Impacts of aerosols on the chemistry of atmospheric trace gases: a case study of peroxides and HO2 radicals H. Liang1, Z. M. Chen1, D. Huang1, Y. Zhao1 and Z. Y. Li1,2 1 State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China 2 School of Earth and Space Sciences, Peking University, Beijing 100871, China Correspondence to: Z. M. Chen ([email protected]) Supplementary material Equation S1. Relationship between bulk and surface concentration of HO2 Table S1. Aerosol aqueous phase reactions extended in the box model calculation Table S2. Sensitivity of HOx and H2O2 concentration to aerosol optical depth (AOD). Fig.S1. Dependence of j-values on aerosol optical depth (AOD). Equation S1. Relationship between bulk and surface concentration of HO2 The relationship between bulk and surface concentration of HO2 could be expresses by the following equation (Mao et al., 2013): ( ) (S1) where kI is the first-order loss constant of HO2, PHO2 is the aqueous-phase production rate of HO2, and q = a ( kI/Daq )1/2 is the diffuso-reactive parameter, in which a is the radius of the particles, Daq is the HO2 aqueous phase diffusion constant. According to this correction, the surface concentration is 100% to 180% of the bulk concentration, depending on the radius of the particles and the concentrations of TMI. Table S1. Aerosol aqueous phase reactions extended in the box model calculation. NO. 1 Reactions k298 Ea/R R1 H2O2 + Fe2+ → Fe3+ + OH + OH− 7.0×101 5050 R2 H2O2 + FeO2+ → Fe3+ + HO2 + OH− 9.5×103 2800 R3 H2O2 + Fe(OH)+ → Fe(OH)2+ + OH + OH− 1.9×106 6200 R4 H2O2 + Fe3+ → Fe2+ + HO2 + H+ 2.0×10−3 R5 H2O2 + Fe(OH)2+ → Fe2+ + HO2 + H2O 2.0×10−3 R6 O2− + Fe2+ + 2H+ → H2O2 + Fe3+ 1.0×107 R7 O2− + Fe3+ → Fe2+ + O2 1.5×108 R8 O2− + Fe(OH)2+ → Fe2+ + O2 + OH− 1.5×108 R9 O2− + Fe(OH)2+ → Fe2+ + O2 + 2OH− 1.5×108 R10 HO2 + Fe2+ +H+ → Fe3+ + H2O2 1.2×106 R11 HO2 + FeO2+ → Fe3+ + O2 + OH− 2.0×106 R12 HO2 + Fe(OH)2+ → Fe2+ + O2 + H2O 1.3×105 R13 OH + Fe2+ → Fe(OH)2+ 4.6×108 R14 OH + FeO2+ + H+ → Fe3+ + H2O2 1.0×107 R15 O3 + Fe2+ → FeO2+ + O2 8.2×105 R16 FeO2+ + H2O → Fe3+ + OH + OH− 1.3×10−2 4100 R17 FeO2+ + Fe2+ + H2O → 2Fe3+ + 2OH− 7.2×104 842 R18 Cl2− + Fe2+ → Fe3+ + 2Cl− 1.0×107 3060 R19 O2− + Fe(SO4)+ → Fe2+ + SO42− + O2 1.5×108 R20 HO2 + Fe(SO4)+ → Fe2+ + SO42− + O2 + H+ 1.0×103 R21 Fe3+ + SO42− → Fe(SO4)+ 3.2×103 R22 Fe(SO4)+ → Fe3+ + SO42− 