 4.48360007360754E-004 5.58449480501163E-003 1.58016464193652E-004 -1.41434400136706E-003 2.89117278340254E-003
5.94374068717993E-003
1.61261456694624E-004 1.01866336441121E-003 -2.60677168577694E-003
1.62879519156041E-003
36, Kalops diophrys
7.56622220361610E-002 -1.99112476411198E-002 -6.08088658085016E-002
3.16656840471782E-002 2.83360376561102E-003 -2.65830631697965E-003
2.86794263270857E-002 -1.07952140052672E-003 -4.52642668037601E-003 6.77124568010780E-003
-3.34569367600967E-003 7.08919801489473E-004 5.23893942652677E-003 1.42837236630000E-002 6.89978750851689E-003 -6.33776674724022E-004 3.25578445821084E-003 7.84187363468807E-003 5.31298720248616E-003
4.36600892348093E-003
1.39330131600533E-003 -2.57862394981450E-003 -1.85768145142351E-003
6.43569878600630E-004
37, Kalops monophrys
6.93556418694088E-002 -3.35217869634258E-002 -6.98650262751256E-002 7.36722998905509E-003 1.19265755251909E-002 1.23872954956864E-002
1.18971042095757E-002 -6.24494324873737E-003 -1.58946822680511E-002
9.04595536457638E-003
-9.49052687057960E-003 6.01571028249550E-003 -4.60463855122724E-003 1.38232243548480E-002 1.25552878706212E-002 4.79231750465598E-004 3.45199696136097E-003 7.31381294926229E-003 -5.71583878800560E-005
6.01616246343967E-003
-3.32970808048434E-003 -1.54759083507586E-004 -1.16674868015064E-003
1.24213580380354E-003
38, Melanecta anneae
6.86679894552939E-002 -2.01782611244633E-002 8.67829895719327E-002
2.79197098425920E-002 -8.69337870465016E-002 1.88570465186768E-002
1.78986547851415E-002 1.05066540724570E-002 -2.12934393272689E-002 9.15513078916491E-004
1.58067640514484E-003 -9.58047427403454E-003 -8.69436315602399E-003 1.86161239420627E-002 1.17479222129642E-002 -8.22346258328053E-003 1.11932989612768E-002 7.36767489950981E-003 1.39449479501469E-003
3.33127954040233E-003
-9.34779974208328E-004 5.14381681203995E-003 4.52122216567664E-004 1.16547925797598E-003
39, Mentzichthys walchi
9.80539457889568E-002 2.57901369924425E-003 1.00067473326066E-002
7.78927904792288E-003 -1.28171009839554E-002 1.55857114316774E-002
3.45277108820975E-002 -8.06432092976121E-003 -9.89346233856497E-003
5.29667045513025E-003
-4.69868666528032E-003 -1.12115417146950E-002 4.78600280013346E-003
7.85298358782870E-003 -5.84509059442629E-004 5.19284249727298E-003 6.31346700342824E-003 9.65295701908683E-003 6.72162964125289E-003 3.82449901840065E-003
-3.26621790699359E-003 4.28855776525974E-003 -1.97085325835315E-004 1.98357028435309E-003
40, Mentzichthys jubbi
8.93015432199666E-002 1.48540580922724E-002 -4.48562090975862E-002
1.56817561040303E-002 2.53566023413233E-003 -2.91695141656557E-002
2.62257248055659E-002 1.40153376137098E-003 -5.02730352208712E-003 3.08642034352851E-003
50
-1.07734095860281E-002 -2.34181108465109E-003 1.34114649814317E-002 2.17926228409651E-003 8.68681856467550E-004 4.61425843045135E-003 1.08041561574396E-002 -4.35624215190156E-003 -8.66366733200851E-005
1.32251669909144E-003
5.74955924360485E-003 2.88075334449310E-003 3.40797295492374E-003 9.74044631331868E-004
41, Mesopoma carricki
8.81664153114271E-002
2.25505271532729E-002
1.31870353600703E-002
2.44775385859324E-003
1.54344279404274E-002
3.98872542293818E-005
6.27111886744924E-003
2.97960747069373E-003
9.20987664991155E-004
1.03605097603233E-003
3.86948982206707E-002 -4.76609300377201E-002
-2.91978525989342E-003 2.85329170434459E-002
1.19331608175456E-002 2.47620921082321E-002
2.39026467295833E-002 1.44912516459549E-004
-1.87537134531509E-005 5.34933830690081E-003
4.99666960026567E-003 5.25674056562768E-003
6.30944845941790E-003 -5.81794645332282E-004 -
42, Mesopoma crassum
-2.43904384907355E-002 2.21334467079096E-002 2.16459646516828E-003 –
2.17689385901334E-002 -5.43888205522293E-004 -2.68705844562575E-002 2.85580709327501E-002 -2.44948357524877E-003 6.23671230184937E-003
2.52429973193803E-002
-4.13460446108256E-003 -6.89054934927423E-003 -1.77855736822415E-002
-5.87662869191960E-003 1.09127638532612E-002 -2.15703801273213E-003
1.26557996397677E-003 1.63281251953917E-003 5.54625055817515E-004
1.38025909093444E-003
3.00381507249889E-003 4.82744422541802E-003 -4.59184092189823E-004
1.95185606824016E-004
43, Mesopoma planti
9.23156764599270E-002
2.49314274481329E-002
2.92588036328547E-003
1.17161621280167E-003
7.70716750087200E-003
6.86085554513034E-003
6.34758537420324E-003
3.65355491216345E-003
1.06203719213051E-003
5.16506467929171E-004
3.10920207993184E-002 -5.28118005280474E-002
-1.20957413607651E-003 3.08406286415602E-002 7.69401541048776E-003 1.85713726259159E-002 1.33101293591902E-002 -3.81912146004729E-003
-1.94799577619822E-003 3.57071259039853E-003
9.31051976941802E-003 5.87409560224397E-003
-1.19545240317967E-003 -7.14299576067999E-004 -
44, Mesopoma politum
4.54384130700111E-002 7.53123501861095E-003 -2.03728442650553E-002
1.20399565346141E-002 2.87278806126875E-003 4.42742029818712E-003 1.06471969421639E-002 1.26208420165980E-002 2.56526990823659E-002 1.01775641512881E-002
-8.08474654125604E-003 3.03749735432302E-003 -6.89561330328964E-003 7.73183362526223E-003 1.14402442325048E-002 1.38988643722193E-002
9.68651567976337E-003 1.46045358620238E-003 -2.48831278480692E-003
1.14681556013772E-003
3.81931325651437E-003 -4.99231348761776E-003 2.18521075295922E-003
1.44207597933957E-003
45, Microhapolepis serrata
