Math 1431 LAB session 1 Daria Kurzanova [email protected] • We have Labs TTh 7-8.30 pm • I have CASA hours MW 1-3 pm • You are supposed to attend every Lab • During the Lab log in to your CASA account and find Attendance Lab # in EMCF tab (have it open during the Lab) • If you cannot attend the Lab you should watch the video posted on the website and complete Alternate Attendance Lab # • Alternate Attendance Lab is due either Thursday 6 pm or Sunday 6 pm 1 Daria Kurzanova [email protected] [email protected] Review 1 Review equations Quadratic equations 1 Quadratic Review Quadratic equations 1 Consider Review quadraticequation equation x2 + bx +c=0 Consider quadratic Quadratic equations Vista’s theorem Quadratic equations Consider quadratic equation x2 + bx + c = 0 Vieta’s x1 + x2 quadratic = b Consider equation x2 + bx Vista’s + c = 0theorem theorem x1 x2 = c and then we can x2 + bxx + c = (x Consider quadratic equation x2 factor + bx +quadratic Vista’s theorem xc1 = + 0x2 = equation b Vista’s x1x+1 )(x x2theorem = x2b) x1 x2 = c x1x+ 1 xx 2 2==c b and then we can factor quadratic equation x2 + bxx + c = (x x1and x2and =then cthenwe wecan can factor factor quadratic quadraticequation equation x2 + bx + c = (x x1 )(x x2 ) Daria Kurzanova and then we can factor quadratic equation x2 + bx + c = (x x1 )(x x2 ) How to write a thesis ExampleMarch,2015 1: x2 5x + 6 = 0 8 2 > <Ax + B if x < 2 f (x) = 3.5x if 2 x > : Bx + 3A if x > 6 How6 to write a thesis f (x) = 3x2 Factorization 2 2 a b = (a x2 + bx + c = (x 8x 10 Daria Kurzanova b)(a + b) )(x March,2015 1 ) 1 1 1 8 2 > Ax + B if x < 2 < f (x) = 3.5x if 2 x > : Bx + 3A if x > 6 Formula to remember 2 f (x) = 3x a2 1 b2 = (a 8x 10 b)(a + b) 6 f (x) = 3x2 a2 b2 = (a 8x b)(a + b) x2 + bx + c = (x Example 2: lim (3x x!5 Question # 1 10 Quiz 1 types problems )(x 7) ) +6=0 ew Example 3: x lim x!4 20 4 5x equations dratic equation x2 + bx + c = 0 rem can factor quadratic equation x2 + bx + c = (x 6=0 1 x lim x!4 20 Example 4: lim x!3 x x2 1 4 5x 10 5x + 6 x1 )(x x2 ) Example 5: lim x!3 2x2 x2 18 6x + 9 1 Example 6: Evaluate the limit at x=10 8 > > 3x > < f (x) = 50 > > > :6x if x < 10 if x = 10 30 if x > 10 a 2 2 b = (a b)(a + b) + bx + c = (x Question lim (3x # x!5 )(x f (x) = ) 7) x 2 x!2 4x 8 lim > : 3.5x if 2 x Bx + 3A if x > 6 f (x) = 3x2 a2 b2 = (a 8x lim (3x 10 b)(a + b) x2 + bx + c = (x x!5 6 )(x ) 7) x 2 x!2 4x 8 lim A) 1 4 B) doesn’t exist C) 1 8 D) 0 1 1 E) 2 F) 3 4 > > 3x if x < 10 > < ) = 50 if x = 10 > > > :6x 30 7: if x > 10 Example x x!4 |x 4 4| lim 8 > > 3x > < = 50 > > > :6x lim+ x!4 8 > > 3x > < = 50 > > > :6x lim x!4 if x < 10 if x = 10 30 if x > 10 x |x 4 4| if x < 10 if x = 10 30 if x > 10 x |x 2 4 4| Quiz 2 types problems C) 8 D) 0 E) 2 A) | < Example " whenever 8: " |x 1 4 lim f (x) = L x!c F) x 2 3 lim B) doesn’t exist C) D) 0 E) 2 F) x!2 4x 8 4 8 c| definition < 3 1 3 of a limit 2 B) 1 A) C) D) 0 F) doesn’t exist " > 50 16 Ax + B if 1x80< 2 1 10 