THE PREDICTION OF M A X I M U M OXYGEN UPTAKE
FOR TRAINED AND UNTRAINED MALES
FROM MEASUREMENTS MADE D U R I N G SUBMAXIMUM BICYCLE ERGOMETRY
Barbara J. Legge
B a c h e l o r of
Science,
THESIS SUBMITTED I N
Zoology, U.B.C.,
PARTIAL
1977
FULFILLMENT O F
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
i n t h e Department
0f
Kinesiology
C
B a r b a r a J. Legge 1983
SIMON FRASER UNIVERSITY
December,
1983
A l l r i g h t s r e s e r v e d . T h i s w o r k may n o t b e
r e p r o d u c e d i n w h o l e o r i n p a r t , by p h o t o c o p y
o r o t h e r m e a n s , w i t h o u t p e r m i s s i o n of t h e a u t h o r .
APPROVAL
Name :
B a r b a r a J . Legge
Degree :
M.
sc .
T i t l e of t h e s i s :
Kinesiology
The P r e d i c t i o n o f Maximal ~ e r o b i cC a p a c i t y
f o r T r a i n e d and u n t r a i n e d Males from
Measurements made d u r i n g submaximal B i c y c l e
Ergometry
Examining Committee:
Chairman:
Dr.
John D i c k i n s o n
D r . E.W. B a n i s t e r
Senior Supervisor
-
D ~WJi lJ
k i n.s o n
D r . H.A. Wenger
E x t e r n a l Examiner
School o f P.E. and R e c r e a t i o n
U n i v e r s i t y of V i c t o r i a
Date Approved:
PARTIAL COPYRIGHT LICENSE
I hereby g r a n t t o Simon F r a s e r U n i v e r s i t y t h e r i g h t t o lend
my t h e s i s , p r o j e c t o r extended essay ( t h e t i t l e o f which i s shown below)
t o u s e r s o f t h e Simon F r a s e r U n i v e r s i t y L i b r a r y , and t o make p a r t i a l o r
s i n g l e c o p i e s o n l y f o r such u s e r s o r i n response t o a r e q u e s t from t h e
l i b r a r y o f any o t h e r u n i v e r s i t y , o r o t h e r e d u c a t i o n a l i n s t i t u t i o n , on
i t s own b e h a l f o r f o r one o f i t s users.
I f u r t h e r agree t h a t p e r m i s s i o n
f o r m u l t i p l e c o p y i n g o f t h i s work f o r s c h o l a r l y purposes may be g r a n t e d
by me o r t h e Dean o f Graduate S t u d i e s .
I t i s unde r s t o o d t h a t c o p y i n g
o r pub l i c a t i o n o f t h i s work f o r f i n a n c i a l g a i n sha I I n o t be a l l o w e d
w i t h o u t my w r i t t e n permission.
T i t l e o f Thes i s/Project/Extended
Author:
-
v
-
(signature)
(name
Essay
ABSTRACT
T h e o b j e c t i v e s of
t h i s s t u d y were t o i n v e s t i g a t e t h e
r e l a t i o n s h i p s among o x y g e n u p t a k e ( V 0 2 ) , h e a r t . r a t e ( H R ) a n d
work r a t e
(WR) d u r i n g s u b m a x i m a l a n d m a x i m a l e x e r c i s e p e r f o r m e d
o n a b i c y c l e e r g o m e t e r i n a n a t t e m p t t o c o n s t r u c t a nomogram f o r
p r e d i c t i n g maximal o x y g e n u p t a k e (V02max) f r o m submaximal work
rates.
The i n h e r e n t l i m i t a t i o n s of
t h e Astrand-Rhyming
nomogram,
developed i n 1954, provided t h e b a s i s f o r the i n v e s t i g a t i o n .
A new n o m o g r a m h a s b e e n e s t a b l i s h e d o n g r o u p s of
trained
( n = 2 0 ) a n d u n t r a i n e d ( n = 1 5 ) m a l e s i n t h e a g e r a n g e 20-29
years.
I t i s b a s e d o n a l i n e a r r e l a t i o n s h i p f o u n d t o e x i s t b e t w e e n V02
a n d HR.
G r o u p mean d a t a e x h i b i t e d a l i n e a r t r e n d ,
though d a t a
f r o m a few i n d i v i d u a l s w i t h i n e a c h g r o u p showed t h e h y p o t h e s i z e d
non-linear,
e x p o n e n t i a l t r e n d a t h i g h r a t e s of
work.
The newly
d e v e l o p e d $02max p r e d i c t i v e t e s t b e g a n w i t h a s t a n d a r d 5 m i n u t e
warm-up
p e r i o d on a b i c y c l e ergometer a t a pedal
and z e r o l o a d .
r a t e of
90 rpm
The m e a n h e a r t r a t e a t t a i n e d d u r i n g t h e f i f t h
m i n u t e p r o v i d e d a b a s e l i n e h e a r t r a t e v a l u e which was s u b t r a c t e d
from e v e r y o t h e r h e a r t r a t e t o provide a d e l t a h e a r t r a t e
I m m e d i a t e l y f o l l o w i n g t h e warm-up,
completed,
e a c h of
b e t w e e n 145-160
PHR.
(AHR).'
h i g h e r power o u t p u t s w e r e
3 minutes duration, u n t i l a heart r a t e
bsmin'l
was a t t a i n e d and e a c h was e x p r e s s e d a s a
P r e d i c t e d V02max c o u l d t h e n b e r e a d d i r e c t l y b y a l i g n i n g
d e l t a HR o n t h e l e f t o f a n o m o g r a m w i t h t h e o x y g e n e q u i v a l e n t o f
t h e w o r k r a t e d e p i c t e d o n t h e r i g h t h a n d s i d e of
u n i q u e f e a t u r e of
t h e new B a n i s t e r - L e g g e
iii
t h e nomogram.
nomogram i s i t s
A
p r o v i s i o n of
d i s t i n c t p r e d i c t i v e c u r v e s f o r t r a i n e d and
untrained individuals.
a d e l t a HR of
For example, a t r a i n e d i n d i v i d u a l showing
6 8 a t a work r a t e of
a p r e d i c t e d + o 2 m a x of
4.00
1200 kpm.minute'l
litres-minute-l.
would h a v e
A similar response
f r o m a n u n t r a i n e d i n d i v i d u a l w o u l d c o r r e s p o n d t o a p r e d i c t e d V02
max of
o n l y 3.50
litres-minute'l.
The B a n i s t e r - L e g g e
g r o u p s of m a l e s ,
nomogram h a s b e e n c r o s s - v a l i d a t e d
s i m i l a r i n a g e and s t a t e of
training t o the
o r i g i n a l c o r e g r o u p o n whom i t w a s o r i g i n a l l y d e v e l o p e d .
c o r r e l a t i o n c o e f f i c i e n t of
0.9791
on two
A
was d e t e r m i n e d between
o b s e r v e d a n d p r e d i c t e d V02max v a l u e s i n t h e f o r m e r g r o u p s .
v a l u e c o n t r a s t s s i g n i f i c a n t l y ( p < 0.05)
c o e f f i c i e n t of
0.8043
with the correlation
o b t a i n e d b e t w e e n o b s e r v e d and p r e d i c t e d
s c o r e s o b t a i n e d by u s e of
submaximal,
This
t h e t r a d i t i o n a l Astrand-Ryhming
s i x m i n u t e work t e s t .
T h e new n o m o g r a m ,
p r o v i d e s a m o r e a c c u r a t e p r e d i c t i o n of
V02max a n d i t i s
a n t i c i p a t e d t h a t i t may r e p l a c e t h e A s t r a n d - R h y m i n g
when t r a i n e d a n d u n t r a i n e d m a l e s ,
therefore,.
2 0 t o 29 y e a r s ,
nomogram
are tested.
Future research w i l l be undertaken t o establish predictive
to2
max n o m o g r a m s f o r b o t h f e m a l e s a n d m a l e s v a r i n g i n a g e a n d s t a t e
of
training.
DEDICATION
T h i s t h e s i s i s d e d i c a t e d t o my Mom a n d D a d , K e n ,
Carole,
E l l e n a n d M a r t y w h o s e l o v e w a s " t h e l i g h t a t t h e e n d of
tunnel".
the
ACKNOWLEDGMENTS
I would l i k e t o t h a n k D r .
encouragement,
Eric Banister for his
g u i d a n c e a n d f r i e n d s h i p w h i c h h e p r o v i d e d me w i t h
t h r o u g h o u t my y e a r s a s a g r a d u a t e s t u d e n t .
Appreciation i s extended t o D r .
John Wilkinson f o r h i s
j u d g e m e n t a n d a d v i c e , Nory I s o n f o r h i s s t a t i s t i c a l e x p e r t i s e
and D r .
Murray A l l e n f o r h i s medical a i d .
I am g r a t e f u l t o Rob
M a s k e l l a n d I g o r Mek j a v i c f o r t h e t e c h n i c a l w i z a r d r y t h e y
performed i n t h e l a b .
I would l i k e t o t h a n k a l l t h e c y c l i s t s a n d
u n t r a i n e d s u b j e c t s who g a v e t h e i r
time so f r e e l y t o p a r t i c i p a t e
i n the study.
I w o u l d e s p e c i a l l y l i k e t o a c k n o w l e d g e my f i n e f r i e n d s
B a h r a m G u s t a s p i a n d L e s l e y a n d T o n y K e t t l e who p r o v i d e d me w i t h
i n s p i r a t i o n d u r i n g t h e f i n a l a n d m o s t d i f f i c u l t s t a g e s of
the
thesis.
Finally,
members of
I w o u l d l i k e t o e x p r e s s my g r a t i t u d e t o a l l t h e
the Kinesiology department f o r t h e i r wonderful s p i r i t
a n d t h e c o n f i d e n c e t h a t t h e y i n s t i l l e d i n me.
'
TABLE OF CONTENTS
.....................................................
A b s t r a c t .....................................................
D e d i c a t i o n ................................................ v
A c k n o w l e d g m e n t s .......................................... v i
L i s t o f T a b l e s ......................................... x i
L i s t o f F i g u r e s ............................................. x i i
1 . I n t r o d u c t i o n .......................................... 1
2 . L i t e r a t u r e R e v i e w ...................................... 8
2 . 1 M a x i m a l Oxygen U p t a k e ............................. 8
2 . 2 S u b m a x i m a l E x e r c i s e T e s t i n g ....................... 9
The A s t r a n d - R h y m i n g E x e r c i s e T e s t ............ 1 0
A c c u r a c y of P r e d i c t i o n of A s t r a n d - R h y m i n g
Nomogram ................................. 1 2
2 . 3 M a j o r L i m i t a t i o n s P l a c e d Upon A s s u m p t i o n s o f t h e .
nomogram ..................................*..1 9
2.4 L i n e a r i t y of H e a r t R a t e / O x y g e n U p t a k e
R e l a t i o n s h i p .....................................2 0
2 . 5 C o n s t a n c y of Maximum HR B e t w e e n a n d W i t h i n Age
G r o u p s ........................................... 2 5
2.6 I n t e r c h a n g a b i l i t y of T e s t i n g I n s t r u m e n t .......... 2 6
C a r d i a c O u t p u t ............................... 3 1
B l o o d F l o w t o t h e Lower Limb ................. 3 2
Leg S t r e n g t h ................................. 3 3
Approval
ii
iii
A-R
2.7
S t a n d a r d i z a t i o n of
Submaximal E x e r c i s e P r o t o c o l s
. 34
................................... 34
P e r c e i v e d E x e r t i o n ........................... 3 9
E f f i c i e n c y of Work ........................... 4 4
Pedal Rate
vii
3
. M e t h o d s ...............................................
3 . 1 E x p e r i m e n t a l G r o u p s ..............................
E x p e r i m e n t a l D e s i g n .............................. 5 1
3 . 3 T e s t P r o t o c o l s ................................... 52
Protocol
a n d I B : S u b m a x i m a l E x e r c i s e ...... 5 2
P r o t o c o l I I a a n d I I b : M a x i m a l e x e r c i s e ....... 5 6
P r o t o c o l 111: T r a i n e d M a x i m a l E x e r c i s e ....... 5 7
R e c o v e r y P e r i o d b e t w e e n Submaximum a n d
Maximum T e s t s ............................ 5 8
C r i t e r i a f o r A t t a i n m e n t o f Maximum O x y g e n
U p t a k e ................................. 6 0
A s t r a n d - R y h m i n g Submaximum E x e r c i s e T e s t ..... 6 1
3 . 4 T e c h n i q u e s a n d E q u i p m e n t ......................... 6 2
C a l i b r a t i o n of I n s t r u m e n t s ................... 6 5
3 . 5 D e f i n i t i o n of V a r i a b l e s .......................... 6 9
U n l o a d e d - P e d a l l i n g ........................... 7 0
70
D e l t a H e a r t R a t e ............................
D e l t a Work R a t e .............................. 7 2
3 . 6 D a t a R e d u c t i o n a n d A n a l y s i s ...................... 7 3
I n d i v i d u a l Data T r e a t m e n t .................... 7 3
T e s t - R e t e s t R e l i a b i l i t y ...................... 7 6
G r o u p D a t a ..................................
76
3 . 7 T r e a t m e n t o f D a t a ................................ 7 7
E x a m i n a t i o n of R e s i d u a l s ..................... 7 9
3 . 8 M e t h o d of C o n s t r u c t i n g Nomogram .................. 8 1
C o n s t r u c t i o n o f A s t r a n d - R y h m i n g Nomogram .....
C o n s t r u c t i o n o f P r e s e n t Nomogram a n d O 2 C o s t
C a l c u l a t i o n ..............................8 6
48
48
3.2
IA
4
81
.
.................... 8 9
3 . 1 F e r f o r m a n c e of S u b m a x i m a l P r o t o c o l t o P r e d i c t
V02max ........................................... 9 0
3 . 1 1 S u b m a x i m a l T e s t R e s p o n s e ........................ 9 1
3 . 1 2 P r e d i c t i o n of M a x i m a l O x y g e n U p t a k e ............. 9 2
C r o s s - V a l i d a t i o n ............................. 9 2
3 . 1 3 K i n e t i c s ........................................
93
C a l c u l a t i o n of Time C o n s t a n t s ................ 9 7
4 . R e s u l t s .............................................9 8
4 . 1 G r o u p D a t a ....................................... 9 8
P e a k V a l u e s .................................. 9 8
Submaximal o x y g e n u p t a k e and d e l t a h e a r t
r a t e .................................... 1 0 1
3.9
C o n s t r u c t i o n of
L i n e Nomogram
4.2
R e s t i n g and Unloaded P e d a l l i n g H e a r t Rate V a l u e s
4.3
Oxygen U p t a k e a n d D e l t a H e a r t R a t e R e l a t i o n s h i p
Group Oxygen u p t a k e a n d d e l t a - h e a r t r a t e
data
%
4.5
%
%
4.6
4.7
..
104
105
.................................... 1'05
E x a m i n a t i o n of R e s i d u a l s .................... 1 1 0
T e s t - R e t e s t R e l i a b i l i t y ......................1 1 8
Individual {o2/delta
r e l a t i o n s h i p s ....... 1 1 9
R e l a t i o n s h i p b e t w e e n P e r c e n t Maximum O x y g e n
U p t a k e a n d H e a r t R a t e ........................... 1 2 2
R e c o n s t r u c t i o n of A s t r a n d - R y h m i n g Nomogram .. 1 2 2
.
Data e x p r e s s e d a s
V 0 2 m a x / H e a r t R a t e ....... 1 2 4
V02max a n d D e l t a HR ...... 1 3 0
R e l a t i o n s h i p between
V02max v s . D e l t a .
E x p r e s s i o n of d a t a a s
H e a r t R a t e .............................. 1 3 0
P r e d i c t i o n of Maximum O x y g e n U p t a k e ............. 1 3 5
B a n i s t e r - L e g g e Nomogram ......................... 1 4 2
HR
4.4
.
Submaximal P r o t o c o l Used t o P r e d i c t vo2max
u s i n g t h e B-L T e s t
...................... 1 5 4
4 . 8 O x y g e n U p t a k e a n d H e a r t R a t e K i n e t i c s ........... 1 5 5
Q u a l i t a t i v e O x y g e n U p t a k e K i n e t i c s .......... 1 5 5
Q u a l i t a t i v e D e l t a H e a r t R a t e K i n e t i c s ....... 1 5 7
Q u a n t i t a t i v e O x y g e n U p t a k e K i n e t i c s ......... 1 6 2
5 . D i s c u s s i o n ........................................... 1 6 4
5 . 1 I n t r o d u c t i o n .................................... 1 6 4
5 . 2 R e c o n s t r u c t i o n of t h e A-R Nomogram .............. 1 7 6
5 . 3 B a s i c F e a t u r e s of a New P r e d i c t i v e Nomogram ..... 1 7 9
Age p r e d i c t e d Maximum ....................... 1 7 9
T r a i n i n g a n d Age ............................ 1 8 0
5 . 4 P e r f o r m a n c e of T e s t P r o t o c o l .................... 1 8 3
5 . 5 L i m i t a t i o n s o f t h e P r e s e n t S t u d y ................ 1 8 7
5 . 6 C o n s t r a i n t s o f T e s t i n g A p p a r a t u s ................ 1 8 8
.............................1 8 9
5 . 8 C o n c l u s i o n ...................................... 1 8 9
B i b l i o g r a p h y ................................................ 1 9 2
Appendix
.................................................. 2 1 3
Appendix
...............................................2 1 5
..................................................2 1 6
Appendix
5.7
A
B
C
Future Considerations
L I S T OF TABLES
TABLE
I
I1
I11
IV
V
V I
VII
V I I I
IX
X
X I
XI1
XI11
XI V
XV
XV I
XVII
XVIII
PAGE
P r e d i c t e d +o2
.............................................
14
D i f f e r e n c e b e t w e e n T r e a d m i l l a n d B i c y c l e V02max ...... 27
S u b j e c t D a t a ......................................... 49
Peak V a l u e s f o r T r a i n e d and U n t r a i n e d Male
S u b j e c t s ........................................ 1 0 0
Mean Submaximum Go2 a n d D e l t a H e a r t R a t e D a t a ....... 1 0 2
Mean R e s t i n g a n d U n l o a d e d P e d a l l i n g
V a l u e s ....... 1 0 4
Mean S q u a r e R e s i d u a l s ............................... 1 0 9
L i n e a r R e g r e s s i o n E q u a t i o n s f o r V02/HR .............. 1 1 5
T e s t - R e t e s t R e l i a b i l i t y ............................. 1 1 8
O x y g e n C o s t o f Submaximum Work R a t e s ................
R e s u l t s of L i n e a r R e g r e s s i o n f o r
~ 0 2 m a xv s .
H e a r t R a t e ...................................... 1 2 8
Heart Rates a t Varying
t o 2 m a x ..................... 1 2 9
Mean D e l t a H e a r t R a t e s a t
~ 0 2 m a x .................. 1 3 4
M o d e r a t e S u b j e c t D a t a ............................... 1 3 5 '
D i r e c t l y M e a s u r e d a n d P r e d i c t e d V02max V a l u e s ....... 1 3 8
C o m p a r i s o n of P r e d i c t i v e E q u a t i o n s .................. 1 3 9
B a n i s t e r - L e g g e ~ 0 ~ m aP rx e d i c t i v e Nomogram f o r
T r a i n e d M a l e s ................................... 1 4 6
B a n i s t e r - L e g g e Vo2max P r e d i c t i v e Nomogram f o r
U n t r a i n e d M a l e s ................................. 1 4 8
C o r r e l a t i o n B e t w e e n O b s e r v e d a n d A-R
max
HR
123
%
%
%
L I S T O F FIG'URES
FIGURE
1
2
3
4
5
6
7
8
18
19
20
21
22
PAGE
............................ 5 3
Maximum Work P r o t o c o l s ............................... 5 4
Maximum P r o t o c o l 111 ................................. 5 9
E x p e r i m e n t a l E q u i p m e n t ............................... 6 4
C a l i b r a t i o n of G a s V o l u m e s ........................... 6 7
C a l i b r a t i o n of O x y g e n U p t a k e M e a s u r e m e n t s ............ 6 8
C o m b i n a t i o n of Submaximum a n d Maximum V 0 2 / HR ........ 7 5
E x a m i n a t i o n of R e s i d u a l s ............................. 80
R e l a t i o n s h i p s b e t w e e n o x y g e n u p t a k e a n d t i m e ......... 9 5
R e l a t i o n s h i p s b e t w e e n t o 2 a n d h e a r t r a t e ............. 9 6
T r a i n e d G r o u p O x y g e n U p t a k e v s . D e l t a - H e a r t R a t e .... 1 0 6 .
U n t r a i n e d G r o u p O x y g e n U p t a k e v s . D e l t a H e a r t R a t e .. 1 0 7
R e s i d u a l s of L i n e a r R e g r e s s i o n f o r T r a i n e d .......... 111
R e s i d u a l s o f L i n e a r R e g r e s s i o n f o r U n t r a i n e d ........ 1 1 2
R e s i d u a l s of E x p o n e n t i a l F i t f o r ' T r a i n e d ............ 1 1 3
R e s i d u a l s of E x p o n e n t i a l F i t f o r U n t r a i n e d .......... 1 1 4
L i n e a r R e g r e s s i o n f o r T r a i n e d and Untrained Core
D a t a ............................................ 1 1 7
I n d i v i d u a l T r a i n e d t o 2 v s . D e l t a HR ................. 1 2 0
I n d i v i d u a l U n t r a i n e d V02 v s . D e l t a HR ............... 1 2 1
% V02max v s . H e a r t R a t e f o r T r a i n e d ................. 1 2 5
% V02max v s . H e a r t R a t e f o r U n t r a i n e d G r o u p ......... 1 2 6
% io2max v s . H e a r t R a t e f o r T r a i n e d . U n t r a i n e d and
A s t r a n d ' s d a t a ..................................
127
Submaximum Work P r o t o c o l s
. Delta
Go2max v s . D e l t a
....... 1 3 1
%
HR f o r U n t r a i n e d I n d i v i d u a l s ..... 1 3 2
R e g r e s s i o n e q u a t i o n s a n d r ' s f o r T a n d U n t .......... 1 3 3
O b s e r v e d v s . A-R p r e d i c t e d + o 2 m a x .................... 1 4 0
O b s e r v e d v s . B-L P r e d i c t e d $02max ................... 1 4 1
Regression Equations f o r
$ 0 2 m a x v s . D e l t a HR ...... 1 4 3
B a n i s t e r - L e g g e P r e d i c t i v e Nomogram .................. 1 4 5
Sample. p r e d i c t i o n of
max u s i n g B-L Nomogram ...... 1 5 0
~ 0 2 m a xw i t h P r e d i c t i v e
Regression f o r Trained
I n t e r v a l s ....................................... 1 5 2
Regression f o r Untrained
t02max w i t h P r e d i c t i v e
I n t e r v a l s ....................................... 1 5 3
D e l t a Heart Rate v s . D e l t a Heart Rate f o r Trained
a n d U n t r a i n e d G r o u p s ............................ 1 5 6
O x y g e n U p t a k e v s . T i m e f o r T r a i n e d Maximum
P r o t o c o l ........................................ 1 5 8
O x y g e n U p t a k e v s . T i m e f o r U n t r a i n e d Maximum
P r o t o c o l ......................................... L 5 9
H e a r t R a t e v s . T i m e f o r Two T r a i n e d S u b j e c t s ........ 1 6 0
H e a r t R a t e v s . T i m e f o r a n U n t r a i n e d S u b j e c t ......... 1 6 1
A s y m p t o t i c N a t u r e of HR/V02 R e l a t i o n s h i p ............ 1 7 3
% V02max v s
HR f o r T r a i n e d I n d i v i d u a l s
%
VO
%
%
xiii
1. I n t r o d u c t i o n
The A s t r a n d - R h y m i n g
(A-R)
nomogram ( 1 9 5 4 ) i s w i d e l y u s e d t o
p r e d i c t maximal oxygen u p t a k e ( t02rnax) f r o m a s t e a d y - s t a t e
h e a r t r a t e r e s p o n s e t o a s p e c i f i c a l l y c h o s e n work r a t e d u r i n g
s u b m a x i m a l e x e r c i s e on a b i c y c l e e r g o m e t e r ,
s t e p p i n g bench.
treadmill or
The p r i n c i p l e f o r t h e d e v e l o p m e n t of
nomogram i s b a s e d u p o n f o u r m a j o r a s s u m p t i o n s .
are, f i r s t ,
t h e A-R
These assumptions
t h a t h e a r t r a t e i s l i n e a r l y r e l a t e d t o oxygen
c o n s u m p t i o n ( V 0 2 ) t h r o u g h o u t t h e e n t i r e r a n g e of
l e v e l s up t o maximal oxygen u p t a k e a n d ,
exertional
secondly,
t h a t maximal
a t t a i n a b l e h e a r t r a t e v a r i e s l i t t l e b e t w e e n i n d i v i d u a l s of
similar age.
The t h i r d m a j o r a s s u m p t i o n i s t h a t o x y g e n u p t a k e
values obtained during b i c y c l e ergometry a r e equivalent t o those
o b t a i n e d o n t h e t r e a d m i l l f o r t h e same i n d i v i d u a l a n d f i n a l l y ,
t h a t a p r e c i s e and u n i f o r m p r o t o c o l i s s t r i c t l y perfo'rmed i n
e v e r y a s s e s s m e n t . On a b i c y c l e e r g o m e t e r ,
f o r example, a s i n g l e ,
s u b m a x i m a l w o r k r a t e i s p e r f o r m e d a t a p e d a l r a t e of
50
r e v o l u t i o n s p e r minute (rpm).
Major f l a w s i n e a c h of
t h e b a s i c t e n e t s of
t h e nomogram
h a v e b e e n c l e a r l y s h o w n by v a r i o u s i n v e s t i g a t o r s t o l i m i t i t s
p o w e r of
prediction.
More s p e c i f i c a l l y ,
include' the non-linear
these deficiencies
r e l a t i o n s h i p b e t w e e n V02 a n d h e a r t r a t e
o v e r t h e r a n g e of
.
5 0 t o 1 0 0 p e r c e n t VO2max (Wyndham et ale,
1 9 6 4 ; Wyndham e t -*a 1
1959; Rowel1 et al.,
3
1966; Davies e t ale,
1968).
V a r i a t i o n s i n maximal a t t a i n a b l e h e a r t r a t e f o r i n d i v i d u a l s
of
t h e s a m e a g e c o n s t i t u t e s a m a j o r s o u r c e of e r r o r a s d o e s t h e
v a r i a t i o n i n maximum h e a r t r a t e b e t w e e n a g e g r o u p s ( M a r i t z
*a
1
1961; L e s t e r e t al.,
et
1968; Sidney and Shephard, 1977).
A t h i r d l i m i t a t i o n i n t h e p r e d i c t i v e p o w e r of
t h e A-R
nomogram i s d u e t o t h e v a r i a t i o n i n o x y g e n u p t a k e r e s u l t i n g f r o m
c h a n g e s i n t h e e x e r c i s e t e s t i n g a p p a r a t u s . Maximal oxygen u p t a k e
m e a s u r e m e n t s on a t r e a d m i l l h a v e b e e n s h o w n t o b e 4 t o 1 8 %
.
g r e a t e r t h a n V02max v a l u e s o b t a i n e d o n a b i c y c l e e r g o m e t e r
et al.,
(Glassford Pandolf,
1 9 6 5 ; H e r m a n s e n a n d S a l t i n , 1 9 6 9 ; Kamon a n d
1 9 7 2 ; McArdle a n d K a t c h ,
--
1975; Bergh e t a l . ,
--
Keren e t a l . ,
1976; M a t s u i ,
1 9 7 4 ; McKay a n d B a n i s t e r ,
--
1978; Pannier e t a l . ,
1980;
1980).
Changes i n t h e t e s t i n g p r o t o c o l d u r i n g e x e r c i s e on a
specific testing apparatus also results i n variations i n
measured oxygen u p t a k e and h e a r t r a t e v a l u e s .
Since a ~ 0 ~ m a x
p r e d i c t i o n i s b a s e d upon a s t e a d y s t a t e h e a r t r a t e r e s p o n s e t o a
s i n g l e s u b m a x i m a l work r a t e ,
factors,
o t h e r t h a n work r a t e ,
c a u s i n g a n i n c r e a s e d h e a r t r a t e must be c a r e f u l l y c o n t r o l l e d .
Changes i n body c o r e t e m p e r a t u r e a s a r e s u l t of a p r e - e x e r c i s e
warm-up
and,
p e r i o d may r e s u l t i n c h a n g e s i n h e a r t r a t e m e a s u r e m e n t s
i n t u r n , V02max p r e d i c t i o n s ( I n b a r a n d B a r - O r ,
a n d Stromme,
1975; I n g j e r
1 9 7 9 ) . Submaximal h e a r t r a t e h a s a l s o b e e n o b s e r v e d
t o v a r y i n d e p e n d e n t l y of
o x y g e n u p t a k e d u r i n g p e r i o d s of
emotional s t r e s s (Taylor e t al.,
Taylor e t al.,
1955; Rowell
et 2 0 1,9 6 4 ;
1963).
Oxygen u p t a k e h a s b e e n shown t o v a r y n o t o n l y w i t h power
o u t p u t b u t a l s o w i t h v a r i a t i o n s i n t h e c o m b i n a t i o n of p e d a l r a t e
and r e s i s t a n c e ( B a n i s t e r and J a c k s o n ,
1967; Pandolf
and Noble,
1 9 7 3 ; H a g b e r g .-e t al.,
1975; G u e l i and Shephard, 1976; C a f a r e l l i ,
1977; L o l l g e n e t al.,
1980).
P e r c e i v e d e x e r t i o n a n d "work
e f f i c i e n c y " h a v e b e e n shown, t o
b e i m p o r t a n t f a c t o r s when c o n s i d e r i n g e x e r c i s e p r o t o c o l s
et al.,
-
1 9 6 2 ; Whipp a n d W a s s e r m a n ,
Ekblom a n d G o l d b a r g ,
al.,
-
1972;
1976; C a f a r e l l i et al.,
al.,
-
1969; Stevens and Cain,
1971; Knuttgen et al.,
Sargeant and Davies,
--
1973; G a e s s e r ,
1975; B a n i s t e r ,
1977; Seabury et
1980; S t a i n s b y et al.,
D i f f e r e n c e s i n t h e f i t n e s s l e v e l of
1980; Borg et
individuals is yet
a n o t h e r f a c t o r w h i c h l i m i t s t h e p r e d i c t i v e c a p a c i t y of
nomogram.
(I.
Astrand,
1970;
1971; Edwards e t
1977; L o l l g e n et al.,
1977; L o l l g e n e t a l . ,
(Borg
1960; Rowel1 et al.,
the
1964; Roberts and
Alspaugh,
1 9 7 2 ; Holmer a n d A s t r a n d ,
et al.,
Magel -
1 9 7 5 ; Stromme et al.,
1972; Pechar
et G O 1,9 7 4 ;
1977). I. Astrand (1960)
f o u n d t h a t when a p p l y i n g t h e nomogram o n d a t a f o r s u b m a x i m a l
oxygen u p t a k e and h e a r t r a t e ,
.
t h e s t a n d a r d e r r o r of
prediction
f r o m m e a s u r e d VO2max w a s l e s s t h a n 1 1 0 p e r c e n t f o r w e l l - t r a i n e d ,
younger p e r s o n s , and a p p r o x i m a t e l y 1 1 5 p e r c e n t f o r a mixed
ability-age
r a n g e g r o u p of
subjects.