3.75076822428453E-002 9.88341663136026E-003 5.20618048989704E-002 3.47506702776543E-002 7.04000479034574E-004 -1.56536347063254E-002 2.72546091951968E-002 -3.63353284905304E-002 2.51823319932678E-002 2.53942590623794E-002
51
3.71191354311874E-003 3.27714598668111E-002 -2.90676657381044E-003
1.56547719741789E-002 -1.09367280217505E-002 4.23616171241242E-003
3.38716443492556E-003 -6.98121893904640E-003 -4.26032210847477E-003 3.56429207795303E-003
-5.61136359802146E-003 3.77254468414882E-003 1.46451677488584E-003
3.87693688538013E-004
46, Mesopoma pulchellum
4.66780900477383E-003 1.38146004058096E-002 1.88921822306158E-002 1.59405396999925E-002 -6.13419790168188E-003 -1.95509561013597E-002 3.43018657957606E-003 -1.22295583018703E-002 1.23753211131954E-002
8.29502397100563E-003
8.86089604893629E-003 -2.14179131570333E-002 -9.50714288042164E-003 6.09635902602077E-004 3.81362028488102E-003 4.31506089008274E-003
8.36030453038249E-003 3.75552547228290E-003 1.35774686438637E-002 1.60440249250243E-003
-4.22580498523873E-003 -3.23279311356599E-003 3.40245880176912E-003 7.86210951651891E-004
47, Mansfieldiscus sweeti
6.96518158721748E-002 3.57872180290760E-002 3.47206203175387E-002
5.84504393566797E-002 -6.97349589932964E-002 -2.81856716048109E-003
1.06250384041180E-002 -1.96557616565861E-002 1.12426396626675E-002 7.36140561653715E-003
-6.36064611776492E-003 -1.17372374819336E-002 -9.51806355298458E-003
1.48244346055999E-002 -1.29886337725548E-002 5.00725930214411E-005
3.88754443337693E-003 -7.42658147295882E-004 -2.78711112256723E-003 1.98519179202890E-003
2.80634942105300E-003 -1.91376563685776E-003 -6.18203292159117E-004
1.27817178168986E-003
48, Novogonatodus kazantsevae
6.05266745127855E-002 4.09683952281375E-002 -8.36403837857583E-002
4.75879673093480E-002 -3.62730257181706E-003 1.32959280097940E-002
2.29807520422504E-002 -1.02188815781218E-002 2.15367470959883E-002 1.23868755327950E-003
8.97268944645789E-003 -3.55712936502743E-003 1.09467238607205E-002
1.58059311402473E-002 -9.68777295102432E-003 -3.83650710188894E-003 1.29097646008423E-004 -1.99747499847034E-003 -6.94387215387227E-003
4.38365806520363E-003
8.99594313317564E-003 -5.31163661327734E-003 1.72989386418814E-003
1.02713331323823E-003
49, Paramesolepis rhombus
-2.16244716574167E-001 5.92080441308961E-002 3.17351443069272E-002 6.71593048028822E-002 1.89745378428620E-002 1.49619866934308E-002
5.35142389545384E-002 -1.36733259735802E-002 4.28374538438224E-003
1.00684103141037E-002
-4.52375692377414E-003 4.44723048123535E-003 -9.01977325372842E-003
2.63106182734101E-003 6.75980620678222E-003 -8.94198729705750E-003 7.35942788981898E-004 -1.39521338768089E-002 4.26294413724648E-003
1.18014656437430E-002
-4.67113276222273E-004 1.33197900539724E-002 3.78685306544206E-003
9.40544379309648E-004
50, Paramesolepis tuberculata
-1.23740686992482E-001 2.36843458544941E-002 3.51032502379112E-002 1.86720374273116E-002 -7.29173021091097E-002 -1.62370906741305E-002
1.52477268198021E-002 2.27328743003938E-002 1.27295385352804E-002 3.43748762276745E-003
52
1.14163578649824E-002
1.56450993167925E-002
4.08815202118760E-003
2.51498656845742E-003
2.50553402187387E-003
1.20316293842572E-003
-4.58585543834307E-003 9.70841492370400E-003
1.67093331806549E-003 3.09900722587542E-002 3.04793293188332E-004 -6.25936136164450E-003 2.39131603457094E-003 -2.58787243618697E-004
51, Phanerorthynchus armatus
5.46086686261915E-002 2.18427804917820E-002 -1.16013690251358E-002 3.54933200605941E-002 -2.85730995266527E-002 3.92116334547729E-003 5.79439352406361E-002 -3.10743417566177E-002 -2.05165012963998E-003 1.90167904805048E-002
-2.85500964187351E-002 1.32060645311046E-003 -9.91269386320787E-003
2.14557798808359E-002 4.28861143976695E-003 -1.26910760799779E-002 3.60829780954031E-003 2.26137521355201E-002 3.94797824610718E-003
1.34908698837627E-005
-4.73314584651811E-004 -5.12150889893930E-004 2.98835278750370E-004 9.17092189303602E-005
52, Phanerosteon ovensi (Carboveles)
7.27521768027983E-002 2.40972330923944E-002 -1.45807777151191E-002 3.88360745316206E-002 -7.03535124502143E-003 2.50554474478680E-003
2.05982525972190E-004 2.28776620903316E-002 -2.41893738477018E-002
1.33308462982464E-002
2.00443270148414E-002 -7.92483987342611E-003 -1.51583902228615E-002 1.38621088498607E-002 8.23778879342751E-003 -8.80948637649283E-003 2.68177465678569E-003 -5.26915526004676E-003 -5.91845327776878E-003
4.24667653504356E-004
-1.45414703187108E-003 -3.98742665817879E-003 -3.30036109556410E-004
-2.36847100847260E-004
53, Phanerosteon mirabile
5.87607112557963E-002 -5.98085040412308E-003 5.75231160130953E-002 1.48137402722891E-002 3.30710695367935E-003 2.50349115171788E-003
1.72330105873039E-002 2.73510097071617E-002 -1.01779341592294E-002
1.65017742401170E-002
5.27987628471576E-004 3.11359205858051E-002 1.14653527553664E-002 9.64647718925939E-003 -1.12488233320372E-002 -6.41843566250119E-003
1.27953496528752E-003 -2.67701681171015E-003 5.63928703974883E-003
6.61650231727910E-004
-1.23613806616252E-002 -4.80869446091495E-003 -7.05259607077819E-004
-7.44727912087889E-004
54, Platysella lallyi
-4.07561955095808E-002 5.75347506048294E-002 -3.42496406310748E-002
4.04682565167140E-002 8.97209658834772E-002 3.24731319134097E-002 3.47533729323076E-002 -5.24524983067248E-003 -1.71038263463047E-002
4.14489567169273E-003
