Journal of Financial Economics 119 (2016) 578–598 Contents lists available at ScienceDirect Journal of Financial Economics journal homepage: www.elsevier.com/locate/finec Nominal price illusionR Justin Birru a,∗, Baolian Wang b,∗∗ a b Fisher College of Business, The Ohio State University, Columbus, OH 43215, USA Gabelli School of Business, Fordham University, New York, NY 10023, USA a r t i c l e i n f o Article history: Received 9 October 2014 Revised 1 May 2015 Accepted 29 May 2015 Available online 22 January 2016 JEL classification: G02 G11 G12 G13 G14 Keywords: Nominal price Skewness Stock splits Options Behavioral finance a b s t r a c t We explore the psychology of stock price levels and provide evidence that investors suffer from a nominal price illusion in which they overestimate the room to grow for low-priced stocks relative to high-priced stocks. While it has become increasingly clear that nominal price levels influence investor behavior, why prices matter to investors is a question that as of yet has gone unanswered. We find widespread evidence that investors systematically overestimate the skewness of low-priced stocks. In the broad cross-section of stocks, we find that investors substantially overweight the importance of price when forming skewness expectations. Asset pricing implications of our findings are borne out in the options market. A zero-cost option portfolio strategy that exploits investor overestimation of skewness for low-priced stocks generates significant abnormal returns. Finally, investor expectations of future skewness increase drastically on days that a stock undergoes a split to a lower nominal price. Empirically, however, future physical skewness decreases following splits. © 2016 Elsevier B.V. All rights reserved. 1. Introduction R We are grateful for valuable comments received from Yakov Amihud, Nicholas Barberis, Brian Boyer, Kalok Chan, Zhi Da, Sudipto Dasgupta, David Hirshleifer, Nishad Kapadia, Bingxin Li, Laura Liu, Xuewen Liu, Abhiroop Mukherjee, Sophie Ni, Kasper Nielsen, Mark Seasholes, Rik Sen, Bruno Solnik, John Wei, Joakim Westerhold, Chu Zhang, Guochang Zhang, Feng Zhao, and seminar participants at AFA 2014, Yale Whitebox Advisors Graduate Student Conference 2013, Asian Finance Association 2013, Financial Management Association Asia 2013, Financial Management Association Europe 2013, Financial Management Association 2013, Hong Kong University of Science and Technology, Hong Kong Baptist University, The Ohio State University, Sun Yat-sen University and Tsinghua University. We also thank Patrick Dennis for providing the computational code. All errors are our responsibility. ∗ Corresponding author. Tel.: +1 614 688 1299; fax: +1 614 292 2418. ∗∗ Corresponding author. Tel.: +1 212 636 6118; fax: +1 646 312 8295. E-mail addresses: [email protected] (J. Birru), [email protected] (B. Wang). http://dx.doi.org/10.1016/j.jfineco.2016.01.027 S0304-405X(16)0 0 034-9/© 2016 Elsevier B.V. All rights reserved. The level of a firm’s stock price is arbitrary as it can be manipulated by the firm via altering the number of shares outstanding. Nevertheless, nominal prices clearly influence investor behavior. For example, individuals tend to hold lower-priced stocks than institutions.1 Schultz (20 0 0) finds additional evidence of investor price-level preferences, showing an increase in the number of small shareholders following a split to a lower price level. Fernando, Krishnamurthy, and Spindt (2004) find that IPO offer price plays a strong role in determining investor composition. Finally, Green and Hwang (2009) find particularly strong evidence that investors categorize stocks based on price. They show that similarly priced stocks move together; after a stock split, splitting stocks experience increased comovement 1 See Gompers and Metrick (2001), Dyl and Elliot (2006), Kumar and Lee (2006), and Kumar (2009). J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 with low-priced stocks and decreased comovement with high-priced stocks. Firms appear to be well aware of the important role that nominal prices play in influencing investor perceptions, as they frequently engage in the active management of share price levels in an apparent effort to cater to investor demand. For instance, despite the lack of a rational explanation, firms have proactively managed share prices to stay in a relatively constant nominal range since the Great Depression (Weld, Michaely, Thaler, and Benartzi, 2009). Baker, Greenwood, and Wurgler (2009) find that investors have time-varying preferences for stocks of different nominal price levels and that firms actively manage their share price levels to maximize firm value by catering to these time-varying investor preferences. Dyl and Elliot (2006) also find evidence that firms manage share prices to appeal to their investor base in an effort to increase the value of the firms. The rationale for investors’ focus on nominal prices is not well understood, as past work has focused on the implications of these preferences while only hypothesizing about the potential underlying drivers. In short, while past research shows that nominal prices clearly influence the behavior of investors, why prices matter to investors is an as of yet unanswered question. The lack of empirical evidence has not dissuaded speculation as to why investors are influenced by nominal prices. For example, Kumar (2009, p. 1890) states that “as with lotteries, if investors are searching for ‘cheap bets’, they are likely to find low-priced stocks attractive”. Green and Hwang (2009, p. 38) hypothesize that “investors may perceive low-priced stocks as being closer to zero and farther from infinity, thus having more upside potential”. While Baker, Greenwood, and Wurgler (2009, p. 2562) state that “One question that the results raise, and that we leave to future work, is why nominal share prices matter to investors...Perhaps some investors suffer from a nominal illusion in which they perceive that a stock is cheaper after a split, has more ‘room to grow,’ or has ‘less to lose’”. A great deal of anecdotal evidence also exists that investors believe low-priced stocks have more room to grow. For example, a number of mutual fund families offer lowpriced stock funds that primarily invest in stocks trading below a specified price per share (the cutoff for meeting the low-priced definition varies by fund, but it is typically in the $15–35 range).2 This is often viewed as a marketing gimmick designed to appeal to investor psychology.3 The notion that low-priced stocks have more upside potential is often reinforced by the funds themselves. 2 Fidelity’s Low-Priced Stock Fund has operated since 1989, with an explicit strategy of investing in stocks priced below $35 per share. Royce’s Low-Price Fund has been in operation since 1993, with the strategy of investing in stocks priced below $25. A now defunct low-priced fund was launched by Robertson Stephens in 1995. Perritt launched its own version in 2012, with a strategy of investing in stocks priced below $15. 3 Media sources that have referred to low-priced funds as gimmicks are too plentiful to cite, but they include the New York Times, the Washington Post, Mutual Fund Observer, Morningstar, Motley Fool, and even the manager of Fidelity’s Low-Priced Fund (Schiffres, 2002, p. 64): “I was an analyst at Fidelity when everyone was asked for ideas for new funds…They accepted this one and added the low-price provision. It’s a bit of a gimmick.” 579 The long-time manager of Fidelity’s Low-Priced Stock Fund argues that “it’s easier for a $4 stock to go to $8 than for a $40 stock to go to $80”. 4 And the Perritt Low Priced Stock Fund claims that stocks priced under $15 have “plenty of room to move”.5 In this paper, we provide evidence that investors exhibit a psychological bias in the manner in which they relate nominal prices to expectations of future return patterns. We find evidence that investors suffer from the illusion that low price stocks have more upside potential. In doing so, we identify one potential driver of investor demand shifts that have been shown to lead to supply responses from corporations. In attempting to assess expectations of upside potential, the natural variable to focus on is skewness. We rely empirically on the options market to extract investor skewness expectations. A key insight of our analysis is the use of option-implied risk-neutral skewness (RNSkew), which is a market-based ex-ante measure of investors’ expectations. By utilizing risk-neutral skewness extracted from option prices, we are able to circumvent the need for a long time series of returns to estimate skewness. Instead, we can assess how market expectations of an asset’s future skewness change on a daily basis. In doing so, we follow a number of recent papers in inferring investor expectations from option-implied skew.6 Importantly, in our analyses we either hold constant the firm and examine highfrequency (day-over-day) changes in RNSkew or hold time constant and examine differences in option-implied skew in the cross-section of firms. Our empirical analysis consists of three tests, each of which provides independent evidence that investors overestimate the skewness of low-priced stocks. First, examining the entire cross-section of stocks, we find that when forming skewness expectations, investors substantially overweight the importance of price relative to its true observed relation with physical skewness. Second, we show mispricing in option portfolios that is consistent with investor overestimation of skewness for low-priced stocks. Third, we find that investor expectations of skewness drastically increase (decrease) on the date of a stock split (reverse split) to a lower (higher) price. We also present evidence that the findings are driven by investor expectational errors regarding the upside, but not the downside, potential of low-priced stocks. Next, we discuss the findings in more detail. Our initial analysis focuses on the cross-section of all stocks. While a relatively strong univariate inverse relation exists between price and physical skewness, this relation is driven by the correlation of price with other firm characteristics. After controlling for firm characteristics such as size, no significant relation remains between price and physical skewness. However, a quite strong inverse relation remains between price and RNSkew, even after 4 See Schiffres (2002, p. 64). http://www.prnewswire.com/news-releases/ perritt- capital- management- launches- perritt- low- priced- stock- fundplowx-248540111.html. 6 See Dennis and Mayhew (2002), Han (2008), Bali and Murray (2013), and Conrad, Dittmar, and Ghysels (2013), among others. 5 580 J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 controlling for firm characteristics. That is, in forming expectations of skewness, investors overweight the importance of price relative to its observed relation with physical skewness (or rational model–predicted expected skewness measures that we also employ in our analysis). Investors appear to mistakenly extrapolate the observed univariate relation between price and physical skewness when pricing options. The evidence supports the idea that investors overestimate the lottery-like properties of low-priced stocks. Utilizing option open interest and volume data, we also find evidence that investors display increased optimism toward low-priced stocks. The ratio of call to put open interest and volume is substantially higher for low-priced stocks than it is for high-priced stocks. Past work shows investor preferences for lottery-like assets (e.g., Barberis and Huang, 2008; Kumar 2009; Boyer, Mitton, and Vorkink, 2010; Bali and Murray, 2013; Boyer and Vorkink, 2014). We build upon this evidence by showing that investors also have a preference for utilizing the leverage benefits options provide to take lottery-like bets on these lottery-like stocks. We complement the cross-sectional results by undertaking a second, separate test of the hypothesis that investors suffer from a nominal price illusion. We explore the asset-pricing implications of investor biased beliefs regarding nominal prices. Overestimation of expected skewness for low-priced stocks relative to high-priced stocks suggests the potential overpricing of a portfolio of outof-the-money (OTM) calls on low-priced stocks relative to a similar portfolio of options for high-priced stocks. Following Bollen and Whaley (2004) and Goyal and Sarreto (2009), we estimate the returns to option portfolios and find that the overpricing of call options increases as underlying stock price decreases. The results are consistent with relative investor overestimation of skewness for lowpriced stocks compared with high-priced stocks. To ascertain whether RNSkew changes are driven by investor beliefs regarding upside potential, downside potential, or some combination of both, we examine put and call returns separately. We find the underlying stock price is related to only the returns of OTM calls, but not OTM puts, consistent with the effect coming from biased investor expectations regarding the upside potential instead of the downside potential of the stock. Other tests further support the explanation. As an added benefit, the option portfolio methodology does not rely upon extracting RNSkew from option prices and, therefore, also serves as a robustness check of the earlier results. Finally, we explore investor expectations around stock splits, as this is a setting with few, if any, confounding influences and, therefore, allows the ability to examine the effects of large, exogenous price changes in a relatively clean setting.7 We first find that investor expectations of 7 Many potential motives for stock splits have been suggested and explored, including signaling (Brennan and Copeland, 1988; McNichols and Dravid, 1990; Ikenberry, Rankine, and Stice, 1996) and liquidity arguments (Muscarella and Vetsuypens, 1996; Angel, 1997). However, splits do not seem to be correlated with future corporate profitability (Lakonishok and Lev, 1987; Asquith, Healy, and Palepu, 1989), and it is not clear that splits skewness drastically increase on the day that a stock splits to a lower price level. On the day of a split to a lower price, we find that skewness expectations (RNSkew) increase by over 40%. In sharp contrast to this increase