The d i f f e r e n c e was d u e t o
a n i n c r e a s e d m a x i m a l a e r o b i c c a p a c i t y of
t h e nomogram w a s d e v e l o p e d .
t h e t e s t g r o u p on whom
I n a s i m i l a r s t u d y , Astrand (1960)
found t h a t p h y s i c a l t r a i n i n g n o t o n l y i n c r e a s e d maximal a e r o b i c
capacity,
b u t a l s o c h a n g e d t h e s l o p e of
the heart rateloxygen
uptake curve.
D e t a i l e d e x a m i n a t i o n of e a c h m a j o r l i m i t a t i o n i m p o s e d b y
t h e a s s u m p t i o n s a s s o c i a t e d w i t h t h e A-R
t o t h e p r o p o s e d d e v e l o p m e n t of
predicting
.
V02max.
p r e d i c t i v e nomogram 1e.d
a more a c c u r a t e method f o r
The p r o p o s e d method r e t a i n e d t h e s i m p l e h e a r t
r a t e / w o r k r a t e r e l a t i o n s h i p a s t h e b a s e f r o m w h i c h t o make
p r e d i c t i o n s b u t i t r e c o g n i z e d t h e p o s s i b l e e x i s t e n c e of
non-linear
a
r e l a t i o n s h i p between h e a r t r a t e and oxygen u p t a k e .
Experimentati.on determined which m a t h e m a t i c a l f u n c t i o n f i t
o b t a i n e d oxygen u p t a k e l h e a r t r a t e d a t a b e s t .
P i l o t d a t a s u g g e s t e d t h a t a n e x p o n e n t i a l f u n c t i o n of
t h e form:
(Equation 1)
where f ( x ) = oxygen u p t a k e ,
a
= a constant,
k
= a rate constant,
x
= h e a r t r a t e o c c a s i o n e d b y a d e f i n e d work r a t e ,
and
would d e s c r i b e t h e c u r v e most a c c u r a t e l y , b u t t h i s remained t o
b e c o n f i r m e d i n l a r g e r g r o u p s of
subjects.
-
I n t h e work d e s c r i b e d i n t h i s s t u d y , maximal h e a r t r a t e was
measured d i r e c t l y r a t h e r t h a n b e i n g d e r i v e d from p r e d i c t i v e
equations a s i n the p i l o t investigations.
P i l o t work s u g g e s t e d a
s u i t a b l e submaximal e x e r c i s e t e s t i n g p r o t o c o l t o modify
uncontrolled changes i n h e a r t r a t e due t o i n d i v i d u a l b a s a l h e a r t
r a t e v a r i a b i l i t y by p r o v i d i n g a s t a n d a r d i z e d p r e - e x e r c i s e
warm-up
period.
w a s 90 r p m ,
The p e d a l r a t e c h o s e n f o r t h e s u b m a x i m a l t e s t
s i n c e i t h a d b e e n shown t o b e p e r c e i v e d a s . l e s s
demanding a t h i g h work r a t e s t h a n p e d a l r a t e s w i t h i n t h e r a n g e
50 t o 80 rpm a t e q u i v a l e n t p o w e r o u t p u t s . A l s o , p e d a l l i n g a t 90
rpm h a d b e e n d e t e r m i n e d t o b e a l e s s e f f i c i e n t m e t h o d of
p r o d u c i n g e x t e r n a l w o r k t h u s a s s u r i n g maximum e n g a g e m e n t o f
cardio-respiratory
the
system while reducing perceived e x e r t i o n and
encouraging g r e a t e r e f f o r t from t e s t p a r t i c i p a n t s .
Development of
a method t h a t s e e k s t o p r o v i d e a more
.
a c c u r a t e p r e d i c t i o n of V02max t h a n e x i s t i n g m e t h o d s f o r a n y
individual,
r e g a r d l e s s of a g e ,
s e x o r f i t n e s s l e v e l , must
i d e a l l y a s s e s s a r a n d o m s a m p l e of
c o m p o s e d of e v e r y c o m b i n a t i o n of
t a s k w a s b e y o n d t h e s c o p e of
i n d i v i d u a l s from each group
t h e above f a c t o r s .
this thesis,
Since such a
a more c i r c u m s c r i b e d
o b j e c t i v e w a s t o s t u d y o n e a g e g r o u p of m i x e d t r a i n e d a n d
untrained subjects.
T h i s was e n t i r e l y r e a s o n a b l e s i n c e t h e
t h e s i s p r o p o s e d o n l y t o m e a s u r e t h e a c c u r a c y of V02max
p r e d i c t i o n by a method b a s e d upon sound p h y s i o l o g i c a l
principles.
improved,
E v e n i f t h e a c c u r a c y of
t h e s t u d y would s t i l l h a v e had v a l u e f o r i t s
s y s t e m a t i c i n v e s t i g a t i o n of
t h e A-R
V02max p r e d i c t i o n w a s n o t
t h e acknowledged i m p e r f e c t i o n s of
nomogram.
This investigation, therefore,
specifically:
1 ) e x a m i n e d a s e l e c t e d C a n a d i a n p o p u l a t i o n of
d e l i m i t e d age-range
(20-29
( t r a i n e d and u n t r a i n e d ) ,
males w i t h i n a
years) varying i n f i t n e s s levels
2)investigated a possible non-linear
r e l a t i o n s h i p between
o x y g e n u p t a k e a n d h e a r t r a t e o v e r a r a n g e of
work r a t e s
d e m a n d i n g a p p r o x i m a t e l y 5 0 t o 100% V02max t o d e t e r m i n e i f
m o r e a c c u r a t e f o r m u l a t i o n s of
work r a t e ,
h e a r t r a t e and
oxygen u p t a k e r e l a t i o n s h i p s would a l l o w b e t t e r p r e d i c t i o n s
of
r e a l maximum o x y g e n u p t a k e v a l u e s t o b e made f r o m
submaximum w o r k r a t e a n d h e a r t r a t e r e l a t i o n s h i p s ,
3 ) d e t e r m i n e d maximal h e a r t r a t e s d i r e c t l y r a t h e r t h a n by
c a l c u l a t i o n from p r e d i c t i v e e q u a t i o n s , and
4 ) d e v e l o p e d a m e t h o d t o p r e d i c t maximum o x y g e n u p t a k e u s i n g
e a s i l y m e a s u r e d p h y s i o l o g i c a l r e s p o n s e s t o submaximum w o r k
l e v e l s during bicycle ergometry.
2.
L i t e r a t u r e Review
2.1 M a x i m a l
-
Oxygen U p t a k e
.
Maximal o x y g e n u p t a k e ( V02max) m e a s u r e s t h e m a x i m a l
f u n c t i o n a l c a p a c i t y of
a b i l i t y of
the cardiorespiratory system and/or
the
s k e l e t a l muscle t o o x i d i z e metabolic s u b s t r a t e . It i s
g e n e r a l l y c o n s i d e r e d t o b e t h e b e s t p h y s i o l o g i c a l i n d i c a t o r of
one's
a b i l i t y t o p e r f o r m p r o l o n g e d p h y s i c a l work.
V02max i s m o s t
a c c u r a t e l y a s s e s ~ s e df r o m d i r e c t m e a s u r e m e n t i n w h i c h t h e s u b j e c t
exercises t o exhaustion while expired gases a r e collected.
In
f a c t , t h e t e s t m e a s u r e m e n t h a s a c o e f f i c i e n t - o f r e l i a b i t i t y of
0.95
(Taylor
g.,
1955; Rowell,
1 9 7 4 ) when { ~ ~ r n aixs a s s e s s e d
u n d e r s t a n d a r d i z e d c o n d i t i o n s w h i c h a s s u r e i n v o l v e m e n t of
more of
50% o r
t h e t o t a l m u s c l e mass a t a s u f f i c i e n t i n t e n s i t y a n d
d u r a t i o n d u r i n g a n e x e r c i s e f o r m t h a t i s i n d e p e n d e n t of
skill or
motivation.
S e v e r a l o b j e c t i v e c r i t e r i a e x i s t which a i d i n c o n f i r m i n g
a t t a i n m e n t o f V02max i n a n y w o r k t e s t .
These i n c l u d e :
1 ) o b s e r v a t i o n t h a t oxygen u p t a k e r e a c h e s a s t e a d y s t . a t e
d e s p i t e i n c r e a s e s i n work r a t e .
A t t h i s steady s t a t e level,
v a l u e s of
o x y g e n u p t a k e d i f f e r by l e s s t h a n 1 5 0 m l 0 m i n - I
(Taylor e t al.,
1955). I n r e l a t i v e t e r m s ,
a t 2 ml*kg-lmin'l
t h i s value i s set
f o r a t y p i c a l a d u l t male,
2 ) b l o o d l a c t i c a c i d v a l u e s e x c e e d i n g 8 t o 9mM, o r 70 t o 80
of
mg - 1 0 0 m l ' l
blood, a r e reached i n samples taken 3 t o 5
m i n u t e s f o l l o w i n g t h e c e s s a t i o n of e x e r c i s e ( A s t r a n d ,
1952),
3 ) d e t e r m i n a t i o n t h a t t h e r e s p i r a t o r y e x c h a n g e r a t i o (R)
e x c e e d s 1.15 a t t h e p o i n t of e x h a u s t i o n , and
4)determination t h a t the h e a r t r a t e approximates a n age
p r e d i c t e d maximal l e v e l , p r e d i c t e d from t h e f o r m u l a ,
HRmax = 2 2 0 - a g e .
2.2 S u b m a x i m a l
-
Exercise Testing
The v a l u e of e x e r c i s e t e s t s i n d e t e r m i n i n g a n i n d i v i d u a l ' s
c a p a c i t y t o p e r f o r m e x h a u s t i v e work h a s b e e n w e l l e s t a b l i s h e d
Taylor
et
e.,1 9 5 5 ;
Glassf ord et al,
Astrand,
1956; H e t t i n g e r et al.,
1961;
1 9 6 5 ) . W h e r e v e r p e r f o r m a n c e of m a x i m a l l y
exhaustive exercise i s impractical or undesirable, a s i n the
t e s t i n g of u n t r a i n e d o r o l d e r i n d i v i d u a l s o r i n d i v i d u a l s w i t h
h e a r t d i s e a s e , l e s s s t r e n u o u s o r s u b m a x i m a l e x e r c i s e may b e
p e r f o r m e d a n d V02max e s t i m a t e d f r o m a n i n d i v i d u a l ' s
ch strand,
p h y s i o l o g i c a l r e s p o n s e t o c a r e f u l l y c h o s e n work r a t e s
1956; Maritz et al.,
Wyndham,
1961; I s s e k u t z ,
et
1962; Margaria
e.,1965;
1 9 6 6 ) . S u c h i n d i r e c t m e t h o d s of a s s e s s i n g V02max a r e
based upon t h e a s s u m p t i o n t h a t oxygen u p t a k e and any o t h e r
measured m e t a b o l i c v a r i a b l e a r e l i n e a r l y r e l a t e d t h r o u g h o u t an
e n t i r e r a n g e of w o r k r a t e s ( B e r g g r e n a n d C h r i s t e n s e n , 1 9 5 0 ) . I n
a d d i t i o n , s u b m a x i m a l t e s t s a r e u s e f u l s i n c e t h e y may b e
p e r f o r m e d i n a v a r i e t y of w a y s ,
running,
2.2.1
including t r e a d m i l l walking o r
b i c y c l e ergometry o r bench s t e p p i n g .
The
s strand-~h~rnin~
Exercise Test
The A s t r a n d - R h y m i n g v (A-R)
e x e r c i s e t e s t i n o n e of
t h e most
f r e q u e n t l y p e r f o r m e d s u b m a x i m a l t e s t s u s e d i n t h e p r e d i c t i o n of
602max ( A s t r a n d a n d Rhyming,
1 9 5 4 ) . P e r f o r m a n c e of
t h e A-R
exercise t e s t requires a subject t o exercise continuously a t a
predetermined,
on a t r e a d m i l l ,
s i n g l e , submaximal work r a t e f o r 5 t o 6 m i n u t e s
b i c y c l e ergometer o r s t e p p i n g bench.
Suggested
work r a t e s a r e 75 t o 1 0 0 w a t t s (W) f o r t r a i n e d f e m a l e s ,
'
100 t o
1 5 0 W f o r t r a i n e d m a l e s a n d 50 W f o r u n t r a i n e d i n d i v i d u a l s .
H e a r t r a t e i s m e a s u r e d a t t h e e n d of e v e r y m i n u t e d u r i n g t h e
t e s t and i s r e q u i r e d t o r e a c h a s t e a d y v a l u e g r e a t e r t h a n 130
bornin-I
d i f f e r i n g by n o t m o r e t h a n 5 b e a t s p e r m i n u t e t h r o u g h o u t
t h e f i f t h and s i x t h minute.
The t e s t , i n f a c t , i s p r o l o n g e d
u n t i l a s t e a d y s t a t e h e a r t r a t e b e t w e e n 130 and 170 b0min-l
reached.
From t h i s w o r k i n g p u l s e r a t e ,
is
together with the
c o r r e s p o n d i n g w o r k r a t e i n d u c i n g i t , V02max i s e s t i m a t e d .
The
b a s i s f o r the t e s t l i e s i n the assumption t h a t a l i n e a r
r e l a t i o n s h i p e x i s t s between oxygen u p t a k e and h e a r t r a t e and
t h a t maximal h e a r t r a t e v a r i e s w i t h a g e .
The A-R
nomogram w a s o r i g i n a l l y d e v e l o p e d f r o m t e s t s o n 86
healthy, well-trained
years old.
physical education students,
Maximal oxygen u p t a k e ,
1 8 t o 30
a s w e l l a s submaximal oxygen
u p t a k e , was d e t e r m i n e d d u r i n g t e s t s p e r f o r m e d by t h i s g r o u p b o t h
on a b i c y c l e e r g o m e t e r a n d a t r e a d m i l l .
A r e l a t i o n s h i p between
h e a r t r a t e and oxygen consumption was t h u s o b t a i n e d and f o u n d t o
be e s s e n t i a l l y l i n e a r o v e r a whole range between r e s t i n g and
maximum h e a r t r a t e .
D e t a i l e d e x a m i n a t i o n of
individual
r e g r e s s i o n l i n e s between oxygen u p t a k e and h e a r t r a t e f o r m a l e s
and f e m a l e s showed t h a t m a l e s ,
of
on t h e a v e r a g e , h a d a p u l s e r a t e
1 2 8 b * m i n w 1 a t a n o x y g e n u p t a k e 50% of t o 2 m a x a n d 1 5 4 b * m i n - l
a t a n o x y g e n u p t a k e 70% o f V02max.
a t 50% 6 0 2 m a x a n d 1 6 8 b o r n i n - l
-1
Female v a l u e s were 138 b-min
a t 70% o f $02max r e s p e c t i v e l y .
B o t h m a l e a n d f e m a l e g r o u p m e a n s h a d a s t a n d a r d d e v i a t i o n of k9
b-min-l.
On t h e b a s i s of
these data,
a nomogram w a s c o n s t u c t e d
f o r p r e d i c t i n g V02rnax f r o m h e a r t r a t e r e s p o n s e s d u r i n g
standardized,
submaximal work.
Many a d d i t i o n a l g r o u p s v a r y i n g i n a g e , s e x a n d f i t n e s s h a v e
b e e n s t u d i e d i n t h i s way s i n c e 1 9 5 4 a n d t h e o r i g i n a l nomogram
b a s e d u p o n d a t a f r o m 86 p h y s i c a l e d u c a t i o n s t u d e n t s h a s r e m a i n e d
a l m o s t c o m p l e t e l y unchanged.
I t must be e v i d e n t ,
however,
that
t h e a c c u r a c y of p r e d i c t i o n v a r i e s w i t h t h e d e g r e e of
c o r r e s p o n d e n c e t h e t e s t c o n d i t i o n s a n d r e s p o n s e s of a n
i n d i v i d u a l i n a c u r r e n t t e s t have w i t h t h e o r i g i n a l t e s t on
w h i c h t h e nomogram w a s d e v e l o p e d , T h e o r i g i n a l A-R
nomogram
p r e d i c t e d i o 2 m a x f r o m p u l s e r a t e s r a n g i n g f r o m 1 2 0 t o 1 7 0 b-min".
These measures were submaximal h e a r t r a t e s f o r t h e o r i g i n a l
1 9 5 4 g r o u p s i n c e t h e i r mean m a x i m a l h e a r t r a t e w a s a s s u m e d t o b e
1 9 5 bornin''
f o r both males and females.
T h e a p p l i c a t i o n of
nomogram f o r t h e p r e d i c t i o n of maximum o x y g e n u p t a k e ,
therefore,
i s by e x t r a p o l a t i o n t o a n a g e r e l a t e d maximum p u l s e r a t e .
itself,
the
This,
is an inherent l i m i t a t i o n t o widespread a p p l i c a b i l i t y .
I . A s t r a n d l a t e r ( 1 9 6 0 ) m o d i f i e d t h e o r i g i n a l nomogram by
introducing an age correction f a c t o r t o correct a consistent
o v e r e s t i m a t i o n i n p r e d i c t i n g bo2max f o r i n d i v i d u a l s o v e r t h e a g e
of 2 5 y e a r s b e c a u s e of a d e c l i n e i n t h e i r maximum a c h i e v a b l e
h e a r t r a t e with age.
2.2.2
A c c u r a c y of P r e d i c t i o n of A s t r a n d - R h y m i n g
Nomogram
Many s t u d i e s h a v e e s t i m a t e d t h e a c c u r a c y of m a x i m a l o x y g e n
u p t a k e p r e d i c t i o n s f r o m t h e A-R
nomogram a g a i n s t d i r e c t l y
m e a s u r e d V02max ( A s t r a n d a n d R h y m i n g ,
1954; A s t r a n d ,
Hettinger,
1 9 6 2 ; Rowel1
1961; Rodahl and I s s e k u t z ,
--
Glassford e t al.,
al.,
-
1965; D e v r i e s and K l a f f s ,
1966; Chase, 1966; Davies,
et
1960;
s.,
1964;
1965; T e r a s l i n n a
1968; Kavanagh and S h e p h a r d ,
et
1 9 7 6 ; Coleman,
1976; J e s s u p et al.,
Louhevaara et al.,
C i n k a n d Thomas,
1 9 8 0 ; Myles a n d T o f t ,
1982; S i c o n o l f i e t -*a 1
,
1981;
1980; P a t t o n et al.,
1 9 8 2 ) . T a b l e I i l l u s t r a t e s t h e r a n g e of
c o r r e l a t i o n c o e f f i c i e n t s ( r ) between p r e d i c t e d and observed
~ 0 ~ m am x
e a s u r e m e n t s made b y v a r i o u s i n v e s t i g a t o r s .
T a b l e I : Showing c o r r e l a t i o ? c o e f f i c i e n t ( r ) be,twe$n
d i r e c t l y m e a s u r e d V02 max a n d p r e d i c t e d
VOzmax,
u s i n g t h e A-R nomogram, by d i f f e r e n t
investigators. Variations i n experimental
p r o t o c o l s a n d a g e , s e x a n d f i t n e s s of s u b j e c t s
a r e a l s o shown.
Investigator
Predictive
Validity
Coefficient
P r o t o c o l •’0:
Subject
Assessing
V02max D a t a
Astrand
and
Ryhming
1954
0.71
Maximal b i c y c l e
n=86 w e l l
and t r e a d m i l l
trained
s e r i e s of
males and
experiments
females,
o v e r 3 weeks,
age range
30
work i n t e n s i t y
18
varying from
low t o h i g h e s t
subject could
maintain f o r
5-6 m i n u t e s .
Submax t r e a d m i l l 10 km*hrg1 ,
1 incline,
Submax b i c y c l e
f e m a l e - 9 0 0 kgm/m
m a l e - 1 2 0 0 kgm/m
,
-
Astrand,
1960
et al.,
1 9 6 4
Max a n d s u b m a x
bicycle,
on a t l e a s t 2
d a y s , 5-10 m i n
p e r l o a d , 2-3
m i n / l ' o a d a t max
loads
n=205
(males1129)
(femalesz76)
age range
20-68
Max t r e a d m i l l
Taylor
increase
2.5%
Submax t r e a d
3.5mph, 1 0 %
3.5mph,15%
n=22
athletes,
sedentary
n=10
endurance
athletes
Max B i c y c l e
n=16 m a l e
60rpm, 12min
P.E. s t u d e n t s
WU ( 6 a t 4 5 0 ,
age range
6 a t 900 kpm)
20-26
C E 250kpm min'l
i n c r e a s e 250
till exhaustion
Submax B i c y c l e
900 kpm, 6 0 r p m
6 min, precede
w i t h 6 min,450kpm
deVries
and
Klaf s ,
1965
Glassf ord
et al.,
0.7 2
Max T r e a d
Taylor, Buskirk
Hens c h e 1
Mitchell,
Sproule,
Chapman
Max B i c y c l e
Astrand d i r e c t
Submax B i c y c l e
5 0 r p m , 900kpm
t i l l HR 1 2 5 - 1 7 0
0.69
Max B i c y c l e
n=31 f a c u l t y
modified Balke
and s t a f f ,
T a y l o r ,50rpm
age range
2min 150kpm
23-49
i n c r e a s e 150
till exhaus t i o n
Submax B i c y c l e
5min WU a t 150kpm
2min r e s t , 5min
900 kpm
1965
Teraslinna
e
t *a 1 9
1966
n=24 m a l e s
age range
17-33
Davies,
1968
Maximal
n=80 m a l e
sedentary
age range
20-30
Coleman,
1976
M a x i ~ a lt r e a d
McDonough,
n=15 male
P.E. s t u d e n t s
ssup
al.,
' 7 7
0.64
0.63
Cink
and
Thomas,
1981
Louhevaara
e t al.,
1 9 8 0
0.73
(50rpm)
(80rpm)
Bruce
Submax t r e a d
modified Maritz
walk
a g e 22.67
+1.8
-
Max B i c y c l e
6 min each
300,600,900
1200 t i l l
180beats/min
then increase
r a t e and
resistance
Submax b i c y c l e
50 rpm(6 m i n )
80 r p m ( 6 m i n )
n=30 m a l e
volunteer
students
age range
18-24
Max B i c y c l e
60 r p m , 2 m i n
25W, i n c r e a s e
25Wlmin t i l l
exhaust ion
Submax b i c y c l e
well-trained
i n i t i a l 150W
m o d e r a t e , 100W
u n t r a i n e d , 75W
5 - 6 m i n , 5 0 rpm
HR 1 3 0 - 1 7 0
n=40 m a l e
students
age range
18-33
-
Max B i c y c l e
n=22 m a l e
following
mailmen
s u b m a x , 50rpm
age range
inc. r e s i s t .
29-41
2 m i n , 1 rnin
70rpm, 0.5min
100rpm.
Submax b i c y c l e
Discontinuous,
4-6 rnin a t 3
s u b m a x , 3 rnin
r e s t between
e a c h . WR c h o s e n
t o g e t HR 1 3 0 b / m ,
130-150, 150-170.
Myles
and
Toft ,
19 80
Max t r e a d ,
Taylor, 3 ,
3 min p e r i o d s
increasing
speed and grade
t i l l maximum.
Submax b i c y c l e
Astrand 6 min,
50 rpm, i n i t i a l
6 0 0 kpm.min'l
n=31 males
age range
1 9 - 4 0 , army
volunteers
.
P a t t on
0.78
Tread
Male
0.53 Tread
Female
0.83 B i c y c l e
Male
0.58 B i c y c l e
Female
Max T r e a d ,
Taylor
Max B i c y c l e ,
discontinuous,
60 rpm,900kpm
180kpm m i n
increase.
Submax b i c y c l e
A s t r a n d 6 min
5 0 r p m , HR 1 2 0
t o 170 b-min"
n=15 m a l e
a g e 20-41
n=12 f e m a l e
a g e 18-33
Army s t a f f
Siconolfi
et al.,
1 9 8 2
0.76 male
0.79 f e m a l e
Max b i c y c l e
50 rpm,
1 5 0 kpm-rnin'l
Submax b i c y c l e
M o d i f i e d A-R
50 rpm, a l l
female and male o v e r 3 5 , 150kpm
i n c . 15012 min
male under 35,
300kpm, i n c .
30012 min.
n-35 m a l e
n-28 f e m a l e
a g e 20-70
Hospital
personnel
T a b l e I r e v e a l s t h e e x t r e m e s of
v a r i a b i l i t y i n methodology
among i n v e s t i g a t o r s u s e d t o a s s e s s r e l e v e n t s u b m a x i m a l h e a r t
r a t e s f r o m w h i c h t o p r e d i c t V02max.
These procedural v a r i a t i o n s
contribute significantly t o the differences i n predicted values
noted above i n Table I. S e v e r a l s t u d i e s have e v a l u a t e d t h e
a c c u r a c y of p r e d i c t i n g f r o m t h e A-R
nomogram by c o m p a r i s o n of
t h e V02max m e a s u r e m e n t s o b t a i n e d d i r e c t l y w i t h e i t h e r s u b m a x i m a l
t r e a d m i l l r u n n i n g o r submaximal b i c y c l e ergometry (Rowell
a
-*
1
9
--
1964; G l a s s f o r d e t a l . ,
1965; Coleman,
i n a p p r o p r i a t e comparisons however,
5
1976). These a r e
s i n c e i t i s w e l l known t h a t
t r e a d m i l l r u n n i n g c o n s i s t e n t l y p r o d u c e s h i g h e r VO2max v a l u e s ,
t h e o r d e r of
4 t o 18%, t h a n b i c y c l e ergometry (Astrand and
et a1.,1965;
S a l t i n , 1961; G l a s s f o r d , McArdle a n d M a g e l ,
Banister,
et al.,
-
on
Hermansen
1 9 7 0 ; Miyamura a n d Honda,
--
1976; Bergh e t a l . ,
1 9 8 0 ; Miles et al.,
1976; Keren et
et g . ,
1970;
1 9 7 2 ; McKay a n d
G.,
1980; P a n n i e r
1 9 8 0 ) . E v e n when t h e e v a l u a t i v e
p r o c e d u r e i s t h e same f o r b o t h m a x i m a l a n d s u b m a x i m a l
p r o c e d u r e s , v a r i a t i o n s i n i n t e n s i t y a n d d u r a t i o n of e a c h w o r k
l e v e l a f f e c t t h e d e t e r m i n e d +o2max ( M c C o n n e l l a n d S i n n i n g ,
1980).
V a r i a t i o n i n t h e f i t n e s s l e v e l of
participating subjects i s
a m a j o r s o u r c e of e r r o r i n t h e a c c u r a c y of nomogram p r e d i c t i o n s .
I. A s t r a n d ( 1 9 6 0 ) r e p o r t e d t h a t V02max p r e d i c t i o n s f o r u n t r a i n e d
and t r a i n e d i n d i v i d u a l s ,
or overestimated.
r e s p e c t i v e l y , w e r e of t e n u n d e r e s t i m a t e d
Various i n v e s t i g a t o r s have observed an
i m p r o v e d a c c u r a c y i n p r e d i c t i n g $02max f r o m t h e A-R
nomogram
when s u b j e c t s w e r e m o d e r a t e l y t r a i n e d ( A s t r a n d , 1 9 6 0 ; R o w e l 1 et
al).
A t h l e t e s t r a i n e d i n a s p e c i f i c m a n n e r h a v e a l s o b e e n shown
t o e x h i b i t v a r i a t i o n s i n p r e d i c t e d $02max f r o m d i r e c t l y m e a s u r e d
C ~ ~ r n awhen
x
t h e t e s t i n g a p p a r a t u s on w h i c h ?02max was m e a s u r e d
s i m u l a t e d t h e i r s p e c i f i c s p o r t s a c t i v i t y ( A s t r a n d , 1 9 6 0 ; Rowel1
et al.,
-
1964; R o b e r t s and Alspaugh,
--
1972; P e c h a r e t a l . ,
1 9 7 2 ; Holmer a n d A s t r a n d ,
- --
1 9 7 4 ; Magel e t a 1
--
1977; Verstappen e t a l . ,
9
1982). I t seems,
1 9 7 5 ; Stromme
therefore,
et
e.,
that the
work t e s t m u s t e n g a g e a l l t h o s e m u s c l e s w h i c h h a v e b e e n
s p e c i f i c a l l y t r a i n e d i n o r d e r t o a s s e s s t h e maximal a e r o b i c
c a p a c i t y of a p a r t i c u l a r a t h l e t e a c c u r a t e l y .
2.3 Major
-
-
A-R
L i m i t a t i o n s P l a c e d Upon A s s u m p t i o n s of t h e-
nomogram
While t h e above s t u d i e s have a t t e m p t e d t o e s t i m a t e t h e
a c c u r a c y of p r e d i c t i o n s b e t w e e n t e s t s ,
among g r o u p s e t c . ,
the
b a s i c a s s u m p t i o n s u p o n w h i c h t h e nomogram was c o n s t r u c t e d h a v e
r a r e l y b e e n q u e s t i o n e d . The m a j o r a s s u m p t i o n s a r e t h a t :
1.
H e a r t r a t e i s l i n e a r l y r e l a t e d t o oxygen u p t a k e t h r o u g h o u t
.
t h e e n t i r e r a n g e of e x e r t i o n a l l e v e l s u p t o V02max,
'
2.
Maximal a t t a i n a b l e h e a r t r a t e v a r i e s l i t t l e b e t w e e n
i n d i v i d u a l s of
3.
similar age,
Oxygen u p t a k e v a l u e s o b t a i n e d d u r i n g b i c y c l e e r g o m e t r y a r e
t h e s a m e a s t h o s e o b t a i n e d o n t h e t r e a d m i l l ' f o r t h e same
i n d i v i d u a l , and
4.
A p r e c i s e uniform t e s t i n g protocol i s s t r i c t l y adhered t o i n
every assessment
(i.e.
a single,
s u b m a x i m a l w o r k r a t e on a
b i c y c l e e r g o m e t e r i s p e r f o r m e d a t 50 r p m ) .
2.4 L i n e a r i t y of H e a r t
-
Rate/Oxygen Uptake R e l a t i o n s h i p
The u n d e r l y i n g b a s i s of
t h e s u b m a x i m a l A-R
exercise test i s
t h e r e l a t i o n s h i p s e x i s t i n g between h e a r t r a t e and oxygen u p t a k e
d u e t o v a r i a t i o n s i n work r a t e .
O x y g e n u p t a k e may b e d e f i n e d b y
the equation:
~ 0 ~ = (HR
x
SV )
x (a-T)02
diff
( E q u a t i o n 2)
w h e r e V02 = o x y g e n u p t a k e ,
HR = h e a r t r a t e ,
SV = s t r o k e v o l u m e ,
(a-V)02
diff
and
= arteriovenous
oxygen d i f f e r e n c e .
Astrand et al.
( 1 9 6 4 ) showed t h a t n o f u r t h e r i n c r e a s e i n s t r o k e
volume o c c u r s a f t e r t h e h e a r t r a t e a t t a i n s a l e v e l of
a p p r o x i m a t e l y 1 2 0 bornin-l.