2.16535906787313E-002 -2.41079897817050E-002 4.19562331580351E-003 6.28520185255632E-003 1.57576091011747E-003 1.45032289107318E-002
9.92977468115567E-003 -2.90703466555508E-003 9.31576383970693E-003
7.38105883424705E-004
-1.16554429438183E-003 -2.06523934427810E-003 2.23080524898710E-003
5.04051745521686E-004
55, Platysomus superbus
-3.17240995644048E-001 1.14167671973883E-001 -2.53719809911582E-002 2.02145904491023E-002 -6.30845629329267E-003 3.77041743568133E-003
2.06983910424748E-002 -4.24775406162389E-003 -2.32230439971179E-003 4.63651534599509E-003
53
-2.62900778983202E-002 -1.42577217080702E-002 5.99935888553955E-003
8.97568943930306E-003 4.74249778781523E-004 -6.55191371598219E-003
2.21677354010415E-002 -1.00133447949578E-002 3.44474807215050E-003
6.68295654674559E-003
-5.78436622005539E-003 -9.42713523278379E-003 -4.50901170378618E-004
-1.13751877298189E-003
56, Platysomus Parvulus
-2.20050343472336E-001 1.60198540053555E-001 -1.68188618332405E-002 3.26282493698329E-002 -1.12547115693263E-002 4.04761520344757E-002 2.41805647492499E-002 2.67992578583402E-002 3.34504376882323E-002 2.16168922798203E-002
-3.07172748801758E-002 -1.22306608927648E-002 1.85463820945609E-002 2.96422417623601E-002 -1.04966751555120E-002 3.24857192445496E-003 2.25041055189579E-002 6.39979535695203E-004 1.03556627797945E-002 8.27724823259393E-003
2.21419088272146E-003 -2.28206665337409E-003 -9.43711930841587E-005 2.69169815915004E-004
57, Tarrasius problematicus
-9.85134303640507E-002 -3.08737389569396E-001 -9.14001445552779E-002
-6.40058774477784E-002 -5.59302091925193E-002 4.65674834926287E-002 1.62713253786848E-002 -1.26940207428404E-002 2.34949767406776E-002
5.28334003890706E-003
2.88851905481276E-002 -1.69828947533931E-002 -8.79696344668138E-003
2.90462029588505E-003 2.14322887598189E-003 -4.46199261441063E-004 1.23760351340204E-002 -8.88007792306683E-003 7.12327554400656E-003
6.50426668657701E-004
-5.66489979603250E-003 -2.35951955047141E-003 1.28333281347189E-003
7.00814274613305E-004
58, Proceramala montanensis
-1.39088667912350E-001 -3.24774884191015E-002 -9.91623517625531E-003
7.92230399830222E-003 -2.40891267274882E-002 -8.79742481096674E-003
4.06158575026045E-002 -1.67218156188845E-002 1.41802852743311E-002
5.30914428729947E-004
2.35894292347899E-002 5.74723436458652E-003 2.20360464995530E-002 7.12789258306517E-003 1.03008666467003E-002 -1.26889267240396E-002
2.86784080884154E-003 -4.09835012583213E-003 1.25591941440985E-003
2.57207183316243E-003
3.23731255330303E-003 2.72967121321042E-004 -2.06369268117578E-003 5.27209634075206E-004
59, Protoeurynotus traquairi
-5.89810783977254E-002 8.44640637479364E-003 2.95542038229712E-002 1.20130287244198E-002 7.77415302248148E-002 3.80853554401885E-003 1.02668459039941E-002 4.94062596114820E-002 -5.56733279134332E-003 7.22510180907275E-003
3.95527470995604E-003 8.69219714654193E-003 1.78677468915880E-002
1.82126621424347E-002 -7.82221361372427E-003 -9.22606721020150E-003 9.02958475780636E-003 5.84304168712317E-003 5.32841220226513E-003
6.42476006182878E-004
4.65992855534726E-003 -2.34681419622349E-003 1.66779977202000E-003
7.77200387004488E-004
60, Pyritocephalus Sculptus
1.15350806209872E-001 4.85741231939012E-002 -4.47339587483932E-002 7.13681373593384E-002 9.11782209709711E-003 -1.52291430365328E-002
1.07725053770286E-002 -5.93496707007647E-003 -2.07385506390489E-002 8.20200193680651E-003
54
-6.69543728898907E-003 5.77715922902695E-003 3.38445536597639E-003 1.79258359254896E-003 -8.72324220468229E-004 7.61784283175233E-003
8.39444087917666E-003 -1.18046634157632E-004 1.73390377212442E-003 4.40970074226833E-005
1.38350429055129E-003 9.52923299856633E-004 1.73263935242489E-003
8.66184023171167E-004
61, Pyritocephalus lineatus
1.15574937768477E-001 6.64708187711616E-002 -2.68587489010895E-002 7.15990263456784E-002 1.16741123367067E-002 -8.59824902960035E-003
1.81348254486243E-002 -6.50038432126306E-003 -1.40887096941906E-002 6.58412092035105E-003
5.91713095923063E-004 -6.62779549143978E-004 -4.55189488435629E-003 7.15296296276599E-003 -2.71936964316596E-003 5.72140891081597E-003
4.86291240033432E-003 1.54329741580329E-004 3.37218011151340E-003
1.75690895353452E-003
4.54663148786235E-003 9.56564742340846E-004 -1.53768208721997E-003 1.72907661558366E-003
62, Rhadinichthys canobiensis
1.06926604965415E-001 2.08379923298323E-002 -3.15302490098279E-002
4.56711746480856E-002 -2.41536589099422E-002 -3.59166147024626E-003
2.93384578245900E-002 2.58702015716704E-002 2.66609824666604E-002 1.09746240846964E-002
6.41879202456637E-003 2.66830840459268E-002 4.38750565125302E-003 1.30276386391670E-002 6.37068692255898E-003 5.43329410288927E-003
4.00957966522535E-003 -6.16213131132627E-004 1.99340000613138E-003 3.57472466721514E-003
-3.74022523329837E-003 3.82202747215347E-004 4.74654174852649E-004
7.84615182079519E-004
63, Rhadinichthys fusiformis
3.02763095990759E-002 -3.98756417280097E-003 -4.50794725305478E-003
1.44405178125952E-002 -1.55911150444886E-002 -4.13371752673147E-002
2.40311407664809E-002 2.20981701562176E-002 1.49930044017435E-002
1.33831990945569E-002
3.18840579495964E-004 -6.88324198826857E-003 -3.88455803732434E-003
7.64159902887746E-003 1.21967157147266E-002 1.26203799105274E-002
1.14297275569600E-003 4.86958338166582E-003 -9.50628523769882E-003
2.98581418614589E-003