reflecting a rational increase in expected skewness, we find a substantial physical skewness decrease following stock splits. This is not surprising given that splits occur after a long runup in price and, therefore, periods of high past skewness, making the observed expected skewness increase all the more surprising. Importantly, we find no such increase in RNSkew on the day of the stock split announcement. The increase of RNSkew around the ex-date instead of the announcement date is consistent with investors reacting only to the change in stock price and inconsistent with an information signaling story. We find similar evidence of investor expectational errors in a much smaller sample of reverse splits. On the date of a reverse split, RNSkew decreases drastically. In contrast to investor expectations, future physical skewness actually increases. The evidence is consistent with investors assigning greater upside potential (or lower downside potential, or both) to stocks trading at lower prices. As a further effort to ascertain whether the effect is driven by investor beliefs regarding upside or downside potential, we examine changes in implied volatilities for calls and puts around the split. Again, consistent with biased investor expectations reflecting biased beliefs regarding upside potential, not downside potential, we find that the difference between out of the money and at the money (ATM) implied volatility substantially increases for call options after a split, suggesting that out of the money calls become more expensive. No accompanying change exists in this difference for put options. The evidence suggests that the skewness results do in fact reflect investors assigning greater upside potential to stocks trading at lower prices, with no accompanying change in beliefs regarding downside potential. Overall, the evidence is consistent with investors suffering from a nominal price illusion in which they overestimate the cheapness or room to grow of lowpriced stocks relative to high-priced stocks. The paper proceeds as follows. Section 2 discusses the methodology and introduces the data. Section 3 presents evidence of investor nominal price biases in the crosssection of stocks. Section 4 examines option trading. Section 5 assesses asset-pricing implications of investor nominal price bias. Section 6 presents the stock split analysis, and Section 7 concludes. 2. Risk-neutral skewness and data To examine whether nominal share price is systematically related to investors’ misperception of skewness, increase liquidity (Conroy, Harris, and Benet, 1990; Schultz, 20 0 0; Easley, O’Hara, and Saar, 2001). In contrast to information or microstructure motives, the prevailing view is that firms split their shares to return prices to a normal trading range (Baker and Gallagher, 1980; Lakonishok and Lev, 1987; Conroy and Harris, 1999; Dyl and Elliot, 2006; Weld, Michaely, Thaler, and Benartzi, 2009) and thus provide a clean laboratory to examine the effect of nominal prices on investor expectations. In addition, by examining the effect of the information free ex-date, our tests allow us to exclude any potential signaling effect. J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 we need measures of investor expected skewness and rational unbiased measures of expected skewness. We use risk-neutral skewness implied from option prices to capture investor expectations of skewness. We employ two primary measures of unbiased expected skewness. First, ex-post realized skewness (Skew) is calculated using daily return data over a one-year period. Second, the expected skewness measure (E(Skew)) of Boyer, Mitton, and Vorkink (2010) incorporates all relevant past and current information to formulate a best prediction of future skewness. We use the model-free methodology of Bakshi, Kapadia, and Madan (2003) to measure risk-neutral skewness (RNSkew).8 2.1. Risk-neutral skewness Risk-neutral skewness is a prominent variable in our analysis, utilized to capture changing investor expectations of asymmetry in return distributions. Because the option prices from which risk-neutral moments are extracted are updated daily, they reflect an up-to-date measure of investor ex-ante expectations. Bakshi, Kapadia, and Madan (2003) show that riskneutral skewness is 3 EtQ (R(t, τ ) − EtQ [R(t, τ )] ) RNSkewi,t (τ ) = 2 EtQ (R(t, τ ) − EtQ [R(t, τ )] ) 3/2 erτ Wi,t (t, τ ) − 3μi,t (t , τ )erτ Vi,t (t , τ ) + 2μi,t (t, τ ) 3 = 2 3/2 [erτ Vi,t (t, τ ) − μi,t (t, τ ) ] (1) where i, t, andτ represent stock, current time, and time to maturity, respectively. r is the risk-free rate. EtQ (. )is the expectation under the risk-neutral measure. R(t, τ )is the return from time t to t + τ , and μi,t (t, τ ) = erτ − 1 − er τ er τ er τ 2 Vi,t (t, τ ) − 6 Wi,t (t, τ ) − 24 Xi,t (t, τ ). Bakshi, Kapadia, and Madan (2003) further show that Vi, t (t, τ ),Wi, t (t, τ ), and Xi, t (t, τ ) can be extracted from OTM options and are defined as Vi,t (t, τ ) = EtQ {e−rτ R(t, τ ) } ∞ 2(1 − ln[K/S(t )] = C (t, τ ; K )dK K2 S(t ) S(t ) 2(1 + ln[K/S(t )] + P (t, τ ; K )dK, K2 0 2 Wi,t (t, τ ) = EtQ e−rτ R(t, τ ) ∞ 2 6 ln[K/S(t )] − 3(ln[K/S(t )] ) = C (t, τ ; K )dK 2 K S(t ) S(t ) 2 6 ln[K/S(t )] + 3(ln[K/S(t )] ) − P (t, τ ; K )dK, 2 K 0 3 (2) (3) 8 The model-free risk neutral measure of Bakshi, Kapadia, and Madan (2003) has been widely used in the literature (Dennis and Mayhew, 2002; Han, 2008; Bali and Murray, 2013; and Conrad, Dittmar, and Ghysels, 2013, among others). and 581 Xi,t (t, τ ) = EtQ e−rτ R(t, τ ) ∞ 2 3 12 ln [K/S(t )] − 4(ln[K/S(t )] ) = C (t, τ ; K )dK 2 K S(t ) S(t ) 2 3 12 ln [K/S(t )] + 4(ln[K/S(t )] ) + P (t, τ ; K )dK. 2 K 0 4 (4) Ideally, Vi, t (t, τ ), Wi, t (t, τ ), and Xi, t (t, τ ) should be calculated based on a continuum of European options with different strikes. However, in reality, only a limited number of options are available for each stock-expiration combination, and individual equity options are not European. To accommodate the discreteness of options strikes, we follow Dennis and Mayhew (2002) to estimate the integrals in expressions (2) to (4) using discrete data.9 Price per se should not be mechanically related to RNSkew because RNSkew is homogeneous of degree zero with respect to the underlying price; that is, altering the underlying price will increase or decrease the numerator and denominator of Equation (1) by the same proportion. However, options for stocks with different prices can have different strike structures, potentially imposing a systematic bias to the calculation of RNSkew. Dennis and Mayhew (2002) examine two potential sources of bias in RNSkew estimation. The first arises due to the use of discrete strike prices, and the second arises from the potential asymmetry in the domain of integration. Dennis and Mayhew (2002) show that the bias in RNSkew is negative and increasing in absolute magnitude when the relative option strike interval strike increment ( option ) increases.10 In practice, standard stock under lying stock pr ice option strike prices are in increments of $2.50 for strikes at or below $25, $5.00 for strikes above $25 but below $200, and $10 for strikes at or above $200. However, Dennis and Mayhew (2002) show that the bias in RNSkew induced by the option strike interval is quite small. The bias is approximately −0.01, −0.05 and −0.07 when the relative option strike increment strike intervals ( option ) are 2%, 5%, and 10%, reunder lying stock pr ice spectively. Dennis and Mayhew (2002) also investigate the potential bias arising due to an asymmetric domain of integration. They show that RNSkew is biased upward when there is a lesser number of OTM puts relative to OTM calls and is biased downward when there is a greater number of OTM puts relative to OTM calls. However, Dennis and Mayhew (2002) show that the bias is essentially zero if there are at least two OTM puts and two OTM calls. As a result, we require at least two OTM put options and at least two OTM call options.11 Finally, we standardize RNSkew to 30 days by linearly interpolating the skewness of the option with 9 We thank Patrick Dennis for providing us the code. Dennis and Mayhew (2002) use simulations to evaluate the bias of option discreteness. They choose the underlying stock price to be $50 and evaluate the magnitude of bias induced by option strike increments from $1 to $5. 11 In the cross-sectional analysis that follows, our sample has an average of four OTM puts and four OTM calls for each stock analyzed. The depth of the option chain is also similar in our sample for puts and calls. 10 582 J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 expiration closest to, but less than, 30 days and the option with expiration closest to, but greater than, 30 days. If there is no option with maturity longer than 30 days (shorter than 30 days), we choose the longest (shortest) available maturity.12 2.2. Data IvyDB’s OptionMetrics database provides data on option prices, volume, open interest, implied volatility (IV), and Greeks for the period from January 1996 to December 2012. IVs and Greeks are calculated using the binomial tree model of Cox, Ross, and Rubinstein (1979). We include options on all securities classified as common stock. To minimize the impact of data errors, we remove options missing best bid or best offer prices, as well as those with bid prices less than or equal to $0.05. We also remove options that violate arbitrage bounds, and options with zero open interest. Unless stated explicitly, we also exclude options with special settlement arrangement, and options for which the underlying stock price is under $10.13 The midquote of the best bid and best offer is taken as the option price. Data on stocks are from the Center for Research in Security Prices (CRSP). The stock split data used later in the study are obtained from the CRSP distribution file. We define stock splits as events with a CRSP distribution code of 5523. We define regular splits as those with a split ratio of at least 1.25 to 1 and reverse splits as those with a ratio below 1. We obtain company accounting information from Compustat. For both the large cross-sectional sample (all optionable stocks) and the stock split sample, we include observations only for which we are able to calculate RNSkew and future Skew. The full stock sample contains 203,974 firm-month observations. To mitigate the effect of outliers, we winsorize all continuous variables at the 0.5% level. 3. Nominal price and skewness: all optionable stocks In this section, we test our main hypothesis that investors suffer from a nominal price illusion. We do so by examining the entire cross-section of optionable stocks. 3.1. Characteristics of stocks with different nominal prices We first explore the relation between nominal price and skewness in the cross-section of stocks, and then examine whether this is consistent with the relationship The average maximum (minimum) call delta is 0.318 (0.098). The average minimum (maximum) put delta is −0.311 (−0.09). 12 All results are robust to the use of 60-day or one hundred-day skewness. 13 OptionMetrics defines an option as having a standard settlement if one hundred shares of the underlying security are to be delivered at exercise and the strike price and premium multipliers are $100 per tick. For options with a non-standard settlement, the number of shares to be delivered could be different from one hundred, and additional securities or cash, or both, could be required. We exclude stocks with prices under $10 to mitigate the effects of microstructure noise. This excludes 6.7% of the sample. As we show in the Online Appendix, our results are qualitatively similar if we instead include all stocks. between price and RNSkew that investors price into options. As we are interested in isolating the effect of nominal price only on investor behavior, we first examine how price is correlated with firm characteristics. Table 1 reports the summary statistics of stocks that are sorted into price quintiles based on stock prices at the end of month t − 1. On average, our sample stocks have a large dispersion in stock price. The average stock price for the lowest quintile is 14.505, and the average price for the highest quintile is 74.106. Relative to high-priced stocks, low-priced stocks are smaller, have higher betas, have lower book-to-market (B/M) ratios, have worse past performance, and are more likely to be listed on Nasdaq. Table 1 also shows that lowpriced stocks have higher past volatility, lower past skewness, and lower trading volume and liquidity. The last rows of Table 1 examine the relation between price and our main measures of skewness. Our first measure of unbiased skewness is future physical skewness calculated from daily returns from month t + 1 to month t + 12.14 We also utilize a measure of expected skewness (E(Skew)). E(Skew) is a forward-looking measure of skewness first introduced by Boyer, Mitton, and Vorkink (2010) that incorporates all relevant past information to best form a future prediction of skewness. This methodology utilizes the parameters from a cross-sectional regression of skewness on lagged firm characteristics to estimate expected skewness. We use the following model specification to construct our E(Skew) variable: E (Skewt ,t + 11 ) = α + β1 log (Pricet− 1 ) + β2 Betat− 1 + + + + + β3 log (Sizet− 1 ) + β4 log (B/Mt− 1 ) β5 Leveraget−1 + β6 Volatilityt− 12,t−1 β7 Skewnesst− 12,t−1 + β8 Rt− 12,t−1 + β9 Rt −60,t − 13 β10 log (Volumet− 1 ) + β11 log (Illiqt− 1 ) β12 NASDAQt−1 + Industry Fixed Effects + ε . (5) Both future realized skewness and expected skewness from the model of Boyer, Mitton, and Vorkink (2010) are decreasing in nominal stock price.15 However, the magnitude of the cross-sectional relation between each of these measures and price is much smaller than that between price and investor expectations reflected in RNSkew. To see this, note that the unconditional variance of realized skew is larger than that of the RNSkew measure (Table 7). However, conditional on price, the difference in RNSkew between the top and bottom price quintiles is more than twice that of the difference for future realized skew or E(Skew). The magnitude of the univariate relation between price and RNSkew provides preliminary evidence that investors perceive the relation between price and future skewness to be much stronger than the true ex-post 14 In the reported results, we calculate volatility and skewness from the raw returns. Moments of raw returns are likely to be affected by outliers. Therefore, we also verify that the results hold if we calculate volatility and skewness based on logged returns. The results are robust to this specification and are available in the Online Appendix. The results are also robust to using physical skewness calculated using only a 30-day horizon. These results can be found in the Online Appendix. 