2.7×101 R23 OH + Cu+→Cu2+ + OH− 3.0×109 R24 O2 + Cu+→Cu2+ + O2− 4.6×105 R25 H2O2 + Cu+→Cu2+ + OH + OH− 7.0×103 R26 HO2 + Cu+ + H+→Cu2+ + H2O2 3.5×109 R27 O2− + Cu+ + H+→Cu2+ + H2O2 9.4×109 R28 HO2 + Cu2+ → Cu+ + O2 + H+ 1.0×108 R29 O2− + Cu2+ → Cu+ + O2 8.0×109 5050 1100 1 R30 HO2 + CuSO4 → Cu+ + O2 + HSO4− 1.0×107 R31 O2− + CuSO4 → Cu+ + O2 + SO42− 1.0×108 R32 Fe3+ + Cu+ → Cu2+ + Fe2+ 1.3×107 R33 Fe(OH)2+ + Cu+ → Cu2+ + Fe2+ + OH− 3.0×107 R34 Fe(OH)2+ + Cu+ → Cu2+ + Fe2+ + 2OH− 1.3×107 R35 Fe(SO4)+ + Cu+ → Cu2+ + Fe2+ + SO42− 1.8×106 R36 OH + HO2 → H2O + O2 7.0×109 R37 OH + O2− → OH− + O2 1.0×1010 R38 OH + H2O2 → H2O + HO2 2.7×107 R39 HO2 + HO2 → H2O2 + O2 8.6×105 R40 HO2 + O2− → H2O2 + O2 + OH− 1.0×108 R41 O3 + O2− + H2O → OH + 2O2 + OH− 1.5×109 R42 SO2 + O3 + H2O → HSO4- + O2 + H+ 2.4×104 R43 HSO3- + H2O2 + H+ → SO42- + H2O + 2H+ 6.9×107 4000 R44 HSO3- + O3 → HSO4- + O2 3.7×105 5530 R45 SO32- + O3 → SO42- + O2 1.5×109 5280 P1 O3 + H2O → H2O2 + O2 2.98×10−4 P2 H2O2 → 2OH 4.81×10−6 P3 Fe3+ + H2O → Fe2+ + OH + H+ 6.41×10−6 P4 Fe(OH)2+ → Fe2+ + OH 5.63×10−3 E1 Fe2+ + H2O ⇆ Fe(OH)+ + H+ 3.22×10−10 E2 Fe3+ + H2O ⇆ Fe(OH)2+ + H+ 6.0×10−3 E3 HO2 ⇆ O2− + H+ 2.05×10−5 E4 H2O2 ⇆ HO2− + H+ 1.6×10−12 E5 Cu2+ + SO42− ⇆ Cu(SO4) 2.3×102 E6 HSO4- ⇆ SO42- + H+ 1.02×10−2 -2700 E7 HSO3- ⇆ SO32- + H+ 6.22×10−8 -1960 R refers to reactions, P refers to photolysis, and E refers to equilibria. -3700 Table S2. Sensitivity of HOx and H2O2 concentration to aerosol optical depth (AOD). AOD OH (pptv) HO2 (pptv) H2O2 (ppbv) 0 0.60 29.7 2.18 1 0.26 17.0 0.38 2 0.08 6.3 0.06 3 0.03 4.5 0.03 4 0.02 4.4 0.02 5 0.01 4.8 0.03 j(H2O2) -5 3.0x10 j(HCHO)A j(HCHO)B -3 6.0x10 1 j(O D) -3 4.0x10 -1 -1 j-value (s ) j(NO2) j(NO2)(s ) -5 2.0x10 -5 1.0x10 -3 2.0x10 0.0 0.0 0 1 2 3 4 5 AOD Fig. S1. Dependence of j-values on aerosol optical depth (AOD). References Ervens, B., George, C., Williams, J. E., Buxton, G. V., Salmon, G. A., Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., and Herrmann, H.: CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous phase mechanism and its application, J. Geophys. Res., 108, D14, doi: 10.1029/2002jd002202, 2003 Mao, J., Fan, S., Jacob, D. J., and Travis, K. R.: Radical loss in the atmosphere from Cu-Fe redox coupling in aerosols, Atmos. Chem. Phys., 13, 509-519, doi: 10.5194/acp-13-509-2013, 2013.
© Copyright 2026 Paperzz