-2.40967420183339E-003 -2.56651804606314E-003 3.79769736840961E-003
1.71563547264125E-003
-
-
-
64, Sceletophorus biserialis
1.34420602761240E-003 -4.14523868762946E-002 1.46327648847074E-001 1.00134494336293E-002 1.65849926181904E-002 3.05963067935785E-002
1.83780069324402E-002 6.87420231579607E-003 1.54556324787421E-002 2.36471608802676E-002
-3.57497642157661E-003 -1.28841235567694E-002 -1.00294514470262E-002
-9.61107112246667E-003 -1.15991119241372E-002 4.15157410360556E-003
1.03001204195572E-002 1.06381518010429E-002 -1.53009939911913E-002
9.95604330191692E-003
1.09097539310777E-004 -1.21478424639581E-003 1.76875279554860E-003
6.61540058224136E-004
65, Soetendalichths cromptoni
-2.21003474243934E-001 -9.57708657825391E-002 -4.15176178126357E-002
6.22719366782937E-002 -2.59296306039149E-003 -3.01058651844269E-002
4.31648231309943E-003 1.00089808966542E-002 -1.41731260895585E-003 9.19659915643413E-003
55
-2.92851280447401E-002 1.10305512430898E-002
2.53605942733950E-003 -9.31036136020133E-004
4.81325736087649E-003 -6.72822968033990E-003
4.92009101428937E-004
3.46721664373717E-003 -1.53817235764036E-003
6.05067342351272E-003
-2.97051796160001E-002
6.27917490135382E-003
4.09255779263406E-003 -1.22178155368694E-003 -
66, Sphaerolepis kounoviensis
1.01162116263850E-002 -2.88379619655995E-002 1.03405820845782E-001 5.81652116545316E-004 4.70197909533694E-002 1.01009786497184E-002
1.75823275706688E-002 2.02799744777740E-002 1.37279126052486E-002 8.98214630098170E-003
4.74825766142124E-003 -1.90169201698906E-002 -3.93135450503431E-003
8.19146831761679E-003 -1.06399003983452E-003 -3.08019964414814E-003 4.91651587224400E-003 -6.41741905211643E-003 -3.78185916628580E-003 4.88676116778833E-004
-6.29033069648970E-003 5.84234731702388E-004 -1.54741689250311E-003 1.09442287677044E-003
67, Strepheoschema fouldenensis
1.13589899840232E-002 6.69698558384025E-003 3.53253528296287E-002
8.74742549281181E-003 2.94963643953924E-002 5.18797920358101E-002
2.40929339079535E-002 -8.62457314610876E-003 3.12348830966240E-003
2.49392477569555E-002
-6.69728896249291E-003 -1.38044417692916E-002 2.47550801494019E-003
6.84941179949583E-003 -7.77454368825872E-003 1.27722820328460E-002
4.33609111536213E-003 7.75053384823755E-003 -1.02191550878607E-002 3.01378077262651E-003
-5.50629273295415E-003 1.72038109751528E-003 -7.70653175906893E-004 3.42435731445227E-004
68, Sundayichthys elegantulus
5.75096649446188E-004 -2.53560916024527E-002 2.17970345749496E-002
2.77779981759568E-002 1.48471424528871E-002 -4.07349129394129E-002
4.84960458015837E-003 1.16296201738879E-002 6.73184679663114E-003 4.95095737039684E-004
1.72335576908537E-002 -1.62032296127200E-002 -9.72899950218509E-004
4.78463036289272E-003 -4.20303315683301E-003 -9.61912619112112E-003
3.91409272283611E-003 5.89474581868104E-003 6.28145144820890E-003
3.01295394576280E-003
4.88236227202143E-003 6.27675882406604E-003 6.96881943812273E-004 1.08762332269721E-004
69, Wendyichthys lautreci
-4.85403821399446E-004 -7.46127101161313E-002 8.30420830594139E-002 2.66740980432755E-002 1.33423171612343E-002 -2.12322227371752E-003
2.76507346036880E-002 1.43026533978400E-003 -1.47352881613637E-002
1.60379217987087E-002
-6.85332670093472E-003 8.31334059730678E-004 2.45743778266751E-002
4.66964622677257E-005 -6.16202016268109E-003 4.36899708074015E-004
4.56087704855677E-003 1.31689290072973E-002 -9.49479871945548E-004 5.28708513174227E-003
-2.29660866457086E-003 1.34797640431968E-003 4.08207547578672E-004 7.87209446618438E-004
70, Wendyichthys dicksoni
1.00303261664030E-001 1.22012875175973E-003 -3.20102694550177E-003
2.44747079459717E-002 -1.66737098246214E-002 1.47968688995507E-002 1.64539496942635E-002 3.09521653428895E-002 -1.55281940485964E-002 2.41315745710697E-002
56
2.38899490105334E-003 -1.47529508985744E-002 5.97743619250631E-003
3.44903209276940E-003 6.67790666359933E-004 -8.05079157526307E-003
4.11413348220620E-003 -5.25840400344394E-004 -1.73892189631620E-003
1.12476590416021E-002
-1.45092540455004E-003 1.15709420567268E-003 -2.24508119756652E-003
5.83244939534836E-005
71, Willomorichthys striatulus
-2.99366162049210E-002 1.27420772529003E-004 1.50342791834756E-003
5.39574384740668E-002 1.86458271391172E-002 -1.76402926202367E-002
5.79640238220382E-004 -2.66395902159164E-002 1.41919030663452E-002
1.63274547527823E-002
1.22800332351083E-002 -8.67067348859910E-004 4.64765620648514E-003
9.01066670851697E-004 3.20486010842478E-003 -1.12845526905023E-003
1.09542610075587E-002 -2.02694642869796E-003 6.39748807982623E-003
1.76529600714615E-003
2.39893081836214E-003 -1.69762262264710E-003 1.66953820592771E-004
3.68472143613545E-005
-
-
-
72, Woodichthys bearsdeni
4.44932948433608E-002 -2.01436202387986E-002 3.42002821918796E-002
3.02881779515157E-002 2.52509566079743E-002 -4.51739452378324E-003 3.31128619040526E-002 -2.86178566486607E-003 -1.52886003304236E-002
3.18735684814222E-003
-1.79330541697223E-002 8.86295720887736E-003 3.69682440129310E-003 7.39492466640634E-003 1.27490607918397E-002 -6.96467076523607E-003 8.61975685948437E-003 -1.24092894143001E-002 -9.31249244336979E-003 3.59232106729056E-003
1.83496165295796E-003 1.10936992732022E-003 3.28186781456296E-003
2.25747931915144E-004
57
Relative warp scores
The relative warp scores that are available in the program (tpsRelw).
