Trig Equations with a Twist Solve each equation on the interval 0 β€ π₯ < 2π with exact values. _________________ 1. 2 sin2 π₯ β 5 sin π₯ + 2 = 0 _________________ 2. sin2 π₯ β 2 sin π₯ β 3 = 0 _________________ 3. 4 sin2 π₯ β 3 = 0 Use identities to assist you in solving each of the following on the interval 0 β€ π₯ < 2π with exact values. _________________ 4. 2 sin π₯ = csc π₯ _________________ 5. 1 β 3 cos π₯ = sin2 π₯ _________________ 6. tan2 π₯ = 2 sec π₯ β 1 _________________ 7. cot 2 π₯ = 3(csc π₯ β 1) _________________ 8. 2 cos 2 π₯ + sin π₯ = 1 _________________ 9. 2 cos 2 π₯ β β3 cos π₯ = 0 _________________ 10. cos 2π₯ + 3 cos π₯ β 1 = 0 _________________ 11. sin 2π₯ = β sin π₯ _________________ 12. tan 2π₯ = cot π₯ Consider the period and/or frequency of the graphs when solving each of the following on the interval 0 β€ π₯ < 2π with exact values. 1 _________________ 13. sin 2π₯ = 2 _________________ 14. cos 3π₯ = β2 2 _________________ 15. sin 3π₯ = β β3 2 Trig Equations with a Twist KEY Solve each equation on the interval 0 β€ π₯ < 2π with exact values. π 5π π₯= , 6 6 _________________ 1. 2 sin2 π₯ β 5 sin π₯ + 2 = 0 (2 sin π₯ β 1)(sin π₯ β 2) = 0 2 sin π₯ β 1 = 0 or sin π₯ β 2 = 0 3π π₯= 2 _________________ 2. 1 sin π₯ = 2 or sin π₯ = 2 sin2 π₯ β 2 sin π₯ β 3 = 0 (sin π₯ + 1)(sin π₯ β 3) = 0 sin π₯ + 1 = 0 or sin π₯ β 3 = 0 π 2π 4π 5π π₯= , , , 3 3 3 3 _________________ 3. sin π₯ = β1 or sin π₯ = 3 4 sin2 π₯ β 3 = 0 4 sin2 π₯ = 3 3 sin2 π₯ = 4 sin π₯ = ± β3 2 Use identities to assist you in solving each of the following on the interval 0 β€ π₯ < 2π with exact values. π 3π 5π 7π π₯= , , , π 4 4 4 4 _________________ 4. 2 sin π₯ = csc π₯ 2 sin π₯ = π¬π’π§ π 2 sin2 π₯ = 1 1 sin2 π₯ = 2 sin π₯ = ± β2 2 π 3π π₯= , 2 2 _________________ 5. 1 β 3 cos π₯ = sin2 π₯ π 5π π₯= , 3 3 _________________ 6. 1 β 3 cos π₯ = π β ππ¨π¬π π 0 = 2 cos 2 π₯ 0 = cos 2 π₯ tan2 π₯ = 2 sec π₯ β 1 π¬ππ π π β π = 2 sec π₯ β 1 sec 2 π₯ β 2 sec π₯ = 0 sec π₯ (sec π₯ β 2) = 0 sec π₯ = 0 or sec π₯ = 2 π π 5π π₯= , , 2 6 6 _________________ 7. cos π₯ = β or cos π₯ = cot 2 π₯ = 3(csc π₯ β 1) 1 2 csc 2 π₯ β 1 = 3(csc π₯ β 1) csc 2 π₯ β 1 = 3 csc π₯ β 3 csc 2 π₯ β 3 csc π₯ + 2 = 0 (csc π₯ β 1)(csc π₯ β 2) = 0 csc π₯ = 1 or csc π₯ = 2 1 sin π₯ = 1 or sin π₯ = 2 π 7π 11π π₯= , , 2 6 6 _________________ 8. 2 cos 2 π₯ + sin π₯ = 1 2(π β π¬π’π§π π) + sin π₯ = 1 2 β 2 sin2 π₯ + sin π₯ = 1 2 sin2 π₯ β sin π₯ β 1 = 0 (2 sin π₯ + 1)(sin π₯ β 1) = 0 1 π 3π π 11π π₯= , , , 2 2 6 6 _________________ 9. sin π₯ = β 2 or sin π₯ = 1 2 cos 2 π₯ β β3 cos π₯ = 0 cos π₯ (2 cos π₯ β β3) = 0 cos π₯ = 0 or cos π₯ = π 5π π₯= , 3 3 _________________ 10. cos 2π₯ + 3 cos π₯ β 1 = 0 β3 2 (π ππ¨π¬π π β π) + 3 cos π₯ β 1 = 0 2 cos 2 π₯ + 3 cos π₯ β 2 = 0 (2 cos π₯ β 1)(cos π₯ + 2) = 0 1 cos π₯ = 2π 4π π₯ = 0, π, , 3 3 _________________ 11. sin 2π₯ = β sin π₯ or cos π₯ = β2 2 2 sin π₯ cos π₯ = β sin π₯ 2 sin π₯ cos π₯ + sin π₯ = 0 sin π₯ (2 cos π₯ + 1) = 0 1 sin π₯ = 0 or cos π₯ = β 2 π 5π 7π 11π π₯= , , , 6 6 6 6 _________________ 12. tan 2π₯ = cot π₯ ππππ§ π π πβπππ§π π = πππ§ π cross mult. 2 tan2 π₯ = 1 β tan2 π₯ 3 tan2 π₯ = 1 1 tan2 π₯ = 3 1 tan π₯ = ±β3 = ± β3 3 Consider the period and/or frequency of the graphs when solving each of the following on the interval 0 β€ π₯ < 2π with exact values. π 5π 13π 17π π₯= , , , 1 π 5π 2π 12π 12 12 12 12 13. sin 2π₯ = _________________ 2π₯ = 6 , 6 π = π = 12 2 π 5π π₯ = 12 , 12 then add π 7π 9π 15π π₯= , , , , 12 12 12 12 14. cos 3π₯ = β2 _________________ 2 17π 23π , 12 12 3π₯ = 4 , 4π 5π 10π 11π π₯= , , , , β3 9 9 9 9 _________________ 15. sin 3π₯ = β 2 16π 17π , 9 9 3π₯ = 12π 12 π 7π π to each till you reach 2π π= 4 7π 2π π = 8π 12 8π π₯ = 12 , 12 then add 12 to each till you reach 2π π₯= 4π 5π 3 , 3 4π 5π 9 , 9 π= then add 6π 9 2π π = 6π 9 to each till you reach 2π
© Copyright 2026 Paperzz