A t h i g h e r r a t e s of
work a n i n c r e a s e
i n o x y g e n u p t a k e d e p e n d s on a n i n c r e a s e d h e a r t r a t e a n d
a r t e r i o v e n o u s o x y g e n d i f f e r e n c e . The h e a r t r a t e a p p e a r s t o r e a c h
l i m i t i n g l e v e l s bef o r e t h e a r t e r i o v e n o u s oxygen d i f f e r e n c e a f t e r
w h i c h m u s c l e s e e m s a b l e t o e x t r a c t more o x y g e n f r o m c i r c u l a t i n g
blood t o a l l o w oxygen u p t a k e t o c o n t i n u e i n c r e a s i n g w i t h
i n c r e a s i n g work r a t e ( D a v i e s , 1 9 6 8 ) . However, s i n c e a v e r y e a r l y
--
d a t e , Wyndham e t a l .
--
( 1 9 5 9 ) , Rowel1 e t a l .
(1964) and Davies
( 1 9 6 8 ) c o n c l u d e d t h a t a t n e a r maximum e f f o r t h e a r t r a t e a n d
oxygen u p t a k e a r e no l o n g e r l i n e a r l y r e l a t e d .
The r e l a t i o n s h i p
between h e a r t r a t e and oxygen u p t a k e f i t t e d a n e x p o n e n t i a l c u r v e
a s ~ 0 ~ c o n t i n u e d t o i n c r e a s e w h i l e h e a r t r a t e - r e a c h e d a maximum
level.
D a v i e s ( 1 9 6 8 ) showed t h a t t h i s n o n l i n e a r i t y i n t h e h e a r t
r a t e / V 0 2 c u r v e o c c u r e d i r r e s p e c t i v e of a g e . The a s y m p t o t i c
n a t u r e o f t h e c u r v e r e s u l t s i n a n u n d e r e s t i m a t i o n of V02max
u s i n g t h e A-R
nomogram a n d p r e s e n t s a s e v e r e l i m i t a t i o n t o i t s
p r e d i c t i v e power.
A t h e a r t r a t e s below 120 b-min'l,
s t r o k e v o l u m e may
c o n t i n u e t o i n c r e a s e and e f f e c t a n i n c r e a s e i n oxygen u p t a k e
(Astrand et al.,
1 9 6 4 ) . Above 1 2 0 bwmin'l
heart rate increases
a l o n e g e n e r a t e i n c r e a s e d c a r d i a c o u t p u t and h e n c e oxygen. u p t a k e .
The p r e d i c t i v e power of
t h e A-R
nomogram may b e i n c r e a s e d a s
h i g h e r h e a r t r a t e s i n t h e r a n g e 1 3 0 t o 170 bornin-l
from g r e a t e r
work r a t e s a r e u s e d i n t h e p r e d i c t i v e p r o c e s s
Margaria e t al.
( 1 9 6 5 ) s u g g e s t e d t h e u s e of
v a l u e s t o i m p r o v e p r e d i c t i o n of
(Davies,
two h e a r t r a t e
V02max, h o w e v e r t h i s m e t h o d d i d
n o t a l l e v i a t e t h e problem stemming from n o n - l i n e a r i t y
u p p e r p o r t i o n s of
1968).
in the
t h e h e a r t r a t e /oxygen u p t a k e curve.
M a x i m a l e f f o r t o n t h e p a r t of
t h e d i r e c t d e t e r m i n a t i o n of bo2max.
a subject is essential for
Submaximal t e s t s , however,
depend upon d e t e r m i n i n g t h e e x a c t h e a r t r a t e response t o a
s p e c i f i c submaximal work r a t e .
theref ore,
I t i s of
the utmost importance,
t h a t changes i n h e a r t r a t e r e f l e c t only an a l t e r a t i o n
i n work r a t e .
I n t h i s c a s e b o t h h e a r t r a t e and work r a t e must b e
a c c u r a t e l y measured.
1.
Factors Affecting Heart Rate
H e a r t r a t e may b e a f f e c t e d b y a v a r i e t y of f a c t o r s
i n c l u d i n g t e m p e r a t u r e and a s s o r t e d n o n - s p e c i f i c
a.
stresses.
Temperature
Body t e m p e r a t u r e ,
( T c ) , may b e e s t i m a t e d f r o m
r e c t a l t e m p e r a t u r e ( T r ) , a n d mean s k i n t e m p e r a t u r e ( T s )
as follows;
Tc = 0 . 8 T r
During e x e r c i s e ,
+
0.2Ts
(Equation 3)
both t h e c i r c u l a t o r y system and
h e a t r e g u l a t o r y mechanisms r i s e above r e s t i n g l e v e l s .
The c i r c u l a t o r y s y s t e m i s s t r e s s e d f u r t h e r by t h e n e e d
t o t r a n s f e r excess h e a t from t h e c o r e t o the periphery.
E l e v a t e d body c o r e a n d m u s c l e t e m p e r a t u r e s i n d u c e d by
.
e x e r c i s e h a v e b e e n shown t o i n c r e a s e o x y g e n u p t a k e a n d
h e a r t r a t e v a l u e s a b o v e n o r m a l ( B e r g h a n d Ekblom,
--
Tanaka e t a l .
( 1 9 7 9 ) d e s c r i b e d t h e t i m e c o u r s e of
1979).
rising
body t e m p e r a t u r e and h e a r t r a t e f o r submaximal b i c y c l e
e r g o m e t r y a t 80% o f V02max.
Body c o r e t e m p e r a t u r e l a g g e d
the i n c r e a s e i n h e a r t r a t e and d i d not begin t o i n c r e a s e
u n t i l s i x m i n u t e s a f t e r e x e r c i s e o n s e t due t o blood
r e d i s t r i b u t i o n from s p l a n c h n i c a r e a s t o working muscles.
--
Shvartz e t a l .
(1978) demonstrated t h a t e x e r c i s e ' r e c t a l
t e m p e r a t u r e a t e l e v a t e d a m b i e n t t e m p e r a t u r e depends upon
p h y s i c a l f i t n e s s ( a s d e s c r i b e d b y V02max) a n d a
d e v e l o p e d t h e r m o r e g u l a t o r y a b i l i t y , b o t h of which
increase heat tolerance.
The a b o v e s t u d i e s i n d i c a t e a n e e d t o m o n i t o r a n d
a c c o u n t f o r c h a n g e s i n b o d y a n d m u s c l e t e m p e r a t u r e among
populations under t e s t .
A pre-exercise
m u s t b e c o n t r o l l e d b o t h i n t e r m s of
duration.
warm-up
period
i n t e n s i t y and
The r i s e i n r e c t a l t e m p e r a t u r e a b o v e r e s t i n g
v a l u e s may b e m e a s u r e d t o e f f e c t s u c h a c o n t r o l ( D e B r u y n
P r e v o s t and L e f e b v r e ,
1980).
V a r i a t i o n s i n body t e m p e r a t u r e w i t h i n a n i n d i v i d u a l
may a l s o b e e f f e c t e d b y c i r c a d i a n r h y t h m m a k i n g i t
i m p e r a t i v e t o t e s t e a c h i n d i v i d u a l a t t h e same t i m e of
day ( M i l l s , 1966).
b.
Non-specific
Stresses
Rowel1 et al.
(1964) concluded t h a t submaximal
,
p u l s e r a t e d u r i n g w o r k r e q u i r i n g u p t o a n d e x c e e d i n g 50%
.
of V02max may v a r y i n d e p e n d e n t l y of
physiological changes.
other attendant
T h e e m o t i o n a l s t a t e of
t'he
s u b j e c t may i n c r e a s e t h e h e a r t r a t e m e a s u r e m e n t b y a s
much a s 1 0 bemin'l
subject's
without p e r c e p t i b l y changing t h e
p r e p a r e d n e s s f o r t h e t a s k i n hand.
o x y g e n u p t a k e of
2.0
lgmin-I
such an i n c r e a s e i n h e a r t
r a t e w o u l d r e s u l t i n a d e c r e a s e of
the subject's
A t an
p r e d i c t e d V02max.
550 m l 02-min-'
Rowel1 et al.
in
(.I9641
s t a t e d t h a t t h e s e changes can occur without
c o r r e s p o n d i n g i n c r e a s e s i n maximal p u l s e r a t e o r t r u e
V02max.
T h e o b s e r v a t i o n s a r e i n c o n t r a s t t o t h o s e of
Astrand et al.
( 1 9 6 0 ) who c o n s i d e r e d t h a t h i g h e r
submaximal h e a r t r a t e s c o r r e s p o n d e d t o r e l a t i v e l y lower
aerobic capacity. Taylor et al.
i n h e a r t r a t e r e s p o n s e s of a
(1955) noted d i f f e r e n c e s
s u b j e c t t o s u b m a x i m a l work
on d i f f e r e n t o c c a s i o n s a n d a t t r i b u t e d i t t o l e s s a n x i e t y
on t h e p a r t of
the subject a f t e r an i n i t i a l t e s t .
e f f e c t s of n o n - s p e c i f i c
The
s t r e s s e s a r e an important
.
c o n s i d e r a t i o n when p r e d i c t i n g V02max f r o m p h y s i o l o g i c a l
r e s p o n s e s t o s u b m a x i m a l work r a t e s .
2.5 C o n s t a n c y of Maximum HR
-
--
Maritz e t a l .
Between and W i t h i n Age G r o u p s
(1961) determined t h a t t h e r e i s l i t t l e
s i g n i f i c a n t i n d i v i d u a l v a r i a t i o n f r o m t h e p o p u l a t i o n mean
maximal h e a r t r a t e .
T h u s t h e u s e of a common m a x i m a l h e a r t r a t e
was c o n s i d e r e d n o t t o i n t r o d u c e s i g n i f i c a n t e r r o r s i n t h e
.
e s t i m a t e of V02max.
Rowel1 ( 1 9 6 4 ) , however,
determined a
d e c r e a s e i n maximal h e a r t c a u s e d by heavy t r a i n i n g w i t h i n a
s p e c i f i c age group and concluded t h a t such a d e c r e a s e i n maximal
h e a r t r a t e w o u l d p r e v e n t t h e p r e d i c t i o n of +o2max f r o m t h e A-R
nomogram i n a s u b - g r o u p
d i f f e r i n g m a r k e d l y f r o m t h e n o r m of
age group e x e r c i s e h e a r t r a t e .
the
Thus maximal h e a r t r a t e m i g h t
v a r y c o n s i d e r a b l y w i t h i n a n a g e g r o u p a n d a l a r g e variation
d e f i n i t e l y o c c u r s between age groups.
The a g e c o r r e c t i o n f a c t o r s
d e t e r m i n e d by A s t r a n d ( 1 9 6 0 ) t o c o r r e c t f o r i n t e r - a g e
group
h e a r t r a t e v a r i a b i l i t y d i f f e r f r o m t h o s e d e t e r m i n e d by L e s t e r
al.
-
(1968) and Sidney and Shephard (1977).
et
Both L e s t e r et al.
( 1 9 6 8 ) a n d S i d n e y a n d S h e p h a r d ( 1 9 7 7 ) f o u n d t h a t 65 y e a r o l d
N o r t h A m e r i c a n m a l e s c o u l d r e a c h a maximum h e a r t r a t e 1 0 t o 1 5
b/min h i g h e r t h a n r e p o r t e d by A s t r a n d et al.
( 1 9 5 9 ) a n d I.
A s t a n d ( 1 9 6 0 ) o n S w e d i s h p o p u l a t i o n s i n 1 9 6 0 . The e m p h a s i s on
p h y s i c a l f i t n e s s and t h e h e a l t h y l i f e s t y l e p r e c e d e n t s e t today
i n N o r t h A m e r i c a a n d a r o u n d t h e w o r l d p r o b a b l y make d a t a f r o m
1 9 6 0 , on a g e r e l a t e d h e a r t r a t e m a x i m a ,
2.6 I n t e r c h a n g a b i l i t y of T e s t i n g
-
quite outdated.
Instrument
It was o r i g i n a l l y assumed t h a t t r e a d m i l l r u n n i n g and
b i c y c l e e r g o m e t r y p r o d u c e d s i m i l a r v o 2 m a x v a l u e s when t h e A-R
nomogram w a s d e v e l o p e d . Many s t u d i e s h a v e s i a c e shown t h a t
.
t r e a d m i l l r u n n i n g p r o d u c e s a V02max v a l u e b e t w e e n 4 a n d 1 8 %
g r e a t e r t h a n b i c y c l e e r g o m e t r y ( T a b l e 11; G l a s s f o r d
1965; Hermansen and S a l t i n ,
McArdle a n d Magel,
Honda,
9
1 9 7 0 ; Karnon a n d P a n d o l f ,
1 9 7 2 ; McArdle a n d K a t c h ,
Bergh et al.,
* ,a 1
1976; Boileau
1980; P a n n i e r et al.,
et al.,
-
1969; Hermansen et al.,
1982).
et
1970;
1 9 7 2 ; Miyamura a n d
1 9 7 4 ; McKay a n d B a n i s t e r ,
et G . ,
,
1977; Matsui,
1980; Keren e t al.,
1975;
-
1978; Miles e t
1980; Verstappen
T a b l e 11: Summary of Mean D i f f e r e n c e B e t w e e n i o 2 m a x R e c o r d e d
During T r e a d m i l l Running a n d B i c y c l e ' ~ r ~ o m e t r y
A s D e t e r m i n e d By V a r i o u s I n v e s t i g a t o r s .
T r e a d m i l l Oxygen U p t a k e i s T e r m e d 1 0 0 % .
Investigator
Treadmill(T)Bicycle(B)
(percent)
Maximal T e s t i n g P r o c e d u r e
Glassf ord
e t al.,
1 9 6 5
T-Taylor P r o t o c o l
M i t c h e l l ,Sproule,Chapman
B-Astrand d i r e c t
A-R i n d i r e c t
Chase,
1966
T-Taylor
B-Luft m o d i f i c a t i o n
WU-3min a t 3 0 0 k ~ m * m i n - ~
5 0 - 6 0 r p m , i n c r e a s e 85
t o 100kgm*min'l
till
exhaustion
Hermansen,
Salti n ,
196 9
7.0
T-modified Taylor
B-predict from Astrand
Salti n , then increase
200kpm*min"
, 50rpm
WU f o r b o t h t e s t s 1 0 m i n
a t w o r k r a t e 50-70%V02MAX
Hermansen,
Ekblom,
Saltin,
1970
6.0
same a s a b o v e , 1 9 6 9 ,
e x h a u s t i o n 5-7 m i n u t e s
McArdle,
Mage 1,
1970
9.9
T-Balke
B - c o n t i n u o u s , 60rpm
i n c r e a s e 180kgm omin-l
e v e r y 2 min t i l l
exhaust ion
Kamon ,
Pandslf
1972'
,
Miyamura,
Hsnda ,
1972
11.0 m a l e s
7.0 f e m a l e s
T-Taylor
B-5 m i n WU a t 50% ~ O ~ M A X
r e s t 1 0 rnin
C E a t l e a s t 3 rnin a < l o a d
p r e d i c t e d t o y i e l d V02MAX
15.0 Discon.
8.0 Cont.
T-cons t a n t , s p e e d c h o s e n
t o e x h a u s t i n 4-8 m i n ,
180-200 m - m i C 1
i n c r e m e n t a l , 2 rnin 1 5 0 - 1 7 0
m-min'l
t h e n i n c r e a s e 1om-min'l
B - c o n s t a n t , 4-8 rnin t i l l e n d
1 2 6 0 - 1 6 2 0 kpm*min"
i n c r e m e n t a l , 2 rnin 9 0 0 - 1 2 6 0
t h e n i n c r e a s e 1 8 0 kgm.min'l
McArdle,
Katch,
Pechar ,
1973
T - d i s c o n t i n u o u s , 5 m i n ,6mph, 2 , 5 %
1 0 rnin r e s t , i n c r e a s e 2.5%
e a c h 5 min r u n , 1 0 min r e s t
- c o n t i n u o u s , 2 m i n , 6mph , 0 %
i n c r e a s e 2.5% t i l l e x h a u s t i o n
-Balke
- M i t c h e l l , S p r o u l e , Chapman
B - d i s c o n t i n o u s , 60rpm, 5min , 2 k g
1 0 rnin r e s t ,
3 k g , 60 rpm, t h e n i n c r e a s e
e a c h 5 rnin
1 8 0 kgm*min"
- c o n t i n u o u s , i n i t i a l 60 rpm n o
l o a d , t h a n i n c r e a s e 180
kgmomin-I e v e r y 2 m i n .
McKay
Banister,
1975
T r e a d m i l l WU 6 rnin a t 60 rpm
l o a d e l i c i t i n g HR 1 5 0 b / m i n
CE-OX, 2.5%/min t i l l
exhaust ion; separate days
a t 6.0,6.5,7.0,7.5mph
B i c y c l e WU same a s t r e a d m i l l
C E l m i n 900
2min 1 2 0 0
3 and 4 1500
5 and 6 1800
7 and 8 2100
9 and 10 2400
Separate days f o r 60,80,
1 0 0 a n d 1 2 0 rpm
Bergh
Matsui,
1978
WU 6 - 1 0 m i n a t 50% V 0 2 max
T r e a d m i l l - 5 - 8 % f o r 5 min
B i c y c l e - c o n t i n u o u s , one
w o r k l o a d p e r work t e s t
18.0
~-~~-120-140m*min'~
a t 8.6% f o r a few
m i n u t e s , r e s t 2 min
C E 8 . 6 % , 2min
100-140m*min-~ , i n c r e a s e
till exhaustion
10m-min"
B-WU 2 9 - 5 9 W , 2 m i n ,
r e s t 2min
CE 6 0 r p m , 2min a t 29-59W
i n c r e a s e 29W/min t i l l
exhaustion
Hagberg
e t al.,
19 7 8
T-progressive
c o n t i n u o u s , 7 , 8 or9mph
i n c r e a s e 2%/min t i l l
exhaust ion
B-90rpm, 270kprn*min'l
a f t e r i n i t i a l l o a d of
810-1350kpm*min'1
20mph of t r e a d m i l l
i n c r e a s e 0.5%/min
f r o m i n i t i a l 2 o r 3%
Miles
e t al.,
19 8 0
T-Balke walk
B-incremental,
60rpm, i n c r e a s e
180kpm*rnin'l e v e r y 2 m i n
till exhaustion
Keren
e t al.,
1988-
T-Bruce m o d i f i e d
B - i n c r e a s e 50W e v e r y
3min f r o m i n i t i a l 600
kprn*min"
, supramax l o a d
of 20W a d d e d
WU a l l e x p t s . , 5 m i n , HR
150-160, 1 0 min r e s t
T-constant speed
f o r c o n t r o l s , 12.5
km-hr"
for runners,
i n i t i a l 0%, increase
2 . 5 % e v e r y 3min
B-Hollman, V e n r a t h
i n i t i a l WU 140W,
i n c r e a s e 40W/3min
60-70rpm
Pannier
et al.,
- 5 8 0
Vers t a p p e n ,
1982
14.0
(runners)
-2% ( c y c l i s t s )
T - s p e e d 11 k m - m i n - l , 5 m i n
i n c r e a s e t o 12-13 km-min
e v e r y 2.5 m i n , t h e n s p e e d
constant, increase incline
2.5% e v e r y 2 . 5 m i n t i l l
exhaus t i o n .
B-900 kpmemin-l f o r 5 m i n
t h e n 1 2 0 0 f o r 2. 5 m i n
i n c r e a s e 1 5 0 kpm.min'l
every
2.5 min t i l l e x h a u s t i o n .
Thus a new method f o r t h e p r e d i c t i o n of V02max f r o m
p h y s i o l o g i c a l r e s p o n s e s t o s u b m a x i m a l work r a t e n e e d s
development, s p e c i f i c a l l y f o r use i n b i c y c l e ergometry.
P r e d i c t e d $02max v a l u e s f r o m t h i s p r o c e d u r e w o u l d t h e n b e more
.
a c c u r a t e l y r e f e r r e d t o a s V02peak o r V02max b i c y c l e .
Several factors contribute t o the consistently higher
~ 0 ~ m av axl u e s d e t e r m i n e d d u r i n g t r e a d m i l l r u n n i n g c o m p a r e d t o
bicycle ergometry.
These i n c l u d e v a r i a t i o n s i n c a r d i a c o u t p u t ,
muscle blood f l o w and l e g s t r e n g t h .
2.6.1
Cardiac Output
The r e l a t i o n s h i p amo-ng c a r d i a c o u t p u t
oxygen d i f f e r e n c e ((a-T)02
(Q), arteriovenous
d i f f e r e n c e ) and maximal oxygen u p t a k e
may b e d e s c r i b e d by t h e F i c k e q u a t i o n :
VO2max = max Q x m a x ( a - T ) 0 2
difference
(Equation 4)
where Q = s t r o k e volume x h e a r t r a t e .
Cardiac o u t p u t h a s been determined t o be l e s s d u r i n g b i c y c l e
e r g o m e t r y compared t o t r e a d m i l l r u n n i n g (Hermansen et al.,
1970;
'
Faulkner e t al.,
al.
-
1 9 7 1 ; Miyamura a n d Honda,
(1970) and Faulkner e t al.
1972). Hermansen
et
(1971) b o t h determined t h a t t h e
s t r o k e volume d u r i n g b i c y c l e e r g o m e t r y was s i g n i f i c a n t l y l e s s
than t h a t during t r e a d m i l l running.
M i y a m u r a a n d Honda
(l972),
i n c o n t r a s t t o t h e above i n v e s t i g a t o r s , found t h a t s t r o k e volume
w a s t h e same i n b o t h f o r m s of e x e r c i s e .
These a u t h o r s , however,
n o t e d a l o w e r mean m a x i m a l h e a r t r a t e d u r i n g b i c y c l e e r g o m e t r y
compared t o t r e a d m i l l r u n n i n g a n d e x p l a i n e d t h i s a s due t o e a r l y
f a t i g u e of
2.6.2
the quadriceps muscles.
B l o o d F l o w t o t h e L o w e r Limb
M i y a m u r a a n d Honda ( 1 9 7 2 ) f o u n d t h a t t r e a d m i l l r u n n i n g
produced a g r e a t e r (a-v)*
output,
difference, as well as cardiac
compared t o b i c y c l e e r g o m e t r y .
This led the authors t o
c o n c l u d e t h a t blood f l o w t o t h e l e g was d i f f e r e n t d u r i n g
t r e a d m i l l r u n n i n g compared t o b i c y c l e e r g o m e t r y .
--
Matsui e t a l .
(1978) i n v e s t i g a t e d blood f l o w t o t h e lower limb d u r i n g
t r e a d m i l l r u n n i n g and b i c y c l e ergometry and found t h a t blood
f l o w t o t h e c a l f was s i g n i f i c a n t l y g r e a t e r d u r i n g t r e a d m i l l
r u n n i n g compared t o c y c l i n g .
--
I n general, Matsui e t a l .
concluded
t h a t t o t a l l e g b l o o d f l o w was h i g h e r f o l l o w i n g t r e a d m i l l
running.
--
Faulkner e t a l .
n a t u r e of
(1971) hypothesized t h a t t h e b a l l i s t i c
running and t h e s h o r t c o n t r a c t i o n phase were b o t h
biomechanical f a c t o r s t h a t increased blood flow t o the l e g
during treadmill exercise.
of
I n cycling,
the contraction portion
t h e c o n t r a c t ion-relaxat i o n c y c l e i s r e l a t i v e l y prolonged and
t h e peak l o a d s a r e a p p r o x i m a t e l y t w i c e t h e l o a d s e t t i n g (Hoes
al.,
-
2.6.3
1968).
Leg S t r e n g t h
--
Katch e t a l .
(1974) a s s e s s e d i n d i v i d u a l d i f f e r e n c e s i n
a b i l i t y t o e x e r t f o r c e w i t h t h e l e g s during c y c l i n g and t h e
r e l a t i v e s i z e of
the l e g s i n an attempt t o explain the lower
V02max v a l u e s c o n s i s t e n t l y o b t a i n e d d u r i n g c y c l i n g r e l a t i v e t o
t r e a d m i l l running.
Measurement of
dynamic l e g f o r c e s d u r i n g
maximal c y c l i n g was d e t e r m i n e d u n d e r c o n d i t i o n s which e x a c t l y
d u p l i c a t e d t h e p e d a l l i n g r a t e a n d s p e c i f i c l e g movements d u r i n g
t h e Go2max b i c y c l e t e s t . L e g f o r c e w a s m e a s u r e d by c o u p l i n g a n
i s o k i n e t i c d y n a m o m e t e r ( C y b e x 11) d i r e c t l y t o t h e p e d a l s p r o c k e t
of a M o n a r k f r i c t i o n t y p e b i c y c l e e r g o m e t e r .
F a c t o r s such as
maximum l e g f o r c e , maximum l e g f o r c e r e l a t i v e t o b o d y w e i g h t ,
l e g weight,
.
l e g v o l u m e , body c o m p o s i t i o n , a n d a b s o l u t e V02max,
t o g e t h e r a c c o u n t e d f o r o n l y 2 % of
.
t h e 1 2 . 4 % h i g h e r V02max v a l u e s
o b t a i n e d d u r i n g t r e a d m i l l r u n n i n g compared t o b i c y c l e e r g o m e t r y .
The a u t h o r s c o n c l u d e d t h a t f a c t o r s o t h e r t h a n maximum l e g f o r c e
and l e g c o m p o s i t i o n were a s s o c i a t e d w i t h t h e h i g h e r t r e a d m i l l
2.7 S t a n d a r d i z a t i o n of S u b m a x i m a l
-
2.7.1
Exercise Protocols
Pedal Rate
A s e r i o u s l i m i t a t i o n of
t h e A-R
nomogram i s t h e v a r i a t i o n
i n submaximal oxygen u p t a k e and t h e r e f o r e h e a r t r a t e a t c o n s t a n t
power o u t p u t p r o d u c e d b y v a r i a t i o n i n p e d a l l i n g r a t e ( B a n i s t e r
and J a c k s o n ,
1967). These a u t h o r s c l e a r l y demonstrated t h a t
oxygen u p t a k e a t h i g h power d e v e l o p e d a t s l o w p e d a l l i n g
f r e q u e n c i e s a n d h i g h r e s i s t a n c e s was e q u i v a l e n t t o t h a t a t l o w e r
power o v t p u t d e v e l o p e d by h i g h p e d a l l i f i g r a t e s a g a i n s t s m a l l e r
resistances.
T h u s t o 2 m a x w a s much l a r g e r a t h i g h e r p e d a l l i n g
f r e q u e n c i e s r e f l e c t i n g a d e c l i n i n g "work e f f i c i e n c y " a s
i n d i v i d u a l s p e d a l l e d a t r a t e s g r e a t e r t h a n 80 rpm.
o u t p u t of
3 6 0 kpm-min'l
a t a p e d a l l i n g r a t e of
e q u i v a l e n t p h y s i o l o g i c a l l y t o 1 0 0 0 kpm-min'l
r a t e s of
A power
1 2 0 rpm w a s
when p e d a l l i n g a t
5 0 , 6 0 , 70 o r 80 rpm.
Hermansen a n d S a l t i n (1969) a l s o i n v e s t i g a t e d t h e e f f e c t of
.
v a r y i n g p e d a l r a t e s a t e q u i v a l e n t p o w e r o u t p u t s o n V02max d u r i n g
b i c y c l e ergometry.
subjects,
I n a supplementary experiment using only s i x
t h e p e d a l r a t e s 5 0 , 6 0 7 0 a n d 80 rpm w e r e s t u d i e d .
a u t h o r s c o n c l u d e d t h a t p e d a l f r e q u e n c i e s of
60 a n d 70 rpm
produced t h e h i g h e s t oxygen u p t a k e d u r i n g maximal b i c y c l e
e x e r c i s e c o m p a r e d t o 5 0 o r 80 rpm.
T h e r e was no s i g n i f i c a n t
The
i n c r e a s e i n + o 2 m a x when t h e p e d a l l i n g r a t e w a s i n c r e a s e d f r o m 60
t o 70 rpm. H e r m a n s e n a n d S a l t i n , h o w e v e r ,
failed t o report
V02max v a l u e s a t 80 rpm w h i l e c o n c l u d i n g t h a t "80 rpm i s t o o
h i g h a f r e q u e n c y t o o b t a i n t h e h i g h e s t p o s s i b l e o x y g e n u p t a k e on
the bicycle."
Knuttgen et al.
of
(1971) examined t h e e f f e c t on oxygen u p t a k e
v a r i a t i o n s i n p e d a l r a t e s of
2 0 , 6 0 a n d 1 0 0 rpm a t w o r k r a t e s
r a n g i n g f r o m z e r o t o 150 w a t t s d u r i n g a s e v e n minute b i c y c l e
ride.
--
I n g e n e r a l , Knuttgen e t a l .
--
and H e i n r i c h e t a l .
--
( 1 9 7 1 ) , Edwards e t a l .
(1972)
(1968) concluded t h a t p e d a l l i n g a t r a t e s
b e t w e e n 3 0 a n d 90 rpm a t e q u i v a l e n t p o w e r o u t p u t s p r o d u c e d
s i m i l a r oxygen.uptake values.
H i g h e r oxygen u p t a k e s and h e a r t
r a t e v a l u e s w e r e e l i c i t e d when p e d a l l i n g w a s a b o v e o r b e l o w t h e
i n t e r m e d i a t e r a n g e of p e d a l r a t e s a t a g i v e n p o w e r o u t p u t .
P a n d o l f a n d N o b l e ( 1 9 7 3 ) e x a m i n e d t h e ef-f e c t of
increasing
p e d a l r a t e s f o r e q u i v a l e n t power o u t p u t s on oxygen u p t a k e a s
w e l l a s t h e r a t i n g of p e r c e i v e d e x e r t i o n .
P e d a l r a t e s examined
were 4 0 , 6 0 a n d 80 r p m , r a t e s i n t h e p r e v i o u s l y d e f i n e d
intermediate range.
Power o u t p u t s w e r e s u b m a x i m a l f o r t h e
s u b j e c t s e x a m i n e d a n d w e r e 5 5 0 , 7 7 0 a n d 1 0 7 5 kgrn*min'l.
No
s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e was found i n oxygen u p t a k e
f o r t h e v a r i o u s c y c l i n g s e s s i o n s a t e q u i v a l e n t , submaximal power
o u t p u t s . These f i n d i n g s were i n agreement w i t h B a n i s t e r and
--
J a c k s o n ( 1 9 6 7 ) , Edwards e t a l .
( 1 9 7 2 ) a n d Kamon, Metz a n d
Pandolf
(1972).
S t a m f o r d a n d N o b l e ( l 9 7 4 ) , u s i n g p e d a l r a t e s of
4 0 , 6 0 a n d 80 rprn a n d a s i n g l e p o w e r o u t p u t o f
r e p r e s e n t i n g a p p r o x i m a t e l y 6 0 % VOzmax,
960 kgm=min'l
also failed t o find
s i g n i f i c a n t d i f f e r e n c e s i n measured p h y s i o l o g i c a l r e s p o n s e s
which i n c l u d e d h e a r t r a t e ,
oxygen u p t a k e and m i n u t e v e n t i l a t i o n .
A w i d e r r a n g e of p e d a l l i n g f r e q u e n c i e s w a s e x a m i n e d b y
McKay a n d B a n i s t e r ( 1 9 7 6 ) a n d G u e l i a n d S h e p h a r d ( 1 9 7 6 ) .
I n the
f o r m e r s t u d y , f i v e male s u b j e c t s p e r f o r m e d maximally a t p e d a l
r a t e s of
6 0 , 8 0 , 1 0 0 a n d 1 2 0 r p m , w h i l e t h e power o u t p u t w a s
h e l d c o n s t a n t a t each r a t e i n v e s t i g a t e d .