RW
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Percentage of
total variance
44.03%
21.30%
11.94%
5.51%
4.06%
2.54%
2.50%
1.65%
1.24%
1.02%
0.83%
0.73%
0.56%
0.49%
0.40%
0.29%
0.26%
0.22%
0.16%
0.10%
0.07%
0.06%
0.01%
0.01%
Cumulative
variance
44.03%
65.33%
77.28%
82.79%
86.85%
89.39%
91.89%
93.54%
94.78%
95.81%
96.63%
97.36%
97.92%
98.40%
98.81%
99.10%
99.36%
99.58%
99.74%
99.85%
99.91%
99.98%
99.99%
100.00%
Landmarks
The x and y coordinates on the landmarks on the Devonian (1-8) and Carboniferous
(9-72) fishes. There are fourteen landmarks, were the last one (number 14) is a sliding
landmark. See also figure 8 and 9.
1, Cheirolepis Canadensis (417, 445)(52, 631)(424, 725)(1549,
608)(1738, 584)(1804, 584)(2372, 733)(1811, 480)(1646, 428)(521,
336)(519, 384)(116, 617)(177, 598)(881, 715)
2, Cuneognathus gardineri (561, 424)(87, 582)(566, 813)(1193,
804)(1587, 756)(1919, 775)(2801, 995)(1955, 481)(1757, 471)(778,
301)(792, 396)(174, 603)(295, 603)(853, 849)
3, Howqualepis rostridens (318, 282)(52, 379)(290, 490)(969,
535)(1153, 532)(1410,492)(1915, 626)(1351, 336)(1191, 313)(396,
216)(406, 249)(106, 384)(139, 377)(589, 525)
4, Limnomis deleneyi (703, 481)(111, 611)(599, 924)(1486, 979)(2011,
887)(2490, 839)(3478, 1170)(2575, 464)(2240, 474)(771, 361)(896,
472)(233, 655)(349, 651)(1030, 999)
58
5, Mimia toombsi (2297, 1354)(607, 1994)(2221, 2644)(5342,
3153)(7075, 2904)(8354, 2763)(10520, 3055)(8278, 1636)(6685,
1354)(2665, 1094)(2990, 1333)(1040, 1972)(1387, 1972)(3933, 3131)
6, Moythomasia nitida (766, 341)(110, 567)(803, 928)(1729, 981)(2075,
868)(2574, 780)(3484, 966)(2498, 448)(2103, 432)(863, 219)(1061,
357)(201, 551)(345, 551)(1223, 979)
7, Stegotrachelus finlayi (271, 250)(19, 369)(256, 483)(786,
583)(1028, 525)(1256, 469)(1649, 453)(1222, 317)(1092, 296)(330,
195)(382, 240)(66, 364)(126, 367)(530, 594)
8, Cheirolepis trailli (683, 552)(143, 879)(556, 1005)(2377,
752)(2784, 740)(3125, 756)(3968, 843)(3156, 596)(2825, 505)(870,
368)(877, 444)(239, 854)(327, 843)(1265, 961)
9, Acrolepis gigas (343, 356)(41, 427)(298, 632)(950, 725)(1155,
695)(1666, 615)(2165, 787)(1713, 420)(1483, 358)(347,
240)(465,300)(120, 480)(186, 480)(618, 706)
10, Adroichthys tuberculatus (300, 317)(81, 458)(296, 701)(1076,
829)(1376, 636)(1503, 602)(1768, 758)(1477, 396)(1342, 315)(457,
225)(454, 330)(161, 503)(238, 497)(656, 1009)
11, Aeduella blainvillei (319, 245)(96, 356)(334, 562)(834, 618)(999,
556)(1245, 498)(1858, 695)(1295, 311)(1181, 314)(453, 188)(491,
259)(158, 380)(300, 381)(571, 624)
12, Aesopichthys erinaceus (434, 155)(45, 417)(394, 799)(898,
992)(1714, 735)(1952, 688)(2596, 1027)(1945, 436)(1740, 395)(632,
146)(648, 329)(167, 419)(271, 436)(618, 916)
13, Aesopichthys fulcratus (488, 579)(90, 808)(490, 1029)(1424,
1258)(2054, 992)(2349, 918)(3117, 1008)(2320, 515)(2226, 515)(672,
409)(674, 478)(167, 812)(332, 793)(935, 1251)
14, Aetheretmon valentiacum (288, 304)(70, 400)(269, 532)(738,
548)(968, 418)(1098, 365)(1562, 373)(1091, 203)(994, 217)(313,
223)(334, 242)(102, 408)(165, 403)(490, 582)
15, Australichthys longidorsalis (435, 455)(70, 687)(399, 882)(1080,
1108)(1951, 783)(2372, 699)(3274, 841)(2413, 494)(2313, 487)(661,
368)(657, 430)(109, 666)(257, 662)(722, 1030)
16, Bourbonella guilloti (261, 298)(33, 358)(232, 582)(941,
627)(1124, 528)(1411, 467)(2017, 602)(1386, 243)(1224, 274)(308,
241)(417, 300)(88, 391)(212, 403)(530, 665)
17, Canobius elegantulus (347, 170)(142, 297)(409, 523)(912,
587)(1218, 506)(1438, 463)(1966, 480)(1354, 282)(1220, 268)(526,
120)(542, 165)(218, 330)(366, 330)(665, 579)
18, Canobius ramsayi (294, 268)(97, 426)(364, 609)(883, 628)(1206,
508)(1411, 453)(1958, 398)(1308, 254)(1202, 262)(472, 172)(479,
204)(144, 441)(314, 426)(647, 645)
19, Cheirodopsis geikei (257, 220)(37, 213)(230, 519)(440, 643)(785,
505)(850, 495)(1191, 620)(834, 370)(818, 351)(337, 133)(355,
193)(123, 339)(205, 343)(320, 594)
59
20, Chirodus granulosus (308, 561)(33, 604)(351, 978)(842,
1307)(1269, 787)(1329, 767)(1725, 1079)(1347, 615)(1245, 590)(339,