15 All of our results are robust to using size tercile dummies as in Boyer, Mitton, and Vorkink (2010). Results are available in the Online Appendix. J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 583 Table 1 Summary statistics by price quintiles. This table reports summary statistics for the main variables of interest, sorted on price at the end of month t−1. We include all stocks for which RNSkew and Skew can be calculated and the underlying stock price is greater than $10. We calculate the mean of the variables month by month and report the time series average of the cross-sectional means. Beta is calculated following Fama and French (1992). For each month, we use the past 60 months’ monthly excess return data and CRSP value-weighted excess market return to calculate Beta. Size is market capitalization (price times shares outstanding). B/M is the ratio of book value of equity to market value. Leverage is the ratio of total liabilities to total assets. Past volatility and Past skewness are calculated using past one year daily returns. Rt − 12 ,t − 1 is the cumulative return from month t−12 to month t−1. Rt − 60 ,t − 13 is the cumulative return from month t−60 to t−13. Volume is the total number of shares traded in the last month. ILLIQ is measured following Amihud (2002). Nasdaq is a dummy variable that is equal to one if the firm is listed in Nasdaq and zero otherwise. RNSkew is calculated following Bakshi, Kapadia, and Madan (2003). Skew is calculated using daily data from month t + 1 to month t + 12. E(Skew) is the expected future physical skewness, calculated following Boyer, Mitton, and Vorkink (2010), specifically using Eq. (5) from the text. The sample period is from January 1996 to December 2011. Price portfolio Variable Price log (Price) Beta log (Size) log (B/M) Leverage Past volatility Past skewness Rt − 12 ,t − 1 Rt − 60 ,t − 13 log (Volume) log (ILLIQ) Nasdaq RNSkew Skew E(Skew) Lowest 2 3 4 Highest 14.505 2.659 1.684 13.652 −1.029 0.188 0.616 0.157 0.120 1.060 11.799 −19.869 0.599 −0.231 0.370 0.373 22.125 3.086 1.414 14.194 −1.129 0.198 0.523 0.176 0.212 1.267 11.809 −20.458 0.497 −0.469 0.265 0.300 31.214 3.429 1.277 14.733 −1.261 0.198 0.479 0.216 0.307 1.473 11.968 −21.078 0.418 −0.709 0.207 0.229 43.574 3.762 1.103 15.267 −1.310 0.209 0.420 0.231 0.363 1.483 12.047 −21.653 0.319 −0.796 0.173 0.173 74.106 4.231 1.012 15.968 −1.426 0.217 0.382 0.286 0.522 1.583 12.215 −22.434 0.236 −0.929 0.109 0.103 relation realized in the data, as well as much stronger than is predicted by a rational model of expected skewness incorporating all relevant current and past information. While the univariate evidence is consistent with the notion that investors overweight the informativeness of price when predicting future skewness, we next employ a multivariate analysis to control for firm characteristics potentially correlated with both skewness and price. 3.2. Nominal price and skewness: Fama-MacBeth regressions We use Fama and MacBeth (1973) regressions to analyze the cross-sectional relation between our various skewness measures and price, while controlling for a number of variables that the literature finds to be important in explaining skewness. Motivated by Dennis and Mayhew (2002), we include beta to control for systematic risk. Beta is calculated using the past 60 months of excess return data. The leverage effect predicts that decreases in equity value will result in volatility increases that are larger than the decreases in volatility that occur after increases in equity value. This asymmetry implies that the implied volatility of out-of-money puts is higher than the implied volatility of out-of-money calls. While existing empirical findings do not support the leverage effect (e.g., Dennis and Mayhew, 2002; Bakshi, Kapadia, and Madan, 2003), we nevertheless include leverage in the model. We also control for firm size, past skewness, volume, Rt − 12 ,t − 1 , Rt − 60 ,t − 13 , and a dummy variable indicating whether a firm is listed on Nasdaq. Chen, Hong, and Stein (2001) motivate the inclusion of firm size, past volatility, Rt − 12 ,t − 1 and volatility, as they find that each of these variables is significantly correlated with future skewness.16 We also include past skewness in the model, as Boyer, Mitton, and Vorkink (2010) show that skewness is persistent. Finally, following Boyer, Mitton, and Vorkink (2010) we include a dummy variable for Nasdaq firms. Past work typically finds a positive relation between RNSkew and valuation in the cross-section. For example, Bali and Murray (2013), Conrad, Dittmar, and Ghysels (2013), and Boyer and Vorkink (2014) find that RNSkew is negatively related to future asset returns, and Friesen, Zhang, and Zorn (2012) explicitly show that low B/M is associated with higher RNSkew in the cross-section. While this positive documented relation between valuation and RNSkew goes in the opposite direction of our predicted negative relation between price and RNSkew, we nevertheless control for multiple measures of valuation to isolate the effect of nominal price from valuation. We include both book-to-market and assets-to-price per share.17 We also include industry fixed effects to control for industry 16 Boyer, Mitton, and Vorkink (2010) find that allowing for a nonlinear relation between firm size and skewness can fit the data better. They do so by using two dummy variables indicating small firms and medium-size firms based on the NYSE breakpoints. Our results are similar if we adopt their nonlinear methodology (see Table A5 of the Online Appendix). 17 We have also used earnings/price ratio and sales/price ratio (both measured in natural logarithm) as additional controls for valuation. The results are similar with these other measures of valuation. 584 J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 heterogeneity. Industry definitions are based on the FamaFrench 48 industry classification scheme. Table 2 reports the results of monthly Fama-MacBeth regressions of our different measures of skewness regressed on the beginning of period independent variables. Standard errors are corrected for heteroskedasticity and autocorrelation up to 12 lags (Newey and West, 1987). We separately examine RNSkew, Skew, RN skew premium (RNSkew − Skew), and RN expected skew premium (RNSkew − E(Skew)).18 For each dependent variable, we analyze three different models: a univariate specification that includes only log nominal price, a multivariate specification including all control variables, and a multivariate specification that also includes industry fixed effects. As expected, the first three columns of the table show a strong inverse relation between price and RNSkew. The fourth column shows that a univariate relation exists between price and Skew, albeit one that is weaker than the relation between price and RNSkew. However, after controlling for other firm-level determinants of Skew, price ceases to be significant at the 10% level in explaining Skew and the magnitude of the effect diminishes by over 66%. While a significant univariate relation exists between price and physical skew, this relation is driven by the correlation of price with other firm characteristics. Once other firm characteristics are accounted for, price no longer has an economically or statistically significant relation with physical skew. However, the relation between price and RNSkew is quite strong, even in the presence of controls for the other firm characteristics. The results suggest that, when pricing options, investors mistakenly extrapolate the observed univariate relation between price and physical skew and fail to realize that this relation is driven by other factors. In terms of economic magnitude, from Column 3, a 100% increase in price is associated with a 0.151 (0.693∗0.218) decrease in RNSkew, which is equal to 16.9% of one standard deviation of the RNSkew variable. In contrast, from column 6, a 100% increase in price is associated with a 0.034 (0.693∗0.049) decrease in Skew, which is equal to only 2.5% of one standard deviation of the Skew variable and is not statistically significant. The remaining columns show that the difference in this relation is statistically and economically significant for RNSkew relative to Skew and E(Skew). The multivariate results confirm the earlier univariate results. The negative coefficient implies that the lower is price, the larger is RNSkew relative to Skew or E(Skew), and this difference shrinks as price increases. In short, investors seem to substantially overestimate the skew of low-priced stocks. Expectations of future return distribution asymmetry are biased, as investors allow price to play an irrationally large role in the shaping of beliefs. Aside from price, five other variables enter significantly and in a consistent direction in explaining both the RN skew premium and the RN expected skew premium. Stocks that are small, low book-to-market, low leverage, low past 18 Our measure of skew premium is analogous to the manner in which the literature measures variance risk premium. However, the relationship between RNSkew and Skew may not be linear. We address this in a more structural way later in this section. skew stocks, or high long-run return have higher RNSkew relative to expected skew or future realized skew. High RNSkew relative to physical skew can reflect expectational errors but also could indicate a lower risk premium. If high book-to-market stocks are riskier than low book-to-market stocks, the negative coefficient for book-to-market can be a reflection of a book-to-market risk premium. Leverage is negatively related to RNSkew while having a positive relation with Skew. This is potentially consistent with the leverage effect discussed above. Large firm size predicts low RNSkew, but it does not have predictive power for future Skew. High past Skew predicts high future Skew in the cross-section, while having predictive power of the opposite sign for RNSkew. A risk premium-based interpretation would need to argue that larger firms and more positively skewed firms are riskier than smaller firms and less positively skewed firms. While we cannot completely exclude these possibilities, it is not consistent with most of the existing studies. 4. Nominal price and option trading The evidence presented thus far is consistent with investors overestimating the lottery-like qualities of lowpriced stocks. Mitton and Vorkink (2007) and Barberis and Huang (2008) incorporate investor preferences for skewness into models explaining stock returns, and Kumar (2009) finds empirical evidence that retail investors prefer stocks with lottery features. Given the past evidence and general view that investors exhibit a preference for skew, combined with the evidence presented here that investors perceive low-priced stocks to have high skew, we next examine investor trading behavior in the options market regarding low-priced stocks. We find evidence that investors exhibit increased optimism, as well as gambling-like behavior, toward these lottery-like assets. We do so by examining the ratio of call to put volume and open interest. The ratio of call to put option trading volume is commonly regarded as a sentiment measure, with more call option trading volume indicating optimism (see for example, Lemmon and Ni, 2014). Given the documented investor preference for skew, if price does affect investor perceptions of upside potential, a negative correlation should emerge between stock price and the call-put volume ratio. Option volume reflects both option writing and position closing. Open interest measures the total existing position and thus can potentially better measure investor beliefs. Therefore, we also examine the relation between nominal price and the call to put open interest ratio. We define our volume ratio (VolRatio) and open interest ratio (OIRatio) as VolRatio = log (1 + call option volume) − log (1 + put option volume) and OIRatio = log (1 + call option open interest) − log (1 + put option open interest). We add one to deal with instances of zero trading volume or open interest. The results in Table 3 show that price is strongly negatively related to the call-to-put volume ratio and open interest ratio. That is, investors are more optimistic about low-priced stocks and take more lottery-like bets on lowpriced stocks. The evidence is consistent with investors perceiving low-priced stocks to be lottery-like and with Table 2 The relationship between nominal price and skewness: Fama-MacBeth regressions. For each month, the following cross-sectional regression is run. DVi,t = α + β1 Log(Pricei,t−1 ) + Xi,t−1 + εi,t−1 , where DV is one of the following: RNSkew, Skew, RNSkew−Skew, or RNSkew−E(Skew). RNSkew is calculated following Bakshi, Kapadia, and Madan (2003). Skew is calculated using daily data from month t + 1 to month t + 12. E(Skew) is a forward looking skewness measure constructed following the method of Boyer, Mitton, and Vorkink (2010), using EQ. (5) from the text. Beta is calculated following Fama and French (1992). For each month, we use the past 60 months’ monthly excess return data and CRSP value weighted excess market return to calculate Beta. Size is market capitalization (price times shares outstanding). B/M is the ratio of book value of equity to market value. Leverage is the ratio of total liabilities to total assets. Past volatility and Past skewness are calculated using past one year daily returns. Rt − 12 ,t − 1 is the cumulative return from month t − 12 to month t − 1. Rt − 60 ,t − 13 is the cumulative return from month t−60 to t−13. Volume is the total number of shares traded in the last month. ILLIQ is measured following Amihud (2002). Industry is defined based on the 48 Fama-French industry classification. We include all stocks for which RNSkew and Skew can be calculated and the underlying stock price is higher than $10. The sample period is from January 1996 to December 2011. Reported t-statistics are in parentheses and are Newey-West adjusted with 12 lags. ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively. Reported adj.-R2 is the average adj.-R2 across all the months. Variable (1) (2) ∗∗∗ (3) ∗∗∗ (4) ∗∗∗ Yes No No Yes No No Yes No No Yes 0.217 192 0.007 192 0.032 192 0.087 192 0.014 192 0.052 192 0.105 192 0.037 192 0.140 192 0.249 192 Rt − 60 ,t − 13 log (Volume) log (ILLIQ) Nasdaq 0.741∗∗∗ (9.84) 0.124 (1.32) 0.033 (0.33) −0.132 (−3.29) 0.011 (0.90) −0.012 (−0.66) −0.066∗∗∗ (−4.22) −0.084∗∗∗ (−4.04) −0.295∗∗∗ (−8.38) 0.302∗∗ (2.56) −0.070∗∗∗ (−9.92) 0.051∗∗ (2.05) 0.020∗∗∗ (3.17) 0.069∗∗ (2.63) 0.027 (1.18) 0.055∗∗∗ (2.96) 0.145 (0.76) −0.137∗∗∗ (−3.58) 0.057∗∗∗ (5.79) 0.002 (0.09) −0.045∗∗∗ (−3.36) −0.118∗∗∗ (−6.44) −0.357∗∗∗ (−8.87) 0.292∗∗∗ (2.68) −0.046∗∗∗ (−6.29) 0.051∗∗ (2.25) 0.020∗∗∗ (3.35) 0.044∗ (1.82) 0.023 (1.19) 0.084∗∗∗ (4.54) −0.044 (−0.21) 0.163 192 Rt − 12 ,t − 1 −0.262 (−9.84) (12) ∗∗∗ No Past skewness −0.170 (−4.20) 0.018 (1.23) 0.013 (0.70) −0.089∗∗∗ (−4.47) −0.073∗∗∗ (−3.65) −0.383∗∗∗ (−8.31) 0.060 (0.30) −0.038∗∗∗ (−3.60) 0.039 (1.46) 0.021∗∗∗ (3.56) 0.036 (1.44) −0.002 (−0.09) 0.026 (1.23) 0.560 (1.62) (11) ∗∗∗ 0.085 192 Past volatility −0.154 (−3.84) −0.007 (−0.57) 0.007 (0.39) −0.106∗∗∗ (−4.98) −0.059∗∗∗ (−3.03) −0.384∗∗∗ (−10.55) 0.058 (0.27) −0.043∗∗∗ (−4.03) 0.041 (1.39) 0.018∗∗∗ (3.17) 0.063∗∗∗ (2.41) 0.007 (0.35) 0.008 (0.39) 0.650∗ (1.85) (10) ∗∗∗ No Leverage −0.286 (−10.83) (9) ∗∗∗ Adj.-R2 N log (BM) −0.049 (−1.48) 0.039∗∗∗ (3.86) −0.021 (−1.17) −0.009 (−0.62) 0.0 0 0 (0.01) 0.096∗ (1.82) 0.238∗ (1.68) 0.019∗ (1.94) −0.086∗∗∗ (−4.00) −0.017∗∗∗ (−4.14) −0.010 (−0.48) 0.024 (1.18) 0.001 (0.05) 1.006∗∗∗ (4.03) (8) ∗∗∗ Industry FE log (Size) −0.059 (−1.89) 0.030∗∗∗ (2.71) −0.012 (−0.62) 0.002 (0.12) 0.007 (0.60) 0.167∗∗∗ (4.49) 0.249∗ (1.77) 0.023∗∗ (2.51) −0.092∗∗∗ (−4.22) −0.015∗∗∗ (−4.42) −0.025 (−1.13) 0.018 (0.90) 0.006 (0.25) 0.971∗∗∗ (4.07) (7) 0.865∗∗∗ (8.51) Beta −0.150 (−7.42) (6) ∗ Constant log (AT/Price) −0.218 (−5.28) 0.057∗∗∗ (5.82) −0.009 (−1.42) −0.098∗∗∗ (−6.84) −0.073∗∗∗ (−6.15) −0.287∗∗∗ (−11.95) 0.298∗∗∗ (3.50) −0.020∗∗∗ (−4.27) −0.047∗∗∗ (−4.39) 0.005 (1.20) 0.026 (1.17) 0.022 (1.15) 0.028∗∗∗ (3.79) 1.566∗∗∗ (7.92) (5) ∗∗∗ RNSkew−E(Skew) −0.213 (−4.88) 0.022∗ (1.74) −0.005 (−0.62) −0.105∗∗∗ (−6.96) −0.052∗∗∗ (−4.05) −0.217∗∗∗ (−8.47) 0.307∗∗∗ (3.27) −0.020∗∗∗ (−4.03) −0.051∗∗∗ (−3.99) 0.003 (0.80) 0.038 (1.51) 0.025 (1.15) 0.014∗ (1.71) 1.621∗∗∗ (8.15) log (Price) −0.437 (−15.72) RNSkew−Skew Skew J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 RNSkew 585 586 J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 Table 3 Nominal price and option trading. For each month, we run the cross-sectional regression DVi,t = α + β1 Log(Pricei,t−1 ) + Xi,t−1 + εi,t−1 , where DV is either call relative to put option trading volume ratio (VolRatio) or the call relative to put option open interest ratio (OIRatio). VolRatio = log (1 + volume of call options) − log (1 + volume of put options). OIRatio = log (1 + options interests of call options) − log (1 + options interests of put options). The independent variables are log price, beta, log of firm market capitalization, log of B/M, leverage, past volatility, past skewness, Rt − 12 ,t − 1 , Rt − 60 ,t − 13 , log volume, log ILLIQ, a Nasdaq dummy indicating listing exchange, and industry dummies. Beta is calculated following Fama and French (1992). For each month, we use the past 60 months’ monthly excess return data and CRSP value-weighted excess market return to calculate Beta. Size is market capitalization (price times shares outstanding). B/M is the ratio of book value of equity to market value. Leverage is the ratio of total liabilities to total assets. Past volatility and Past skewness are calculated using past one year daily returns. Rt − 12 ,t − 1 is the cumulative return from month t − 12 to month t − 1. Rt − 60 ,t − 13 is the cumulative return from month t − 60 to t − 13. Volume is the total number of shares traded from the last month. ILLIQ is measured following Amihud (2002). Industry is defined based on the 48 Fama-French industry classification. We include all stocks for which RNSkew and Skew can be calculated and the underlying stock price is greater than $10. The sample period is from January 1996 to December 2011. Reported t-statistics are in parentheses and are Newey-West adjusted with 12 lags. ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively. Reported adj.-R2 is the average adj.-R2 across all the months VolRatio Variable OIRatio (1) (2) ∗∗∗ ∗∗∗ (4) ∗∗∗ (5) ∗∗∗ (6) 0.919∗∗∗ (10.13) −0.228 (−14.51) −0.037∗∗∗ (−4.27) −0.011 (−1.21) 0.103∗∗∗ (11.54) 0.027∗∗∗ (3.03) −0.052 (−1.37) −0.230∗∗∗ (−3.17) 0.010 (1.61) 0.218∗∗∗ (7.88) 0.006∗∗ (2.08) −0.067∗∗∗ (−4.61) 0.060∗∗∗ (4.19) 0.016∗ (1.82) 1.929∗∗∗ (10.60) −0.247∗∗∗ (−15.53) −0.052∗∗∗ (−5.76) −0.016∗ (−1.89) 0.088∗∗∗ (9.75) 0.023∗∗∗ (2.76) −0.023 (−0.73) −0.280∗∗∗ (−3.57) 0.013∗∗ (2.18) 0.205∗∗∗ (8.11) 0.003 (1.34) −0.062∗∗∗ (−4.25) 0.053∗∗∗ (4.18) 0.011 (1.31) 2.041∗∗∗ (10.62) Constant 1.582∗∗∗ (12.09) Industry FE No No Yes No No Yes 0.030 192 0.071 192 0.135 192 0.009 192 0.061 192 0.122 192 log (AT/Price) Beta log (Size) log (B/M) Leverage Past volatility Past skewness Rt − 12 ,t − 1 Rt − 60 ,t − 13 log (Volume) log (ILLIQ) Nasdaq Adj.-R N 2 investors possessing more optimistic perceptions of the upside potential of low-priced stocks relative to highpriced stocks. We next examine the asset-pricing implications of investor biases regarding nominal prices. 5. Asset pricing implications Expectational errors regarding the upside potential of low- relative to high-priced stocks will also have asset pricing implications. One implication of investor overestimation of skewness of low-priced relative to high-priced stocks is that call options will be more overvalued for lowpriced stocks than for high-priced stocks. A portfolio taking a long position in calls of high-priced stocks and a −0.399 (−16.67) −0.005 (−0.56) −0.018∗ (−1.86) 0.083∗∗∗ (7.26) −0.006 (−0.70) −0.082∗∗∗ (−2.90) −0.129∗ (−1.74) 0.017∗∗∗ (3.15) 0.168∗∗∗ (8.35) 0.009∗∗∗ (3.06) −0.077∗∗∗ (−4.84) 0.034∗∗ (2.32) 0.019 (1.62) 2.453∗∗∗ (9.77) −0.113 (−7.80) ∗∗∗ −0.384 (−19.06) −0.006 (−0.51) −0.011 (−1.07) 0.103∗∗∗ (8.77) 0.007 (0.73) −0.045 (−1.33) −0.062 (−0.95) 0.015∗∗ (2.52) 0.181∗∗∗ (7.60) 0.013∗∗∗ (3.07) −0.085∗∗∗ (−4.92) 0.041∗∗ (2.52) 0.020 (1.49) 2.338∗∗∗ (10.19) log (Price) −0.264 (−13.31) (3) short position in calls of low-priced stocks should therefore make positive returns. This will be particularly true for OTM options. To test this hypothesis, we construct both delta-hedged and non-hedged call portfolios and examine whether call portfolio returns are systematically related to underlying stock price. Our methodology and analysis largely follows that of Goyal and Saretto (2009). This analysis also doubles as a robustness check of the earlier results relying on RNSkew. To be clear, the purpose of this analysis is to illustrate the existence of mispricing in the options market in a manner that is consistent with investor overestimation of skewness for low-priced stocks. As a means to this end, we utilize a portfolio strategy as a tool to identify J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 whether mispricing exists. In undertaking this analysis, we measure option prices as the midpoint of the bid and ask quotes. Whether the mispricing can be profitably exploited in practice once option trading costs are considered is a separate question, which is beyond the scope of this paper. Portfolios are formed on the expiration Friday (or the previous trading day if Friday is a public holiday) of the month, and the option portfolio strategies are initiated on the first trading day (typically a Monday) after the expiration Friday of the month. On each portfolio formation day, we sort all stocks with available options into quintiles based on the stock price on the portfolio formation day and choose only options expiring within one month. For each option series, we construct portfolios that are held until option expiration. All the portfolios are equal weighted. As in Goyal and Saretto (2009), we use the absolute position value as the reference beginning price to calculate portfolio return. For delta-hedged portfolios we use the following formula to calculate returns.19 T (cT − c0 ) − 0 ST + Dt er (T −t ) − S0 Rcall = t=1 | 0 S 0 − c 0 | (6) Relative to ATM and in-the-money (ITM) options, OTM options better reflect investor skewness beliefs. Thus, we focus on the OTM options. As a comparison, we also report results for ATM options. We define option moneyness following Bollen and Whaley (2004). ATM options are defined as call options with delta greater than 0.375 and not greater than 0.625. OTM options are call options with delta above 0.02 and not greater than 0.375. Options with absolute delta below 0.02 are excluded due to the distortions caused by price discreteness. Table 4 reports the results of the portfolio return analysis by price quintile. Panel A reports monthly average returns for delta-hedged portfolios, and Panel B displays results for non-delta-hedged portfolios. In addition to reporting the raw return of the delta-hedged option portfolios, we follow Goyal and Saretto (2009) and report riskadjusted returns using model (7). Rcall = α + β Ft + εt (7) To obtain risk-adjusted returns, we regress the portfolio returns on a linear pricing model consisting of the three Fama-French factors, the momentum factor (Fama and French, 1993; Carhart, 1997), and an additional aggregate factor reflecting the average call return of S&P 500 index options. 20 The average call return of S&P 500 index options can capture the compensation to jump risk (Pan, 2002). We use the same method [Eq. (6)] to calculate the average call return of S&P 500 index options by moneyness. The call index option returns are matched to the call individual stock option returns with the same moneyness. The intercept from the regression can be interpreted 19 We consider stock splits and use the adjustment factor given by OptionMetrics for the adjustment. 20 We compound the daily factor return to get monthly factor returns to match the timing of the option strategy. 587 as mispricing relative to the factor model. We refer to the adjusted return as the five-factor adjusted return. For both delta-hedged and non-delta-hedged portfolios, the portfolio return increases when moving from the lowest to highest price quintile. In Panel A, the call returns for the delta-hedged sample increase from −2.901% in the lowest price quintile to −0.908% in the highest price quintile. The five-factor adjusted call return increases from −2.02% in the lowest price quintile to 0.368% in the highest price quintile. The high minus low portfolio raw return and the five-factor adjusted return is 1.993% and 2.387%, respectively. Both are statistically significant at 1% level. The results indicate that OTM calls are substantially more overpriced for low-priced stocks than for high-priced stocks. We also find some supportive evidence from ATM options. For ATM options, the raw and five-factor adjusted return of the call portfolio increases as a function of the underlying stock price. The magnitude of the highest minus lowest price quintile difference in call portfolio returns is larger for OTM options than for the ATM options, consistent with the view that skewness misperception most greatly affects the price of the OTM options. The patterns are similar and of larger magnitude for the non-deltahedged analysis in Panel B. Lastly, we attempt to isolate the effect of price on returns to examine whether other factors could be driving the observed relation between price and option returns. To examine this question, we rely on Fama-MacBeth regressions to control for other variables the literature finds to affect option pricing. Columns 1–3 of Table 5 confirm the positive relation between OTM call option returns and price shown in Table 4. In Table 5, we also test two further predictions of our main hypothesis. First, if the relations shown thus far are driven by investor overestimation of upside potential and not downside potential, then we should expect to see an effect only for calls, but not for puts. In Columns 4–6, we examine whether a relation exists between put returns and price. The put portfolios are formed with OTM options, defined as those with delta greater than 0.375 and not greater than 0.02. Columns 4–6 of Panel A and Panel B in Table 5 confirm that no significant relation exists between put portfolio returns and the price of the underlying, consistent with the effects shown being driven by investor overestimation of upside potential, not downside potential. A further implication of investor overestimation of skewness of low-priced relative to high-priced stocks is that, relative to put options, call options are more overvalued for low-priced stocks than for high-priced stocks. We formally test this in Columns 7–9 and confirm that this difference is increasing in price and that this relation is statistically significant. Importantly, the results confirm that the abnormal returns we find are completely driven by the mispricing of calls, and not puts. After controlling for other variables that are known to be related to option returns, we find that OTM call returns are increasing in the nominal price of the underlying stock and OTM put returns are unrelated to nominal price. This is consistent with investors overestimating the upside potential of low-priced stocks. 588 J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 Table 4 Option trading strategy. Portfolios are formed on the expiration Friday (or last trading day if Friday is a public holiday) of the month, and the option portfolio strategies are initiated on the first trading day (typically a Monday) after the expiration Friday of the month. OTM options are call options with delta greater than 0.02 and not greater than zero. As in Bollen and Whaley (2004), we exclude options with absolute delta below 0.02 due to the distortions caused by price discreteness. On each portfolio formation day, we choose the options for any given moneyness that will expire within one month. On each portfolio formation day, all stocks with available options are sorted into quintiles based on the stock price on the portfolio formation day. For each option series, we construct delta-hedged and non-delta hedged portfolios and hold them until option expiration. As in Goyal and Sarreto (2009), we use the absolute value of the position as the reference price to calculate the delta-hedged return. The formula is (cT − c0 erT ) − 0 (ST + Rcall = T t=1 Dt er (T −t ) − S0 erT ) , | 0 S 0 − c 0 | We also report the average abnormal return adjusting for Fama-French three factors, the Carhart (1997) momentum factor, and a factor reflecting the market-level call return. The portfolio returns are equal weighted. The sample extends from January 22, 1996 to December 21, 2012. There are 203 months in total. ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively. Panel A: delta-hedged portfolio returns Price portfolio Option Lowest 2 3 4 Highest Highest − lowest −2.901∗∗∗ (−6.67) −2.020∗∗∗ (−6.97) −2.734∗∗∗ (−6.41) −1.974∗∗∗ (−7.15) −2.208∗∗∗ (−5.14) −0.506∗∗ (−2.60) −1.296∗∗∗ (−3.17) −0.270 (−0.98) −0.908∗ (−1.94) 0.368 (1.15) 1.993∗∗∗ (5.53) 2.387∗∗∗ (7.25) −0.373 (−1.34) 0.104 (0.58) −0.033 (−0.13) 0.372∗∗∗ (3.66) −0.007 (−0.03) 0.356∗∗ (2.20) 0.101 (0.40) 0.537∗∗∗ (3.18) 0.043 (0.16) 0.484∗∗ (2.37) 0.416∗∗ (2.25) 0.380∗∗ (2.07) OTM Call Call adjusted ATM Call Call adjusted Panel B: non-delta-hedged portfolio returns OTM Call Call adjusted −21.498∗∗∗ (−4.70) −20.423∗∗∗ (−6.40) −27.849∗∗∗ (−6.45) −27.453∗∗∗ (−8.77) −25.099∗∗∗ (−5.32) −24.518∗∗∗ (−6.93) −18.928∗∗∗ (−3.24) −17.049∗∗∗ (−3.87) −10.190 (−1.08) 0.914 (0.17) 11.308∗∗ (2.55) 21.338∗∗∗ (4.25) 2.484 (0.59) −0.361 (−0.19) 5.855 (1.41) 2.257 (1.25) 6.192 (1.46) 2.382 (1.26) 5.502 (1.21) 1.722 (0.82) 8.889 (1.57) 5.095∗∗ (2.01) 6.405∗ (1.92) 5.457∗∗ (2.35) ATM Call Call adjusted While the results are consistent with investor overestimation of skewness for low-priced stocks leading to overpricing of low-priced OTM call options, the tests cannot definitively attribute overpricing of low-priced OTM calls to investor overestimation of skewness. To further support a causal story, we next examine a double-sort of returns on both price and RNSkew. If investor overestimation of skewness for low-priced stocks is driving our results, we would expect to see the effect show up most strongly in the high RNSkew quantiles. Options of low-priced stocks with high RNSkew are potentially overvalued, and options of high-priced stocks with high RNSkew are less likely to be overvalued according to our story. However, within the low RNSkew quantile, we are unlikely to see substantial overestimation of skew and, therefore, would not expect to see as large of an effect. We utilize independent sorts to ensure that the sample of low- and high-priced stocks and spread in high and low price is similar across RNSkew terciles and is comparable with the analysis in Table 4. Table 6 examines this hypothesis. Consistent with the above arguments, we find that the difference in OTM call returns between top and bottom price quintiles is large and statistically significant for the highest RNSkew tercile and smaller and insignificant for the lowest RNSkew tercile. While not proving causality, the results are consistent with a causal story. A further question is whether the abnormal returns that this strategy generates result from irrational beliefs on the part of investors or whether options on low-priced stocks are more difficult for dealers to hedge and, therefore, trade at a premium. A dealer hedging story is not consistent with our finding of an effect only for call options on low-priced underlying stocks, but not put options, as it J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 589 Table 5 Option trading strategy: Fama-MacBeth regressions. For each month, we run the cross-sectional regression DVi,t = α + β1 Log(Pricei,t−1 ) + Xi,t−1 + εi,t−1 , where DV is either the delta-hedged OTM call return, OTM put return, or the difference between OTM call and OTM put return (OTM call − OTM put). OTM options are call options with delta greater than 0.02 and not greater than 0.375, and put options with delta greater than −0.375 and not greater than −0.02. As in Bollen and Whaley (2004), we exclude options with absolute delta below 0.02 due to the distortions caused by price discreteness. We choose the put and call options for any given moneyness that will expire within one month. Delta-hedged option return is calculated from the first trading day (typically a Monday) after the expiration Friday of the month until option expiration. As in Goyal and Sarreto (2009), we use the absolute value of the position as the reference price to calculate the delta-hedged return. The formulas are (cT − c0 erT ) − 0 (ST + Rcall = T t=1 Dt er (T −t ) − S0 erT ) ( pT − p0 erT ) − 0 (ST + , R put = | 0 S 0 − c 0 | T t=1 Dt er (T −t ) − S0 erT ) . | 0 S 0 − p 0 | If there is more than one option series for one stock-moneyness group, we calculate the equal-weighted delta-hedged option return. The independent variables are log price, beta, log of firm market capitalization, log of B/M, leverage, past volatility, past skewness, Rt − 12 ,t − 1 , Rt − 60 ,t − 13 , implied volatility, log(volume), log(ILLIQ), a Nasdaq dummy indicating listing exchange, and industry dummies. Beta is calculated following Fama and French (1992); for each month, we use the past 60 months’ monthly excess return data and CRSP value-weighted excess market return to calculate Beta. Size is market capitalization (price times shares outstanding). B/M is the ratio of book value of equity to market value. Leverage is the ratio of total liabilities to total assets. Past volatility and Past skewness are calculated using past one year daily returns. Rt − 12 ,t − 1 is the cumulative return from month t − 12 to month t − 1. Rt − 60 ,t − 13 is the cumulative return from month t − 60 to t − 13. Volume is the total number of shares traded from the last month. ILLIQ is measured following Amihud (2002). Industry is defined based on the 48 Fama-French industry classification. We include all stocks for which we have both OTM call and OTM put options and the underlying stock price is greater than $10. The sample period is from January 22, 1996 to December 21, 2012. There are 203 months in total. Reported t-statistics are in parentheses and are Newey-West adjusted with 12 lags. ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively. Reported adj.-R2 is the average adj.-R2 across all the months. Panel A: delta-hedged OTM call Variable log (Price) (1) ∗∗∗ 0.010 (6.01) RNSkew RNVar RNKurt log (AT/Price) Beta log (Size) log (BM) Leverage Past volatility Past skewness Rt − 12 ,t − 1 Rt − 60 ,t − 13 log (Volume) log (ILLIQ) Nasdaq Industry FE Adj.-R2 N (2) ∗∗∗ 0.011 (4.37) 0.001 (0.57) 0.101∗∗ (2.64) −0.0 0 0 (−0.32) 0.0 0 0 (0.19) 0.001 (0.44) −0.007∗∗∗ (−4.01) 0.001 (0.60) −0.002 (−0.51) −0.017∗∗∗ (−3.07) 0.001 (0.71) 0.002 (1.13) −0.0 0 0 (−0.47) 0.002 (0.94) −0.004∗ (−1.83) −0.003∗ (−1.90) OTM call − OTM put OTM put (3) ∗∗∗ 0.011 (4.83) 0.001 (0.45) 0.101∗∗∗ (2.74) −0.0 0 0 (−0.30) −0.0 0 0 (−0.15) −0.001 (−0.42) −0.007∗∗∗ (−4.45) 0.001 (1.08) −0.001 (−0.14) −0.017∗∗∗ (−3.11) 0.0 0 0 (0.50) 0.001 (0.50) −0.0 0 0 (−0.78) 0.003 (1.37) −0.004∗ (−1.76) −0.003∗ (−1.89) (4) (5) ∗∗∗ 0.005 (4.02) 0.005 (1.48) 0.004∗∗ (2.14) 0.042 (0.96) 0.001∗∗ (2.45) 0.0 0 0 (0.54) 0.001 (0.67) −0.007∗∗∗ (−4.38) 0.0 0 0 (0.11) 0.002 (0.35) −0.013∗∗ (−2.11) −0.001∗∗ (−2.56) −0.001 (−0.70) 0.0 0 0 (0.63) −0.0 0 0 (−0.04) −0.006∗∗∗ (−3.22) −0.002 (−1.25) (6) (7) ∗ 0.005 (1.74) 0.004∗∗ (2.29) 0.053 (1.23) 0.001∗∗ (2.63) 0.0 0 0 (0.18) 0.0 0 0 (0.25) −0.007∗∗∗ (−4.33) −0.0 0 0 (−0.24) 0.005 (1.29) −0.012∗∗ (−2.03) −0.001∗∗∗ (−2.98) −0.002 (−1.11) 0.0 0 0 (0.56) −0.0 0 0 (−0.16) −0.006∗∗∗ (−3.62) −0.002 (−1.27) (8) ∗∗∗ 0.004 (3.27) (9) ∗∗ 0.006 (2.05) −0.003∗ (−1.76) 0.059 (1.51) −0.001∗∗ (−2.57) −0.0 0 0 (−0.15) −0.001 (−0.27) 0.0 0 0 (0.15) 0.001 (0.31) −0.004 (−0.61) −0.005 (−0.70) 0.002∗∗ (2.34) 0.004∗ (1.78) −0.0 0 0 (−0.79) 0.002 (0.85) 0.002 (0.94) −0.0 0 0 (−0.21) 0.006∗∗ (2.02) −0.004∗∗ (−2.00) 0.048 (1.16) −0.001∗∗∗ (−2.79) −0.0 0 0 (−0.32) −0.001 (−0.54) −0.001 (−0.31) 0.001 (0.89) −0.006 (−0.98) −0.005 (−0.75) 0.002∗∗ (2.26) 0.003 (1.29) −0.0 0 0 (−1.02) 0.003 (1.22) 0.002 (0.86) −0.001 (−0.57) No No Yes No No Yes No No Yes 0.006 203 0.062 203 0.133 203 0.004 203 0.057 203 0.134 203 0.003 203 0.045 203 0.115 203 (continued on next page) 590 J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 Table 5 (Continued.) Panel B: non-delta-hedged log (Price) 0.089∗∗ (2.14) RNSkew RNVar RNKurt log (AT/Price) Beta log (Size) log (B/M) Leverage Past volatility Past skewness Rt − 12 ,t − 1 Rt − 60 ,t − 13 log (Volume) log (ILLIQ) Nasdaq Industry FE Adj.-R2 N No 0.004 203 0.186∗∗∗ (5.17) −0.227∗∗∗ (−7.97) −1.311∗∗ (−2.37) −0.009∗∗∗ (−2.94) 0.001 (0.04) 0.037∗ (1.77) −0.150∗∗∗ (−6.79) 0.015 (0.69) −0.143∗∗ (−2.58) −0.251∗∗ (−2.36) −0.013∗ (−1.78) 0.034 (0.62) −0.006 (−1.37) −0.024 (−0.54) −0.128∗∗∗ (−3.16) −0.040 (−1.21) No 0.048 203 0.178∗∗∗ (5.21) −0.222∗∗∗ (−8.79) −1.174∗∗ (−2.27) −0.009∗∗∗ (−2.70) 0.034 (1.46) 0.021 (1.25) −0.153∗∗∗ (−7.67) −0.006 (−0.32) −0.204∗∗∗ (−3.04) −0.170∗∗ (−1.97) −0.016∗∗ (−2.52) 0.015 (0.29) −0.008 (−1.57) −0.054∗ (−1.73) −0.156∗∗∗ (−5.35) −0.032 (−1.14) Yes 0.134 203 −0.011 (−0.59) No 0.004 203 cannot explain why only call options on low-priced stocks, but not put options on low-priced stocks, would be difficult to hedge.21 The evidence presented here is consistent with the effects we see being driven by biased beliefs regarding the upside potential, but not downside potential, of the stock. In Section 6, we provide additional evidence that investor biased beliefs are driven solely by biased beliefs regarding upside potential and not downside potential. −0.073 (−1.10) 0.222∗∗∗ (10.54) 2.198∗∗∗ (4.71) 0.007∗∗∗ (3.18) −0.005 (−0.27) 0.020 (0.90) −0.064∗∗ (−2.28) 0.012 (0.63) 0.069 (1.08) 0.055 (0.58) −0.002 (−0.25) −0.020 (−0.89) 0.010∗∗ (2.17) 0.045 (1.50) −0.020 (−0.73) −0.043∗∗ (−2.06) No 0.050 203 −0.079 (−1.52) 0.215∗∗∗ (11.24) 2.209∗∗∗ (4.72) 0.008∗∗∗ (3.76) −0.022 (−1.06) 0.015 (0.97) −0.064∗∗ (−2.49) 0.020 (1.42) 0.143∗∗ (2.11) 0.068 (0.73) −0.002 (−0.24) −0.028 (−1.22) 0.010∗∗∗ (2.75) 0.043 (1.59) −0.021 (−0.79) −0.041∗∗ (−2.15) Yes 0.131 203 0.099∗ (1.90) No 0.005 203 0.259∗∗∗ (3.09) −0.448∗∗∗ (−12.25) −3.509∗∗∗ (−5.84) −0.016∗∗∗ (−4.51) 0.006 (0.17) 0.017 (0.50) −0.087∗∗ (−2.04) 0.003 (0.11) −0.213∗∗ (−2.34) −0.306∗ (−1.79) −0.011 (−0.96) 0.054 (0.77) −0.016∗∗ (−2.08) −0.068 (−1.17) −0.108∗∗ (−2.02) 0.004 (0.09) No 0.062 203 0.257∗∗∗ (3.66) −0.437∗∗∗ (−14.21) −3.383∗∗∗ (−5.69) −0.017∗∗∗ (−4.91) 0.056 (1.49) 0.005 (0.22) −0.089∗∗ (−2.37) −0.026 (−1.02) −0.347∗∗∗ (−3.32) −0.237 (−1.64) −0.014 (−1.42) 0.043 (0.64) −0.018∗∗∗ (−2.68) −0.097∗∗ (−2.11) −0.136∗∗∗ (−3.16) 0.010 (0.27) Yes 0.156 203 is information free, as any potential information revelation occurs at the announcement date. Stock splits therefore provide a clean environment to examine the effect of nominal price changes on investor expectations.22 Fig. 1 provides a preview of the main split results. RNSkew is plotted against days relative to ex-date. From Fig. 1, stocks undergoing splits experience a large jump in RNSkew on the ex-date, and those undergoing reverse splits experience a large decrease in RNSkew that again occurs precisely on the ex-date.23 6. Nominal price and skewness: stock splits In this section, we examine the effect of nominal price on investor skewness expectations in a setting where nominal price changes are seemingly exogenous to changes in expectations of future return distributions. The prevailing view is that stock splits are motivated by an effort to return prices to a normal trading range (Baker and Gallagher, 1980; Lakonishok and Lev, 1987; Conroy and Harris, 1999; Dyl and Elliot, 2006; Weld, Michaely, Thaler, and Benartzi, 2009). Regardless of the rationale for splitting, the ex-date 21 One hedging story that does predict an asymmetry in hedging costs is put forth by Ofek, Richardson, and Whitelaw (2004). Shorting costs, particularly the fact that short sales constraints are more binding for lowpriced stocks, make hedging OTM puts more difficult relative to OTM calls, particularly for low-priced stocks. This effect, however, works in the opposite direction of our results. 6.1. Skewness around regular splits Table 7 displays summary statistics for the full sample of stocks alongside summary statistics for the split sample and the reverse split sample.24 The regular split sample has 1,940 observations, and the reverse split sample 22 Recent papers by Green and Hwang (2009) and Baker, Greenwood, and Wurgler (2009) also use stock splits as an instrument to test behavioral theories, arguing that the lack of a relationship between splits and firm fundamentals allows for a particularly clean experimental setting. 23 The confidence intervals are narrow, especially for regular splits. In the Online Appendix, we show a version of Fig. 1 with confidence intervals. 24 See Table A1 for detailed definitions of all variables. J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 591 Table 6 Double sorts: option trading strategy. Portfolios are formed on the expiration Friday (or last trading day if Friday is a public holiday) of the month, and the option portfolio strategies are initiated on the first trading day (typically a Monday) after the expiration Friday of the month. OTM options are call options with delta greater than 0.02 and not greater than zero. As in Bollen and Whaley (2004), we exclude options with absolute delta below 0.02 due to the distortions caused by price discreteness. On each portfolio formation day, we choose the options for any given moneyness that will expire within one month. On each portfolio formation day, all stocks with available options are sorted into quintiles based on the stock price on the portfolio formation day. For each option series, we construct delta-hedged and non-delta-hedged portfolios and hold them until option expiration. As in Goyal and Sarreto (2009), we use the absolute value of the position as the reference price to calculate the delta-hedged return. The formula is (cT − c0 erT ) − 0 (ST + Rcall = T t=1 Dt er (T −t ) − S0 erT ) , | 0 S 0 − c 0 | We also report the average abnormal return adjusting for Fama-French three factors, the Carhart (1997) momentum factor and a factor reflecting the market-level call return. The portfolio returns are equal weighted. The sample extends from January 22, 1996 to December 21, 2012. There are 203 months in total. Reported t-statistics are in parentheses. ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively. Panel A: delta hedged portfolio returns Price portfolio RNSkew tercile Low Medium High Lowest ∗∗ −1.327 (−2.35) −2.173∗∗∗ (−3.88) −2.007∗∗∗ (−4.23) 2 3 ∗∗∗ −1.680 (−3.17) −1.865∗∗∗ (−4.25) −1.753∗∗∗ (−3.85) 4 ∗∗∗ −1.671 (−3.68) −1.948∗∗∗ (−4.45) −1.670∗∗∗ (−3.68) ∗∗∗ −1.243 (−3.19) −1.288∗∗∗ (−3.25) −0.874∗∗ (−2.06) Highest Highest − lowest −0.674 (−1.62) −0.859∗∗ (−2.22) −0.391 (−0.97) 0.653 (1.44) 1.314∗∗∗ (3.23) 1.616∗∗∗ (4.72) Panel B: non-delta hedged portfolio returns Low Medium High 9.869 (1.09) −11.862∗ (−1.67) −40.872∗∗∗ (−6.52) 2.494 (0.32) −13.023∗∗ (−2.19) −41.153∗∗∗ (−8.81) −0.123 (−0.02) −17.902∗∗∗ (−3.05) −48.656∗∗∗ (−11.95) 5.465 (0.71) −11.197∗ (−1.78) −38.165∗∗∗ (−9.77) 16.827∗∗ (2.51) 1.517 (0.19) −27.888∗∗∗ (−7.08) 6.958 (1.49) 13.379∗∗ (1.97) 12.984∗∗∗ (3.23) Fig. 1. RNSkew around stock splits. The solid line with square markers represents reverse splits, and the solid line without square markers represents regular splits. The graph plots RNSkew against trading days relative to the split. Day 0 is the ex-date. RNSkew is calculated following Bakshi, Kapadia, and Madan (2003). The sample period is from January 1996 to December 2012. has 130 observations.25 The average pre-split price of regular splits is 79.982, which is more than double the price 25 Unsurprisingly, a significant number of stocks in the reverse split sample have prices under $10. We include options on these stocks in the reverse split analysis. of an average optionable stock. The average split ratio is 1.985. The average post-split stock price is 39.534. The average pre-split price of a stock undergoing a reverse split is 10.984, which is much lower than the average stock price. The average split ratio for reverse splits is 0.258, resulting in an average post-split price of 38.534. 592 J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 Table 7 Summary statistics. This table reports summary statistics for three different samples. All optionable stocks are all stocks for which RNSkew and Skew can be calculated and the underlying stock price is greater than $10. Regular splits and reverse splits are the split stocks that are also covered by OptionMetrics. Regular splits and reverse splits are defined as splits with split ratio greater than or equal to 1.25-to-1 and lower than 1-to-1, respectively. Beta is calculated following Fama and French (1992). For each month, we use the past 60 months’ monthly excess return data and CRSP value-weighted excess market return to calculate Beta. Size is market capitalization (price times shares outstanding). B/M is the ratio of book value of equity to market value. Leverage is the ratio of total liabilities to total assets. Past volatility and Past skewness are calculated using past one year daily returns. We annualize volatility by multiplying daily standard deviation by the square root of 252. Momentum is the cumulative return from month t − 12 to month t − 1. Rt − 60 ,t − 13 is the cumulative return from month t − 60 to t − 13. Volume is the total number of shares traded from the last month. ILLIQ is measured following Amihud (2002). Nasdaq is a dummy variable that is equal to one if the firm is listed in Nasdaq and zero otherwise. RNSkew is calculated following Bakshi, Kapadia, and Madan (2003). Skew is calculated using daily data from month t + 1 to month t + 12. E(Skew) is expected skewness. We calculate E(Skew) following the method of Boyer, Mitton, and Vorkink (2010), specifically using Eq. (5) from the text. The sample period is from January 1996 to December 2011. All optionable stocks (N = 203,974) Variables Price log (Price) Beta log (Size) log (B/M) Leverage Past volatility Past skewness Rt − 12 ,t − 1 Rt − 60 ,t − 13 log (Volume) log (ILLIQ) Nasdaq RNSkew Skew E(Skew) Price after split Split ratio Regular splits (N = 1,940) Reverse splits (N = 130) Mean Std. dev. Mean Std. dev. Mean Std. dev. 37.285 3.436 1.300 14.778 −1.216 0.203 0.483 0.218 0.300 1.357 12.005 −21.146 0.414 −0.634 0.231 0.249 NA NA 33.454 0.576 0.818 1.486 0.870 0.184 0.235 1.093 0.889 2.818 1.280 1.753 0.493 0.893 1.346 0.350 NA NA 79.982 4.238 1.311 15.126 −1.774 0.185 0.499 0.429 1.324 2.234 11.679 −21.538 0.440 −0.732 0.163 0.100 39.534 1.985 85.484 0.498 0.998 1.379 0.940 0.193 0.271 0.921 2.261 3.957 1.190 1.527 0.497 0.848 1.066 0.348 18.691 1.201 10.984 1.519 1.848 12.866 −0.152 0.261 0.836 0.604 −0.247 −0.093 12.826 −19.281 0.392 0.553 0.487 0.337 38.534 0.258 14.735 1.515 1.233 2.188 1.346 0.240 0.520 1.569 0.769 1.347 2.069 2.731 0.490 0.942 1.176 0.275 46.313 0.189 Not surprisingly, relative to the large sample, regular splits are larger, have higher market valuation ratios (lower B/M), and have higher past performance (both Rt − 12 ,t − 1 and Rt − 60 ,t − 13 ), and reverse splits are smaller, have lower market valuation ratios, and have lower past performance. Furthermore, regular splits have similar past volatility as compared with the larger sample, and the past volatility of reverse splits is much higher than the average optionable stock. The average RNSkew for the full sample, regular split sample, and reverse split sample is −0.634, −0.732, and 0.553, respectively. Future physical skewness (Skew) of these three groups of stocks is 0.231, 0.163, and 0.487, respectively. Panel A of Table 8 more rigorously examines whether risk neutral skewness expectations are affected by splitinduced changes in nominal price. It explores changes in risk-neutral skewness around the ex-date. The results indicate that investor expectations are greatly affected by the nominal change in price. RNSkew increases from −0.732 to −0.464 on the day of the stock split. The effect is economically large and statistically significant, and it persists in the weeks and months after the split. That investors respond immediately to a split-induced change in price is not unexpected, as substantial investor ex-date responses have been shown in the equity literature. Schultz (20 0 0) finds that small shareholders are very active on the day of a split. He shows a large and immediate increase in small shareholders at the ex-date, as net small trade buy volume increases from slightly above zero in the day prior to the split to about two million shares on the ex-date. Further- more, ex-date price responses are seen in the equity market as there is a large abnormal return accruing to stocks on the ex-date, a finding first shown by Grinblatt, Masulis, and Titman (1984). Past work finds that splits do not seem to be motivated by factors correlated with firm fundamentals. To further verify that our results reflect a response to the change in price, not a change in fundamentals, we examine whether there is a skewness response at the announcement date. If splits signal changes in fundamentals and the change in RNSkew is driven by this change in investors’ information set, then an effect should be evident at the announcement date instead of the ex-date. Panel A shows that this is not the case. We examine the change of RNSkew around the announcement date. To avoid the effect of the ex-date, we examine only the period before the ex-date in the announcement date analysis. We see no statistically or economically significant effect on the date of the announcement. There is some increase in RNSkew beginning on the day after announcement, but the magnitude is much smaller than the change at the actual date of the split. Instead, RNSkew reaches its max on the day of the ex-date.26 26 In unreported results, we examine the change of RNSkew around the announcement date separately for options with maturity before the exdate and options with maturity after the ex-date. We find that RNSkew does not change around the announcement date if the options used to calculate RNSkew expire before the ex-date. This finding also suggests that the RNSkew change around stock splits is not driven by release of new information. J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 593 Table 8 RNSkew around regular stock splits. Regular stock splits are events with a CRSP distribution code of 5523 and a split ratio greater than or equal to 1.25-for-1. RNSkew is calculated following Bakshi, Kapadia, and Madan (2003) and is detailed in the paper. Panel A reports changes in RNSkew, and Panel B reports the change in physical skewness. For RNSkew, we report the change in RNSkew around the ex-date and the announcement date. For the analysis of RNSkew change around announcement dates, to avoid the effect of ex-date, we examine only the period before the ex-date. We use a paired t-test to gauge statistical significance. Different windows are chosen. For example, for (−3, 0) the before column displays RNSkew on day −3 relative to the event date, and the after column displays RNSkew on day 0 relative to the event date (i.e., the date of the event). For each given window, we require RNSkew to be available on both days. In Panel B, for each split stock, we require the matched stock and the split stock to be in the same size quintile, B/M quintile, momentum quintile, and skewness quintile. We also require that the skewness difference between the matched stock and the split stock is lower than 0.25. If more than one stock satisfies the above criteria, we choose the one with the smallest price difference with the split stock. All the information used for matching is available at the time of split. B/M is the ratio of book value of equity to market value. Rt − 12 ,t − 1 is the cumulative return from month t − 12 to month t − 1. Size is equal to the log market capitalization at the end of month t − 1. Pre-matching skewness is calculated using daily returns from month t − 11 to month t − 1. Post-matching skewness is calculated using daily returns from month t + 1 to month t + 12. The sample period is January 1996 to December 2012. ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively. Panel A: RNSkew change Window N (−10, 0) (−5, 0) (−3, 0) (−1, 0) (−1, 1) (−1, 3) (−1, 5) (−1, 10) Before After Change ∗∗∗ t 1,847 1,898 1,917 1,940 1,936 1,926 1,916 1,901 −0.734 −0.705 −0.706 −0.732 −0.733 −0.733 −0.730 −0.730 −0.474 −0.469 −0.468 −0.464 −0.461 −0.481 −0.502 −0.452 0.260 0.236∗∗∗ 0.238∗∗∗ 0.268∗∗∗ 0.272∗∗∗ 0.252∗∗∗ 0.229∗∗∗ 0.277∗∗∗ 11.06 10.68 11.20 13.02 13.10 11.38 10.00 12.02 1,674 1,707 1,722 1,749 1,727 1,663 1,615 1,403 −0.863 −0.876 −0.881 −0.883 −0.880 −0.878 −0.882 −0.879 −0.872 −0.869 −0.865 −0.860 −0.837 −0.800 −0.785 −0.722 −0.009 0.007 0.016 0.022 0.043∗∗ 0.078∗∗∗ 0.096∗∗∗ 0.158∗∗∗ −0.36 0.29 0.78 1.23 2.28 3.68 4.14 6.14 Announcement (−10, 0) (−5, 0) (−3, 0) (−1, 0) (−1, 1) (−1, 3) (v1, 5) (−1, 10) Panel B: physical skewness change: matched sample analysis (N = 1,520) Before After Variable Treated Matched Difference t Treated Matched Difference t log (B/M) log (Price) Rt − 12 ,t − 1 log (Size) Skew −1.771 4.145 1.242 15.096 0.384 −1.762 4.049 1.114 15.261 0.386 −0.008 0.096∗∗∗ 0.128∗∗∗ −0.165∗∗∗ −0.273 −0.43 14.47 2.81 −4.67 −0.85 0.151 0.190 −0.039 −1.23 The evidence suggests that nominal changes in price levels around stock splits affect investor beliefs about the future distribution of returns. A potential story not excluded by the lack of an effect on the announcement date is that a change in liquidity occurs on the ex-date. The increase in RNSkew on the ex-date could reflect a decrease in risk premium driven by an increase in liquidity. The previous literature typically finds little evidence that splits increase liquidity. For instance, Schultz (20 0 0), Easley, O’Hara, and Saar (2001), Maloney and Mulherin (1992), Gray, Smith, and Whaley (2003), and Conroy, Harris, and Benet (1990) all find that spreads as a percentage of price increase following splits, suggesting lower liquidity. In the Online Appendix, we report results showing that this is also true for our sample of splits. We find that, consistent with the past research, rel- ative spreads and relative effective spreads increase in the post-split period, suggesting that liquidity changes cannot explain the observed RNSkew change we see. Further alleviating the concern of a relation between RNSkew and liquidity changes, we find that in the cross-section of splits no statistically significant relation exists between RNSkew changes and liquidity changes. The results are reported in the Online Appendix. What prevents smart money from anticipating this increase in RNSkew and trading ahead of the ex-date?27 It is well known that substantial limits to arbitrage exist in 27 An analogous effect occurs contemporaneously in the equity market. A large abnormal return accrues to stocks on the ex-date (Grinblatt, Masulis, and Titman, 1984), suggesting that, even in the more liquid stock market, the market lacks the ability to fully absorb the demand from investors who prefer lower-priced stocks. 