P e d a l r a t e s of
80 a n d
1 0 0 rprn w e r e f o u n d t o p r o d u c e t h e h i g h e s t o x y g e n u p t a k e v a l u e s
w i t h n o s i g n i f i c a n t d i f f e r e n c e b e t w e e n them.
B o t h 80 a n d 1 0 0 rprn
p r o d u c e d s i g n i f a n t l y g r e a t e r V02max v a l u e s t h a n f r e q u e n c i e s of
e i t h e r 60 o r 1 2 0 rpm.
of
Gue-li and S h e p h a r d i n v e s t i g a t e d t h e e f f e c t
v a r y i n g p e d a l l i n g f r e q u e n c y on t h e o x y g e n u p t a k e of
men e x e r c i s i n g a t 60% of VOzmax.
Again t h e power o u t p u t w a s h e l d
c o n s t a n t w h i l e p e d a l f r e q u e n c i e s of
were examined.
5 0 , 6 0 , 7 0 , 8 5 and, 1 0 0 rprn
O x y g e n u p t a k e v a l u e s were f o u n d t o b e c l o s e l y
r e l a t e d t o p e d a l l i n g frequency.
The l o w e s t o x y g e n u p t a k e v a l u e s , ,
i n d i c a t i n g t h e h i g h e s t e f f i c i e n c y , w e r e a t r a t e s of
rpm.
t e n youkg
60 t o 85
B o t h 5 0 a n d 1 0 0 rprn w e r e f o u n d t o e l i c i t t h e h i g h e s t o x y g e n
u p t a k e v a l u e s a t 60% of
--
Lollgen e t a l .
the individual's
vo2max.
(1980) a t t e m p t e d t o d i f f e r e n t i a t e t h e r a t i n g
of p e r c e i v e d e x e r t i o n b e t w e e n c e n t r a l a n d p e r i p h e r a l f a c t o r s by
t h e d i f f e r e n t p h y s i o l o g i c a l t a s k s a p p a r e n t l y produced by
d i f f e r e n t s p e e d s of w o r k i n g f o r e q u i v a l e n t power o u t p u t s .
V02max
w a s f i r s t d e t e r m i n e d o n t h e b i c y l c e w h i l e p e d a l l i n g a t 60 r p m ,
.
t h e n p o w e r o u t p u t s d e m a n d i n g a p p r o x i m a t e l y 7 0 a n d 1 0 0 % V02max
were c a l c u l a t e d .
The s u b j e c t s w e r e t h e n t e s t e d on f o u r s e p a r a t e
o c c a s i o n s u s i n g p e d a l l i n g f r e q u e n c i e s of
4 0 , 6 0 , 8 0 a n d 1 0 0 rpm
w h i l e h o l d i n g t h e power o u t p u t c o n s t a n t a t z e r o work r a t e
(unloaded p e d a l l i n g ) ,
r a t i n g of
7 0 % o f i o 2 m a x o r 1 0 0 % of +o2max. A l t h o u g h
p e r c e i v e d e x e r t i o n w a s t h e m e a s u r e of
t o the investigators,
prime i n t e r e s t
oxygen u p t a k e v a l u e s w e r e shown t o
i n c r e a s e f r o m 40 t o 1 0 0 rprn d u r i n g u n l o a d e d p e d a l l i n g w i t h
significant differences a t a l l pedal rates.
.
A t 70% VOzmax,
oxygen u p t a k e was s i g n i f i c a n t l y g r e a t e r w h i l e p e d a l l i n g a t 100
rprn t h a n a t 80 rpm.
P e d a l r a t e s of
4 0 a n d 60 rprn p r o d u c e d o x y g e n
u p t a k e v a l u e s w h i c h w e r e a l s o s i g n i f i c a n t l y l o w e r t h a n e i t h e r 80
o r 1 0 0 rpm.
When e x e r c i s i n g a t 1 0 0 % o f V02max,
d i f f e r e n c e s w e r e f o u n d i n ;o2max
no s i g n i f i c a n t
b u t t h e r e was a s l i g h t t e n d e n c y
f o r V02max t o b e g r e a t e r a t 1 0 0 rprn t h o u g h n o d e f i n i t e ' v a l u e s
were r e p o r t e d .
H e a r t r a t e was found t o v a r y w i t h p e d a l r a t e d u r i n g
submaximal work.
S i g n i f i c a n t d i f f e r e n c e s i n h e a r t r a t e were
f o u n d d u r i n g u n l o a d e d p e d a l l i n g b e t w e e n 4 0 , 6 0 a n d 80 v e r s u s
rpm.
100
A t 70% of t o 2 m a x , h e a r t r a t e w a s s i g n i f i c a n t l y d i f f e r e n t a t
40 a n d 60 rprn v e r s u s 1 0 0 rpm.
.
H e a r t r a t e s a t 1 0 0 % V02max w e r e
not found t o vary with pedal r a t e .
From t h e r e s u l t s of
these studies,
e x i s t s a n i n t e r m e d i a t e r a n g e of
it appears
that there
pedalling frequencies
,
between
a p p r o x i m a t e l y 5 0 a n d 85 r p m , w i t h i n w h i c h n o s i g n i f i c a n t c h a n g e s
i n o x y g e n u p t a k e o r h e a r t r a t e o c c u r when p o w e r o u t p u t i s h e l d
constant.
T h i s r a n g e e x h i b i t s a minimum o x y g e n c o n s u m p t i o n a n d
t h e r e f o r e a maximum e f f i c i e n c y of e x t e r n a l w o r k d e l i v e r y w h i l e
pedalling a bicycle.
P e d a l f r e q u e n c i e s above o r below t h i s r a n g e
produce oxygen u p t a k e v a l u e s which a r e s i g n i f i c a n t l y g r e a t e r
than those i n the intermediate range.
P e d a l f r e q u e n c i e s of
50
a n d 1 0 0 o r 1 2 0 rpm e n s u r e m a x i m a l i n e f f i c i e n c y of e x t e r n a l w o r k
d e l i v e r y and t h e r f o r e a c t maximally t o engage t h e
c a r d i o r e s p i r a t o r y s y s t e m . Low p e d a l l i n g f r e q u e n c i e s , h o w e v e r ,
n e c e s s i t a t e r e l a t i v e l y l a r g e b r a k i n g f o r c e s and a n a e r o b i c work
may d e v e l o p .
Anaerobic metabolism and t h e r e f o r e l a c t i c a c i d
p r o d u c t i o n i s g r e a t e r a t s l o w p e d a l l i n g r a t e s d u e t o more
s u s t a i n e d c o n t r a c t i o n and i n c r e a s e d muscular ischemia (Pandolf
and Noble,
1973; G u e l i and Shephard, 1976). 2 o c a l m u s c u l a r
.
f a t i g u e may b e t h e l i m i t i n g f a c t o r t o p e r f o r m a n c e r a t h e r t h a n
central, cardiorespiratory
1967; G u e l i and Shephard,
g r e a t e r t h a n 85-90
i n s u f f i c i e n c y ( B a n i s t e r and J a c k s o n ,
1976). Higher p e d a l l i n g f r e q u e n c i e s
rpm p r o d u c e g r e a t e r o x y g e n u p t a k e v a l u e s t h a n
t h o s e i n t h e i n t e r m e d i a t e r a n g e when e x e r c i s i n g a t c o n s t a n t
power o u t p u t .
I t h a s been p o s t u l a t e d t h a t l e s s c o n t r a c t i l e f o r c e
i s e x e r t e d p e r muscle c o n t r a c t i o n d u r i n g c y c l i n g with h i g h p e d a l
r a t e s a n d t h a t t h i s may p l a y a r o l e i n p e r m i t t i n g m o r e m u s c l e
b l o o d f l o w d u r i n g t h e p e r i o d of
Fewer f a s t - g l y c o l y t i c
c o n t r a c t i o n (Tonneson, '1964).
(FG) m u s c l e f i b e r s may a l s o b e r e c r u i t e d
s o t h a t w o r k may b e a c c o m p l i s h e d p r i m a r i l y by t h e
fast-oxidative-glycolytic
(Hagberg et al.,
2.7.2
(FOG)
a n d s l o w o x i d a t i v e (SO) f i b e r s
1978).
Perceived Exertion
The a b i l i t y t o p e r f o r m a d e f i n e d w o r k t a s k i s s o m e w h a t
d e p e n d e n t upon p s y c h o l o g i c a l a s w e l l a s upon p h y s i o l o g i c a l
factors.
T h e s u b j e c t i v e e f f o r t o r p e r c e p t i o n of
t h e s t r a i n of
work w i l l u l t i m a t e l y d e t e r m i n e t h e maximal w o r k i n g l e v e l
a c c o m p l i s h e d by a n i n d i v i d u a l .
Psychophysics i s a term
describing the science investigating quantitative relationships
between p h y s i c a l s t i m u l i and t h e i r c o r r e s p o n d i n g c o r r e l a t e s ,
i.e.
t h e q u a n t i t a t i v e r e l a t i o n s h i p between s t i m u l u s and
response.
Psychophysical - p r i n c i p l e s have been r e c e n t l y u t i l i z e d
by S t e v e n s a n d Mack ( 1 9 5 9 ) a n d S t e v e n s a n d C a i n ( 1 9 7 0 ) t o r e l a t e
perceived exertion t o physical exertion.
To a f i r s t
a p p r o x i m a t i o n , p e r c e i v e d e f f o r t was d e s c r i b e d by t h e a b o v e
a u t h o r s t o g r o w a s a power f u n c t i o n of
exertion;
t h e e x p o n e n t f u n c t i o n of
t h e p h y s i c a l l e v e l of
t h e e q u a t i o n ( e q u a l l i n g 1.7)
v a r i e d l i t t l e from one e x e r c i s e t a s k t o a n o t h e r
a1
-*
(Cafarelli
et
1977) t h o u g h t h i s h a s been d i s p u t e d by B a n i s t e r ( 1 9 7 9 ) .
--
Borg e t a l .
( 1 9 6 2 ) d e v e l o p e d a 1 5 p o i n t r a t i n g of
e x e r t i o n s c a l e (RPE) f o r t h e p e r c e p t i v e e s t i m a t i o n of
perceived
varying
i n t e n s i t i e s of p h y s i c a l w o r k p e r f o r m e d o n t h e b i c y c l e e r g o m e t e r
f o l l o w i n g t h e p r i n c i p l e s f i r s t d e v e l o p e d by S t e v e n s (1957).
s c a l e was c o n s t r u c t e d s o t h a t e a c h of
The
t h e 6 t o 20 p o i n t s c a l e
'
v a l u e s when m u l t i p l i e d by 1 0 e q u a l l e d t h e h e a r t r a t e d e v e l o p e d
by m o s t y o u n g s u b j e c t s d u r i n g b i c y c l e e r g o m e t r y of
progressive
i n t e n s i t y u p t o maximum e x e r t i o n . Many s t u d i e s s i n c e 1 9 6 2 h a v e
been conducted t o s t u d y v a r i o u s f a c t o r s ,
t h e t y p e of w o r k p e r f o r m e d ( i . e .
including variations i n
eccentric versus concentric
muscular c o n t r a c t i o n ) and v a r i a t i o n s i n s p e e d , l o a d , d u r a t i o n
a n d t h e e f f e c t s of
t r a i n i n g (Ekblom and G o l d b a r g ,
et al.,
-
1972; Henriksson
et al.,
-
1972;
et
e.,1 9 7 2 ;
S a r g e a n t and D a v i e s ,
1971; Edwards
Gamberale, 1972; Pandolf
1973; C a f a r e l l i e t *a 1
9
1 9 7 7 ) , w h i c h may i n f l u e n c e t h e R P E v a l u e s d u r i n g b i c y c l e
ergometry.
S t u d y of
t h e s e f a c t o r s l e d t h e p r o p o s a l of a
two-factor
model by Ekblom a n d G o l d b a r g ( 1 9 7 1 ) w h i c h a t t e m p t e d
t o d i s t i n g u i s h between s o c a l l e d c e n t r a l and p e r i p h e r a l f e e l i n g s
of
strain.
V a r i a t i o n i n p e d a l r a t e d u r i n g b i c y c l e ergometry was found
t o p r o d u c e v a r i a t i o n i n oxygen u p t a k e and h e a r t r a t e a t c o n s t a n t
power o u t p u t
( B a n i s t e r and J a c k s o n ,
e.,
1967; Hermansen
1 9 6 9 ) . The i n t e r a c t i o n b e t w e e n v a r i a t i o n s i n p e d a l l i n g f r e q u e n c y
a n d r a t i n g of p e r c e i v e d e x e r t i o n w a s s o o n s t u d i e d t h e r e a f t e r .
et al.
Henriksson -
f r e q u e n c y of
(1972) d e t e r m i n e d t h a t p e d a l l i n g a t a
3 0 rpm a t a s p e c i f i c s u b m a x i m a l w o r k i n t e n s i t y w a s
p e r c e i v e d t o b e more d i f f i c u l t d u r i n g b o t h c o n c e n t r i c a n d
e c c e n t r i c e x e r c i s e , t h a n p e d a l l i n g a t a f r e q u e n c y of
t h e same p o w e r o u t p u t .
r a t i n g s of
of
Pandolf and Noble
6 0 rpm f o r
(1973) i n v e s t i g a t e d t h e
perceived exertion associated with pedalling a t r a t e s
4 0 , 6 0 a n d 80 rpm w h i l e m a i n t a i n i n g a c o n s t a n t ,
submaximal
power o u t p u t .
P e d a l l i n g a t 40 rprn w a s f o u n d t o b e m o r e s t r e s s f u l
t h a n e i t h e r 60 o r 80 r p m , w h i l e RPE v a l u e s a t 60 a n d 80 rprn d i d
not d i f f e r s i g n i f i c a n t l y .
Stamford and Noble
(1974) s t u d i e d t h e
same p r o b l e m w i t h 1 0 h i g h l y f i t t r a i n e d m a l e s d u r i n g 15 m i n u t e s
of
c o n t i n u o u s w o r k a t s u b m a x i m a l w o r k l e v e l s of
u s i n g p e d a l l i n g r a t e s of
4 0 , 6 0 a n d 80 rpm.
960 kgm=minL1
Perceived exertion
was d e t e r m i n e d t o b e s i g n i f i c a n t l y l e s s a t 60 rprn t h a n a t
e q u i v a l e n t p o w e r o u t p u t s p e r f o r m e d w i t h 40 o r 80 rpm.
( 1 9 7 5 ) s t u d i e d t h e e f f e c t s of
Lollgen
one minute e x e r c i s e p e r i o d s a t
p e d a l r a t e s of
4 0 , 6 0 , 8 0 a n d 1 0 0 rprn a n d w o r k r a t e s of
1 2 0 0 kpm-min'l
of RPE.
300 t o
He f o u n d t h a t i n h e a l t h y s u b j e c t s t h e R P E
d e c r e a s e d w i t h . i n c r e a s i n g p e d a l r a t e a t c o n s t a n t power o u t p u t .
L o l l g e n c o n c l u d e d t h a t when u s i n g t h e R P E s c a l e , p e d a l l i n g r a t e
must be c o n s i d e r e d a n i m p o r t a n t f a c t o r .
t w o p e d a l f r e q u e n c i e s , 3 0 a n d 60 r p m ,
C a f a r e l l i (1977) s t u d i e d
during-4 minute exercise'
.
b o u t s a t l e v e l s r e q u i r i n g 3 5 , 5 0 , 6 5 a n d 80% of V02max.
P e r c e i v e d e x e r t i o n a t e q u i v a l e n t power o u t p u t s p e d a l l i n g a t 30
rprn w a s a l w a y s j u d g e d t o b e m o r e d i f f i c u l t t h a n 60 rpm.
i n f e e l i n g s of
f a t i g u e d u r i n g t h e p e r i o d of
Growth
e f f o r t was found t o ,
depend on b o t h p e d a l r e s i s t a n c e a n d power o u t p u t . Near t h e p o i n t
of e x h a u s t i o n , p e d a l l i n g r a t e p o s i t i v e l y i n f l u e n c e d t h e r e l a t i v e
f e e l i n g s of
e f f o r t f o r a g i v e n b r a k i n g r e s i s t a n c e of
A t t h e b e g i n n i n g of
ef f o r t - r e s i s t a n c e
exercise,
the pedal.
p e d a l r a t e h a d no e f f e c t o n t h e
relationship.
e t al.
Lollgen -
(1980) r e q u i r e d s i x h e a l t h y male s u b j e c t s t o
e x e r c i s e a t z e r o power o b t p u t
(unloaded p e d a l l i n g ) ,
submaximal
( 7 0 % V02max) a n d m a x i m a l e x e r c i s e i n t e n s i t i e s a t v a r i o u s p e d a l
r a t e s of
4 0 , 6 0 , 8 0 a n d 1 0 0 rpm.
increased,
I n g e n e r a l , a s power o u t p u t
t h e RPE d e c r e a s e d a s p e d a l r a t e i n c r e a s e d .
.
VOzmax,
o u t p u t s r e q u i r i n g 70% o f
A t power
the l e a s t s t r e s s f u l pedal rate
w a s 6 5 r p m , w h i l e a t p o w e r o u t p u t s r e q u i r i n g 1 0 0 % of VOzmax,
p e d a l r a t e of
a
7 3 rpm w a s p e r c e i v e d l e s s s t r e s s f u l .
E x a m i n a t i o n of
t h e e q u a t i o n p r o p o s e d by S t e v e n s a n d C a i n
( 1 9 7 0 ) r e l a t i n g e f f o r t ( Y ) , s t a t i c f o r c e (P) a n d d u r a t i o n (T)
( E q u a t i o n 5)
where k i s a c o n s t a n t ,
provides a possible explanation f o r the
d e c r e a s e i n RPE s c o r e s w i t h i n c r e a s i n g p e d a l - r a t e a t h i g h powet
outputs.
S i n c e e f f o r t g r o w s much m o r e r a p i d l y a s a f u n c t i o n of
l o a d t h a n of
time,
a s l i g h t r e d u c t i o n i n l o a d would a l l o w work
t o p r o c e e d f o r a l o n g e r p e r i o d of
effort
(Cafarelli et al.,
1977).
t i m e a t a c o n s t a n t : l e v e l of
Bicycle ergometry h a s a
s i g n i f i c a n t i n e r t i a l component where t h e c o n t r a c t i n g m u s c l e must
d e v e l o p enough t e n s i o n t o overcome t h e b r a k e r e s i s t a n c e .
This
i n e r t i a l component i s g r e a t e r i n s l o w , h i g h f o r c e c o n t r a c t i o n s
than during f a s t ,
low i n t e n s i t y c o n t r a c t i o n s
(Petrofsky
et
e.,
1 9 7 4 ) . H i g h r a t e s of p e d a l l i n g a t c o n s t a n t p o w e r o u t p u t s w o u l d
t h e r e f o r e r e d u c e t h e i n e r t i a l component and r e s u l t i n a l o w e r
RPE s c o r e .
The b a s i s of
t h e B o r g 1 5 p o i n t RPE s c a l e w a s t h e
q u a n t i t a t i v e r e l a t i o n s h i p drawn between h e a r t r a t e and p e r c e i v e d
m e t a b o l i c s t r a i n . Many s t u d i e s , h o w e v e r , h a v e s u b s e q u e n t l y
i n v e s t i g a t e d t h i s r e l a t i o n s h i p a n d c o n c l u d e d t h a t t h e d e g r e e of
h e a r t r a t e e l e v a t i o n i s n o t a good m e a s u r e of
e s t i m a t i o n of
t h e e x t e n t of
one's
one's
subjective
p h y s i c a l e x e r t i o n . Ekblom a n d
G o l d b a r g ( 1 9 7 1 ) e x a m i n e d t h e e f f e c t s of a u t o n o m i c n e r v o u s s y s t e m
b l o c k i n g a g e n t s on t h e R P E - h e a r t
rate relationship.
c o n t r o l c o n d i t i o n s , a d m i n i s t r a t i o n of
Compared t o
p r o p a n o l o l i n c r e a s e d RPE
s c o r e s a t t h e same h e a r t r a t e , w h i l e a t r o p i n e a d m i n i s t r a t i o n
l o w e r e d t h e RPE s c o r e d a t t h e same h e a r t r a t e l e v e l .
al.
-
( 1 9 7 2 ) e x a m i n e d t h e e f f e c t s of
on t h e RPE-heart
Pandolf e t
increased environmental h e a t
r a t e r e l a t i o n s h i p a n d f o u n d no s i g n i f i c a n t
i n c r e a s e i n RPE t h o u g h h e a r t r a t e w a s i n c r e a s e d .
--
Morgan e t a l .
( 1 9 7 3 ) s t u d i e d t h e e f f e c t s of h y p n o t i c s u g g e s - t i o n a n d i t s
i n f l u e n c e on t h e RPE-heart
ergometry.
r a t e relationship during bicycle
The i n v e s t i g a t o r s f o u n d RPE s c o r e s t o i n c r e a s e w i t h
t h e h y p n o t i c s u g g e s t i o n s of
l i g h t , m o d e r a t e a n d h e a v y work r a t e s
d e s p i t e t h e f a c t t h a t t h e s u b j e c t s c o n t i n u e d t o work a t a
c o n s t a n t s u b m a x i m a l p o w e r o u t p u t of
Due t o t h e s e c r i t i c i s m s ,
600 kpm-min'l.
B o r g d e v i s e d a new p e r c e i v e d
e x e r t i o n r a t i n g s c a l e more c l o s e l y a p p r o x i m a t i n g p s y c h o p h y s i c a l
p r i n c i p l e s ( S t e v e n s a n d C a i n , 1 9 7 0 ) . T h e new s c a l e i s a t r u e
r a t i o s c a l e extending from z e r o t o ten.
A zero rating
c o r r e s p o n d s t o t h e s u b j e c t i v e f e e l i n g of
" n o t h i n g a t a l l " w h i l e a r a t i n g of
"four"
.
strain rated as
indicates a perceived
intensity
t w i c e t h a t o f a r a t i n g of
t w i c e t h a t o f a r a t i n g of
"two",
"four1' e t c .
and a s " e i g h t "
--
(Borg e t a l . ,
as
1981).
See
Appendix B.
2.7.3
E f f i c i e n c y of Work
Any s t u d y of
t h e e f f e c t of
v a r i a t i o n s i n p e d a l r a t e on t h e
r a t i n g of p e r c e i v e d e x e r t i o n a t c o n s t a n t p o w e r o u t p u t s l e a d s o n e
t o q u e s t i o n whether t h e p e d a l r a t e p e r c e i v e d t o be t h e l e a s t
s t r e s s f u l i s a l s o t h e m o s t e f f i c i e n t i n terms of
cost.
i t s oxygen
S t u d i e s o n t h e e f f i c i e n c y of p o w e r o u t p u t d u r i n g b i c y c l e
e r g o m e t r y h a v e b e e n c o n f u s i n g d u e t o t h e many m e t h o d s of
c a l c u l a t i n g t h e oxygen c o s t of p e r f o r m i n g work.
been defined a s p r e f i x e s :
gross,
n e t , work,
instantaneous efficiency (Gaesser,
Efficiency has
d e l t a and
--
1975; Stainsby e t a l . ,
1980).
Various formulations describing t h e s e d e f i n i t i o n s a r e outlined
i n A p p e n d i x A.
Q u e s t i o n s a r i s e a s t o w h i c h d e f i n i t i o n of e f f i c i e n c y i s
m o s t m e a n i n g f u l i n e x a m i n i n g t h e e f f e c t s of
variations i n pedal'
r a t e a t c o n s t a n t p o w e r o u t p u t s . Work e f f i c i e n c y , a s d e f i n e d b y
Whipp a n d W a s s e r m a n ( 1 9 6 9 ) , p r o v i d e s t h e b e s t m e t h o d f o r b i c y c l e
ergome t r y s i n c e t h e c a l c u l a t i o n i n c l u d e s o n l y t h e oxygen u p t a k e
n e c e s s a r y t o p e r f o r m measured e r g o m e t e r work.
The o x y g e n u p t a k e
increment f o r unloaded p e d a l l i n g a c t s a s t h e b a s e l i n e value and
i s s u b t r a c t e d from t h e measured oxygen uptake.
value f o r unloaded pedalling,
however,
This baseline
has been found t o v a r y
with changes i n pedal r a t e .
h i g h e r e n e r g y c o s t s of
B a n i s t e r and Jackson (1967) r e p o r t e d
f r e e w h e e l i n g w i t h h i g h e r r a t e s of
p e d a l l i n g a s d i d Knuttgen et al.,
1977. T h i s v a r i a t i o n i n
b a s e l i n e oxygen u p t a k e v a l u e s w i t h c h a n g e s i n work r a t e h a s b e e n
e x t e n s i v e l y s t u d i e d by S t a i n s b y et al.
(1980).
b a s e l i n e s u b t r a c t i o n s t o be t r u l y v a l i d ,
I n order f o r such
the energy use
r e p r e s e n t i n g a n y b a s e l i n e p e d a l l i n g f r e q u e n c y c h o s e n must
c o n t r i b u t e i t s p a r t i a l c o s t e q u a l l y t h r o u g h o u t a l l work r a t e s
completed a t t h a t p a r t i c u l a r p e d a l frequency (Wilkie,
1 9 7 4 ) . The
o n l y a l t e r n a t i v e would b e t o measure oxygen u p t a k e v a l u e s f o r
u n l o a d e d p e d a l l i n g f o r t h e same d u r a t i o n a s t h e a c t u a l t e s t i n g
procedure t o allow f o r changes i n g a s t r o i n t e s t i n a l processes,
splanchnic metabolism,
ventilation,
mean b o d y t e m p e r a t u r e ,
t h e oxygen c o s t of
catecholamin-e l e v e l s and l a c t a t e l e v e l s a s o u t l i n e d
by S t a i n s b y et al.
S u b t r a c t i o n of
(1980) and t h i s i s n o t p r a c t i c a b l e r o u t i n e l y .
oxygen u p t a k e v a l u e s f o r u n l o a d e d p e d a l l i n g
.
d u r i n g e a c h time i n t e r v a l i n which V02 i s measured from t h e
t o t a l o x y g e n u p t a k e of
the i n t e r v a l should result i n accurate
efficiency calculation.
Many of
t h e e x p e r i m e n t s a t t e m p t i n g t o examine t h e e f f e c t s
of v a r i a t i o n s i n p e d a l r a t e a t c o n s t a n t power o u t p u t s o n
e f f i c i e n c y have used g r o s s , d e l t a o r n e t e f f i c i e n c y
calculations.
Knuttgen et al.
(1971) c a l c u l a t e d e f f i c i e n c y a s
g r o s s oxygen u p t a k e l e s s f r e e w h e e l i n g oxygen consumption and
found h i g h e r e f f i c i e n c y a t h i g h e r p e d a l l i n g f r e q u e n c i e s .
a n d S h e p h a r d ( 1 9 7 6 ) f o u n d p e d a l r a t e s of
6 0 t o 85 rpm a t
Gueli
s u b m a x i m a l w o r k r a t e s p r o d u c e d a minimum o x y g e n c o n s u m p t i o n a n d
Seabury et al.
h e n c e maximum e f f i c i e n c y .
(1977) c a l c u l a t e d
g r e a t e s t g r o s s e f f i c i e n c y a t h i g h e s t work r a t e s w i t h f a s t e r
p e d a l f r e q u e n c y . O p t i m a l p e d a l r a t e s i n c r e a s e d f r o m 39.7
z e r o power o u t p u t , t o 54.2
326.8
watts.
rpm a t 1 6 3 . 4 w a t t s a n d 62.0
The a u t h o r s n o t e d , h o w e v e r ,
rpm a t
rpm a t
that gross efficiency
i n c r e a s e d a t h i g h e r w o r k r a t e s due t o t h e r e l a t i v e l y l e s s
c o n t r i b u t i o n o v e r a l l of
r e s t i n g metabolism a s t o t a l metabolism
increased.
L o l l g e n ( 1 9 7 7 ) c o n c l u d e d t h a t i n many s t u d i e s ( S t e g e m a n n
al.,
-
1968; Gaesser et al.,
1975) muscular e f f i c i e n c y changed i n
a p a r a b o l i c manner a s s p e e d i n c r e a s e d ;
o c c u r r e d a t a b o u t 5 0 rpm.
et
t h e minimum o x y g e n u p t a k e
I n these experiments pedal frequency
p r o d u c i n g maximum e f f i c i e n c y d i f f e r e d f r o m t h e f r e q u e n c y
p r o d u c i n g minimum p e r c e i v e d e x e r t i o n .
S e v e r a l a u t h o r s h a v e r a i s e d t h e q u e s t i o n of
pedalling rate
and s t a n d a r d methodology i n ergometry ( B a n i s t e r and J a c k s o n ,
1967; Pandolf and Noble,
and B a n i s t e r ,
1 9 7 3 ; G u e l i a n d S h e p h a r d , 1 9 7 6 ; McKay
1976; Lollgen et al.,
1 9 7 7 ) . D u r i n g maximal
performance tests, high p e d a l l i n g r a t e s appear t o i n c r e a s e
m o t i v a t i o n a n d c o o p e r a t i o n of
subjects.
The l i m i t a t i o n s i m p o s e d
by l o c a l m u s c u l a r f a t i g u e a n d p s y c h o l o g i c a l a t t i t u d e d u r i n g t h e
a s s e s s m e n t o f p h y s i c a l w o r k i n g c a p a c i t y on t h e b i c y c l e e r g o m e t e r
may b e r e m o v e d b y c o n d u c t i n g t e s t s f o r g i v e n p o w e r o u t p u t s a t
i n c r e a s e d p e d a l r a t e s g r e a t e r t h a n 85 rpm.
A higher pedalling
r a t e w i l l e n s u r e m a x i m a l i n e f f i c i e n c y of e x t e r n a l work d e l i v e r y
a n d t h u s maximum e n g a g e m e n t o f
u n i m p a i r e d b y c o n d i t i o n s of
the cardiorespiratory system
1
premature l o c a l f a t i g u e engendered
A more a c c u r a t e a s s e s s m e n t o f
by h i g h p e r i p h e r a l m u s c l e l o a d i n g .
cardiovascular f i t n e s s w i l l result.
Overall,
t h e l i t e r a t u r e s e e m s t o d e f i n e a r a n g e of
pedal
f r e q u e n c i e s f o r e q u i v a l e n t power o u t p u t o v e r w h i c h o x y g e n u p t a k e
measurements a r e s i m i l a r ( H e i n r i c h et al.,
al.,
-
1 9 7 1 ; Edwards e t al.,
but w e l l w i t h i n a person's
braking force
-
1972).
1968; Knuttgen e t
A t t h e e x t r e m e s of
capacity,
i.e.
low p e d a l r a t e s l h i g h
high pedal ratesllow braking force,
u p t a k e m e a s u r e s d i f f e r b e c a u s e of
t h i s range
oxygen
the increasing inefficiency
w i t h w h i c h e x t e r n a l work i s d e l i v e r e d .