397)(417, 430)(189, 754)(263, 744)(722, 1250)
21, Cryphiolepis striatus (351, 288)(107, 436)(345, 523)(930,
514)(1085, 461)(1393, 362)(1869, 442)(1360, 233)(1265, 233)(437,
180)(470, 219)(160, 432)(207, 420)(662, 542)
22, Cycloptychius concentricus (212, 150)(34, 221)(176, 263)(606,
265)(744, 237)(816, 233)(1105, 268)(846, 153)(744, 156)(269,
132)(287, 143)(58, 206)(118, 201)(405, 276)
23, Cyranohis bergeraci (553, 324)(73, 510)(528, 719)(1616,
692)(1910, 650)(2399, 574)(2935, 882)(2404, 420)(2043, 329)(599,
280)(767, 311)(143, 469)(257, 462)(1055, 736)
24, Discoserra pectinodon (99, 115)(42, 127)(136, 221)(204, 261)(333,
162)(345, 155)(409, 179)(339, 118)(331, 104)(107, 74)(147, 101)(81,
160)(108, 160)(171, 248)
25, Elonichtys pulcherrimus (379, 201)(79, 373)(343, 540)(788,
656)(1105, 555)(1356, 511)(1887, 580)(1365, 321)(1220, 290)(511,
145)(517, 195)(136, 353)(243, 349)(549, 617)
26, Elonichtys serratus (334, 189)(44, 329)(285, 435)(883, 524)(1132,
479)(1416, 442)(1915, 524)(1392, 288)(1264, 281)(428, 167)(430,
195)(114, 307)(225, 307)(544, 500)
27, Elonichtys spaerosideriarum (283, 218)(98, 258)(262, 385)(521,
398)(630, 341)(792, 291)(1057, 332)(796, 190)(675, 168)(287,
152)(297, 174)(129, 296)(174, 293)(372, 404)
28, Frederichthys musadentatus (458, 384)(83, 549)(455, 782)(862,
879)(1157, 700)(1381, 608)(1884, 721)(1370, 393)(1285, 363)(526,
224)(600, 305)(170, 538)(269, 533)(655, 845)
29, Gonatodus punctatus (233, 302)(45, 394)(212, 485)(587, 549)(761,
445)(895, 377)(1214, 456)(900, 267)(842, 262)(300, 239)(306, 276)(98,
393)(145, 390)(395, 525)
30, Guildayichthys carnegiei (83, 84)(17, 101)(82, 202)(155,
253)(306, 187)(333, 182)(417, 217)(338, 130)(318, 117)(100, 53)(126,
102)(48, 129)(79, 132)(119, 231)
31, Haplolepis corrugate (296, 213)(51, 245)(271, 427)(1066,
437)(1192, 404)(1334, 386)(1805, 433)(1321, 251)(1250, 222)(404,
162)(452, 207)(110, 276)(212, 281)(636, 473)
32, Haplolepis ovioidea (266, 188)(42, 259)(277, 414)(909, 447)(1050,
417)(1196, 395)(1777, 480)(1271, 228)(1189, 215)(490, 139)(489,
178)(107, 266)(230, 269)(588, 466)
33, Haplolepis tuberculata (239, 178)(38, 213)(280, 390)(1023,
452)(1173, 425)(1275, 405)(1798, 486)(1297, 251)(1196,232)(426,
152)(452, 178)(98, 253)(212, 253)(651, 470)
34, Paratarrasius hibbardi (305, 205)(56, 177)(233, 377)(401,
461)(1990, 295)(2003, 295)(2589, 42)(1561, 133)(1552, 131)(312,
115)(372, 257)(95,200)(155, 227)(316, 424)
60
35, Holurus parki (240, 166)(45, 272)(239, 380)(616, 392)(914, 292)
(023, 266)(1309, 254)(938, 179)(900, 181)(359, 146)(367, 169)(78,
267)(155, 264)(438, 412)
36, Kalops diophrys (460, 184)(57, 365)(397, 512)(1343, 569)(1824,
479)(2031, 460)(2666, 669)(2086, 266)(1899, 262)(514, 145)(565,
215)(139, 359)(271, 360)(836, 583)
37, Kalops monophrys (508, 317)(73, 472)(397, 638)(1395, 679)(1921,
551)(2088, 535)(2739, 607)(2034, 320)(1833, 310)(512, 291)(596,
345)(163, 491)(297, 486)(912, 706)
38, Melanecta anneae (512, 380)(66, 525)(432, 641)(858, 634)(1097,
621)(1372, 610)(1909, 858)(1388, 473)(1236, 454)(505, 310)(600,
380)(138, 530)(233, 522)(662, 633)
39, Mentzichthys walchi (504, 304)(75, 452)(476, 577)(1363,
613)(1653, 555)(1958, 492)(2725, 774)(1955, 332)(1779, 304)(586,
237)(625, 261)(148, 429)(259, 417)(858, 623)
40, Mentzichthys jubbi (518, 379)(108, 593)(488, 720)(1676,
783)(2069, 642)(2288, 601)(3105, 818)(2417, 408)(2202, 427)(706,
304)(722, 350)(152, 575)(306, 544)(1203, 844)
41, Mesopoma carricki (414, 353)(122, 489)(439, 605)(1239, 612)(1473,
584)(1688, 553)(2174, 691)(1739, 379)(1502, 309)(460, 237)(489,
277)(165, 487)(300, 470)(805, 632)
42, Mesopoma crassum (253, 181)(69, 271)(220, 389)(606, 430)(761,
344)(884, 300)(1164, 331)(845, 193)(785, 186)(322, 130)(328,
156)(107, 291)(184, 282)(420, 443)
43, Mesopoma planti (488,404)(89, 559)(507, 713)(1534, 709)(1829,
674)(2171, 624)(2717, 775)(2171, 400)(1871, 329)(551, 274)(584,
322)(182, 558)(315, 543)(999, 747)
44, Mesopoma politum (168,126)(3, 198)(155, 301)(539, 302)(684,