594 J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 options markets (for example, options are relatively illiquid as compared with equities; also one would want to have a delta-hedged position to hedge the risk of price changes in the underlying, but this requires nearly constant rebalancing).28 The extent of limits to arbitrage in the options market is perhaps most clearly illustrated by the recent finding that end-user demand for options plays a strong role in influencing options prices (Bollen and Whaley, 2004; Garleanu, Pedersen, and Poteshman, 2009).29 Despite the limits to arbitrage in the options market, in the case of the stock split evidence, Panel A of Table 8 does show that the RNSkew begins to increase slightly in the period between the announcement date and ex-date, consistent with some effort to arbitrage this phenomenon. The lack of an effect on the announcement day suggests that changes in investor expectations are not driven by expectations of changes in fundamentals. However, to completely rule out the possibility that the observed change in RNSkew reflects a rational expectation of change in future expected skewness, we assess whether physical skewness does change in the period following splits. A priori, expectations of post-split increases in skewness seem especially hard to rationalize given that splits occur after a runup in stock price and therefore a period of above-average skewness. The last row of Panel B in Table 8 displays the change in physical skew. In contrast to the expected increase in skewness exhibited in the options market, physical skewness decreases in the period after the split. The decrease is substantial, with daily skewness in the year following a split decreasing by over 50% (from 0.384 to 0.151, t = 8.93) relative to the year leading up to the split. That physical skewness decreases following splits makes the evidence of investor expectations of increased upside potential for recently split stocks all the more compelling. To further ensure that the change in physical skewness that we observe post-split does not reflect a change in fundamentals, we compare splitting firms with a matched sample of non-splitting firms. The matched firms are similar in that they have experienced a similar price run-up and are of similar size, book-to-market, and past skewness. A detailed discussion of the matching procedure is in the table description.30 These are firms that can reasonably be expected to have equal expectations ex-ante of undergoing a split. After matching, our sample of firms reduces to 1,520 due to missing Compustat or CRSP data. Alleviating the concern that splitting stocks undergo a change in fundamentals, we find no difference in future skewness between the split sample and the matched sample. The lack of a difference in skewness provides reassurance that the post-split decrease in skewness is not an unpredictable artifact of the split. The findings provide evidence strongly supporting the theory that a nominal price 28 Buraschi and Jackwerth (2001), Coval and Shumway (2001), and Jones (2006) show that limits to arbitrage exist between options and stocks and that options are not simply redundant assets. 29 Cao and Han (2013) also clearly illustrate limits to arbitrage in the options market. 30 The results are similar if we vary the matching method. bias leads investors to attribute irrationally high skewness to low-priced stocks relative to high-priced stocks. 6.2. Skewness around reverse splits As an additional test of our hypothesis, we examine the RNSkew response around reverse splits. The results are reported in Table 9. Despite a much smaller sample size, the results are clear. Consistent with nominal prices inducing a bias in investor expectations, we find that RNSkew drastically decreases on the day that prices increase due to a reverse split taking effect (Panel A of Table 9).31 Panel B of Table 9 confirms that the future physical skewness changes do not reflect the risk-neutral changes in expectations. In fact, we find that, in contrast to the observed decrease in risk-neutral skewness, physical skewness increases substantially in the year following a reverse split (from 0.552 to 0.674, t = 2.09). 6.3. Robustness In this robustness subsection, we address two concerns. The first regards the estimation of physical skew. Physical skew is sensitive to tail events and typically requires a long time series of return data for estimation. Even with a sufficiently long time series, it is still subject to a peso problem; that is, extremely good or bad events do not occur as frequently as rationally expected, leading to an error in the measured physical skew. The problem can be more severe for the reverse split sample than the regular split sample, as the reverse split sample is much smaller. We attempt to address this fear by examining a much larger sample of splits. We extend the analysis of physical skew to all splits occurring after 1963. This sample has 11,005 regular splits (a five-fold increase in sample size relative to the earlier analysis) and 1,607 reverse splits (a 12-fold increase in sample size relative to the earlier analysis). This much larger split sample confirms the earlier results: Physical skew drastically decreases following stock splits. The results are available in the Online Appendix. A second concern is that somehow the split process mechanically induces a change in RNSkew as a result of the necessary adjustment of the strike price by the split factor. While it is not at all clear how this would induce a change in RNSkew, we are fortunate to encounter a natural experiment during our sample period that we exploit to rule out this possibility. Historically, option contracts have been adjusted accordingly by the split factor. For example, if a stock undergoes a two-for-one split, an option with a strike price of 50 calling for the delivery of one-hundred shares would be divided into two options with a strike price of 25, each calling for the delivery of one-hundred shares. Effective September 4, 2007, the Options Clearing Corporation (OCC) adopted a new rule to govern the postsplit administration of options contracts. At the time, strike prices were denominated in one-eighth increments, which led to small inaccuracies in adjustments for certain stock 31 We are not able to compare the RNSkew change around the announcement date, as the announcement dates in CRSP are missing for most reverse splits. J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 595 Table 9 RNSkew around reverse stock splits. Reverse stock splits are events with a CRSP distribution code of 5523 and a split ratio less than 1-for-1. RNSkew is calculated following Bakshi, Kapadia, and Madan (2003) and is detailed in the paper. Panel A reports changes in RNSkew and Panel B reports the change in physical skewness. We report the change in RNSkew around the ex-date. A paired t-test is used to gauge statistical significance. Different windows are chosen. For example, for (−3, 0) the before column displays RNSkew on day −3 relative to the event date, and the after column displays RNSkew on day 0 relative to the event date (i.e., the date of the event). For each given window, we require RNSkew to be available on both days. In Panel B, for each split stock, we require the matched stock and the split stock to be in the same size quintile, BM quintile, momentum quintile and skewness quintile. We also require that the skewness difference between the matched stock and the split stock is lower than 0.25. If more than one stock satisfies the above criteria, we choose the one with the smallest price difference with the split stock. All the information used for matching is available at the time of split. B/M is the ratio of book value of equity to market value. Rt − 12 ,t − 1 is the cumulative return from month t − 12 to month t − 1. Size is equal to the log market capitalization at the end of month t−1. Pre-matching skewness is calculated using daily returns from month t − 11 to month t − 1. Post-matching skewness is calculated using daily returns from month t + 1 to month t + 12. The sample period is January 1996 to December 2012. ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively. Panel A: change of RNSkew Window N (−10, 0) (−5, 0) (−3, 0) (−1, 0) (−1, 1) (−1, 3) (−1, 5) (−1, 10) Before 123 126 127 130 128 128 128 126 After Change −0.426 −0.434 −0.455 −0.470 −0.408 −0.407 −0.423 −0.321 0.255 0.320 0.332 0.553 0.566 0.566 0.566 0.570 t ∗∗∗ −0.681 −0.754∗∗∗ −0.787∗∗∗ −1.023∗∗∗ −0.974∗∗∗ −0.974∗∗∗ −0.989∗∗∗ −0.891∗∗∗ −5.11 −6.00 −6.18 −7.81 −7.94 −7.81 −8.08 −7.75 Panel B: Change of physical skewness (N = 61) Before log (B/M) log (Price) Rt − 12 ,t − 1 log (Size) Skew After Treated Matched Difference t Treated Matched Difference t −0.509 1.507 −0.184 13.566 0.552 −0.401 2.223 −0.153 13.321 0.538 −0.108∗ −0.716∗∗∗ −0.030 0.245∗∗ 0.013 −1.76 −8.06 −1.61 2.07 0.76 0.674 0.731 −0.057 −0.24 splits. For example, an option contract with a strike price of $40 for which the underlying stock experienced a threefor-two split should have a new strike of $26.67. However, because strikes are denominated only in one-eighth increments, the new strike would instead be $26.625. To avoid this inaccuracy, the new OCC rule effective leaves option contracts untouched and instead recalculates the stock price to the hypothetical price it would trade had the split not occurred. The new rule affected all splits except two-for-one or four-for-one splits, and was extended until February 12, 2010, at which time decimalization of strike prices was set to take place (for more details of the rule change, see Memos 23484 and 26853 of OCC). We exploit this window of time in which strike prices were unadjusted by splits to confirm that our results are not somehow mechanically driven by adjustments to the strike price itself. The empirical findings we show are robust in both the pre and post-rule change periods. Table 10 shows the effect of splits on RNSkew for the subsample of splits occurring between September 4, 2007 and February 12, 2010. The results are consistent with those from our earlier analysis.32 32 Because the sample is not large, we also examine median changes to ensure that the results aren’t driven by a few outliers. The median change The sample is small for multiple reasons. First, two-for-one and four-for-one splits were exempt from the rule change. Second, relatively few splits occurred during this time period, which is not surprising given the generally poor market performance. Finally, because two-for-one and four-forone splits are excluded, the sample is tilted toward very large splits. The average split in the rule change sample is slightly greater than six-for-one. Because investors react more strongly to larger price changes, the magnitude of the effect seen here is much larger than in the entire sample of splits. The results for the regular splits are overall consistent with the results over the entire sample period, suggesting that the relation between RNSkew and price is not driven by options market microstructure concerns.33 In summary, we find sharp changes in RNSkew at the date that a stock splits to a lower price. In stark contrast ranges from 1.822 to 2.343, larger than the mean change. All the median changes are significant at the 1% level (based on Wilcoxon ranked-sign test). 33 To further exclude the possibility of a mechanical relation, we examine a sample of ETF splits. Typically, ETFs try to mimic the return of the whole market or a very broad group of stocks. It is very unlikely that investors would think that lower-priced ETFs have more upside potential, especially considering that when an ETF splits, there is no split of the underlying index. We find no change in RNSkew for this sample. Results are available in the Online Appendix. 596 J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 Table 10 New rule period: regular splits. This table reports the change of RNSkew around regular stock splits for the new rule period. Before September 4, 2007, option strike prices were adjusted to the nearest one-eighth to undo the effect of stock splits. The new rule effective September 4, 2007 leaves option contracts untouched, and instead recalculates the stock price to the hypothetical price it would trade had the split not occurred. The new rule affected all splits except two-for-one or four-for-one splits and extended until February 12, 2010. Regular stock splits are events with a CRSP distribution code of 5523 and a split ratio greater than or equal to 1.25-for-1. The new rule period is from September 4, 2007 to February 12, 2010. We exclude two-for-one and four-for-one splits. RNSkew is calculated following Bakshi, Kapadia, and Madan (2003). We report the change in RNSkew around the ex-date and the announcement date. A paired t-test is used to gauge statistical significance. Different windows are chosen. For example, for (−3, 0) the before column displays RNSkew on day −3 relative to the event date, and the after column displays RNSkew on day 0 relative to the event date (i.e., the date of the event). For each given window, we require RNSkew to be available on both days. ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively Window (−10, 0) (−5, 0) (−3, 0) (−1, 0) (−1, 1) (−1, 3) (−1, 5) (−1, 10) N 22 22 22 22 21 22 22 22 Before −0.613 −0.413 −0.381 −0.606 −0.606 −0.606 −0.606 −0.606 After 1.186 1.186 1.186 1.186 1.226 1.273 1.286 1.307 Mean change ∗∗∗ 1.799 1.599∗∗∗ 1.567∗∗∗ 1.792∗∗∗ 1.833∗∗∗ 1.879∗∗∗ 1.893∗∗∗ 1.913∗∗∗ t 6.45 5.73 5.69 6.72 7.32 7.12 7.62 7.63 to investor expectations of post-split skewness increases, we find a drastic decrease in physical skewness following a split. The evidence is further strengthened by supportive results among the smaller sample of stocks undergoing reverse splits. The evidence is consistent with nominal price levels biasing investor expectations of future return distributions. 