Classically,
f r e q u e n c i e s have been chosen f o r i n t e r n a t i o n a l use.
low p e d a l
However,
e a r l y h i g h i n t r a m u s c u l a r - f o r c e d e v e l o p m e n t i n t h i s mode may
u n n e c e s s a r i l y l i m i t a c h i e v e m e n t of
of
t r u e aerobic capacity because
l o c a l l y produced muscle f a t i g u e (Tonneson, 1964;
Jackson,
1967; Pandolf and Noble,
1 9 7 6 ; Hagberg et al.,
Banister and
1973; G u e l i and Shephard,
1 9 7 8 ) . T h e p e r c e p t i o n of e x e r t i o n a n d
hence f a t i g u e i s a l s o d i f f e r e n t and n e g a t i v e l y a f f e c t i n g i n low
pedal frequencylhigh braking f o r c e tasks.
reached,
theref ore,
The c o n c l u s i o n t o b e
i s t h a t t h e high pedal f requency/low brake
f o r c e mode s h o u l d b e u s e d t o d e f i n e a new a n d p h y s i o l o g i c a l l y
more a p p r o p r i a t e i n t e r n a t i o n a l t e s t i n g methodology and
standards.
3 . Methods
3.1 E x p e r i m e n t a l
-
Groups
Two g r o u p s of h e a l t h y m a l e s 2 0 t o 29 y e a r s w e r e s u b j e c t s i n
t h e s t u d y . The f i r s t g r o u p (T) ( n = 2 0 ) w e r e w e l l t r a i n e d
i n d i v i d u a l s w i t h a mean maximum o x y g e n u p t a k e e q u a l t o 7 0 . 3
ml*kg'l.min'l
a s m e a s u r e d o n a b i c y c l e e r g o m e t e r . The s e c o n d
g r o u p ( n = 1 9 ) w e r e r e l a t i v e l y u n t r a i n e d h a v i n g a mean maximum
a e r o b i c c a p a c i t y l e s s t h a n 56 m l * k g - l * m i n - l .
Relatively
u n t r a i n e d i n d i v i d u a l s were d i f f i c u l t t o r e c r u i t .
theref ore,
c o n t a i n e d a sub-group
individuals
55.4
(UNT)
( n = 4 ) of m o d e r a t e l y t r a i n e d
(MOD) p o s s e s s i n g a mean maximum o x y g e n u p t a k e of
m l - kg'l.min'l.
The r e m a i n i n g s u b j e c t s w i t h i n t h i s g r o u p
( n = 1 5 ) p o s s e s s e d a mean o x y g e n u p t a k e of
ml*kg'l*min'l.
This group,
46.8
S u b j e c t d a t a i s p r e s e n t e d i n T a b l e 111.
T a b l e 111: S u b j e c t D a t a
I
Group
Age
(years )
Weight
(kg)
t o 2 max
i o 2 max
(l.miri1 ) (ml*kg'.mid)
T
(n=20)
22.9
22.9
70.9
f5.0
4.97
f0.33
70.3
f4.4
UN T
(n=15)
23.2
f2.1
70.7
k10.1
3.26
20.41
46.8
k7.4
MOD
23.3
k2.1
69.0
k5.3
-+ 0 . 1 2
3.80
-+5.5
(n=4)
55.4
V a l u e s a r e means f s t a n d a r d d e v i a t i o n s ( S D ) .
C o m p l e t e d e t a i l s of
e x p l a n a t i o n of
t h e e x p e r i m e n t a l pr-ocedures and a n
a
the potential hazards involved t o the p a r t i c i p a n t
were p r o v i d e d f o r e a c h v o l u n t e e r b e f o r e o b t a i n i n g h i s w r i t t e n
consent t o participate.
A l l s u b j e c t s then underwent a thorough
medical examination before beginning t h e study.
T r a i n e d s u b j e c t s were c o m p e t i t i v e c y c l i s t s and were t e s t e d
during t h e i r competitive off-season
(winter).
c o n s i d e r e d t o b e i n a s t e a d y s t a t e of
They w e r e
t r a i n i n g and were
i n s t r u c t e d t o avoid dramatic changes i n t h e i r r e g u l a r t r a i n i n g
p r o g r a m s f o r t h e d u r a t i o n of
the t e s t i n g period.
They w e r e
d i r e c t e d t o r e f r a i n from h e a v y t r a i n i n g o r c o m p e t i t i o n two d a y s
p r i o r t o a t e s t i n g s e s s i o n a n d t o a b s t a i n f r o m a n y a c t i v i t y on
t h e d a y of
type,
testing.
Each c y c l i s t was r e q u i r e d t o r e c o r d t h e
i n t e n s i t y a n d d u r a t i o n of h i s t r a i n i n g a c t i v i t y i n o r d e r
t o check f o r any p o s s i b l e reduced o r improved maximal
performances with excessive t r a i n i n g .
rejected.
t y p e of
Sueh t e s t s were t h e n
Untrained s u b j e c t s were not a c t i v e l y involved i n any
r e g u l a r e x e r c i s e program and had not been f o r a t l e a s t
18 m o n t h s p r i o r t o t h e t i m e of
testing.
Untrained s u b j e c t s were
i n s t r u c t e d t o r e f r a i n f r o m i n i t i a t i n g a t r a i n i n g p r o g r a m of
any
t y p e u n t i l a l l t e s t i n g was c o m p l e t e d .
A l l s u b j e c t s were allowed t o f a m i l i a r i z e themselves w i t h
t h e l a b o r a t o r y environment, t e s t i n g p r o c e d u r e and equipment
d u r i n g a t l e a a t two p r e l i m i n a r y s e s s i o n s .
e x p e c t e d t o r e d u c e t h e e f f e c t s of
habituation t o take place.
T h i s p r a c t i c e was
l e a r n i n g and allow f o r
A l l t e s t i n g w a s c o n d u c t e d b y t h e same
i n v e s t i g a t o r and s i m i l a r c o n d i t i o n s were m a i n t a i n e d throughoue
the t e s t i n g period.
conduct of
Only t h o s e i n d i v i d u a l s i n t e g r a l t o t h e
t h e experiment were permitted i n t h e l a b o r a t o r y .
The
l a b o r a t o r y was e q u i p p e d w i t h r e s u s c i t a t i o n equipment and m e d i c a l
p e r s o n n e l w e r e on c a l l a t a l l t i m e s .
The i n v e s t i g a t o r was a l s o
q u a l i f i e d t o p e r f o r m CPR.
A l l s u b j e c t s r e p o r t e d t o t h e l a b a t l e a s t two t o t h r e e
h o u r s a f t e r t h e i r l a s t meal.
S m o k i n g a n d c o n s u m p t i o n of a l c o h o l
a n d c a f f e i n e w e r e p r o h i b i t e d o n t h e d a y s of
testing.
3.2 Experimental Design
S u b j e c t s w i t h i n t h e t r a i n e d group were randomly a s s i g n e d t o
one of
two sub-groups:
a c o r e t e s t g r o u p of
v a l i d a t i o n g r o u p of f i v e i n d i v i d u a l s
15
(Tvalid).
c core) a n d a
A similar
procedure was followed f o r t h e u n t r a i n e d group.
Ten s u b j e c t s
comprised t h e c o r e group (UNTcore), and f i v e t h e v a l i d a t i o n
group (UNTvalid)
. The
f o u r moderately t r a i n e d i n d i v i d u a l s were
t r e a t e d a s u n t r a i n e d i n d i v i d u a l s i n t h a t t h e y c o m p l e t e d t h e same
work p r o t o c o l s a s t h e u n t r a i n e d s u b j e c t s .
Data c o l l e c t e d from
t h i s g r o u p , h o w e v e r , was u s e d o n l y t o c r o s s - v a l i d a t e
p r e d i c t i v e a c c u r a c y of
the
t h e nomogram.
A l l s u b j e c t s a r r i v e d a t t h e l a b o r a t o r y 30 m i n u t e s p r i o r
to
t e s t i n g a n d r e m a i n e d s e a t e d on t h e b i c y c l e e r g o m e t e r f o r t e n
m i n u t e s t o m i n i m i z e t h e e f f e c t s of
pre-test
activity.
Each
t r a i n e d and u n t r a i n e d s u b j e c t performed a submaximal and a
maximal t e s t a c c o r d i n g t o P r o t o c o l I a ,
I b and I I a ,
r e s p e c t i v e l y , a s i l l u s t r a t e d i n F i g u r e s 1 and 2.
IIb,
These p r o t o c o l s
were r e p e a t e d on two o c c a s i o n s f o r t h e u n t r a i n e d and t h r e e t i m e s
f o r the trained groups respectively
week's
rest.
T h i s s e q u e n c e of
,
e a c h s e p a r a t e d by one
t e s t i n g and r e - t e s t i n g
was c h o s e n
t o a l l o w adequate time f o r recovery and t o ensure i n s u f f i c i e n t
f r e q u e n c y of
t e s t i n g f o r any t r a i n i n g e f f e c t t o take p l a c e .
In
o r d e r t o a l l e v i a t e t h e e f f e c t s of w e e k l y a n d d i u r n a l r h y t h m s ,
e a c h s u b j e c t was t e s t e d on t h e
a t t h e same t i m e of
day.
s a m e d a y of
t h e week a s w e l l a s
I n no c a s e d i d m o r e t h a n two w e e k s
e l a p s e between experimental s e s s i o n s .
3.3 T e s t
--
3.3.1
Protocols
P r o t o c o l I A and I B :
Submaximal E x e r c i s e
I n t h e p r e s e n t i n v e s t i g a t i o n , work was e x p r e s s e d i n u n i t s
of kpm-min'l
r a t h e r t h a n i n s t a n d a r d i n t e r n a t i o n a l u n i t s of
w a t t s (W) f o u n d i n t h e c u r r e n t l i t e r a t u r e r e l a t e d t o b i c y c l e
ergometry.
T h e r a t i o n a l e f o r t h e u s e of kpm*min"
was t o a l l o w
f o r a comparison between d a t a measured i n t h e p r e s e n t s t u d y w i t h
d a t a c o l l e c t e d b y A s t r a n d a n d Ryhming i n 1 9 5 4 . Work r a t e
e x p r e s s e d i n kprn*min'l
may e a s i l y b e c o n v e r t e d t o w a t t s by t h e
following relationships:
1 watt = 1 joule
sec'l
= 6.12
kpm * m i n ' l
= 0.74
f t lb
sec'l
w h e r e 1 kpm = 1 k i l o p o n d m e t e r .
A w o r k r a t e of
6 0 0 kpm*min'l
e q u i v a l e n t l y a s 100 w a t t s .
may,
therefore,
be e x p r e s s e d
W o r k R a t e (kprn.rnin")
2100
Work
Untrained ~ u b m a x i m a l Protocol I A
rate (kpm mmin.')
1 Submaximal Protocol
IB
Ti,me ( m i n u t e s )
F i g u r e 1: Submaximal P r o t o c o l s I A a n d I B shown a s w o r k - t i m e
profiles.
Work
Rate ( k p m - m i K ' )
F
Untrained M a x i m a l P r o t o c o l I I A
3
0
1
2
3 4
5
6
7
8 9 10 11 12 13 14 15 16 17 18
Work r a t e ( k p m min" )
Trained
M a x i m a l Protocol I I B
Time ( minutes)
F i g u r e 2 : Maximum P r o t o c o l s I I A a n d IIB sh.own a s work-time
profiles.
P r o t o c o l I , b e g a n w i t h a n i n i t i a l f i v e m i n u t e p e r i o d of
p e d a l l i n g w i t h no externa'l l o a d imposed ( z e r o l o a d p e d a l l i n g ,
unloaded p e d a l l i n g ,
braked bicycle.
90rpm) on t h e Q u i n t o n e l e c t r o m a g n e t i c a l l y
This period acted a s a well-defined
I t w a s a n i n t e g r a l f e a t u r e of
period.
provided a s t a b l e base-line
value,
warm-up
the protocol i n that i t
r e d u c i n g t h e e f f e c t s of
a n x i e t y and v a r i a b i l i t y i n h e a r t r a t e d u r i n g t h e i n i t i a l p h a s e
of
t h e submaximal t e s t .
T h i s v a l u e r e p l a c e d t h e t r a d i t i o n a l and
v a r i a b l e r e s t i n g h e a r t r a t e u s u a l l y measured.
The p r o t o c o l
a l l o w e d f o r smooth t r a n s i t i o n from r e s t t o t h e f i r s t work r a t e .
Unloaded p e d a l l i n g was d e t e r m i n e d t o be a p p r o x i m a t e l y e q u a l t o
2 0 0 kprn*min'l
.,
Protocol I a ,
for untrained subjects,
s u b m a x i m a l e x e r c i s e a t w o r k r a t e s of
c o n s i s t e d of
3 0 0 , 6 0 0 a n d 900 kpm*rnin'l
during consecutive t h r e e minute periods.
Work r a t e s w e r e c h o s e n
t o a c h i e v e a p p r o x i m a t e l y 8 0 % of a n i n d i v i d u a l s a g e - p r e d i c t e d
h e a r t r a t e maximum b y t h e e n d of
the t h i r d 3 minute period.
T h r e e m i n u t e s a t e a c h work r a t e h a s b e e n d e t e r m i n e d t o be
s u f f i c i e n t t i m e t o allow heart r a t e t o reach a steady s t a t e
level.
A t h r e e m i n u t e s t e p work r a t e i n t e r v a l a g r e e s w e l l w i t h
w h a t i s commonly u s e d i n e x e r c i s e t e s t i n g ( M c C o n n e l l a n d
Sinning,
1 9 8 0 ) a n d was c h o s e n a s a c o m p r o m i s e b e t w e e n v a r i o u s
t i m e i n t e r v a l o p t i o n s . T h r e e m i n u t e s of a c t i v e u n l o a d e d
p e d a l l i n g ended t h e s e s s i o n .
P r o t o c o l I b , f o r t r a i n e d s u b j e c t s , was i d e n t i c a l t o t h a t of
u n t r a i n e d s u b j e c t s but due t o t h e group's
h i g h e r l e v e l of
f i t n e s s o r s t a t e of
a n d 1 5 0 0 kpm-min'l.
e l e v a t i o n of
3.3.2
training,
t w o a d d i t i o n a l w o r k r a t e s of
1200
were r e q u i r e d t o a c h i e v e t h e d e s i r e d
heart r a t e (i.e.
70 t o 8 0 % of
maxiplum h e a r t r a t e ) .
P r o t o c o l I I a and I I b : Maximal e x e r c i s e
P r o t o c o l I1 b e g a n w i t h a n i n i t i a l t h r e e m i n u t e warm-up
p e r i o d of u n l o a d e d p e d a l l i n g .
Subsequently,
two,
one m i n u t e work
r a t e s w e r e t h e n c o m p l e t e d f o l l o w e d b y a s e r i e s of
r a t e ramp i n c r e m e n t s e a c h of
3 0 0 a n d 400 kpm=rnin'l
a f t e r warm-up.
Two s t e p c h a n g e s of
were c o m p l e t e d by t h e u n t r a i n e d g r o u p
T h e ramp c h a n g e s i n w o r k r a t e t h e n b e g a n a n d
continued tr exhaustion.
t r a i n e d group.
1 0 0 kpm-min'l.
30 s e c o n d w o r k
H i g h e r work r a t e s w e r e r e q u i r e d f o r t h e
A f t e r warm-up,
s t e p i n c r e m e n t s of
t r a i n e d s u bject-s completed two
500 a n d 900 kpm-min-I
w h i c h t h e 1 0 0 kpm=min'l
b e g a n a t 1 3 0 0 kprn*min'l.
,
respectively, after
30 s e c o n d ramp i n c r e a s e t o e x h a u s t i o n
The i n i t i a l work r a t e s w e r e c h o s e n t o
a c t a s a s t e p o r a i d i n a l l e v i a t i n g t h e e f f e c t s of
sudden
i n e r t i a l l o a d i n g . T h e ramp i n c r e m e n t s of P r o t o c o l s I I A a n d I I B
p r o v i d e d f o r a p p r o x i m a t e l y s i x t o e i g h t m i n u t e s of w o r k b e f o r e
exhaustion i n both untrained and t r a i n e d groups.
The d e t a i l e d p r o t o c o l a n d c h o i c e of
ramp s l o p e i n a n y w o r k
t e s t c o n s t r u c t i o n , w a s a t t h e d i s c r e t i o n of
the investigator
s i n c e c o n s i s t e n t maximal oxygen u p t a k e v a l u e s a r e o b t a i n e d
r e g a r d l e s s of
t h e p r e c i s e d e t a i l s of
t h e t e s t (Whipp
et g o ,
1981). However, i m p o r t a n t c o n s t r a i n t s a r e t h a t r o o s t e e p a s l o p e
would c a u s e t h e work r a t e t o b e l i m i t e d by a s u b j e c t ' s
ability
t o g e n e r a t e muscular f o r c e . d e s p i t e t h e oxygen r e s p o n s e n o t y e t
a t t a i n i n g i t s maximal v a l u e .
a t e s t and simply "wastes"
3.3.3
Too s m a l l a ramp p r o d u c e s t o o l o n g
t i m e (Whipp e t al.,
1981).
P r o t o c o l 111: T r a i n e d M a x i m a l E x e r c i s e
The h i g h e s t p o s s i b l e w o r k r a t e a b l e t o b e p r o v i d e d by t h e
e l e c t r o m a g n e t i c a l l y braked b i c y c l e ergome t e r u s e d i n t h e
e x p e r i m e n t s w a s 2 4 0 0 kpm*min'l
and s e v e r a l t r a i n e d s u b j e c t s were
a b l e t o a t t a i n t h i s w o r k r a t e w i t h o u t r e a c h i n g t h e i r maximum
c a p a c i t y , a second maximal t e s t was d e s i g n e d f o r a m e c h a n i c a l l y
b r a k e d M o n a r k b i c y c l e e r g o m e t e r a n d named P r o t o c o l 111. I f i t
w a s e s t a b l i s h e d f r o m t h e f i n a l maximum e x e r c i s e t e s t o n t h e
e l e c t r o m a g n e t i c a l l y braked Quinton ergometer,
that a subject's
h i g h e s t c a p a c i t y w a s n o t d e m a n d e d b y t h e 2 4 0 0 kpm.min'l
w o r k , P r o t o c o l 111 was s c h e d u l e d .
r a t e of
I n t h i s t e s t (Figure I I I ) ,
s u b j e c t s t r a n s f e r r e d t o t h e Monark b i c y c l e i m m e d i a t e l y f o l l o w i n g
c o m p l e t i o n of a o n e - h a l f
m i n u t e w o r k r a t e of
2400 kpm*min-I
P r o t o c o l I I B t o c o n t i n u e w i t h h i g h e r work r a t e s .
of
A time i n t e r v a l
of a p p r o x i m a t e l y f i v e m i n u t e s w a s a l l o w e d b e f o r e P r o t o c o l 111
was i n i t i a t e d .
Subjects,
however,
r e m a r k e d t h a t c y c l i n g on t h e
M o n a r k b i c y c l e a c c o r d i n g t o P r o t o c o l 111 s e e m e d q u i t e d i s s i m i l a r
t o w o r k on t h e e l e c t r o m a g n e t i c a l l y b r a k e d b i c y c l e .
f r o m t h e c o m p l e t i o n of
Data obtained
t h i s p r o t o c o l were used only t o check t h e
p e a k o x y g e n u p t a k e a n d h e a r t r a t e v a l u e s o b t a i n e d by P r o t o c o l
IIB.
I n t h e c a s e t h a t h i g h e r p h y s i o l o g i c a l v a l u e s were obtained
i n P r o t o c o l 111, h o w e v e r , t h e y w e r e c o n s i d e r e d maximum v a l u e s .
F o . l l o w i n g t h e c e s s a t i o n of m a x i m a l e x e r c i s e , a l l s u b j e c t s
were i n s , t r u c t e d t o remain s e a t e d on t h e b i c y c l e and c o n t i n u e
pedalling a t z e r o load f o r an a d d i t i o n a l t h r e e minutes t o a i d i n
the recovery process.
3.3.4
R e c o v e r y P e r i o d b e t w e e n Submaximum a n d Maximum T e s t s
Due t o t h e s u b m a x i m a l n a t u r e of
p e r i o d of
Protocol I, a recovery
o n l y 2 0 t o 45 m i n u t e s w a s a l l o w e d b e f o r e b e g i n n i n g t h e
m a x i m a l P r o t o c o l 11. R e c t a l t e m p e r a t u r e , w h i c h w a s r e c o r d e d
t h r o u g h o u t t h e e n t i r e work t e s t and r e c o v e r y i n t e r v a l , p r o v i d e d
a d i r e c t measure on which t o b a s e t h e r e c o v e r y t i m e i n t e r v a l .
The r e t u r n of
pre-exercise
r e c t a l t e m p e r a t u r e t o w i t h i n 0.1
0
C of
the
r e s t i n g l e v e l was u s e d a s a c r i t e r i o n f o r b e g i n n i n g
a maximal t e s t .
On a v e r a g e , u n t r a i n e d i n d i v i d u a l s r e q u i r e d 30 t o
4 5 m i n u t e s , w h i l e t r a i n e d i n d i v i d u a l s r e q u i r e d 20 t o 30 m i n u t e s
t o reach t h i s standard.
A l l s u b j e c t s remained s e a t e d d u r i n g t h e
r e s t period and were not allowed t o e a t o r d r i n k during t h i s
time.
Work R a t e (kpm-mi{')
Trained Maximal Protocol I'
2000
1000
rest
0
1
2
3
Time
4
5
6
(minutes)
F i g u r e 3 : Maximum P r o t o c o l 111 f o r t r a i n e d s u b j e c t s s h o w n a s
a work-time
profile.
4
3.3.5
C r i t - e r i a f o r A t t a i n m e n t o f Maximum O x y g e n U p t a k e
The e n d p o i n t of a m a x i m a l t e s t w a s d e f i n e d a s t h e p o i n t
when t h e s u b j e c t c o u l d n o l o n g e r m a i n t a i n a p e d a l r a t e of
rpm.
75
Other c r i t e r i a were whether t h e s u b j e c t a t t a i n e d h i s
maximal a g e - p r e d i c t e d
heart rate,
a n d w h e t h e r a p l a t e a u of
oxygen u p t a k e w i t h i n c r e a s i n g work r a t e was a c h i e v e d .
c o u r s e of
The t r u e
oxygen u p t a k e c o n t i n u o u s l y p l o t t e d on a H e w l e t t
P a c k a r d 85 c o m p u t e r made t h i s l a t t e r c r i t e r i o n e a s y t o i d e n t i f y ,
a l t h o u g h t h e p l a t e a u was s l i g h t d u e t o t h e n a t u r e of
work t e s t .
t h e ramp
I f s u b j e c t s w e r e a b l e t o r i d e f o r more t h a n two
m i n u t e s a t t h e h i g h e s t work r a t e , a p l a t e a u i n g i n oxygen u p t a k e
was o b s e r v e d .
To c o n f i r m w h e t h e r m a x i m a l p e r f o r m a n c e w a s b e i n g a c h i e v e d
by t h i s p r o t o c o l ,
10 of
blood l a c t a t e c o n c e n t r a t i o n was d e t e r m i n e d i n
t h e 2 0 t r a i n e d s u b j e c t s a n d 1 0 of
the untrained subjects,
from a b l o o d sample drawn from a n a n t e c u b i t a l v e i n f i v e m i n u t e s
a f t e r t h e c e s s a t i o n of
maximal e x e r c i s e .
Although t h e time f o r
'
t h e d e v e l o p m e n t of p e a k b l o o d l a c t a t e h a s b e e n shown by v a r i o u s
i n v e s t i g a t o r s t o vary from t h r e e t o nine minutes following t h e
c e s s a t i o n of m a x i m a l e x e r c i s e , a t i m e i n t e r v a l of
f i v e minutes
was c h o s e n a s a s u i t a b l e s t a n d a r d t i m e f o r m e a s u r e m e n t .
were i m m e d i a t e l y d e p r o t e i n i z e d w i t h i c e - c o l d
s u b s e q u e n t a n a l y s i s of
Samples
perchloric acid for
l a c t a t e concentrations using enzymatic
t e c h n i q u e s ( m o d i f i e d f r o m Gutman a n d W a h l e f e l d ,
1974).
3.3.6
Astrand-Ryhming
Submaximum E x e r c i s e T e s t
A t r a d i t i o n a l Astrand-Ryhming
submaximal s i x minute t e a t
was p e r f o r m e d by a l l u n t r a i n e d s u b j e c t s a n d h a l f
group.
the trained
U n t r a i n e d s u b j e c t s b e g a n by p e r f o r m i n g f o r 6 m i n u t e s a t
3 0 0 kprn*min'l,
individiuals.
b-min'l
of
a s s u g g e s t e d by A s t r a n d f o r u n t r a i n e d
I f t h e h e a r t r a t e d i d n o t a t t a i n a v a l u e of
a f t e r the f i r s t workrate,
300 kpm*min'l
130
t h e w o r k r a t e was i n c r e a s e d by
f o r an additional 6 minutes.
T h i s p r o t o c o l w a s c o n t i n u e d u n t i l a h e a r t r a t e of a p p r o x i m a t e l y
150 b-min'l
was a t t a i n e d .
d e e m e d t o b e of
T h e w o r k i n g t i m e of
5 t o 6 m i n u t e s was
s u f f i c i e n t a period t o allow the pulse r a t e t o
e q u i l i b r a t e with t h e t a s k being performed.
T h e mean v a l u e of
the
p u l s e r a t e a t t h e f i f t h and s i x t h m i n u t e was d e s i g n a t e d t h e
working p u l s e f o r t h e work i n q u e s t i o n .
exceeded 5 b-min'l,
t h e work t i m e was p r o l o n g e d .
Trained s u b j e c t s began,
kpm*min-l,
I f the difference
a s s u g g e s t e d by A s t r a n d ,
a t 900
and i n c r e a s e d t h e w o r k r a t e t o 1200 a n d 1500 kpm*min-l
i f t h e h e a r t r a t e was s t i l l l e s s t h a n 130 b-min'l.
p e r f o r m e d t h e Astrand-Ryhming
The A s t r a n d - R y h m i n g
t e s t a t a p e d a l r a t e of
t e s t was performed o n l y once.
t h e same d a y a s o n e of
A l l subjects
5 0 rpm.
T h i s w a s on
t h e maximal t e s t i n g s e s s i o n s i n o r d e r t o
compare d i r e c t l y measured and maximal oxygen u p t a k e p r e d i c t e d
from t h e e x i s t i n g Astrand-Ryhming
nomogram.
-
3.4 T e c h n i q u e s a n d Equipment
-
Oxygen u p t a k e w a s m e a s u r e d c o n t i n u o u s l y d u r i n g a l l p h a s e s
of
the experiment,
i n c l u d i n g r e s t , warm-up,
maximal e x e r c i s e and r e c o v e r y .
low-resistance
two-way
submaximal and
A l l subjects breathed through a
breathing valve that directed the
e x p i r a t e t o a m i x i n g box.
A s a m p l e of m i x e d e x p i r e d g a s w a s t h e n
drawn f r o m t h e m i x i n g box a n d a n a l y z e d f o r c a r b o n d i o x i d e a n d
oxygen c o n t e n t .
T h e a s s e m b l y c o n n e c t i o n s a r e shown
d i a g r a m a t i c a l l y i n F i g u r e 4.
V e n t i l a t o r y volume was o b t a i n e d by i n t e g r a t i n g t h e f l o w
r a t e of
i n s p i r e d gas obtained from a r e s p i r a t o r y flow transducer
(RP 4 7 3 0 4 8 ) o v e r a t e n s e c o n d p e r i o d a n d c o n d i t i o n i n g t h e s i g n a l
w i t h a HP 1 7 4 0 1 A D C P r e a m p l i f i e r c o n n e c t e d t o a n HP 740411
oscillographic recorder.
Mixed e x p i r e d g a s was a n a l y s e d f o r
o x y g e n a n d c a r b o n d i o x i d e c o n t e n t w i t h a n S-3A A p p l i e d
E l e c t r o c h e m i c a l o x y g e n a n a l y s e r a n d a CD-3A A p p l i e d
Electrochemical carbon dioxide analyser
Outputs from t h e gas a n a l y s e r s
,
,
respectively.
e l e c t r o c a r d i o g r a p h and
c a r r i e r p r e a m p l i f i e r w e r e s a m p l e d a t t e n s e c o n d i n t e r v a l s by a n
HP 3 4 9 7 8 D a t a A c q u i s i t i o n U n i t ,
c o n t r o l l e d by a d e s k t o p
c o m p u t e r ( H P 85.). R e c t a l t e m . p e r a t u r e w a s r e c o r d e d by a
tele-thermometer
I n s t r u m e n t Co.
w i t h a g e n e r a l p u r p o s e probe (Yellow S p r i n g s
I n c . ).
A BASIC p r o g r a m , w r i t t e n s p e c i f i c a l l y f o r t h e m e t a b o l i c
analyser,
c o n t r o l l e d t h e s a m p l i n g r a t e of
'
t h e HP 3 4 9 7 8 a n d
computed t e n s e c o n d v a l u e s f o r oxygen u p t a k e (V02), c a r b o n
d i o x i d e p r o d u c t i o n ( ~ E c o ~ v) e, n t i l a t i o n
e x c h a n g e r a t i o (R),
(GE) , a n d r e s p i r a t o r y
M i n u t e v a l u e s w e r e computed by a v e r a g i n g s i x ,
t e n second samples f o r t h a t p a r t i c u l a r minute.
The E C G was d i s p l a y e d c o n t i n u o u s l y on a P h y s i o - C o n t r o l
h e a r t r a t e m o n i t o r a n d t h i s e n a b l e d r e c o g n i t i o n of a n y h e a r t
conduction abnormalities.
T h e E C G was a l s o r e c o r d e d d u r i n g t h e
f i n a l 1 0 s e c o n d s of e a c h m i n u t e of warm-up,
r e c o v e r y on a n e l e c t r o c a r d i o g r a p h
e x e r c i s e and
(HP lSOOA).
f
-4
l ntegrator
Expired
.
I
Inspired
Air
Data
Acquisition
Unit
Desktop
Computer
F i g u r e 4 : D i a g r a m m a t i c R e p r e s e n t a t i o n of
Equipment.
the Experimental
3.4.1
C a l i b r a t i o n of
Instruments
Gas A n a l y s e r a n d P n e u m o t a c h o g r a p h C a l i b r a t i o n
C a l i b r a t i o n of
t h e oxygen and c a r b o n d i o x i d e g a s a n a l y s e r s ,
pneumotachograph and e l e c t r o c a r d i o g r a p h was performed d u r i n g t h e
s p e c i f i c a l l y d e s i g n e d c a l i b r a t i o n s e c t i o n of
t h e BASIC c o m p u t e r
program.
T h i s p r o c e d u r e was completed p r i o r t o t e s t i n g e a c h
subject.
Gas a n a l y s e r s w e r e c a l i b r a t e d w i t h s t a n d a r d g a s e s and
known f l o w r a t e s ,
respectively.
Standard gases f o r c a l i b r a t i o n
purposes were chosen t o f a l l w i t h i n t h e p h y s i o l o g i c a l range t o
be measured.
Standard gas c o n c e n t r a t i o n s were themselves
p r e v i o u s l y a n a l y s e d by t h e m i c r o - S c h o l a n d e r
technique ( 1945).
Correction f a c t o r s f o r w a t e r vapour p r e s s u r e and b r e a t h i n g valve
d e a d s p a c e w e r e a p p l i e d t o t h e r e s p i r a t o r y v a r i a b l e s by t h e
program s o f t w a r e .