263)(835, 258)(1085, 304)(833, 164)(723, 153)(220, 78)(228, 97)(37,
201)(116, 192)(319, 318)
45, Microhapolepis serrata (306,192)(100, 256)(341, 443)(895,
512)(1073, 496)(1296, 492)(1818, 577)(1344, 300)(1135, 217)(555,
132)(536, 181)(161, 271)(287, 275)(607, 511)
46, Mesopoma pulchellum (382, 191)(101, 336)(363, 537)(972,
566)(1217, 484)(1445, 423)(1940, 556)(1381, 244)(1316, 231)(531,
141)(531, 163)(164, 345)(287,322)(649, 583)
47, Mansfieldiscus sweeti (423, 361)(78, 494)(408, 613)(1009,
610)(1177, 529)(1507, 515)(1953, 803)(1548, 364)(1350, 323)(558,
236)(558, 295)(148, 477)(206, 471)(705, 631)
48, Novogonatodus kazantsevae (316, 371)(122, 488)(369, 592)(1100,
664)(1366, 543)(1562, 538)(1906, 742)(1581, 373)(1413, 360)(417,
263)(436, 324)(170, 486)(220, 474)(731, 682)
49, Paramesolepis rhombus (267, 182)(129, 201)(283, 619)(569,
813)(955, 541)(987, 527)(1469, 754)(976, 358)(955, 346)(393,
121)(417, 158)(153, 388)(279, 379)(416, 739)
61
50, Paramesolepis tuberculata (349, 333)(110, 457)(445, 663)(697,
721)(1034, 488)(1139, 484)(1536, 620)(1110, 356)(1044, 346)(477,
206)(507, 228)(169, 468)(308, 451)(565, 699)
51, Phanerorthynchus armatus (428, 237)(87, 340)(432, 501)(1079,
527)(1277, 457)(1543, 396)(1910, 465)(1459, 267)(1227, 221)(609,
204)(597, 261)(234, 377)(311, 372)(749, 564)
52, Phanerosteon ovensi (Carboveles) (485, 283)(121, 425)(432,
580)(1200, 564)(1432, 514)(1591, 486)(2156, 510)(1538, 298)(1462,
298)
(506, 201)(628, 258)(195, 440)(300, 432)(797, 593)
53, Phanerosteon mirabile (441, 208)(124, 356)(445, 469)(995,
474)(1221, 432)(1390, 401)(2082, 398)(1462, 211)(1314,178)(494,
134)(515, 161)(190, 351)(254, 342)(710, 474)
54, Platysella lallyi (301, 355)(105,440)(341, 736)(1045, 802)(1227,
633)(1561, 479)(1950, 530)(1493, 268)(1400, 266)(269, 301)(409,
338)(156, 479)(258, 462)(693, 860)
55, Platysomus superbus (224, 252)(89, 296)(258, 750)(441, 917)(833,
540)(866, 544)(1111, 730)(852, 418)(831, 400)(340, 196)(340,
236)(174, 465)(225, 458)(346, 859)
56, Platysomus Parvulus (367,260)(93, 364)(538, 952)(968, 1034)(1280,
682)(1440, 624)(1826, 839)(1446, 498)(1255, 453)(486, 165)(546,
182)(269, 596)(380, 575)(657, 1192)
57, Tarrasius problematicus (312, 188)(39, 347)(372, 552)(407,
565)(2123, 418)(2136, 415)(2495, 286)(1433, 154)(1427, 154)(395,
136)(601, 176)(110, 368)(243, 354)(387, 560)
58, Proceramala montanensis (321, 443)(45, 750)(476, 1106)(971,
1278)(1820, 846)(1908, 801)(2672, 1058)(1867, 4889(1768, 504)(512,
320)(589, 464)(146, 804)(325, 787)(709,1211)
59, Protoeurynotus traquairi (255, 230)(50, 247)(302, 570)(714,
834)(1014, 733)(1269, 700)(1834, 803)(1297, 537)(1240, 520)(380,
160)(410, 212)(125, 351)(212, 360)(473, 718)
60, Pyritocephalus Sculptus (448, 203)(104, 295)(434, 507)(1464,
495)(1655, 443)(1740, 443)(2422, 498)(1771, 276)(1608, 252)(634,
167)(637, 219)(165, 307)(318, 295)(910, 542)
61, Pyritocephalus lineatus (325, 158)(64, 222)(316, 399)(1115,
378)(1210, 359)(1299, 352)(1844, 422)(1318, 210)(1212, 201)(460,
121)(467, 158)(106, 246)(236, 243)(655, 436)
62, Rhadinichthys canobiensis (318, 322)(38, 508)(323, 553)(1000,
489)(1219, 461)(1391, 454)(1875, 576)(1521, 324)(1306, 282)(373,
225)(394, 256)(85, 468)(198, 447)(641, 524)
63, Rhadinichthys fusiformis (373, 244)(42, 419)(307, 536)(938,
600)(1217, 525)(1424, 520)(1884, 558)(1394, 352)(1295, 338)(505,
171)(507, 199)(94, 383)(241, 364)(628, 613)
64, Sceletophorus biserialis (162, 171)(16, 210)(180, 341)(382,
327)(487, 298)(697, 310)(1070, 360)(665, 195)(613, 189)(217,
113)(229, 158)(44, 239)(118, 232)(258, 349)
62
65, Soetendalichths cromptoni (364, 429)(78, 464)(324, 898)(542,
1099)(1426, 664)(1563, 633)(1947, 753)(1518, 448)(1452, 426)(460,
257)(472, 329)(205, 631)(314, 633)(449, 1017)
66, Sphaerolepis kounoviensis (166, 217)(57, 272)(196, 369)(453,
379)(554, 339)(746, 303)(1107, 325)(714, 211)(686, 211)(223,
170)(252, 179)(81, 290)(137, 284)(320, 382)
67, Strepheoschema fouldenensis (271, 299)(59, 361)(271, 510)(740,
563)(922, 453)(1170, 419)(1642, 541)(1107, 278)(1006, 257)(272,
