Integration: Integration by Partial Fractions Step 1 If you are integrating a rational function p(x) where degree of p(x) is greater than degree of q(x) q(x), divide the denominator into the numerator, then proceed to the step 2 and then 3a or 3b or 3c or 3d followed by Step 4 and Step 5. Z x2 − 5x + 7 dx = x2 − 5x + 6 Z 1 1+ 2 x − 5x + 6 Z dx = Z dx + x2 dx − 5x + 6 Step 2 Factor denominator into irreducible factors Z Z dx dx = 2 x − 5x + 6 (x − 3)(x − 2) Step 3a If factors are linear put in form Z A (x+c) + B (x+d) dx = (x − 3)(x − 2) Z and find A and B . A dx + x−3 Z B dx x−2 Step 3b If factors are linear but squared put in form: Z Z Z Z A B C dx = dx + dx + dx 2 (x − 2)(x + 1) x−2 x+1 (x + 1)2 Step 3c If factors are quadratic put in form: Z Z Z dx A Bx + C = dx + dx 2 2 (x − 1)(x − 3x − 2) x−1 x − 3x − 2 Step 3d If factors are quadratics but squared put in form: Z R A R Bx+C dx = dx + dx x−1 x2 −3x−2 (x − 1)(x2 − 3x − 2)2 R dx + (x2Dx+E −3x−2)2 Step 4 Get common denominator on right hand side and equate coefficients: Z R A R B R C dx = dx + dx + dx x−2 x+1 (x+1)2 (x − 2)(x + 1)2 R A(x+1)2 +B(x−2)(x+1)+C(x−2) dx = (x−2)(x+1)2 R (A+B)x2 +(2A−B+C)x+(A−2B−2C) = dx (x−2)(x+1)2 A+B =0 2A − B + C = 0 ⇒ A − 2B − 2C = 1 Z ⇒ ⇒ A = −B (equating coefficients of x2 ) ⇒ A = −C/3 (equating coefficients of x) ⇒ A = 1/9, B = −1/9, C = −1/3 (equating numbers) dx = (x − 2)(x + 1)2 Z 1 dx − 9(x − 2) Z 1 dx − 9(x + 1) Z 1 dx 3(x + 1)2 Step 5 Integrate by substitution. Let u = x − 2 ⇒ du = dx, v = x + 1 ⇒ dv = dx Z ⇒ Z Z Z 1 du 1 dv 1 dx = − − v −2 dv (x − 2)(x + 1)2 9 u 9 v 3 1 1 1 = ln |u| − ln |v| + v + c 9 9 3 1 1 1 = ln |x − 2| − ln |x + 1| + (x + 1) + c, 9 9 3 where c = constant. Examples to try x − 1 9 + 3 +c dx = ln x + 2 x + 2 (x − 1)(x + 2)2 Z 2 + 3x + x2 1 2 −1 dx = 2 ln |x| − ln |x + 1| + 3 tan x+c x(x2 + 1) 2 Z x2 x2 + 2 3 + dx = ln 2x2 + 1 4(2x2 + 1) + c 4x5 + 4x3 + x Z
© Copyright 2026 Paperzz