V a l i ' d a t i o n of R e s p i r
V a l i d a t i o n of
o r y G a s E x c h a n g e Movement
t h e c o m p u t e d v a l u e s of
v e n t i l a t i o n and oxygen
u p t a k e w a s p e r f o r m e d by c o m p a r i n g c o m p u t e r c a l c u l a t e d v a l u e s
w i t h t h o s e m e a s u r e d u s i n g t h e t r a d i t i o n a l m e t h o d of
one m i n u t e
expired gas samples c o l l e c t e d i n meteorological balloons a t
v a r i o u s i n t e n s i t i e s of
b i c y c l e e r g o m e t e r work.
The c o l l e c t e d
mixed e x p i r e d g a s w a s a n a l y z e d f o r o x y g e n a n d c a r b o n d i o x i d e
cdncentrations.
V e n t i l a t o r y volumes were c o n v e r t e d t o s t a n d a r d
t e m p e r a t u r e a n d p r e s s u r e d r y (STPD) a n d o x y g e n u p t a k e w a s
calculated,
S i m u l t a n e o u s d e t e r m i n a t i o n s of
v e n t i l a t i o n and
o x y g e n u p t a k e f o r 20 s u b j e c t s d u r i n g s u b m a x i m a l a n d m a x i m a l
e x e r c i s e a r e shown i n F i g u r e s 5 a n d 6 .
Regression equations,
c o r r e l a t i o n c o e f f i c i e n t s a n d t h e l i n e of
i d e n t i t y a r e shown. No
s i g n i f i c a n t d i f f e r e n c e s e x i s t e d between t h e computer c a l c u l a t e d
v e n t i l a t i o n s o r oxygen u p t a k e s and t h e d i r e c t l y measured v a l u e s .
The r e s p o n s e c h a r a c t e r i s t i c s a n d a c c u r a c y of
the respiratory
gas
equipment used i n t h i s s t u d y compared v e r y f a v o u r a b l y w i t h
p u b l i s h e d d a t a on o t h e r s i m i l a r systems i n t h e l i t e r a t u r e
--
(Beaver e t a l . ,
--
1973; Wilmore e t a l . ,
c a l c u l a t e d oxygen u p t a k e . was,
1 9 7 8 ) . The c o m p u t e r
therefore,
assessed a s accurate.
Pneumotachograph Ventilation
VS.
Bag Ventilation
0
I
I
I
1
1
I
I
I
20
40
60
80
100
120
140
160
.
Bag Vent. ( Iitres minute-' BTPS )
F i g u r e 5 : C o m p a r i s o n of
r e s p i r a t o r y g a s volumes
determined from bag c o l l e c t ions simultaneously
w i t h pneumotachograph d e t e r m i n a t i o n s .
l i n e i n d i c a t e s t h e l i n e of
identity.
Solid
Computer Calculated \j0 2
VS.
Bag Calculated i/02
0
Figure 6:
1
2
3
Bag +o2 ( litres minute-')
4
5
S h o w i n g a c o m p a r i s o n of
oxygen u p t a k e measurements
determined from on-line
computer c a l c u l a t i o n s and
s e p a r a t e a n a l y s i s of
minute bags.
identity.
collected respired gases in
S o l i d l i n e i n d i c a t e s t h e l i n e of
Bicycle Ergometer C a l i b r a t i o n
P r e c i s e m e a s u r e m e n t of
t h e work r a t e s and power o u t p u t s
demand p r e c i s e c a l i b r a t i o n of
the ergometer.
Electronic
e r g o m e t e r s a r e d e s i g n e d s o t h a t work v a r i e s d i r e c t l y a s
r e s i s t a n c e m u l t i p l i e d by r a t e of
work ( r p m ) .
The g e n e r a t o r ' s
r e s i s t a n c e i s designed t o decrease a s the r a t e i n c r e a s e s ,
thus
m a i n t a i n i n g t h e work l o a d a t a c o n s t a n t v a l u e .
The QI-845
b i c y c l e , e r g o m e t e r u s e d i n t h e e x p e r i m e n t s was
c a l i b r a t e d a t , t h e Q u i n t o n M a n u f a c t u r i n g Company i n S e a t t l e ,
W a s h i n g t o n p r i o r t o t h e s t a r t of
3.5 D e f i n i t i o n of
-
the experiments.
Variables
The v a r i a b l e s s t u d i e d i n t h i s i n v e s t i g a t i o n w e r e o x y g e n
uptake,
h e a r t r a t e a n d work r a t e .
These v a r i a b l e s ,
in particular
h e a r t r a t e a n d work r a t e , w e r e m a n i p u l a t e d t o p r o v i d e g r e a t e r
i n s i g h t i n t o t h e e x i s t i n g r e l a t i o n s h i p s b e t w e e n work r a t e , h e a r t
r a t e and oxygen u p t a k e .
e x p l a n a t i o n of
below.
A d e f i n i t i o n of
t h e t r e a t m e n t of
d e r i v e d v a r i a b l e s and a n
the variables i s described
3.5.1
Unloaded P e d a l l i n g
Unloaded p e d a l l i n g i s a c t u a l l y a misnomer,
although the
term w a s u s e d h e r e , s i n c e i t d i d n o t a c t u a l l y r e p r e s e n t z e r o
work r a t e ,
b u t i n v o l v e d t h e w o r k of
moving t h e l e g s .
f i r s t f i v e m i n u t e s of e a c h s u b m a x i m a l p r o t o c o l
During t h e
(Protocol I ) ,
u n l o a d e d p e d a l l i n g was p e r f o r m e d by a l l s u b j e c t s .
A t any d e f i n e d
p e d a l l i n g r a t e i t w a s t h e minimum w o r k r a t e p o s s i b l e o n t h e
b i c y c l e ergome t e r and p r o v i d e d a r e l a t i v e l y s t a b l e b a s e l i n e
v a l u e of
oxygen u p t a k e and h e a r t r a t e f o r e a c h s u b j e c t .
valuable i n reducing fluctuations
i n i t i a l p h a s e of
testing.
a s s i g n e d a w o r k r a t e of
in heart r a t e during the
I n t h i s s t u d y u n l o a d e d p e d a l l i n g was
2 0 0 kpm-min'l
b a s e d o n t h e mean o x y g e n
u p t a k e m e a s u r e d o n 39 s u b j e c t s d u r i n g t h i s a c t i v i t y .
evalqation,
I t was
In this
o x y g e n u p t a k e d u r i n g t h e f i f t h m f n u t e of u n l o a d e d
p e d a l l i n g was t a k e n a s t h e c o s t of
t h e e x e r c i s e a n d t h e mean
c o r r e s p o n d i n g h e a r t r a t e d e t e r m i n e d c o n c o m i t a n t l y was r e g a r d e d
a s a r e p r e s e n t a t i v e mean g r o u p h e a r t r a t e f o r u n l o a d e d
pedalling.
3.5.2
Delta Heart Rate
F o r a n i n d i v i d u a l , d e l t a h e a r t r a t e (AHR) w a s d e f i n e d a s t h e
d i f f e r e n c e between a l l determined e x e r c i s e h e a r t r a t e s and t h e
h e a r t r a t e m e a s u r e d d u r i n g t h e f i f t h m i n u t e of u n l o a d e d
pedalling.
Unloaded p e d a l l i n g h e a r t r a t e was c h o s e n t o p r o v i d e a
more a c c u r a t e s t a r t i n g p o i n t i n t h e e x t r a p o l a t i o n p r o c e d u r e f o r
p r e d i c t i n g maximal oxygen u p t a k e .
It replaced the resting heart
r a t e v a l u e p r e v i o u s l y u s e d b u t f o r which i t was v e r y d i f f i c u l t
t o d e f i n e a s t a n d a r d c o n d i t i o n u n d e r which i t c o u l d b e measured
a c c u r a t e l y and c o n s i s t e n t l y .
The u s e of
the d e l t a heart r a t e
value discriminated b e t t e r the h e a r t r a t e span (exercise h e a r t
r a t e minus u n l o a d e d p e d a l l i n g h e a r t r a t e ) i n c r e a s e w i t h e x e r c i s e
b e t w e e n g r o u p s of
different age,
s a l i e n t o b s e r v a t i o n of
s e x a n d d e g r e e of
training.
A
training i n an individual i s the training
b r a d y c a r d i a d e v e l o p e d f o r any g i v e n work r a t e .
Thus a s s u m i n g a
s i m i l a r maximum h e a r t r a t e f o r t w o i n d i v i d u a l s w i t h i n t h e same
age group,
t h e t r a i n e d i n d i v i d u a l would h a v e a g r e a t e r d e l t a
h e a r t r a t e t h a n t h e u n t r a i n e d i n d i v i d u a l due t o t h e lower h e a r t
r a t e a t t a i n e d d u r i n g t h e s t a n d a r d p e r f o r m a n c e of u n l o a d e d
ped2lling.
U s i n g maximum h e a r t r a t e a l o n e i n a n y h e a r t r a t e
b a s e d p r e d i c t i v e p r o c e d u r e would e n s u r e no s u c h d i s c r i m i n a t i o n
between t r a i n e d and u n t r a i n e d s u b j e c t s .
The u s e of
d e l t a h e a r t r a t e may a l s o h e l p t o r e s o l v e t h e
o b s c u r i n g e f f e c t of
t h e a g e r e l a t e d d e c l i n e i n maximum h e a r t
r a t e p r e d i c t i o n s made f r o m h e a r t r a t e m e a s u r e m e n t s .
year old male,
rate,
T h u s i n a 55
d e s p i t e a n a g e r e l a t e d d e c l i n e i n maximum h e a r t
a d e c r e a s e i n unloaded p e d a l l i n g h e a r t r a t e accompanying
t r a i n i n g b r a d y c a r d i a would m a i n t a i n a h i g h span h e a r t r a t e
( d e l t a h e a r t r a t e ) i n p r e d i c t i v e work.
tha o t h e r hand,
An u n f i t 3 5 y e a r o l d ,
on
d e s p i t e h a v i n g a h i g h e r maximum h e a r t r a t e ,
m i g h t i n d e e d h a v e a m a r k e d l y l e s s ' s p a n h e a r t r a t e b e c a u s e of
an
accompanying h i g h unloaded p e d a l l i n g h e a r t r a t e .
D e l t a h e a r t r a t e v a l u e s f r o m t h e maximal e x e r c i s e p r o t o c o l
were c a l c u l a t e d by s u b t r a c t i n g u n l o a d e d p e d a l l i n g h e a r t r a t e
m e a s u r e d d u r i n g t h e f i f t h m i n u t e of
p o r t i o n of
t h e unloaded p e d a l l i n g
t h e submaximal p r o t o c o l f r o m a l l maximal p r o t o c o l
h e a r t r a t e measures.
T h i s p r o c e d u r e was performed i n a n a t t e m p t
t o a c c o u n t f o r t h e i n f l u e n c e of
t h e p r e v i o u s p e r f o r m a n c e of a
submaximal t e s t o n t h e f o l l o w i n g maximal t e s t .
I n effect it
a t t e m p t e d t o r e m o v e a n y r e m a i n i n g i n f l u e n c e of
i n c r e a s e d body
core temperature
rate.
( i n d i c a t e d by r e c t a l t e m p e r a t u r e ) o n h e a r t
A l t h o u g h i n t h e m a j o r i t y of
c a s e s the unloaded p e d a l l i n g
h e a r t r a t e r e c o r d e d d u r i n g t h e maximal p r o t o c o l was a l m o s t
i n d e n t i c a l t o t h a t measured d u r i n g t h e submaximal t e s t ,
the
p r o c e d u r e was f o l l o w e d a s a n a i d i n s t a n d a r d i z i n g t h e o v e r a l l
meth6dology.
3.5.3
D e l t a Work R a t e
The w o r k of u n l o a d e d p e d a l l i n g w a s c a l c u l a t e d f r o m o x y g e n
u p t a k e measurements t o b e e q u i v a l e n t t o a 200 kpm*min-l.
This
v a l u e h a s b e e n u s e d t o e x p r e s s e v e r y o t h e r work r a t e a s a d e l t a
work r a t e (OWR) v a l u e b y s u b t r a c t i n g 200 kpm-min'l
r e c o r d e d t e s t work r a t e p e r f o r m e d
kpm-min'l
(i.e.
b e c o m e s a d e l t a w o r k r a t e of
from t h e
a w o r k r a t e of
100 kpm-min'l).
300
This
p r o c e d u r e proved u s e f u l i n d e s c r i b i n g t h e r e l a t i o n s h i p between
d e l t a h e a r t r a t e and d e l t a work r a t e .
By d e f i n i t i o n , b o t h
v a r i a b l e s become z e r o d u r i n g u n l o a d e d p e d a l l i n g a n d d e f i n e t h e
o r i g i n of
the exponential curve,
(Equation 6 )
where a = a c o n s t a n t ,
k = a rate constant,
y = delta heart rate,
and
x = d e l t a work r a t e .
3.6 D a t a R e d u c t i o n and A n a l y s i s
--
3.6.1
Individual Data Treatment
S u b j e c t s performed submaximal and maximal b i c y c l e e r g o m e t e r
r i d e s a t s e p a r a t e times.
Oxygen u p t a k e ,
h e a r t r a t e and work r a t e
v a r i a b l e s w e r e r e c o r d e d d u r i n g t h e f i n a l m i n u t e of u n l o a d e d
p e d a l l i n g a n d d u r i n g t h e t h i r d m i n u t e of
3 0 0 , 6 0 0 , 9 0 0 kpm*min'l
work r a t e s f o r u n t r a i n e d i n d i v i d u a l s d u r i n g s u b m a x i m a l t e s t s .
D a t a f o r t r a i n e d i n d i v i d u a l s was c o l l e c t e d s i m i l a r l y a n d a l s o a t
t w o h i g h e r w o r k r a t e s of
1 2 0 0 a n d 1 5 0 0 kpm.min'l.
D u r i n g m a x i m a l ramp t e s t s t o e x h a u s t i o n , t h e mean m i n u t e
v a l u e f r o m t h e c o n t i n u o u s r e c o r d w a s c h o s e n a s r e p r e s e n t a t i v e of
t h e work.
Both t h e c o m p l e t e submaximal and maximal s e t of
oxygen
u p t a k e and h e a r t r a t e v a l u e s a s d e r i v e d above, were p l o t t e d
against time.
Due t o t h e n a t u r e of
rate increases,
t h e maximal p r o t o c o l work
h e a r t r a t e and oxygen u p t a k e were n o t s t e a d y
s t a t e v a l u e s f o r t h e p a r t i c u l a r work r a t e s performed.
c o n t r a s t t o t h e submaximal work r a t e s p e r f o r m e d .
This is in
However,
the
submaximal oxygen u p t a k e l d e l t a h e a r t r a t e c u r v e i n t e r s e c t e d t h e
maximal oxygen u p t a k e l d e l t a h e a r t r a t e c u r v e a t a p p r o x i m a t e l y
9 0 0 a n d 1 5 0 0 kpm*min'l
respectively.
f o r the untrained and t r a i n e d group,
A l l i n d i v i d u a l submaximal oxygen u p t a k e l d e l t a
h e a r t r a t e d a t a and maximal d a t a above t h i s i n t e r s e c t i o n p o i n t
f o r e a c h g r o u p , was c o m b i n e d a n d t r e a t e d a s o n e c o m p l e t e s e t of
V 0 2 / d e l t a HR d a t a f o r t h e r e m a i n d e r of
i l l u s t r a t e s t h e p r o c e s s of
the analysis.
Figure 7
c o m b i n i n g i n d i v i d u a l submaximum a n d
maximum o x y g e n u p t a k e a n d d e l t a h e a r t r a t e d a t a .
Oxygen Uptake
VS
Delta Heart
Rate
0 Submaximum
Maximum
0
10
20
30
40
50
Delta Heart
60
Rate
70
80
90
100
(beats-mi;')
F i g v r e 7 : S h o w i n g Submaximum a n d Maximum V02
and
A H R R e l a t i o n s h i p f o r a T r a i n e d Male.
110
120
3.6.2
Test-Retest
Reliability
I n d i v i d u a l s w i t h i n t h e t r a i n e d group performed t h r e e
complete submaximal and maximal p r o t o c o l s , w h i l e t h o s e i n t h e
u n t r a i n e d g r o u p completed two s e t s .
T r a i n e d i n d i v i d u a l s were
t h e r e f o r e t h r e e s e t s of
t e s t e d during t h e i r off -season,
tests
w e r e c o n d u c t e d t o c h e c k f o r v a r i a t i o n s i n maximum o x y g e n u p t a k e
a s a r e s u l t of
training or detraining.
A one-way
a n a l y s i s of
v a r i a n c e t e s t e d f o r s i g n i f i c a n t d i f f e r e n c e s between t r i a l s .
l e v e l of
3.6.3
The
s i g n i f i c a n c e w a s s e t a t p<0.05.
Group D a t a
Groups were termed c o r e o r v a l i d a t i o n a c c o r d i n g t o t h e i r
l a t e r r o l e i n t h e c o n s t r u c t i o n a n d v a l i d a t i o n of a nomogram f o r
p r e d i c t i n g maximal oxygen u p t a k e .
T h e s l o p e s of
the regression
l i n e s between oxygen u p t a k e and d e l t a h e a r t r a t e f o r t h e t r a i n e d
and u n t r a i n e d c o r e groups,
r e s p e c t i v e l y , were t e s t e d f o r
s i g n i f i c a n t d i f f e r e n c e b y a one-way
sample t-test
Kupper
'
for parallelism,
(1978), w a s p e r f o r m e d .
A N O V A (p<O.O5).
A small
a s o u t l i n e d by K l e i n b a u m a n d
This provided the b a s i s f o r
c o n t i n u i n g t h e c a t e g o r i z a t i o n of
g r o u p s i n t o T a n d UNT.
Mean maximum o x y g e n u p t a k e ,
maximum h e a r t r a t e , maximum
d e l t a h e a r t r a t e and o t h e r measured v a r i a b l e s f o r t r a i n e d and
u n t r a i n e d groups were chebked f o r s t a t i s t i c a l l y s i g n i f i c a n t
d i f f e r e n c e s (p<0.05).
Core a n d v a l i d i t y g r o u p d a t a w i t h i n t h e T
and UWT g r o u p s were n o t compared s i n c e any s t a t i s t i c a l l y
s i g n i f i c a n t d i f f e r e n c e s would o n l y r e f l e c t d i f f e r e n c e s due t o
t h e random a s s i g n m e n t of
i n d i v i d u a l s w i t h i n t h e main t r a i n e d o r
untrained group t o core or v a l i d i t y groups.
Any s u c h d e t e r m i n e d
s i g n i f i c a n t d i f f e r e n c e s b e t w e e n c o r e a n d v a l i d i t y g r o u p s may
a l s o b e r e p r e s e n t a t i v e of
t h e s m a l l e r n u m b e r of
subjects in the
v a l i d i t y g r o u p s compared t o t h e c o r e g r o u p s .
3 . 7 T r e a t m e n t -of D a t a
-
I
The h y p o t h e s i z e d r e l a t i o n s h i p b e t w e e n o x y g e n u p t a k e a n d
delta heart,
f o l l o w i n g s t e p c h a n g e s i n e x t e r n a l w o r k r a t e , was a
s i m p l e e x p o n e n t i a l f u n c t i o n (Wyndham -et al.,
a
-*
1
9
.
1964; Davies,
1 9 5 9 ; Rowel1 et
1 9 6 8 ) . The f o l l o w i n g f i r s t o r d e r f u n c t i o n was
therefore f i t t e d t o the recorded responses;
( E q u a t i o n 8)
where y ( x ) i s oxygen u p t a k e , x i s d e l t a h e a r t r a t e g e n e r a t e d
• ’ r o d a s t e p change i n work r a t e , k i s a r a t e c o n s t a n t a n d a i s a
constant.
This equation described a similar exponential function
a s t h a t i n i t i a l l y p r o p o s e d by Wyndham e t al.
p o s i t i v e e x p o n e n t d u e t o t h e r e v e r s a l of
Linear r e g r e s s i o n and non-linear
(1959),
but w i t h a
t h e x and y axes.
e x p o n e n t i a l and q u a d r a t i c
r e g r e s s i o n a n a l y s e s were conducted i n a n a t t e m p t t o i n t e r p r e t
t h e r e l a t i o n s h i p between t h e oxygen u p t a k e and d e l t a h e a r t r a t e
v a r i a b l e s i n a s t a t i s t i c a l s e n s e and t o h e l p q u a n t i f y t h e
s t r e n g t h of
the relationship.
BMDP l i n e a r a n d n o n - l i n e a r
curve
f i t t i n g computer programs were used f o r s t a t i s t i c a l a n a l y s e s .
The c o m p u t a t i o n of
t h e b e s t f i t t i n g f u n c t i o n w a s made u s i n g
a l e a s t s q u a r e s method i . e .
m i n i m i z e s t h e sum o f
t h e l i n e of
b e s t f i t i s t h a t which
t h e s q u a r e d d i f f e r e n c e s between t h e
p r e d i c t e d dependent v a l u e s and t h e response v a l u e s a c t u a l l y
recorded.
I n o r d e r t o c o m p a r e t h e f i t by r e s p e c t i v e l i n e a r a n d
non-linear
e x p o n e n t i a l a n d q u a d r a t i c f u n c t i o n s , t h e mean s q u a r e
r e s i d u a l (MSR) w a s u s e d .
sum o f
squares.
T h i s t e r m was u s e d r a t h e r t h a n r e s i d u a l
T h e mean s q u a r e r e s i d u a l i s e q u a l t o t h e
v a r i a n c e about t h e f i t t e d l i n e deduced from:
MS r e s i d u a l = SS r e s i d u a l
= SS r e s i d u a l
(Equation 8)
df
residual
w h e r e p i s t h e n u m b e r of p a r a m e t e r s .
(n-P
1
For a l i n e a r f u n c t i o n ,
r e p r e s e n t s t h e s l o p e and t h e i n t e r c e p t .
For a n e x p o n e n t i a l
p
function, p represents the parameter,
W h i l e t h e r e s i d u a l sum of
s t u d i e s (Hughson,
a , and r a t e c o n s t a n t , k .
s q u a r e s h a s been reported i n o t h e r
1 9 8 2 ) , t h e MSR was d e t e r m i n e d t o b e a more
s u i t a b l e s t a t i s t i c s i n c e i t t a k e s i n t o a c c o u n t t h e n u m b e r of
c a s e s ( d f ) a n d e n a b l e s c o m p a r i s o n s t o b e made b e t w e e n t h e f i t s
of
various functions t o reality
.
Oxygen u p t a k e a n d d e l t a h e a r t r a t e d a t a w e r e a l s o a n a l y s e d
f o r t r e n d s of
s e c t i o n s of
3.7.1
non-linearity
i n s e p a r a t e s u b m a x i m u m a n d maximum
the relationship.
E x a m i n a t i o n of
Residuals
A l l e q u a t i o n s f i t t e d t o those d a t a d e s c r i b e d above were
f u r t h e r analyzed by assessing t h e residuals.
a n a l y s i s of
residuals vs.
p r e d i c t e d oxygen u p t a k e was performed
t o c h e c k f o r a n y v i o l a t i o n of
w i t h ANOVA.
s p e c i f i c assumptions associated
These i n c l u d e independence, n o r m a l i t y and
h o m o g e n e i t y of
variance.
Figure 8 i l l u s t r a t e s the normal
s i t u a t i o n a s w e l l a s t h r e e common t r e n d s .
points should b e obtained normally,
no h i n t of
and d .
A graphical
A h o r i z o n t a l band
a s shown i n F i g u r e 8 a , w i t h
t h e p r e s e n c e of a n y s y s t e m a t i c t r e n d s ,
T r a n s f o r m a t i o n of
of
a s i n 8b, c
d a t a w a s c o n d u c t e d i f a n a l y s i s of
residuals revealed systematic trends.
'
F i g u r e 8 : E x a m i n a t i o n of R e s i d u a l s d e r i v e d f r o m p r e d i c t e d
oxygen u p t a k e and a c t u a l oxygen u p t a k e .
N o r m a l s i t u a t i o n i s shown i n 8 a .
3 08 M e t h o d of C o n s t r u c t i n g
-
3.8.1
Nomogram
C o n s t r u c t i o n of A s t r a n d - R y h m i n g
The A s t r a n d - R y h m i n g
Nomogram
nomogram w a s o r i g i n a l l y c o n s t r u c t e d
from t h e oxygen u p t a k e and h e a r t r a t e r e s p o n s e s t o s i n g l e
submaximal work r a t e s p e r f o r m e d f o r a p p r o x i m a t e l y 5 t o 1 0
m i n u t e s by 8 6 m a l e a n d f e m a l e p h y s i c a l e d u c a t i o n s t u d e n t s .
S u b j e c t s c o m p l e t e d a v a r i e t y of
l i g h t a n d h e a v y submaximum w o r k
t a s k s o n s e v e r a l o c c a s i o n s o n t h e l a s t o f w h i c h a maximum e f f o r t
was a l s o a t t e m p t e d .
Oxygen u p t a k e a n d h e a r t r a t e w e r e m e a s u r e d
on e a c h s u b j e c t u n d e r e v e r y c o n d i t i o n .
rates,
A t ' t h e h i g h e s t work
t h e work p e r i o d was o n l y 2 t o 3 m i n u t e s .
The v a l u e s u s e d
f o r o x y g e n u p t a k e a n d h e a r t r a t e r e f e r r e d t o t h e l a s t m i n u t e s of
work a t e a c h l e v e l a n d w e r e mean v a l u e s o b t a i n e d e i t h e r f r o m
d e t e r m i n a t i o n s on t w o o r m o r e o c c a s i o n s ,
o r f r o m t w o o r more
s u c c e s s i v e d e t e r m i n a t i o r i s o n t h e same d a y .
Oxygen u p t a k e a n d
h e a r t r a t e were measured f o r b i c y c l e e r g o m e t e r y , t r e a d m i l l
r u n n i n g a n d bench s t e p p i n g .
The d e t a i l e d c o n s t r u c t i o n of
t h e Astrand-Ryhming
p r e d i c t i n g maximum o x y g e n u p t a k e i s o u t l i n e d b e l o w .
nomogram
Oxygen
u p t a k e v a l u e s f o r e a c h s u b j e c t w e r e e x p r e s s e d a s a p e r c e n t a g e of
an i n d i v i d u a l ' s
maximum o x y g e n u p t a k e ( % V02max). O x y g e n u p t a k e
was p l o t t e d a g a i n s t h e a r t r a t e a n d a r e g r e s s i o n e q u a t i o n
calculated.
From t h e d e t e r m i n e d r e g r e s s i o n e q u a t i o n , A s t r a n d
f o u n d t h a t a w o r k r a t e w h i c h p r o d u c e d a n a v e r a g e h e a r t r a t e of
128 b 0 m i n ' l
r e q u i r e d 50% of
r a t e p r o d u c i n g 154 b - m i n - l
uptake.
maximum o x y g e n u p t a k e ,
required
70% o f
and a work
maximal oxygen
T h e r e g r e s s i o n e q u a t i o n d e s c r i b i n g t h e '% V 0 2 m a x / H ~
r e l a t i o n s h i p a p p l i e d f o r a l l i n d i v i d u a l s w i t h i n a n age group.
followed,
theref ore,
It
t h a t i n d i v i d u a l s w i t h i n such a g r o u p would
h a v e a s m a l l e r r a n g e of m a x i m a l v a l u e s t h a n i n d i v i d u a l s w i t h i n
a n o t h e r g r o u p v a r y i n g i n a g e , s e x o r s t a t e of
E x p r e s s i o n of
training.
o x y g e n u p t a k e a s a p e r c e n t a g e of
maximum a l l o w e d
t h i s v a r i a t i o n i n maximal oxygen u p t a k e between i n d i v i d u a l s
w i t h i n a group and between groups t o be d e f i n e d b e t t e r than
m e r e l y c o m p a r i s o n of a b s o l u t e v a l u e s of
U s i n g t h e r e g r e s s i o n e q u a t i o n of
oxygen u p t a k e .
% V02max a g a i n s t H R ,
a
h e a r t r a t e a p p r o p r i a t e t o a d e f i n e d work r a t e was s u b s t i t u t e d
.
i n t o t h e r e g r e s s i o n e q u a t i o n a n d t h e p e r c e n t a g e of V02max a t
w h i c h t h i s h e a r t r a t e o c c u r r e d was c a l c u l a t e d .
For example,
t h e r e g r e s s i o n e q u a t i o n d e s c r i b i n g t h e r e l a t i o n s h i p was of
f o r m y = mx
+
b , w h e r e y r e p r e s e n t s t h e p e r c e n t a g e of
oxygen u p t a k e ,
s l o p e of
x the heart r a t e , b the y-intercept,
the l i n e ,
if
the
maximum
and m t h e
and t h e a c t u a l e q u a t i o n was:
(Equation 9)
a h e a r t r a t e of
1 0 0 w o u l d r e q u i r e 50% of
I n o z d e r t o c a l c u l a t e p r e d i c t e d V02max,
maximum o x y g e n u p t a k e .
one m e r e l y n e e d s t o
m u l t i p l y t h e r e c i p r o c a l of
t h e d e r i v e d % V02max by t h e
t h e o r e t i c a l l y c a l c u l a t e d o x y g e n c o s t of
t h e w-ork r a t e .
example,
p e r f o r m i n g a work r a t e
of
t h e t h e o r e t i c a l oxygen c o s t of
6 0 0 kpm*min'l
i s 1.5
l i t e r s 02*min-l.
For
I f the heart r a t e
r e q u i r e d t o p e r f o r m t h i s work r a t e was 100 b o m i n - l a n d ,
determined previously,
as
t h e % V02max a t w h i c h t h i s h e a r t r a t e
.
o c c u r r e d w a s 5 0 , t h e p r e d i c t e d V02max w o u l d b e d o u b l e ( t h e
r e c i p r o c a l of
50/100) t h e c a l c u l a t e d oxygen c o s t v a l u e ,
1
x
0 2 c o s t x 100
(Equation 10)
o r 3.0
I f t h e h e a r t r a t e a t t a i n e d by t h e same i n d i v i d u a l a t a w o r k
r a t e of
1200 kpm-min-l
w a s 150 b - m i n - l ,
t h e percentage to2max,
u s i n g E q u a t i o n 9 w h i c h d e s c r i b e s t h e a p p r o p r i a t e % V02max/HR
r e l a t i o n s h i p , w o u l d b e 90.
I f the t h e o r e t i c a l l y determined 02
c o s t o f p e r f o r m i n g 1 2 0 0 kpm-min'l
i o 2 m a x w o u l d b e e q u a l t o 3.1
was 2.8
1-min'l,
the predicted
1-min-l a s determined from Equation
10.
V02max
1
=
x
2.8
1 02.rnin-l
x
100
(Equation 10)
90% iro2max
In this fashion,
t h e p r e d i c t e d V02max f o r e v e r y h e a r t r a t e a n d
e v e r y work r a t e c o u l d b e c a l c u l a t e d .
To r e i t e r a t e ;
the necessary prerequisites f o r construction
of a nomogram f o r p r e d i c t i n g V02max f o r a g r o u p of h o m o g e n e o u s
individuals are:
1. e x p r e s s i o n of e a c h i n d i v i d u a l V02 a s a p e r c e n t a g e of
oxygen u p t a k e ,
maximum
2 . d e t e r m i n a t i o n of
r e l a t i o n s h i p between
3.
d e t e r m i n a t i o n of
the regression equation describing the
X Go2max a n d t h e c o r r e s p o n d i n g h e a r t r a t e s ,
t h e h e a r t r a t e a t a d e f i n e d work r a t e a n d
c a l c u l a t e f r o m t h e V02 v s .