212)(306, 236)(97,369)(153, 363)(496, 580)
68, Sundayichthys elegantulus (522, 428)(108, 669)(516, 922)(1405,
1095)(1923, 960)(2356, 847)(3210, 1052)(2329, 569)(2298, 553)(778,
292)(779, 419)(170, 678)(370, 664)(939, 1035)
69, Wendyichthys lautreci (468, 305)(51, 498)(472, 707)(1052,
828)(1590, 697)(1879, 629)(2925, 754)(1828, 383)(1729, 383)(614,
224)(604, 319)(127, 461)(253, 455)(768, 782)
70, Wendyichthys dicksoni (522, 245)(27, 448)(532, 635)(1458,
623)(1769, 590)(2249, 567)(2898, 686)(2222, 370)(1992, 321)(590,
175)(727, 271)(109, 446)(228, 448)(995, 634)
71, Willomorichthys striatulus (446, 557)(47, 808)(401, 1063)(1356,
1340)(1904, 1132)(2338, 1003)(3118, 1328)(2397, 635)(2183, 639)(626,
444)(676, 514)(131, 812)(294, 804)(839, 1316)
72, Woodichthys bearsdeni (354, 370)(58, 489)(268, 614)(868,
708)(1088, 650)(1400, 584)(1917, 639)(1447, 416)(1233, 414)(402,
320)(478, 379)(112, 492)(175, 489)(549, 698)
63
Appendix 4
Reconstruction of Devonian and
Carboniferous fishes.
Devonian:
Cheirolepis Canadensis (Arratia et al 1996)
Stegotrachelus finlayi (Swartz Brian 2007, not
publish)
Cheirolepis trailli (Pearson et al 1979)
Carboniferous:
Cuneognathus gardineri (Fridman et al 2006)
Acrolepis gigas (Stamberg 2006)
Howqualepis rostridens (Long 1988)
Adroichthys tuberculatus (Gardiner 1969)
Limnomis deleneyi (Daeschler 2000)
Aeduella blainvillei (Poplin & Dutheil 2005)
Mimia toombsi (Gardiner 1984)
Aesopichthys erinaceus (Poplin & Lund 2000)
Moythomasia nitida (Jessen 1968)
64
Aesopichthys fulcratus (Gardiner 1969)
Cheirodopsis geikei (Moy-Thomas et al 1938)
Aetheretmon valentiacum (White1927)
Chirodus granulosus (Moy-Thomas et al
1971)
Australichthys longidorsalis (Gardiner 1969)
Cryphiolepis striatus (Moy-Thomas et al
1971)
Bourbonella guilloti (Poplin & Dutheil 2005)
Cycloptychius concentricus (Moy-Thomas et
al 1938)
Canobius elegantulus (Moy-Thomas et al
1938)
Cyranohis bergeraci (Poplin & Lund 1997)
Canobius ramsayi (Moy-Thomas et al 1938)
65
Discoserra pectinodon (Lund 2000)
Haplolepis currugata (Lowney 1980)
Elonichtys pulcherrimus (Moy-Thomas et al
1938)
Haplolepis ovioidea (Lowney 1980)
Elonichtys serratus (Moy-Thomas et al 1938)
Haplolepis tuberculata (Lowney 1980)
Elonichtys spaerosideriarum (Stamberg 2006)
Paratarrasius hibbardi (Lund & Poplin 2002)
Frederichthys musadentatus (Coates 1993)
Holurus parki(Moy-Thomas et al 1938)
Kalops diophrys (Lund & Poplin 2002)
Gonatodus punctatus (Dineley et al 1999)
Kalops monophrys (Lund & Poplin 2002)
Guildayichthys carnegiei (Lund 2000)
Melanecta anneae sp.nov (Coates 1998)
66
Mentzichthys walchi (Jubb 1965)
Mansfieldiscus sweeti (Long 1988)
Mentzichthys jubbi (Gardiner 1969)
Novogonatodus kazantsevae (Long 1988)
Mesopoma carricki (Coates 1993)
Paramesolepis tuberculata (Moy-Thomas et al
1938)
Mesopoma crassum (Dineley et al 1999)
Mesopoma planti (Coates 1999)
Paramesolepis rhombus (Moy-Thomas et al
1938)
Mesopoma politum (Dineley et al 1999)
Phanerorthynchus armatus (Moy-Thomas et al
1971)
Microhapolepis serrata (Lowney 1980)
Phanerosteon ovensi(Carboveles) (White
1927)
Mesopoma pulchellum (Moy-Thomas et al
1938)
67
Phanerosteon mirabile (White 1927)
Protoeurynotus traquairi (Moy-Thomas et al
1938)
Platysella lallyi (Poplin & Dutheil 2005)
Pyritocephalus lineatus (Moy-Thomas et al
1971)
Pyritocephalus sculptus (Westoll 1944)
Platysomus superbus (Moy-Thomas et al
1938)
Platysomus Parvulus (Moy-Thomas et al
1971)
Tarrasius problematicus (Lund & Poplin
2002)
Rhadinichthys canobiensis (Dineley et al
1999)
Rhadinichthys fusiformis (Dineley et al 1999)
Sceletophorus biserialis (Stamberg 2006)
Soetendalichths cromptoni (Gardiner 1969)
Proceramala montanensis (Lund & Poplin
2002)
68
Sphaerolepis kounoviensis (Stamberg 2006)
Strepheoschema fouldenensis (White 1927)
Sundayichthys elegantulus (Gardiner 1969)
Wendyichthys lautreci (Lund & Poplin 1997)
Wendyichthys dicksoni (Lund & Poplin 1997)
Willomorichthys striatulus (Gardiner 1969)
Woodichthys bearsdeni sp.nov (Coates 1998)
69