E) < 1 1 exist B) 0 C) 18 D) 4 E) 16 F) 15 f (x) =8" >3.5x if 2 x 6 > 0 9 s.t. |f (x) L| < " whenever |x c| < 4 1 8 : Bx + 3A if x > 6 lim f (x) = L x!c 2 f (x)Find = 3x 8x 10 the largest that works for " = 0.7 a2 b2 = (a b)(a + b) x2 + bx + c = (x lim (3x x!5 )(x 7) ) 8 > x 2 > 3x if x < 10 > lim < x!2 4x 8 x) = 50 1 if x = 10 1 1 > A)> B) doesn’t exist C) D) 0 E) 2 F) > 4 8 :6x 30 if x > 10 " 1 8" > 09 8s.t. |f (x) L| < " whenever |x c| < x >4 lim > 3x if x < 10 > < x!4 |x 4| lim f (x) = L f (x) = 50 if x = 10 x!c > works for ✏ = > 0.7 > Find the : largest works 6x 30 that if x > 10 for " = 0.7 x lim 7x = 21 lim x!3 rgest x!4 |x 4 4| that works for ✏ = 0.7 lim 7x = 21 x!3 Example 9: 6 lim x!36 5(36 p x x) 1 x6 7x5 lim x!1 12x4 + 73 p 4 x lim x!16 10(16 x) p x 2 4 lim x!18 x 18 3 4 1 lim x!36 5(36 lim x) x!1 b) w to writeb)(aa+thesis x 10 a2 b2 = (a 4 lim )(x x!1 x2)+ 6x 10: + bx Example + c = (x vs. x2 + 6x x3 + 15 lim x!1 x6 + 76x Daria Kurzanova lim (3x 7) x3 + 15 lim x!5 x!1 x6 + 76x How to write a thesis x 2 March,2015 lim x!2 )0 4x 8 Daria Kurzanova E) doesn’t exist F) 73 March,2015 8 2 L| <> whenever + B |x if x c| << 2 <"Ax = 3.5x if 2 x 8 6Ax2 + B if x < 2 > < > lim f (x) = L : x!c if 2 x Bx + 3A if x f>(x)6 = >3.5x : Bx + 3A if x > 6 works for " = 0.7 f (x) = 3x62 8x5 10 f (x) = 3x2 8x 10 x 7x 2 2 lim a2 b2 = (a b)(a + b) a x!1 bQuestion =12x (a#4 +b)(a + b) 73 x2 + bx + c = (x )(x p + bx + c =4 (x x )(x ) lim (3x 7) lim x!5 x!16 10(16 x) x 2 lim (3x 7) lim 2 x!5 A) 1 8 8 4x 8 3 D) 10 E) 0 F) doesn’t exist " L| < " whenever |x c| < E) 2 F) 3 50 B) x 161 2 C) 801 lim 8" > 09 s.t. |f (x) 4x 1 D) 0 Find the largest L| < " whenever |x c| < lim f (x) = L Question works for "# = 0.7 A) doesn’t x6 exist7x5B) 0 lim 3 lim f (x) = L 4 x!c that works for " = 0.7 x!c x!1 )2 x!2 x!2 C) 6 x6 7x5 lim x!1 12x4 + 73 p 4 x lim x!16 10(16 x) p x 2 4 lim x!16 x 18 1 1 C) 18 D) 14 E) 16 F) 1 15 12x4 + 73 A) doesn’t exist 1 B) 0 C) 1 18 1 D) 1 E) 1 16 F) 1 15 Daria Kurzanova Quiz 4 types problems March,2015 8 > > 3x if x < 10 > Example 11: Find A and B such that f(x) is continuous at both points 2 and 6 < f (x) = 50 8 if x = 10 > > 2 > > + B if x < 2 :6x <Ax Daria Kurzanova 30 if x > 10 f (x) = 3.5x if 2 x 6 > :x 4 March,2015 lim Bx + 3A if x > 6 x!4 |x 4| ow to write a thesis that works for ✏ = 0.7 8 2 > B= 21 if x < 2 lim+7x <Axx!3 x) = 3.5x if 2 x > p : 6 x Bx lim+ 3A if x > 6 x!36 5(36 f (x) = 3x a2 2 6 x) 8x 10 x4 10 lim b2 x!1 = (ax2 +b)(a 6x + b) x2 + bx + c = x(x )(x 3 + 15 ) lim 6 12: Define function f(x) at 10, such that f(x) becomes continuous at 10 Example x!1 x + 76x lim (3x 7) x!5 p x 1 3 f (x) = x 2 lim x 10 4x E) 0 8 3 D) 10 F) doesn’t exist " 1 1 1 D) 4 E) 16 F) 15 < " whenever |x c| < x!2 A) doesn’t lim f (x) = L 1 x!c at works for " = 0.7 x6 7x5 lim x!1 12x4 + 73 p 4 x lim Question # x!16 10(16 x) p 2 x 2 4 lim x!18 x 18 1 A) doesn’t exist B) 0 C) 1 18 D) 1 4 E) 1 8 F) 1 15
© Copyright 2026 Paperzz