HR r e g r e s s i o n t h e % V02max t h a t
this
heart rate elicits,
4.
theoretical determination,
(Appendix C ) ,
of
from b a s i c e n e r g e t i c r e l a t i o n s h i p s
t h e oxygen c o s t of
the
submaximal work r a t e
e l i c i t i n g t h e s p e c i f i c h e a r t r a t e a n d c o r r e s p o n d i n g % VO2max a t
which t h e h e a r t r a t e o c c u r s ,
5. u s e o f
and
t h e r e l a t i o n s h i p d s c r i b e d by Equation 10 t o p r e d i c t
3.8 - 2 C o n s t r u c t i o n of P r e s e n t Nomogram a n d 02 C o s t C a l c u l a t i o n
I n d i v i d u a l s i n t h e p r e s e n t study performed b i c y c l e
ergometer e x e r c i s e only.
T h e w o r k r a t e p r o t o c o l w a s of a
continuous nature with increments every 3 minutes during the
s u b m a x i m a l p o r t i o n . Mean o x y g e n u p t a k e v a l u e s w e r e d e t e r m i n e d t o
a s s e s s w h e t h e r t h i s w a s a d e q u a t e t i m e f o r a d j u s t m e n t of
the
c i r c u l a t i o n a n d v e n t i l a t i o n t o t h e l e v e l of e x e r i c s e . T h e s e
v a l u e s were compared t o t h e oxygen c o s t d e t e r m i n e d f r o m r e l e v a n t
work r a t e s a c c o r d i n g t o t h e t h e o r e t i c a l c o n s i d e r a t i o n s shown i n
Appendix C.
Thermodynamic c a l c u l a t i o n s u s u a l l y assume a c o n s t a n t
e f f i c i e n c y of
2 5 % f o r b i c y c l i n g h u m a n s (Whipp a n d W a s s e r m a n ,
1969; Astrand and Rodahl,
t h e g r o u p of
1977).
A l t h o u g h i t may b e a r g u e d t h a t
t r a i n e d c y c l i s t s had a h i g h e r e f f i c i e n c y t h a n t h e
untrained group,
b a l a n c i n g t h i s was t h e f a c t t h a t t h e b i c y c l e
e r g o m e t e r u s e d i n t h i s i n v e s t i g a t i o n was v e r y d i f f e r e n t i n t e r m s
of
t h e r e q u i r e d b o d y p o s i t i o n of
the cyclist's
t h e r i d e r from t h a t r e q u i r e d on
normal t r a i n i n g b i c y c l e .
a l s o determined t h a t a non-significant
A s t r a n d a n d R o d a h l (1977,)
difference existed
between Olympic c y c l i s t s and u n t r a i n e d i n d i v i d u a l s w i t h r e g a r d
t o t h e e f f i c i e n c y of
e f f i c i e n c y of
cycling.
I t was concluded t h a t a n
25% would b e u s e d i n t h e t h e o r e t i c a l c a l c u l a t i o n
oE1 0 2 c o s t f r o m t h e r e l e v e n t w o r k r a t e v a l u e .
The f i r s t s t e p i n t h e a n a l y s i s of
these data attempted t o
r e c o n s t r u c t t h e o r i g i n a l A s t r a n d - R y h m i n g nomogram.
T h i s was a
p l a u s i b l e aim due t o t h e s i m i l a r i t y i n age and g e n e r a l a c t i v i t y
l e v e l of
Astrand's
t h e c o r e g r o u p of
males with t h e s u b j e c t s assessed i n
o r i g i n a l s t u d y (1952).
The same p r o c e d u r e f o r c o n s t r u c t i n g a nomogram a s o u t l i n e d
above f o r A s t r a n d ' s
o r i g i n a l work was f o l l o w e d .
This procedure
was p e r f o r m e d s e p a r a t e l y on d a t a f r o m b o t h t h e t r a i n e d a n d
untrained core groups.
of
F o r t h e s a k e of
simplicity,
description
t h e process w i l l be confined h e r e t o t h e t r a i n e d group.
Individual
io2
v a l u e s o b t a i n e d d u r i n g t h e submaximal and
m a x i m a l t e s t s w e r e e x p r e s s e d a s a p e r c e n t a g e of
d i r e c t l y d e t e r m i n e d maximal oxygen u p t a k e .
the individual's
The r e g r e s s i o n
e q u a t i o n d e s c r i b i n g t h e group r e l a t i o n s h i p between t h e
p e r c e n t a g e fo2max v a l u e s and t h e c o r r e s p o n d i n g h e a r t r a t e s f o r
a l l i n d i v i d u a l s w i t h i n t h e g r o u p was t h e n d e t e r m i n e d .
.
I n order
t o c o n s t r u c t a t a b l e t o p r e d i c t V02max a t a n y h e a r t r a t e a n d a n y
g i v e n s u b m a x i m a l work r a t e ,
e v e r y h e a r t r a t e was s u b s t i t u t e d
i n t o the determined l i n e a r r e g r e s s i o n equation,
y = m x + b
(Equation 11)
where y i s t h e p e r c e n t of
maximum o x y g e n u p t a k e a n d x i s t h e
corresponding h e a r t r a t e ,
g i v e n t h e d e t e r m i n e d v a l u e s of
m,
and y - i n t e r c e p t
,
slope,
b.
T h i s p r o c e d u r e d e t e r m i n e d t h e % V02max a t w h i c h e a c h h e a r t r a t e
occurred according t o the empirically determined regression
equation f o r t h e group data.
I t was e v i d e n t t h a t t h e r e g r e s s i o n
e q u a t i o n w a s d e p e n d e n t u p o n t h e V02 a n d h e a r t r a t e d e t e r m i n e d
d u r i n g t h e s t a n d a r d submaximal work p r o t o c o l .
T h e r e f o r e i t was
of u t m o s t i m p o r t a n c e t h a t t h e
+o2
s t a t e values.
t h i s w a s d e t e r m i n e d by c o m p a r i s o n
of
The a c c u r a c y of
a n d HR v a l u e s u s e d w e r e s t e a d y
t h e mean V02 v a l u e s d e t e r m i n e d e m p i r i c a l l y w i t h t h e o x y g e n
c o s t of
t h e work r a t e s c a l c u l a t e d a c c o r d i n g t o t h e o r e t i c a l
considerations.
The h e a r t r a t e of
interest,
t h e c o r r e s p o n d i n g % V02max
v a l u e ( d e t e r m i n e d from t h e r e g r e s s i o n e q u a t i o n ) and t h e work
r a t e e l i c i t i n g t h e r e s p o n s e w e r e t h e n u s e d t o p r e d i c t V02max
using Equation 10, a s previously outlined.
Each p r e d i c t e d to2max
was t h e n e n t e r e d i n t o a n a p p r o p r i a t e c e l l i n t h e t a b l e of
corresponding h e a r t r a t e s ,
a c t u a l oxygen c o s t of
% V02max v a l u e s
(from r e g r e s s i o n ) and
t h e work r a t e (from c a l c u l a t i o n ) .
Maximum o x y g e n u p t a k e p r e d i c t i v e t a b l e s w e r e t h e n
constructed from t r a i n e d c o r e group d a t a (nt15),
untrained core
g r o u p d a t a ( n = 1 0 ) , a s w e l l a s a t h i r d t a b l e which combined d a t a
from b o t h core groups (n=25).
3.9
C o n s t r u c t i o n of
L i n e Nomonram
A nomogram t o p r e d i c t V02max f r o m s u b m a x i m a l h e a r t r a t e a n d
o x y g e n u p t a k e s d u r i n g s u b m a x i m a l b i c y c l e e r g o m e t e r w o r k may b e
c o n s t r u c t e d w i t h a h e a r t r a t e ( o r d e l t a h e a r t r a t e ) s c a l e on t h e
l e f t s i d e and a 0 2 c o s t o r i o 2 / w o r k r a t e s c a l e on t h e r i g h t .
m i d d l e s c a l e shows p r e d i c t e d io2rnax v a l u e s .
A
The h e a r t r a t e
r e s p o n s e t o a g i v e n submaximal work r a t e i s l o c a t e d on t h e h e a r t
r a t e s c a l e ( l e f t ) and a l i g n e d w i t h t h e c o r r e s p o n d i n g work r a t e
s c a l e ( r i g h t ) a n d t h e p r e d i c t e d to2rnax r e a d f r o m t h e m i d d l e
scale.
These s c a l e s a r e a l i g n e d by l o c a t i n g i d e n t i c a l p r e d i c t e d
~ 0 2 m a xv a l u e s i n t h e r e l a t e d p r e d i c t i v e t a b l e s d r a w n u p
p r e v i o u s l y a n d i d e n t i f y i n g t h e c o o r d i n a t e s of
t e r m s of HR a n d WR.
i t s position in.
A t least three identical predicted ~02max
v a l u e s s h o u l d b e l o c a t e d w i t h i n t h e t a b l e a n d p a i r s of HR a n d WR
c o o r d i n a t e s (HR,WR) l o c a t e d .
E a c h p a i r of
coordinates a r e
c o n n e c t e d o n t h e a p p r o p r i a t e s c a l e s . T h e i n t e r s e c t i o n of
t h r e e l i n e s i s t h e n m a r k e d a n d g i v e n t h e v a l u e of
c o r r e s p o n d i n g p r e d i c t e d co2max.
I n t h i s way,
the
the
t h e o r i e n t a t i o n of
t h e p r e d i c t i v e V02max l i n e may b e d e t e r m i n e d .
T h i s m e t h o d w a s u s e d t o c o n s t r u c t nomograms u s i n g e i t h e r
.
heart r a t e or d e l t a heart rate/V02 relationships,
respectively.
3.10
.
Performance of S u b m a x i m a l P r o t o c o l ----t o P r e d i c t V02max
-
D u r i n g t h e p e r f o r m a n c e of a s u b m a x i m a l b i c y c l e e r g o m e t e r
t e s t , t h e only measures recorded a r e h e a r t r a t e responses t o
p a r t i c u l a r s u b m a x i m a l work r a t e s .
I t i s of
utmost importance,
Oxygen u p t a k e i s n o t measured.
therefore,
t h a t t h e work r a t e
p r o t o c o l performed d u r i n g t h e submaximal t e s t i s i d e n t i c a l t o
t h a t from which t h e d a t a used t o c o n s t r u c t t h e p r e d i c t i v e
nomogram a n d a s s o c i a t e d t a b l e w e r e o b t a i n e d .
t e s t , w o r k w a s p e r f o r m e d a t a p e d a l r a t e of
p r o t o c o l b e g a n w i t h 5 m i n u t e s of
I n the present
90 rpm.
The work
u n l o a d e d p e d a l l i n g a n d was
c o n t i n u o u s l y i n c r e m e n t e d e v e r y 3 m i n u t e s by 3 0 0 kpm-min'l
a h e a r t r a t e of
1 5 0 t o 160 b * m i n - l w a s a t t a i n e d .
until
The f i n a l w o r k
r a t e which e l i c i t e d t h i s h e a r t r a t e w a s r e c o r d e d and t h e t e s t
c o m p l e t e d w i t h 3 m i n u t e s of u n l o a d e d p e d a l l i n g t o a l l o w f o r
recovery.
The h e a r t r a t e i d e n t i f i e d a s t h e u n l o a d e d p e d a l l i n g h e a r t
r a t e w a s t h e v a l u e r e c o r d e d d u r i n g t h e f i f t h m i n u t e of
unloaded p e d a l l i n g period.
the
T h i s h e a r t r a t e was s u b t r a c t e d f r o m
t h e h e a r t r a t e d u r i n g t h e t h i r d m i n u t e of
t o give a d e l t a heart r a t e value.
t h e f i n a l work p e r i o d
The d e l t a h e a r t r a t e a n d
r e l a t e d work r a t e w e r e t h e n l o c a t e d i n t h e a p p r o p r i a t e a g e , s e x
a n d f i t n e s s g r o u p e d p r e d i c t i v e t a b l e s a n d a n e s t i m a t e of v o 2 m a x
made.
I f t h e l i n e nomogram w a s u s e d ,
the d e l t a h e a r t r a t e and
Go2
o r 0 2 cost/WR w e r e l o c a t e d a n d a l i n e d r a w n t o c o n n e c t t h e t w o
points.
The p o i n t a t w h i c h t h i s l i n e i n t e r s e c t e d t h e c e n t r a l
l i n e w a s t h e p r e d i c t e d V02max.
-
3.1 1 S u b m a x i m a l T e s t R e s p o n s e
H e a r t r a t e r e s p o n s e s t o submaximal work r a t e s p r o v i d e d t h e
b a s i s f o r d i s t i n g u i s h i n g between u n t r a i n e d and t r a i n e d
individuals.
For a g i v e n submaximal work r a t e ,
a trained
i n d i v i d u a l w i l l have a c o n s i s t e n t l y lower h e a r t r a t e response
than an untrained individual.
The d e l t a h e a r t r a t e w i l l a l s o b e
l o w e r f o r t h e same s u b m a x i m a l w o r k r a t e .
The d i f f e r e n c e i n HR/WR
r e l a t i o n s h i p between t r a i n e d and
u n t r a i n e d i n d i v i d u a l s e n a b l e d new i n d i v i d u a l s t o b e s e p a r a t e d
i n t o t r a i n e d o r u n t r a i n e d c a t e g o r i e s f o l l o w i n g c o m p l e t i o n of
s p e c i f i c submaximal p r o t o c o l .
the
T h e d e l t a h e a ~ tr a t e / d e l t a w o r k .
r a t e r e l a t i o n s h i p was d e t e r m i n e d f r o m c o r e d a t a a n d a m a s t e r
graph constructed.
D u r i n g p e r f o r m a n c e of
submaximal p r e d i c t i v e work p r o t o c o l ,
the well-defined
heart r a t e responses t o
submaximal b i c y c l e work r a t e w e r e p l o t t e d on t h e g r a p h and t h e
r e s u l t i n g r e g r e s s i o n l i n e found t o be c l o s e r t o e i t h e r t h e
trained or untrained regression lines.
From t h i s p r o c e s s ,
the
a p p r o p r i a t e t a b l e a n d r e l a t e d nomogram w a s s e l e c t e d a n d t h e
.
V02max p r e d i c t e d .
3.12 P r e d i c t i o n of M a x i m a l
-
3.12.1
Oxygen U p t a k e
Cross-Validation
Maximal oxygen u p t a k e was p r e d i c t e d f r o m t h e a p p r o p r i a t e
t a b l e s f o r u n t r a i n e d (1115)
and t r a i n e d (n=5) i n d i v i d u a l s w i t h i n
t h e v a l i d i t y groups and compared t o d i r e c t l y measured maximal
oxygen u p t a k e v a l u e s .
P r e d i c t i o n s of V02max w e r e a l s o made f o r
e a c h v a l i d i t y g r o u p member u s i n g t h e nomogram c o n s t r u c t e d f r o m
a l l c o r e d a t a (n=25). H e a r t r a t e v a l u e s were t h o s e measured a t
900 a n d 1 5 0 0 kpm*min'l
respectively.
f o r u n t r a i n e d and t r a i n e d s u b j e c t s ,
Maximal oxygen u p t a k e was a l s o p r e d i c t e d f o r t h e
m o d e r a t e g r o u p ( n = 4 ) u s i n g t h e t r a i n e d p r e d i c t i v e nomogram.
Regression correlation coefficients w e r e calculated f o r observed
602max v s .
p r e d i c t e d Go2rnax. P r e d i c t e d Go2max f r o m t h e
Astrand-Ryhming
oxygen u p t a k e .
nomogram w a s a l s o c o m p a r e d t o o b s e r v e , d m a x i m a l
The t w o c o r r e l a t i o n c o e f f i c i e n t s w e r e t h e n
compared f o r a s i g n i f i c a n t d i f f e r e n c e u s i n g F i s h e r ' s
a s d e s c r i b e d by K l e i n b a u m a n d Kupper
(1978).
Z statistic,
3.13 Kinetics
P
I n o r d e r t o u n d e r s t a n d t h e r e l a t i o n s h i p between oxygen
uptake and h e a r t r a t e ,
t h r e e u n d e r l y i n g r e l a t i b n s h i p s must be
c l e a r l y u n d e r s t o o d . T h e s e i n c l u d e t h e r e l a t i o n s h i p s between work
r a t e and t i m e , oxygen u p t a k e and t i m e ,
A systems a n a l y s i s approach,
and h e a r t r a t e and t i m e .
a s o u t l i n e d b y Wolf
t o c l a r i f y these relationships.
(1979), helped
The s y s t e m u n d e r s t u d y was t h e
c a r d i o v a s c u l a r s y s t e m , t h e i n p u t was t h e work r a t e a n d t h e
o u t p u t was any c a r d i o v a s c u l a r m e a s u r e ,
oxygen u p t a k e o r h e a r t r a t e .
i n t h i s case either
I f work r a t e , w h i c h a c t e d a s a
f o r c i n g f u n c t i o n , w a s made t o v a r y a s a s t e p f u n c t i o n ,
oxygen
u p t a k e a n d h e a r t r a t e r e s p o n d e d i n a manner a s shown i n F i g u r e
9a.
If,
on t h e o t h e r h a n d , w o r k r a t e i n c r e a s e d c o n t i n u o u s l y a s a
ramp f u n c t i o n ,
oxygen u p t a k e and h e a r t r a t e -responded
d i f f e r e n t l y a s s h o w n i n F i g u r e 9b.
constant,
T
,
I n each case, the t i m e
represented t h e time required f o r the
cardiovascular variable t o achieve approximately two-thirds
of
i t s maximum v a l u e .
Hypothesized r e l a t i o n s h i p s between oxygen u p t a k e and h e a r t
r a t e r e s u l t i n g f r o m ramp a n d s t e p work r a t e f o r c i n g f u n c t i o n s
a r e s h o w n i n F i g u r e 1 0 . Work r a t e h a s b e e n r e p l a c e d by t i m e i n
this figure.
non-linear
When b o t h o x y g e n u p t a k e a n d h e a r t r a t e r e s p o n d i n a
fashion with similar t i m e constants,
the r e s u l t i n g
oxygen u p t a k e / h e a r t r a t e r e l a t i o n s h i p would b e l i n e a r ,
a s shown
i n F i g u r e 10a. I f e i t h e r oxygen u p t a k e o r h e a r t r a t e responded
i n a l i n e a r manner,
non-linear,
t h e r e s u l t i n g r e l a t i o n s h i p would b e
a s shown i n F i g u r e l o b .
If
the time constants f o r
t h e r e l a t i o n s h i p s between oxygen u p t a k e and t i m e and h e a r t r a t e
and t i m e were s i g n i f i c a n t l y d i f f e r e n t ,
t h e r e s u l t i n g oxygen
u p t a k e a n d h e a r t r a t e r e l a t i o n s h i p was h y p o t h e s i z e d t o b e
non-linear
a s s h o w n i n F i g u r e 1Oc. A n o n - l i n e a r ,
exponential
r e l a t i o n s h i p b e t w e e n o x y g e n u p t a k e a n d h e a r t r a t e may,
therefore,
a r i s e f r o m t w o d i f f e r e n t t y p e s of
oxygen u p t a k e l h e a r t
r a t e responses.
The k i n e t i c s of
t h e oxygen u p t a k e l w o r k r a t e r e l a t i o n s h i p
d u r i n g t h e p e r f o r m a n c e of
t h e maximum ramp p r o t o c o l s w e r e
e x a m i n e d q u a l i t a t i v e l y a n d t h e g e n e r a l s h a p e of
t h e curves were
d e s c r i b e d f o r two t r a i n e d s u b j e c t s a n d one u n t r a i n e d s u b j e c t .
The r e l a t i o n s h i p s b e t w e e n d e l t a h e a r t r a t e a n d w o r k r a t e f o r t h e
same s u b j e c t s were e x a m i n e d i n a s i m i l a r f a s h i o n .
u1
INPUT
Work Rate
FORCl NG
FUNCTION
PATTERN
I
,OUTPUT
>Oxygen Uptake
Heart Rate
PATTERN
EQUATION
A.
STEP
B.
RAMP
F i g u r e 9: R e l a t i o n s h i p between oxygen u p t a k e and time
w i t h s t e p o r ramp i n c r e a s e s i n w o r k r a t e .
F i g u r e 10: V a r i a t i o n s i n t h e r e l a t i o n s h i p s between oxygen u p t a k e
and h e a r t r a t e w i t h v a r i a t i o n s
i n work r a t e .
3.13.1
C a l c u l a t i o n of
Time C o n s t a n t s
Time c o n s t a n t s f o r t h e r e l a t i o n s h i p s b e t w e e n o x y g e n u p t a k e
and t i m e ,
and d e l t a h e a r t r a t e and t i m e , were c a l c u l a t e d f o r
b o t h t h e u n t r a i n e d a n d t r a i n e d g r o u p s a t t h e same a b s o l u t e w o r k
r a t e of
6 0 0 kpm*rnin'l.
T h e t i m e c o n s t a n t s of
t h e same
r e l a t i o n s h i p s w e r e a l s o c a l c u l a t e d f r o m work r a t e s r e q u i r i n g t h e
same p e r c e n t a g e of
maximum o x y g e n u p t a k e ,
i n t h i s case
a p p r o x i m a t e l y 4 5 % of b o 2 m a x f o r t r a i n e d a n d u n t r a i n e d g r o u p
d a t a . T h e a n a l y s i s of
whether a non-linear
t i m e c o n s t a n t s was c o n d u c t e d t o a s s e s s
r e l a t i o n s h i p between oxygen u p t a k e and
d e l t a h e a r t r a t e was t h e r e s u l t of
different t i m e constants f o r
oxygen u p t a k e and t i m e and h e a r t r a t e and t i m e ,
e f f e c t s of
d i f f e r e n c e s i n t h e f o r m of
or due t o the
t h e a p p l i e d work r a t e .
4.
Results
4.1 Group
-
4.1.1
Data
Peak Values
Maximal v a l u e s d e t e r m i n e d i n t h i s s t u d y w e r e m a x i m a l o n l y
i n t e r m s of
t h e a p p a r a t u s u p o n w h i c h t h e w o r k was p e r f o r m e d ,
t h i s case the b i c y c l e ergometer.
described previously,
I t h a s been d e t e r m i n e d ,
in
as
t h a t oxygen u p t a k e v a l u e s measured on a
t r e a d m i l l w e r e 4 t o 1 8 % h i g h e r t h a n t h o s e d e t e r m i n e d on a
bicycle ergometer.
T h e r e f o r e , t h e h i g h e s t v a l u e s measured i n
t h i s i n v e s t i g a t i o n w e r e more c o r r e c t l y r e f e r r e d t o a s " p e a k "
values.
The t e r m s " p e a k " a n d " m a x i m a l " w e r e ,
theref o r e , used
interchangeably.
Mean v a l u e s of a g e a n d w e i g h t , a n d p e a k mean v a l u e s of
o x y g e n u p t a k e ( t o 2 m a x , STPD), h e a r t r a t e ( H R ) , d e l t a h e a r t r a t e
(AHR), m i n u t e v e n t i l a t i o n (VE, BTPS), work r a t e ( W R ) a n d b l o o d
l a c t a t e c o n c e n t r a t i o n (mM) a r e p r e s e n t e d i n T a b l e I V .
P e a k work
r a t e values f o r t r a i n e d i n d i v i d u a l s a r e expressed i n minutes
c o m p l e t e d a t a w o r k r a t e of
2 4 0 0 kpm*min'l.
For example, 2400(4)
means t h a t t h e s u b j e c t c o m p l e t e d f o u r m i n u t e s a t 2 4 0 0
kpm*min'l.
S t a n d a r d d e v i a t i o n s a r e r e c o r d e d i n m i n u t e s a t 2400
kpm-min'l.
Peak work r a t e s f o r u n t r a i n e d i n d i v i d u a l s a r e
e x p r e s s e d a s t h e h i g h e s t work r a t e i n kpm*min"l completed f o r
0.5
minutes.
P e a k v a l u e s of maximum o x y g e n u p t a k e , v e n t i l a t i o n a n d
l a c t a t e concentration recorded f o r trained individuals agreed
w e l l w i t h t h o s e p u b l i s h e d f o r c o m p e t i t i v e c y c l i s t s (Burke et
al.,
-
--
1977; Hagberg e t a l . ,
et al.,
-
1978; Burke et al.,
1981; Verstappen
1982).
S t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e s ( ~ ( 0 . 0 5 ) were found
b e t w e e n t r a i n e d a n d u n t r a i n e d c o r e g r o u p s f o r mean m a x i m a l
o x y g e n u p t a k e a n d m e a n maximum d e l t a h e a r t r a t e v a l u e s .
expected,
t h e <02max ( 1 - m i n - l ) was h i g h e r i n t h e t r a i n e d c o r e
group 5.0120.38
of
3.42f
As
0.29
(SD) c o m p a r e d t o t h e u n t r a i n e d c o r e g r o u p v a l u e
(SD).
Mean d e l t a h e a r t r a t e s w e r e lO9.O& 1 0 . 0
and 91.0f.8.0
(SD) f o r t h e t r a i n e d a n d u n t r a i n e d g r o u p s ,
respectively.
S i g n i f i c a n t d i f f e r e n c e s were a l s o recorded f o r
maximum v e n t i l a t i o n a n d maximum w o r k r a t e c o m p l e t e d .
(SD)
Table I V :
(
1
Lactate
(mM)
P h y s i c a l C h a r a c t e r i s t i c s and Peak
Cardiorespiratory Variables f o r
,
T r a i n e d ( T ) a n d U n t ' r a i n e d (UNT)
Core and V a l i d a t i o n ( v a l i d ) Groups.
1
(
1
1
13.60
21.67
13.50
k1.60
1
1
13.32
k2.76
j
1
13.50
32.11
....................................................
V a l u e s a r e means
*
+
s t a n d a r d ' d e v i a t i o n s of
1
1
t h e mean ( S D ) .
S i g n i f i c a n t d i f f e r e n c e b e t w e e n T c o r e a n d UNTcore,
(p < 0.05).
4.1.2
Submaximal oxygen u p t a k e a n d d e l t a h e a r t r a t e
Mean v a l u e s of
d u r i n g c o m p l e t i o n of
oxygen u p t a k e and d e l t a h e a r t r a t e o b t a i n e d
s u b m a x i m a l w o r k P r o t o c o l s I A a n d IB f o r
u n t r a i n e d and t r a i n e d c o r e and v a l i d i t y groups a r e presented i n
Table V.
A s i g n i f i c a n t d i f f e r e n c e (p<0.05) was d e t e r m i n e d
b e t w e e n u n t r a i n e d a n d t r a i n e d g r o u p mean d e l t a h e a r t r a t e d a t a
a t t h e s u b m a x i m a l work r a t e s of
3 0 0 , 6 0 0 a n d 900 kpm*min'l.
.
Table V:
Mean v a l u e s of o x y g e n u p t a k e (V02 ) a n d
d e l t a h e a r t r a t e ( AHR) f o r t r a i n e d a n d
u n t r a i n e d groups f o r a t 1 submaximal
w o r k r a t e s c o m p l e t e d . V02
values a r e i n
u n i t s of l - m i n ' l , DHR v a l u e s a r e i n b*miS1
a n d WR i n kpm*rnin'l.
...................................................
Trained
Core
Valid
Work
I
Rate
I
(kpm-mid)1
ln=36
0
vo I 1-01
(l*miri') I 2 0 . 0 9
I
(
Untrained
Valid
Core
I
1
I
I
...c o n t 'd
Table V (cont'd)
V a l u e s a r e m e a n s 2 s t a n d a r d d e v i a t i o n s (SD).
*
S i g n i f i c a n t d i f f e r e n c e b e t w e e n T c o r e a n d UNTcore
(p<0.05).
4.2 R e s t i n g and Unloaded
-
P e d a l l i n g Heart Rate values
Mean r e s t i n g h e a r t r a t e a n d m e a n u n l o a d e d p e d a l l i n g h e a r t
r a t e v a l u e s f o r t h e t r a i n e d and u n t r a i n e d groups a r e presented
i n Table V I .
Table V I :
Mean R e s t i n g a n d U n l o a d e d P e d a l l i n g
H e a r t Rate Values f o r T r a i n e d and
U n t r a i n e d Group Data.
...........................................
I
I
I
I- - - - - - - - - - - - - - - - - - - - - -
Mean R e s t i n g
Heart Rate
(b-min" )
Mean U n l o a d e d
Pedalling Heart
R a t e (bornin-' )
I
(n=20)
1
I
I
1 Trained
I
1
71.0
84.0
V a l u e s a r e means +_ s t a n d a r d d e v i a t i o n s ( SD)
I
4.3 Oxygen
-
4.3.1
-
Uptake and Delta Heart Rate R e l a t i o n s h i p
Group Oxygen u p t a k e a n d d e l t a h e a r t r a t e d a t a
The r e l a t i o n s h i p b e t w e e n o x y g e n u p t a k e a n d d e l t a h e a r t r a t e
f o r t h e t r a i n e d c o r e g r o u p ( n = 1 5 ) i s s h o w n i n F i g u r e 11. F i g u r e
12 s h o w s t h e r e l a t i o n s h i p b e t w e e n o x y g e n u p t a k e a n d h e a r t r a t e
f o r t h e u n t r a i n e d c o r e g r o u p ( n = 1 0 ) . V i s u a l i n s p e c t i o n of
s e t s of
both
c o r e group d a t a r e v e a l e d a l i n e a r r e l a t i o n s h i p between
oxygen u p t a k e and d e l t a h e a r t r a t e .
Oxygen Uptake
VS.
Delta Heart Rate
Tralned Core Group
'
n = 15
0
0
I
1
I
I
20
40
60
80
-
I
I
1
100
120
140
Delta Heart Rate (beats minub-')
F i g u r e 11 : S h o w i n g t h e r e l a t i o n s h i p b e t w e e n mean o x y g e n u p t a k e
( o r d i n a t e ) a n d mean d e l t a h e a r t r a t e ( a b s c i s s a )
f o r t r a i n e d m a l e s 2 0 t o 29 y e a r s
106
(n=15).
Oxygen Uptake
VS.
Delta Heart Rate
A
A A
AA
A
A
A
A A A
AAM
A
A A A ALL
A A
A
M A &
bh bh
A M bh
A AA A AA
A
A WAAAAA
AA A
AAA
A
A A
M A A A
A M
A
AAimmA
A A
M M
&Lobomfa
A
A A A
bh -A
A A
A A A
A AAAodllA
A
Anmomnr\
A
A
AA
a&lAAAA
A
A
M A A A
A
A
A
A
A A
M
&A
A
A
r\/\MnA
A
A
Untrahed Care Group
I
1
I
I
1
20
40
60
80
100
Delta Heart Rate (beak
a
minute-')
F i g u r e 12 : S h o w i n g t h e r e l a t i o n s h i p b e t w e e n mean o x y g e n u p t a k e
( o r d i n a t e ) a n d mean d e l t a h e a r t r a t e ( a b s c i s s a )
f o r u n t r a i n e d m a l e s 2 0 t o 29 y e a r s
(n=lO).
Oxygen u p t a k e a n d d e l t a h e a r t r a t e d a t a f o r t h e t r a i n e d a n d
u n t r a i n e d groups were analysed s t a t i s t i c a l l y t o determine which
of
the t h r e e chosen functions described t h e r e l a t i o n s h i p best.
