If a > 0, a β‰  1, f(x) = ax is a continuous function with domain R and

If a > 0, a β‰  1, f(x) = ax is a continuous function with domain R and range (0, ∞).
In particular, ax > 0 for all x.
If 0 < a < 1, f(x) = ax is a decreasing function.
If a > 1, f is an increasing function.
There are basically three kinds of exponential functions y = ax.
Since (1/a)x = 1/ax = a-x, the graph of y = (1/a)x is just
the reflection of the graph of y = ax about the y-axis.
The exponential function occurs very frequently in mathematical
models of nature and society.
Derivative of exponential function 𝑓𝑓 π‘₯π‘₯ = 𝑒𝑒 π‘₯π‘₯
𝑓𝑓 β€²
1
𝑓𝑓 π‘₯π‘₯ + β„Ž βˆ’ 𝑓𝑓(π‘₯π‘₯)
𝑒𝑒 π‘₯π‘₯+β„Ž βˆ’ 𝑒𝑒 π‘₯π‘₯
𝑒𝑒 π‘₯π‘₯ 𝑒𝑒 β„Ž βˆ’ 𝑒𝑒 π‘₯π‘₯
π‘₯π‘₯ = lim
= lim
= lim
β„Žβ†’0
β„Žβ†’0
β„Žβ†’0
β„Ž
β„Ž
π‘₯π‘₯
β„Ž
𝑒𝑒 π‘₯π‘₯ (𝑒𝑒 β„Ž βˆ’1)
𝑒𝑒
βˆ’1
= lim
= 𝑒𝑒 π‘₯π‘₯ lim
= 𝑒𝑒 π‘₯π‘₯ 𝑓𝑓𝑓(0)
β„Žβ†’0
β„Žβ†’0
β„Ž
β„Ž
β„Ž
0.1
𝑒𝑒 β„Ž βˆ’ 1
β„Ž
1.71828
1.05171
0.01
1.00502
0.001
1.00050
0.0001
1.00005
0.00001
1.00001
By definition, this is derivative 𝑓𝑓𝑓(0) ,
what is the slope of 𝑒𝑒 π‘₯π‘₯ at π‘₯π‘₯ = 1.
𝑒𝑒 β„Ž βˆ’ 1
lim
=1
β„Žβ†’0
β„Ž
𝑑𝑑 π‘₯π‘₯
𝑒𝑒 = 𝑒𝑒 π‘₯π‘₯
𝑑𝑑𝑑𝑑
example:
Differentiate the function y = e tan x
To use the Chain Rule, we let u = tan x.
Then, we have y = eu.
example:
Find y’ if y = e-4x sin 5x.
chain rule:
d u
u du
e =e
dx
dx
We can now use this formula to find the derivative of
𝑦𝑦 = π‘Žπ‘Ž π‘₯π‘₯
𝑑𝑑 π‘₯π‘₯
π‘Žπ‘Ž
𝑑𝑑𝑑𝑑
=
𝑑𝑑 π‘₯π‘₯
π‘Žπ‘Ž
𝑑𝑑𝑑𝑑
⟹
𝑑𝑑
𝑑𝑑𝑑𝑑
ln 𝑦𝑦 = ln π‘Žπ‘Ž π‘₯π‘₯ = π‘₯π‘₯ ln π‘Žπ‘Ž
(𝑒𝑒 π‘₯π‘₯ ln π‘Žπ‘Ž ) = 𝑒𝑒 π‘₯π‘₯ ln π‘Žπ‘Ž
= π‘Žπ‘Ž π‘₯π‘₯ βˆ™ ln π‘Žπ‘Ž
𝑑𝑑
𝑑𝑑𝑑𝑑
⟹ π‘Žπ‘Ž π‘₯π‘₯ = 𝑒𝑒 π‘₯π‘₯ ln π‘Žπ‘Ž
a
(π‘₯π‘₯ ln π‘Žπ‘Ž) = 𝑒𝑒 π‘₯π‘₯ ln π‘Žπ‘Ž βˆ™ ln π‘Žπ‘Ž
x
𝑦𝑦 = ln π‘₯π‘₯
𝑒𝑒 𝑦𝑦 = π‘₯π‘₯ ⟹
𝑑𝑑 𝑦𝑦
𝑑𝑑
𝑒𝑒 =
π‘₯π‘₯
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑒𝑒 𝑦𝑦
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
1
𝑑𝑑
ln π‘₯π‘₯ =
π‘₯π‘₯
𝑑𝑑𝑑𝑑
= 1
⟹
⟹ π‘₯π‘₯
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
= 1 ⟹
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
=
1
π‘₯π‘₯
example:
Differentiate y = ln(x3 + 1).
To use the Chain Rule, we let u = x3 + 1.
Then, y = ln u.
example:
Find:
example:
Differentiate f ( x) =
ln x
example:
If we first simplify the given function using the laws of logarithms, the
differentiation becomes easier
example:
Find f ’(x) if 𝑓𝑓(π‘₯π‘₯) = ln |π‘₯π‘₯|.
Thus, f ’(x) = 1/x for all x β‰  0.
The result is worth remembering:
a logarithmic function with base a in terms
of the natural logarithmic function:
Since ln a is a constant, we can differentiate as follows:
example:
IMPORTANT and UNUSUAL: If you have a daunting task to find derivative
in the case of a function raised to the function π‘₯π‘₯ π‘₯π‘₯ , π‘₯π‘₯ sin π‘₯π‘₯ … , , or a crazy
product, quotient, chain problem you do a simple trick:
FIRST find logarithm , 𝑙𝑙𝑙𝑙, so you’ll have sum instead of product, and
product instead of exponent. Life will be much, much easier.
STEPS IN LOGARITHMIC DIFFERENTIATION
1. Take natural logarithms of both sides of an equation y = f(x) and
use the Laws of Logarithms to simplify.
2. Differentiate implicitly with respect to x.
3. Solve the resulting equation for y’.
example:
Differentiate:
1.
2.
3.
Since we have an explicit expression for y, we can substitute and write
If we hadn’t used logarithmic differentiation the resulting calculation
would have been horrendous.
example:
𝑦𝑦 = π‘₯π‘₯ sin π‘₯π‘₯
𝑦𝑦 β€² =?
1 β€²
sin π‘₯π‘₯
ln 𝑦𝑦 = (sin π‘₯π‘₯) ln π‘₯π‘₯ β‡’
𝑦𝑦 = (cos π‘₯π‘₯) ln π‘₯π‘₯ +
𝑦𝑦
π‘₯π‘₯
𝑦𝑦 β€² = (ln π‘₯π‘₯)π‘₯π‘₯ sin π‘₯π‘₯ cos π‘₯π‘₯ + (sin π‘₯π‘₯) π‘₯π‘₯ sin π‘₯π‘₯βˆ’1
Try: 𝑦𝑦 = (sin π‘₯π‘₯) π‘₯π‘₯