6.4. Increased upside or decreased downside? The observed option-implied skew increase following splits could reflect an increase in the perceived upside potential for the stock or a decrease in the perceived downside potential for the stock, or a combination of both. To answer this more precise question we separately examine puts and calls. That is, we examine changes to OTM put and OTM call implied volatilities. Investor perception of increased upside potential manifests itself in option-implied skew through the increased valuation of OTM calls. Perception of decreased downside potential shows up in option-implied skew via decreased valuations of OTM puts. Intuitively, implied volatility changes allow us to identify valuation changes to assess whether it is changing beliefs regarding upside potential or downside potential (or some combination of the two) that drives the observed RNSkew changes. To examine how the relative valuations of puts and calls change, we compare OTM implied volatilities with ATM implied volatilities. We focus on the difference in OTM and ATM implied volatilities, and we examine whether this quantity changes after the split. Table 11 displays the Table 11 Implied volatility change around stock splits. This table reports the change of implied volatility (measured in percent) around stock splits, both regular splits (Panel A) and reverse splits (Panel B). Regular stock splits are events with a CRSP distribution code of 5523 and a split ratio greater than or equal to 1.25-for-1. Reverse stock splits are events with a CRSP distribution code of 5523 and a split ratio less than 1-for-1. Implied volatility is obtained from OptionMetrics. ATM options are defined as call options with delta higher than 0.375 and not higher than 0.625 and put options with delta higher than −0.625 and not higher than −0.375. OTM options are call options with delta greater than 0.02 and not greater than 0.375 and put options with delta greater than −0.375 and not greater than −0.02. As in Bollen and Whaley (2004), we exclude options with absolute delta below 0.02 due to the distortions caused by price discreteness. We report changes in the difference between the implied volatility of OTM call options and ATM call options and the difference between the implied volatility of OTM put options and ATM put options, around the ex-date. A paired t-test is used to gauge statistical significance. Different windows are chosen. For example, for (−3, 0) the before column displays IV differences on day −3 relative to the event date, and the after column displays IV differences on day 0 relative to the event date (i.e., the date of the event). For each given window, we require the IV difference to be available on both days. The sample period is January 1996 to December 2012. ∗ , ∗∗ , and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively. Panel A: regular splits Window N Before After Change t −1.493 −1.675 −1.677 −1.699 −1.699 −1.709 −1.703 −1.698 −0.597 −0.591 −0.647 −0.657 −0.780 −0.302 −0.216 0.189 0.896∗∗∗ 1.084∗∗∗ 1.030∗∗∗ 1.042∗∗∗ 0.919∗∗∗ 1.407∗∗∗ 1.487∗∗∗ 1.888∗∗∗ 2.73 3.27 3.29 3.75 3.04 4.64 4.70 5.94 2.335 2.401 2.551 2.508 2.508 2.508 2.508 2.512 2.122 2.121 2.121 2.121 2.206 2.260 2.398 2.622 −0.213 −0.281 −0.430∗∗ −0.387∗∗ −0.303 −0.248 −0.110 0.110 −1.01 −1.38 −2.28 −2.01 −1.65 −1.21 −0.52 0.55 OTM call − ATM call (−10, 0) (−5, 0) (−3, 0) (−1, 0) (−1, 1) (−1, 3) (−1, 5) (−1, 10) 2,171 2,181 2,193 2,196 2,196 2,195 2,193 2,191 OTM put − ATM put (−10, 0) (−5, 0) (−3, 0) (−1, 0) (−1, 1) (−1, 3) (−1, 5) (−1, 10) 2,171 2,181 2,193 2,196 2,196 2,195 2,193 2,191 Panel B: reverse splits OTM call − ATM call (−10, 0) (−5, 0) (−3, 0) (−1, 0) (−1, 1) (−1, 3) (−1, 5) (−1, 10) 197 199 199 200 200 197 196 193 5.335 6.864 5.029 9.346 9.346 8.846 8.931 8.641 −1.171 −1.289 −1.289 −1.288 −4.480 0.059 −1.051 −0.149 −6.505∗∗∗ −8.152∗∗∗ −6.318∗∗∗ −10.634∗∗∗ −13.825∗∗∗ −8.787∗∗∗ −9.982∗∗∗ −10.128∗∗∗ −3.11 −3.67 −2.90 −5.04 −6.88 −4.12 −5.11 −5.03 197 199 199 200 200 197 196 193 1.053 −2.570 2.073 2.036 2.036 1.590 0.984 0.945 −0.585 −0.663 −0.663 −0.679 −0.438 −0.481 −0.665 −1.745 −1.638 1.907 −2.735 −2.716 −2.474 −2.071 −1.649 −2.690 −0.73 0.87 −1.25 −1.33 −1.17 −0.98 −0.85 −1.31 OTM put− ATM put (−10, 0) (−5, 0) (−−3, 0) (−1, 0) (−1, 1) (−1, 3) (−1, 5) (−1, 10) J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 results. Panel A examines the case of regular splits, and Panel B examines reverse splits.34 The results are clear. Panel A shows that the difference in OTM and ATM implied volatilities substantially increases following the split. That is, OTM calls become more expensive following the split, reflecting investors’ increased perception of upside potential. However, the same is not true for puts. Panel A also shows that while on average OTM puts do seem to get slightly cheaper following a split, this change is small and generally not statistically significant. The smaller sample of reverse split results (Panel B of Table 11) are also consistent with the regular split evidence. After price increases due to a reverse split, OTM calls become relatively cheaper, reflecting investor beliefs of decreased upside potential. However, there is no significant change in the case of puts. The evidence suggests that the skew change does in fact reflect changes in investor perceptions regarding upside potential, with no accompanying change in investor perceptions regarding downside potential. This evidence complements the earlier option return results that look differentially at OTM calls and OTM puts, and provides additional evidence that the general effects we see are driven by investor-biased beliefs regarding the upside potential, but not downside potential, of low-priced stocks. 7. Conclusion We provide the first evidence that investors link nominal share price to return skewness and systematically overestimate the skewness of low-priced stocks relative to high-priced stocks. The evidence presented is consistent with investors suffering from the illusion that low-priced stocks have more upside potential. Analysis of option volume data provides further evidence that investors exhibit greater optimism toward lowpriced stocks than high-priced stocks. Finally, investor overweighting of nominal prices in forming return distribution expectations has asset-pricing implications. We find that OTM call options of low-priced stocks are more overvalued than those of high-priced stocks. Firms have long engaged in the costly management of share price through stock splits, despite nominal prices lacking real economic content. Recent work provides evidence that investors view stocks of similar price as sharing similar attributes. Green and Hwang (2009) find that investors categorize stocks by nominal price, and Baker, Greenwood, and Wurgler (2009) find that firms exploit the fact that nominal prices matter to investors by increasing the supply of low-priced securities when investors are willing to pay a premium for them. While nominal prices clearly matter to investors, it has thus far been less clear why prices matter. We provide the first empirical insight into why prices matter to investors. We find evidence 34 We have slightly more observations for this analysis than for the RNSkew estimation as we do not require a minimum number of OTM options as we do in the RNSkew analysis. Furthermore, it is not necessary for all OTM options to have the same maturity as is the case in the RNSkew analysis. 597 that is consistent with the notion that investors view lowpriced stocks as cheap assets with more room to grow Appendix A Table A1 Table A1 Definition of variables. Variable Description Price log (Price) Beta Stock price Natural log of stock price Calculated using monthly return data over the past five years, following Fama and French (1992) Size is the product of stock price and number of shares outstanding, calculated at the end of month t−1 Book-to-market is the ratio of book value of common equity to market value of common equity and is matched to CRSP data following Fama and French (1992). Book equity of common equity is calculated following Fama and French (2008). It is equal to total assets (Compustat data item 6), minus liabilities (181), plus balance sheet deferred taxes and investment tax credit (35) if available, minus preferred stock liquidating value (10) if available, or redemption value (56) if available, or carrying value (130). Negative book-to-market observations are deleted Ratio of total liabilities divided by total assets and matched to CRSP data following Fama and French (1992) Volatility is calculated using past daily returns over the past year. Daily standard deviation is annualized by multiplying by the square root of 252 Skewness is calculated using daily returns from month t − 12 to month t − 1 Cumulative return from month t − 12 to month t − 1 Cumulative return from month t − 60 to month t − 13 Natural log of total shares traded Natural log of the illiquidity measure of Amihud (2002) calculated using daily data in month t − 1 A dummy variable equal to one if the firm is listed in NASDAQ, and zero otherwise Risk-neutral skewness implied from option prices, calculated following Bakshi, Kapadia, and Madan (2003) Future skewness, calculated using future one year daily returns from month t + 1 to month t + 12 log (Size) log(B/M) Leverage Past volatility Past skewness Rt − 12, t − 1 Rt − 60, t − 13 log (Volume) log (ILLIQ) Nasdaq RNSkew Skew References Amihud, Y., 2002. Illiquidity and stock returns: Cross-section and timeseries effects. Journal of Financial Markets 5, 31–56. Angel, J., 1997. Tick size, share price, and stock splits. Journal of Finance 52, 655–681. Asquith, P., Healy, P., Palepu, K., 1989. Earnings and stock splits. Accounting Review 64, 387–403. Baker, H., Gallagher, P., 1980. Management’s view of stock splits. Financial Management 9, 73–77. Baker, M., Greenwood, R., Wurgler, J., 2009. Catering through nominal share prices. Journal of Finance 64, 2559–2590. Bakshi, G., Kapadia, N., Madan, D., 2003. Stock return characteristics, skew laws, and the differential pricing of individual equity options. Review of Financial Studies 16, 101–143. 598 J. Birru, B. Wang / Journal of Financial Economics 119 (2016) 578–598 Bali, T., Murray, S., 2013. Does risk-neutral skewness predict the crosssection of equity option portfolio returns? Journal of Financial and Quantitative Analysis 48, 1145–1171. Barberis, N., Huang, M., 2008. Stocks as lotteries: the implications of probability weighting for security prices. American Economic Review 98, 2066–2100. Bollen, N., Whaley, R., 2004. Does net buying pressure affect the shape of implied volatility functions? Journal of Finance 59, 711–753. Boyer, B., Mitton, T., Vorkink, K., 2010. Expected idiosyncratic skewness. Review of Financial Studies 23, 169–202. Boyer, B., Vorkink, K., 2014. Stock options as lotteries. Journal of Finance 69, 1485–1527. Brennan, M., Copeland, T., 1988. Stock splits, stock prices and transaction costs. Journal of Financial Economics 22, 83–101. Buraschi, A., Jackwerth, J., 2001. The price of a smile: hedging and spanning in option markets. Review of Financial Studies 14, 495–527. Cao, J., Han, B., 2013. Cross-section of option returns and idiosyncratic stock volatility. Journal of Financial Economics 108, 231–249. Carhart, M., 1997. On persistence in mutual fund performance. Journal of Finance 52, 57–82. Chen, J., Hong, H., Stein, J., 2001. Forecasting crashes: trading volume, past returns, and conditional skewness in stock prices. Journal of Financial Economics 61, 345–381. Conrad, J., Dittmar, R., Ghysels, E., 2013. Ex ante skewness and expected stock returns. Journal of Finance 68, 85–124. Conroy, R., Harris, R., 1999. Stock splits and information: the role of share price. Financial Management 28, 28–40. Conroy, R., Harris, R., Benet, B., 1990. The effects of stock splits on bid-ask spread. Journal of Finance 45, 1285–1295. Coval, J., Shumway, T., 2001. Expected options returns. Journal of Finance 56, 983–1009. Cox, J., Ross, S., Rubinstein, M., 1979. Option pricing: a simple approach. Journal of Financial Economics 7, 229–263. Dennis, P., Mayhew, S., 2002. Risk-neutral skewness: evidence from stock options. Journal of Financial and Quantitative Analysis 37, 471–493. Dyl, E., Elliot, W., 2006. The share price puzzle. Journal of Business 79, 2045–2066. Easley, D., O’Hara, M., Saar, G., 2001. How stock splits affect trading: a microstructure approach. Journal of Financial and Quantitative Analysis 36, 25–51. Fama, E.F., French, K.R., 1992. The cross-section of expected stock returns. Journal of Finance 47, 427–465. Fama, E.F., French, K.R., 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33, 3–56. Fama, E.F., French, K.R., 2008. Dissecting anomalies. Journal of Finance 63, 1653–1678. Fama, E.F., MacBeth, J., 1973. Risk, return, and equilibrium: empirical tests. Journal of Political Economy 81, 607–636. Fernando, C., Krishnamurthy, S., Spindt, P., 2004. Are share price levels informative? Evidence from the ownership, pricing, turnover, and performance of IPO firms. Journal of Financial Markets 7, 377–403. Friesen, G.C., Zhang, Y., Zorn, T.S., 2012. Heterogeneous beliefs and riskneutral skewness. Journal of Financial and Quantitative Analysis 47, 851–872. Garleanu, N., Pedersen, L., Poteshman, A., 2009. Demand-based option pricing. Review of Financial Studies 22, 4259–4299. Gompers, P., Metrick, A., 2001. Institutional investors and equity prices. Quarterly Journal of Economics 116, 229–259. Goyal, A., Saretto, A., 2009. Cross-section of option returns and volatility. Journal of Financial Economics 94, 310–326. Gray, S., Smith, T., Whaley, R., 2003. Stock splits: implications for investor trading costs. Journal of Empirical Finance 10, 271–303. Green, T., Hwang, B., 2009. Price-based return comovement. Journal of Financial Economics 93, 37–50. Grinblatt, M., Masulis, R., Titman, S., 1984. The valuation effects of stock splits and stock dividends. Journal of Financial Economics 13, 461– 490. Han, B., 2008. Investor sentiment and option prices. Review of Financial Studies 21, 387–414. Ikenberry, D, Rankine, G, Stice, E, 1996. What do stock splits really signal? Journal of Financial and Quantitative Analysis 31, 357–375. Jones, C., 2006. A nonlinear factor analysis of S&P 500 index option returns. Journal of Finance 61, 2325–2363. Kumar, A., 2009. Who gambles in the stock market. Journal of Finance 64, 1889–1933. Kumar, A., Lee, C., 2006. Retail investor sentiment and return comovements. Journal of Finance 61, 2451–2486. Lakonishok, J., Lev, B., 1987. Stock splits and stock dividends: why, who and when. Journal of Finance 115, 913–932. Lemmon, M., Ni, S., 2014. Differences in trading and pricing between stock and index options. Management Science 60, 1985–2001. Maloney, M., Mulherin, H., 1992. The effects of splitting on the ex: a microstructure reconciliation. Financial Management 21, 44–59. McNichols, M., Dravid, A., 1990. Stock dividends, stock splits, and signalling. Journal of Finance 45, 857–879. Mitton, T., Vorkink, K., 2007. Equilibrium underdiversification and the preference for skewness. Review of Financial Studies 20, 1255–1288. Muscarella, C., Vetsuypens, M., 1996. Stock splits: signaling or liquidity? The case of ADR ‘solo-splits’. Journal of Financial Economics 42, 3–26. Newey, W., West, K., 1987. A simple, positive semi-definite, heteroscedasticity, and autocorrelation consistent covariance matrix. Econometrica 55, 703–708. Ofek, E., Richardson, M., Whitelaw, R., 2004. Limited arbitrage and short sales restrictions: evidence from the options markets. Journal of Financial Economics 74, 305–342. Pan, J., 2002. The jump-risk premia implicit in options: evidence from an integrated time-series study. Journal of Financial Economics 63, 3–50. Schiffres, M., 2002, Fidelity’s secret weapon. Kiplinger’s Personal Finance Magazine. January 2002, pp. 63–65. Schultz, P., 20 0 0. Stock splits, tick size, and sponsorship. Journal of Finance 55, 429–450. Weld, W., Michaely, R., Thaler, R., Benartzi, S., 2009. The nominal share price puzzle. Journal of Economic Perspectives 23, 121–142.
© Copyright 2025 Paperzz