The t h r e e f u n c t i o n s f i t t e d t o t h e d a t a w e r e a l i n e a r , a n
e x p o n e n t i a l and a q u a d r a t i c f u n c t i o n .
The s p e c i f i c e x p o n e n t i a l
f u n c t i o n f i t t e d was t h a t d e s c r i b e d by E q u a t i o n 1 a s f o l l o w s ;
f ( x ) = a - e kx
( E q u a t i o n 1)
where f ( x ) = oxygen u p t a k e ,
x = delta heart rate,
a = a c o n s t a n t , and
k = a r a t e constant.
T a b l e VII l i s t s t h e mean s q u a r e r e s i d u a l (MSR) v a l u e s d e t e r m i n e d
from l i n e a r , e x p o n e n t i a l and q u a d r a t i c f u n c t i o n f i t t i n g .
T a b l e VII: Mean S q u a r e R e s i d u a l s d e t e r m i n e d
by c u r v e f i t t i n g w i t h l i n e a r ,
e x p o n e n t i a l and q u a d r a t i c f u n c t i o n s .
I
I
( Linear
I M S R
I Tvalid
i
1 0.1756
I
I
I---------[-------(
(n=5)
(
UNTcore
I (n=lO)
1
)
(
1
I
UNTvalidl
0.1028
(Exponen ( Q u a d r a t i c
(
MSR
I M S R
1
I
4.3.2
E x a m i n a t i o n of R e s i d u a l s
Residual values,
or t h e d i f f e r e n c e s between t h e observed
and p r e d i c t e d oxygen u p t a k e m e a s u r e s , w e r e examined t o check f o r
a n y v i o l a t i o n of
t h e a s s u m p t i o n s a s s o c i a t e d w i t h a n a l y s i s of
variance a s outlined previously.
F i g u r e s 1 3 a n d 1 4 show t h e
r e s i d u a l v a l u e s p l o t t e d a g a i n s t t h e p r e d i c t e d oxygen u p t a k e
v a l u e s a s d e t e r m i n e d by t h e l i n e a r r e g r e s s i o n e q u a t i o n
d e s c r i b i n g t h e r e l a t i o n s h i p between oxygen u p t a k e and d e l t a
h e a r t r a t e f o r t r a i n e d a n d u n t r a i n e d g r o u p mean d a t a ,
r e s p e c t i v e l y . ' F i g u r e s 1 5 a n d 16 i l l u s t r a t e t h e r e s i d u a l s
d e t e r m i n e d when t h e e x p o n e n t i a l e q u a t i o n w a s f i t t e d t o t h e same
t r a i n e d and u n t r a i n e d d a t a .
V i s u a l i n s p e c t i o n of
the residuals
f a i l e d t o r e v e a l any s y s t e m a t i c t r e n d s i n t h e d a t a .
E x a m i n a t i o n of
t h e MSR showed t h a t b o t h t h e l i n e a r a n d
q u a d r a t i c f u n c t i o n s r e s u l t e d i n c o n s i s t e n t l y s m a l l e r mean s q u a r e
residual values,
and t h e r e f o r e provided a b e t t e r f i t ,
exponential function.
than the
A l i n e a r f u n c t i o n was c h o s e n t o d e s c r i b e
t h e r e l a t i o n s h i p between oxygen u p t a k e and d e l t a h e a r t r a t e .
o r i g i n a l e x p o n e n t i a l h y p o t h e s i s was abandoned.
uptakeldelta heart r a t e relationships best.
The
Table V I I I l i s t s
t h e l i n e a r r e g r e s s i o n s d e t e r m i n e d t o d e s c r i b e t h e oxygen
/
FRECJCTD
F i g u r e 1 3 : E x a m i n a t i o n of r e s i d u a l s b e t w e e n a c t u a l v a l u e s
of o x y g e n u p t a k e a n d t h o s e p r e d i c t e d f r o m t h e
l i n e a r p l o t of oxygen u p t a k e a g a i n s t d e l t a
h e a r t r a t e f o r t r a i n e d s u b j e c t s 2 0 t o 29
y e a r s (11115).
F i g u r e 1 4 : E x a m i n a t i o n of r e s i d u a l s b e t w e e n a c t u a l v a l u e s of
oxygen u p t a k e and t h o s e p r e d i c t e d from t h e l i n e a r
p l o t of oxygen u p t a k e a g a i n s t d e l t a h e a r t r a t e
f o r u n t r a i n e d s u b j e c t s 2 0 t o 29 y e a r s ( n = l O ) .
F i g u r e 1 5 : E x a m i n a t i o n of r e s i d u a l s b e t w e e n a c t u a l v a l u e s
of o x y g e n u p t a k e a n d t h o s e p r e d i c t e d f r o m t h e
e x p o n e n t i a l p l o t of oxygen u p t a k e a g a i n s t d e l t a
h e a r t r a t e f o r t r a i n e d s u b j e c t s 2 0 t o 29
y e a r s (11-15).
F i g u r e 1 6 : E x a m i n a t i o n of r e s i d u a l s b e t w e e n a c t u a l v a l u e s
of o x y g e n u p t a k e a n d t h o s e p r e d i c t e d f r o m t h e
e x p o n e n t i a l p l o t of oxygen u p t a k e a g a i n s t d e l t a
h e a r t r a t e f o r u n t r a i n e d s u b j e c t s 2 0 t o 29
years (n=10).
T a b l e VIII: S h o w i n g l i n e a r r e g r e s s i o n e q u a t i o n s
f o r g r o u p s of t r a i n e d ( T ) , u n t r a i n e d
(UNT) a n d m o d e r a t e l y (MOD) t r a i n e d
m a l e s 2 0 t o 29 y e a r s f o r t h e r e l a t i o n
between oxygen u p t a k e ( o r d i n a t e )
and d e l t a h e a r t r a t e ( a b s c i s s a ) .
..................................
I Group
I
I ---------I
I Tcore
) .(n=15)
I
1 Tvalid
(
(n-5)
I
(
Linear regression
Equation
.......................
1
1
I
Yz(0.03577)X
I
Y=(0.03178)X
I
+
1.010
+
1.024
I
I
I
I
)
I
I
1
F i g u r e 17 shows b o t h t h e t r a i n e d a n d u n t r a i n e d l i n e a r
r e l a t i o n s h i p s determined t o e x i s t between oxygen u p t a k e and
delta heart rate.
included.
The a p p r o p r i a t e r e g r e s s i o n e q u a t i o n s a r e a l s o
S l o p e s of
oxygen u p t a k e vs.
d e l t a h e a r t r a t e between
untrained and t r a i n e d core groups d i f f e r e d s i g n i f i c a n t l y
(p<0.05)
a s d e t e r m i n e d by a small s a m p l e t - t e s t .
Oxygen Uptake
vs.
Delta Heart Rate
I
/
Trained (n=15)
20
40
60
-
80
100
Delta Heart Rate ( beats minute-')
,
F i g u r e 1 7 : L i n e a r r e g r e s s i o n of
t h e r e l a t i o n s h i p between
oxygen u p t a k e and d e l t a h e a r t r a t e f o r t r a i n e d
and u n t r a i n e d c o r e g r o u p s .
d0
4.3.3
Test-Retest
Reliability
E x a m i n a t i o n of
t h e s l o p e s of
the linear regression
e q u a t i o n s d e s c r i b i n g t h e oxygen u p t a k e / d e l t a h e a r t r a t e
r e l a t i o n s h i p f o r e a c h t r i a l r e v e a l e d no s i g n i f i c a n t d i f f e r e n c e
(p<0.05).
T a b l e I X shows t h e r e l a t e d F r a t i o s a n d p r o b a b i l i t y
(p) values.
Test-Retest
Table I X :
Group
,
I
I---------\------------\--------I
1 Tcore
1 (n=l5)
I
I
(
I
1
1
F ratio
I
I
I
.I
1
1
2.8674
2.4336
I
I
I----------------------I---------
I
I
(
1
I
1
I
va valid(
1 UNTcore
1 (n-10)
I
I
I
(n=5)
I
I
I
1
1
I
I
( p value 1
I
I
Tvalid
(n-5)
Reliability
1
I
I
1
I
0.057-5
I
0.0897
0.4934
I
1
I
I
1
I
I
I
I
0.5158
(
I
I
1
1
I
I
1
I
0.4734
1
1
I
0.4842
................................
I
1
I
I
4.3.4
I n d i v i d u a l i o 2 / d e l t a HR r e l a t i o n s h i p s
While t h e r e l a t i o n s h i p between oxygen u p t a k e and d e l t a
h e a r t r a t e f o r b o t h t r a i n e d a n d u n t r a i n e d g r o u p mean d a t a w a s
determined t o be l i n e a r ,
a few i n d i v i d u a l s w i t h i n e a c h g r o u p
exhibited the hypothesized exponential relationship.
F i g u r e s 18
a n d 19 s h o w t h e r e l a t i o n s h i p s b e t w e e n o x y g e n u p t a k e a n d d e l t a
h e a r t r a t e f o r a t r a i n e d and a n u n t r a i n e d i n d i v i d u a l and t h e
non-linear
t r e n d a t n e a r maximum r a t e s of
work.
Oxygen Uptake
VS.
Delta Heart Rate.
A
I
0
1
20
I
40
DeUn He&
1
60
1
80
1
100
I
120
Rate ( beats minute-')
F i g u r e 18 : Showing t h e h y p o t h e s i z e d e x p o n e n t i a l r e l a t i o n s h i p
b e t w e e n o x y g e n u p t a k e and d e l t a h e a r t r a t e f o r
an i n d i v i d u a l t r a i n e d m a l e s u b j e c t .
Oxygen Uptake
VS.
Delta Heart Rate
UntrainedSubject
b
I
1
1
1
I
20
40
60
80
100
Deltu Heart Rate ( beak minute-')
F i g u r e 19 : S h o w i n g t h e h y p o t h e s i z e d e x p o n e n t i a l r e l a t i o n s h i p
between oxygen u p t a k e and d e l t a h e a r t r a t e f o r
an i n d i v i d u a l u n t r a i n e d male s u b j e c t
.
4.4 R e l a t i o n s h i p
-
b e t w e e n P e r c e n t Maximum Oxygen U p t a k e
and
Heart
Rate
4.4.1
R e c o n s t r u c t i o n of A s t r a n d - R y h m i n g
In this investigation,
Nomogram
t h e r e l a t i o n s h i p b e t w e e n mean o x y g e n
u p t a k e a n d mean d e l t a h e a r t r a t e w a s f o u n d t o b e e x p r e s s e d m o s t
a c c u r a t e l y by a l i n e a r r e l a t i o n s h i p .
The s u b j e c t s e x a m i n e d i n
t h e study w e r e s i m i l a r i n age and g e n e r a l a c t i v i t y l e v e l a s
t h o s e examined by A s t r a n d
(1952).
For t h e s e reasons,
a nomo-gram
was c o n s t r u c t e d u s i n g t h e same m e t h o d a s t h a t u s e d b y A s t r a n d
a n d Ryhming i n t h e i r nomogram ( 1 9 5 4 ) .
This involved expressing
e a c h i n d i v i d u a l o x y g e n u p t a k e v a l u e a s a p e r c e n t a g e of
individual's
maximum o x y g e n u p t a k e ( % V02max).
the
Data were t h e n
p l o t t e d a s p e r c e n t o f maximum o x y g e n u p t a k e v e r s u s h e a r t r a t e .
The o x y g e n c o s t of e a c h s u b m a x i m a l w o r k r a t e w a s d e t e r m i n e d
a n d f o u n d t o a p p r o x i m a t e c l o s e l y t h e o x y g e n c o s t of w o r k
d e t e r m i n e d t h e o r e t i c a l l y a s shown i n T a b l e X.
c a l c u l a t i o n of
/
o x y g e n c o s t i s s h o w n i n A p p e n d i x C. O x y g e n
uptakes achieved were,
values.
The t h e o r e t i c a l
t h e r e f o r e , considered t o be steady s t a t e
No s i g n i f i c a n t d i f f e r e n c e w a s f o u n d t o e x i s t b e t w e e n t h e
oxygen u p t a k e measured f o r t r a i n e d and u n t r a i n e d groups and t h e
t h e o r e t i c a l c o s t o f p e r f o r m i n g t h e submaximum w o r k r a t e s of
900,
1 2 0 0 a n d 1 5 0 0 kpm*min'l.
600,
A s i g n i f i c a n t d i f f e r e n c e was f o u n d
t o e x i s t a t t h e submaximum w o r k r a t e of
3 0 0 kpm*min'l.
T h i s may
h a v e b e e n r e l a t e d t o a d e c r e a s e d e f f i c i e n c y when p e d a l l i n g a t 90
rpm a t a l o w w o r k r a t e f o r b o t h u n t r a i n e d a n d t r a i n e d s u b j e c t s .
No s i g n i f i c a n t d i f f e r e n c e e x i s t e d , h o w e v e r ,
g r o u p s of
s u b j e c t s i n t e r m s of
Table X:
(
t h e o x y g e n c o s t . o f 300 kpm-min-1.
Showing t h e d i r e c t l y measured oxygen u p t a k e
a n d t h e o r e t i c a l l y c a l c u l a t e d o x y g e n c o s t of
p e r f o r m i n g submaximum s t e a d y s t a t e w o r k
( l i t e r 02min).
/
I
Group
between t h e two
1
Work r a t e (kpm
min-'
300
900
600
1
I--------
II- - - - - - - - - - - - - - - - - - - -
(Trained
( core
I (n=l5)
1
1.65
1 1.13
2.16
I kO.11
L0.13
L0.13
I---------I--------------------------------------1 Untrained 1
1.68
2.16
I core
1 1.23
( (n=lO)
( 20.16
kO.16
20.16
I------------------------------------------------(Theoret- )
1ical
I
[value
(
0.90*
1.50
2.10
)
1200
2.75
50.17
1500
3.27
k0.19
I
II
I
1
(
I
I
1
I
I
I
2.80
3.40
I
1
I .................................................
I
I
+ standard
(SD).
V a l u e s a r e means
*
d e v i a t i o n s of means
S i g n i f i c a n t d i f f e r e n c e between t h e o r e t i c a l l y
c a l c u l a t e d oxygen c o s t and d i r e c t l y measured
oxygen u p t a k e (p<0.05).
4.4.2
Data e x p r e s s e d a s % ~ 0 ~ m a x / ~ e R
a ar tte
D a t a w a s e x p r e s s e d a s % V02max a n d h e a r t r a t e r a t h e r t h a n
V02max a n d d e l t a h e a r t r a t e ,
Astrand's
nomogram.
V02max v s .
i n an attempt t o duplicate
F i g u r e s 2 0 a n d 2 1 show r a w d a t a p l o t s of
%
h e a r t r a t e f o r t r a i n e d and u n t r a i n e d groups,
respectively.
F i g u r e 22 s h o w s a g r a p h of
p l o t t e d a s % to2max v s .
t r a i n e d and u n t r a i n e d d a t a
heart rate.
I n addition,
this figure
shows s i m i l a r d a t a from A s t r a n d ' s
1952 s t u d y d e r i v e d f r o m h i s
d e t e r m i n a t i o n + t h a t h e a r t r a t e s of
128 b * m i n - l ,
195 bgmin-l
VOzmax,
154 b-min-l
and
r e q u i r e d oxygen u p t a k e s r e p r e s e n t i n g 5 0 , 70 a n d 100%
respectively.
T r a i n e d a n d u n t r a i n e d g r o u p mean d a t a w a s
a l s o combined i n t o one l a r g e r g r o u p a n d r e f e r r e d t o a s A l l c o r e
data.
A s e p a r a t e l i n e a r r e g r e s s i o n e q u a t i o n was a l s o d e r i v e d f o r
A l l c o r e d a t a a n d shown i n F i g u r e 22.
L i n e a r r e g r e s s i o n a n a l y s i s of
V02max v s .
0.05
of
h e a r t r a t e r e v e a l e d no s i g n i f i c a n t d i f f e r e n c e a t t h e
l e v e l of
s i g n i f i c a n c e between r e g r e s s i o n equations i n terms
slopes or intercepts.
o v e r l a p of
T h i s i s a p p a r e n t by t h e a l m o s t c o m p l e t e
r e g r e s s i o n e q u a t i o n s d e r i v e d f o r t r a i n e d and
untrained groups with Astrand's
regression equations,
residuals
the data expressed a s %
d a t a ( 1 9 5 2 ) . T a b l e X I shows t h e
c o r r e l a t i o n c o e f f i c i e n t s ( r ) , mean s q u a r e
(MSR) a n d s t a n d a r d e r r o r s of e s t i m a t e ( S E E S T ) f o r
t r a i n e d a n d u n t r a i n e d d a t a e x p r e s s e d a s % V02max v s .
heart rate
compared t o A s t r a n d ' s
original data.
Percent of Maximum Oxygen Uptake
VS.
Heart Rate
A
A
A~ M
Trclined Core Group
n=15
I
I
1
I
I
1
I
1
1
80
100
120
140
160
180
200
220
Heart Rote (beats minute-')
F i g u r e 20:
S h o w i n g t h e r e l a t i o n s h i p b e t w e e n % V02max a n d h e a r t
r a t e f o r t r a i n e d m a l e s 2 0 t o 29 y e a r s
(11x15).
Percent of Maximum Oxygen.Uptake
VS.
Heart Rate
"O
1
-
fY4muYlWA M
A
A M
AA A
A A A
b
A A
100
a
+
Q.
3
s
90-
A
80-
2
E
z3
m60
-
A
I
A
A
A
Y-
O
.+
c
a
59I
I
A~
A
%
e
A
20
80
A
Untrained Core Group
AilAA
f i ~
A
4
& A A
n = 10
A
A
1
1
1
I
I
I
I
100
120
140
160
180
200
220
Heart Rate (beats mhute-')
.
F i g u r e 2 1 : Showing t h e r e l a t i o n s h i p between % V02max and h e a r t
r a t e f o r u n t r a i n e d m a l e s 2 0 t o 29 y e a r s
(n=lO).
Percent of Maximum Oxygen Uptake
VS.
Heart Rate
Heart Rate ( beats minute-')
F i g u r e 2 2 : D a t a e x p r e s s e d a s % V02max v s .
heart rate for
t r a i n e d and u n t r a i n e d group data.
Astrand's
o r i g i n a l test group d a t a i s a l s o included.
Table X I :
1
Group
I
R e s u l t s of L i n e a r R e g r e s s i o n A n a l y s i s f o r
Trained and Untrained Core-and V a l i d i t y
G r o u p D a t a E x p r e s s e d a s % VO2max v s . H e a r t
Rate.
1
Regression Equation
I
1
I
r
I
MSR
I
I
1
UNTcore
I
I
I
1 ~ ~ ( 0 . 6 4 4 7 1 - ) x - 2 8 . 4 5 3 1 0 . 8 9 3 1 1 88.177
1
A l l core
1
I (n=25)
I
I
I
y=(0.67355)x-31.332
1 0.9187
I
1
1 SEEST
I
I
1
I
I
1 9.3903
1
1 85.519 1 9.2476
I
I
I
I
1
I
I
T a b l e X I 1 l i s t s t h e h e a r t r a t e s d e t e r m i n e d a t 50% V02max
70%
V O ~ m a xa n d 100% V02max f r o m A s t r a n d ( 1 9 5 2 ) a n d t h e p r e s e n t
i n v e s t i g a t i o n . Heart r a t e values from t h e p r e s e n t study have
been c a l c u l a t e d from t h e a p p r o p r i a t e r e g r e s s i o n e q u a t i o n and a r e
shown w i t h o u t c o r r e s p o n d i n g s t a n d a r d d e v i a t i o n s . No s i g n i f i c a n t
d i f f e r e n c e s (p<0.05) were d e t e r m i n e d t o e x i s t between h e a r t
r a t e s a t 5 0 , 70 o r 100% V02max.
T a b l e XII: Mean h e a r t r a t e v a l u e s ( b w m i n - l )
a t 50,
70 a n d 100 p e r c e n t o f maximum o x y g e n u p t a k e
a s d e t e r m i n e d by l i n e a r r e g r e s s i o n a n a l y s i s .
I
I
I
1
I
1
I
(
1
Astrand
(11x86)
Tcore
(n=15)
UNTcore
(n=lD)
................................................
T+UNT
(n=25)
1
I
50%
128
12 2
120
121
I
1
70%
154
153
1 50
150
I
100%
195
199
19 3
195
(
1
................................................
Data w e r e
I
I
t h e n u s e d t o c o n s t r u c t maximum o x y g e n u p t a k e
p r e d i c t i v e t a b l e s a n d c o r r e s p o n d i n g nomograms u s i n g % +o2max a n d
h e a r t r a t e f r o m t h e p r e s e n t s t u d y i n a method s i m i l a r t o t h a t
,
u s e d b y A s t r a n d a n d Ryhming ( 1 9 5 4 ) .
4.5 R e l a t i o n s h i p
-
4.5.1
between % V02max
- - and Delta
E x p r e s s i o n of
-
d a t a a s % V02max v s .
HR
Delta Heart Rate
D a t a were e x p r e s s e d a s % vo2max a n d d e l t a h e a r t r a t e i n a n
attempt t o d i f f e r e n t i a t e between t r a i n e d and u n t r a i n e d groups.
F i g u r e s 2 3 a n d 24 show raw d a t a e x p r e s s e d a s % +o2max v s .
delta
h e a r t r a t e and t h e r e l a t i o n s h i p e x i s t i n g f o r t r a i n e d and
untrained individuals.
G r o u p mean d a t a a n d t h e r e g r e s s i o n e q u a t i o n s p r o v i d i n g t h e
b e s t f i t a r e shown i n F i g u r e 2 5 f o r b o t h t r a i n e d a n d u n t r a i n e d
groups.
A n a l y s i s of
variance revealed a significant difference
( p < 0 . 0 5 ) b e t w e e n i n t e r c e p t s of
t r a i n e d and u n t r a i n e d groups,
the regression equations f o r
respectively.
Percent of Maximum Oxygen Uptake
VS.
Delta Heart Rate
Trained Core Group
n = 15
10
,'
I
I
I
1
I
1
1
0
20
40
60
80
100
120
140
Delta Heart Rate (beats minute-')
.
F i g u r e 2 3 : S h o w i n g t h e r e l a t i o n s h i p b e t w e e n % V02max a n d
d e l t a h e a r t r a t e f o r t r a i n e d m a l e s 2 0 t o 29
years
(n=l5).
Percent of Maximum Oxygen Uptake
VS.
Delta Heart Rate
100
u
+
a
r\r\r\/\MAAbWUA
A
A
&la
90
3
C
a?
80
m
li.
E
O
70
z
60
.-
x
0
r
y.
O
+
50
C
Untrained Core Group
a?
0
L
n = 10
40
30
20
0
20
40
60
80
Delta Heart Rate (beats minute-')
F i g u r e 2 4 : S h o w i n g t h e r e l a t i o n s h i p b e t w e e n % V02max a n d
d e l t a h e a r t r a t e f o r u n t r a i n e d m a l e s 2 0 t o 29
years
(n=10).
100
Percent of Maximum Oxygen Uptake
VS.
Delta Heart Rate
I Legend
c o n 1145
I
I Trained
Untrained c o n n=lO
I
. 1 0 All core n=25
Delta Heart Rate ( beats minute-')
Figure 25:
Showing r e g r e s s i o n e q u a t i o n s and c o r r e l a t i o n
c o e f f i c i e n t s f o r t r a i n e d and untrained males.
T a b l e X I 1 1 s h o w s t h e d e l t a h e a r t r a t e s a t 5 0 , 70 a n d 1 0 0 %
.
V02max.
A s i g n i f i c a n t d i f f e r e n c e (pC0.05)
was d e t e r m i n e d t o
e x i s t between t r a i n e d a n d u n t r a i n e d d e l t a h e a r t r a t e s a t 5 0 , 70
a n d 1 0 0 % V02max.
Maximum o x y g e n u p t a k e p r e d i c t i v e t a b l e s a n d
c o r r e s p o n d i n g nomograms w e r e c o n s t r u c t e d .
T a b l e X I I I : Mean d e l t a h e a r t r a t e s a t 5 0 ,
70 a n d 1 0 0 % +o2max d e t e r m i n e d
by l i n e a r r e g r e s s i o n a n a l y s i s .
I
I
I
% +
~ ~ m I a T~r a i n e d 1
[ D e l t a HR )
( ( b *minm1
) 1
UNTrained I
D e l t a HR
)
(b-min-')
1
4.6 P r e d i c t i o n of Maximum
-
Oxygen U p t a k e
Two s e p a r a t e maximum o x y g e n u p t a k e p r e d i c t i v e t a b l e s w e r e
c o n s t r u c t e d f r o m t h e r e l a t i o n s h i p b e t w e e n p e r c e n t maximum o x y g e n
u p t a k e and d e l t a h e a r t r a t e f o r t r a i n e d and u n t r a i n e d groups a s
outlined previously.
untrained
(n-5)
V a l i d i t y g r o u p s of
t r a i n e d (n=5) and
s u b j e c t s p e r f o r m e d t h e a p p r o p r i a t e submaximum
w o r k t e s t s a n d maximum o x y g e n u p t a k e w a s p r e d i c t e d f r o m t h e
c o r r e s p o n d i n g nomogram.
The m o d e r a t e g r o u p ( n - 4 )
of
i n d i v i d u a l s was i n c l u d e d w i t h
t h e t r a i n e d a n d u n t r a i n e d v a l i d i t y g r o u p s i n t h e a s s e s s m e n t of
t h e a c c u r a c y of
t h e n e w l y l . d e v i s e d p r e d i c t i v e nomograms.
C h a r a c t e r i s t i c m o d e r a t e g r o u p mean d a t a i s p r e s e n t e d i n T a b l e
XIV.
S i g n i f i c a n t d i f f e r e n c e s were determined between moderate.
a n d u n t r a i n e d g r o u p s f o r V02max, maximum d e l t a h e a r t r a t e a n d
maximum w o r k r a t e .
Moderate a n d t r a i n e d g r o u p s a l s o showed
s i g n i f i c a n t d i f f e r e n c e s f o r ~ 0 ~ m a nxd maximum w o r k r a t e .
Maximum d e l t a h e a r t r a t e w a s d e t e r m i n e d t o b e t h e d e c i d i n g
v a r i a b l e i n t e r m s of
t h e s p e c i f i c c h o i c e of
trained or untrained
nomogram f r o m w h i c h t o p r e d i c t maximum o x y g e n u p t a k e .
Due t o t h e
s i g n i f i c a n t d i f f e r e n c e b e t w e e n m o d e r a t e a n d u n t r a i n e d g r o u p mean
maximum d e l t a h e a r t r a t e s a n d t h e n o n - s i g n i f i c a n t
difference
b e t w e e n m o d e r a t e a n d t r a i n e d maximum d e l t a h e a r t r a t e s ,
p r e d i c t i o n s of
maximum o x y g e n u p t a k e f o r t h e m o d e r a t e g r o u p w e r e
made f r o m t h e n e w l y c o n s t r u c t e d t r a i n e d p r e d i c t i v e nomogram*
Table XIV : Physical c h a r a c t e r i s t i c s
and peak c a r d i o r e s p i r a t o r y
variables f o r moderately
(MOD) m a l e s 2 0 t o 29 y e a r s
(n=4).
I
I
I
V02 max
( m l * kg" emin" )
55.4*
k5.5
I
I
V a l u e s a r e means f s t a n d a r d
d e v i a t i o n s of t h e m e a n ( S D ) .
*
Significant
b e t w e e n MOD
f Significant
b e t w e e n MOD
d i f f e r e n c e (p<0.05)
and Tcore.
d i f f e r e n c e (p<0.05)
a n d UNTcore.
D i r e c t l y m e a s u r e d a n d p r e d i c t e d V02max v a l u e s f o r t r a i n e d ,
u n t r a i n e d a n d m o d e r a t e v a l i d i t y g r o u p members
i n T a b l e XV.
( n = 1 4 ) a r e shown
P r e d i c t e d maximum o x y g e n u p t a k e s w e r e made f r o m t h e
t r a i n e d and u n t r a i n e d t a b l e s constructed from t h e % ~ 0 ~ m a x l h e a r t
rate relationship,
(n=14).
d e s i g n a t e d PER,
on t h e w h o l e v a l i d i t y g r o u p
% V02max a n d h e a r t r a t e d a t a f o r t r a i n e d a n d u n t r a i n e d
c o r e g r o u p s w e r e combined a n d a n All-PER
t a b l e c o n s t r u c t e d and
maximum o x y g e n u p t a k e p r e d i c t e d .
Maximum o x y g e n u p t a k e w a s a l s o p r e d i c t e d f r o m t h e t r a i n e d
and u n t r a i n e d p r e d i c t i v e t a b l e s d e v i s e d f r o m t h e % V02max/delta
heart rate relationship,
designated Banister-Legge
p r e d i c t i o n s on t h e f o u r t e e n v a l i d i t y g r o u p members.
of
(B-L)
Predictions
maximum o x y g e n u p t a k e w e r e a l s o made f r o m a p r e d i c t i v e t a b l e
c o n s t r u c t e d f r o m c o m b i n e d t r a i n e d a n d u n t r a i n e d % V02max a n d
delta heart rate data,
designated All-Banister-Legge
(All-B-L)
predict ions.
Table XV,
therefore,
i n c l u d e s t h e o b s e r v e d maximum o x y g e n
u p t a k e v a l u e s a s w e l l a s t h e p r e d i c t e d maximum o x y g e n u p t a k e s
u s i n g t h e Astrand-Ryhming
tables.
nomogram a n d t h e f o u r o t h e r p r e d i c t i v e
The f o u r p r e d i c t i v e t a b l e s i n c l u d e p r e d i c t i o n s f r o m t h e
s e p a r a t e t r a i n e d and u n t r a i n e d % V02max/heart r a t e r e l a t i o n s h i p s
a n d f o r t h e c o m b i n e d g r o u p r e l a t i o n s h i p ( n = 2 5 ) . P r e d i c t i o n s made
f r o m s e p a r a t e t r a i n e d a n d u n t r a i n e d % V02max/ d e l t a h e a r t r a t e
relationships,
termed t h e Banister-Legge
predictions,
r e c o r d e d a s w e l l a s t h e combined g r o u p d a t a (n=25).
were
T a b l e X V : D i r e c t l y m e a s u r e d a n d P r e d i c t e d i 0 max ( l o m i n - l )
v a l u e s f o r T r a i n e d ( T ) , U n t r a i n e d (UNT) a n d
M o d e r a t e (MOD) v a l i d i t y g r o u p m e m b e r s .
(subject
OBS
Astrand
I
4.7
4.8
4.8
4.8
4.3
3.5
2.7
3.3
2.8
2.4
3.6
3.9
3.5
3.5
4.1
4.3
3 -7
6.0
4 .O
3.5
2.4
3.8
2.7
2.0
2.8
4.3
3.7
2.9
I------------------------------------------------------
1
I
1
I
(
I
(
(
I
I
(
I
I
T1
T2
T3
T4
T5
UNTl
UNT2
UNT3
UNT4
UNT5
MOD1
MOD2
MOD3
MOD4
B-L
All-B-L
4.68
4.77
4.77
4.82
3.86
3.47
2.76
3.36
3.12
2.28
3.62
4.02
3.32
3.49
4.54
4.63
4.63
4.67
3.80
3.90
3.00
3.75
3.45
2.52
3.45
3.80
3.19
3.33
~ 1 1 - P 1E R
PER
I
4.74
4.41
4.15
5.25
4.02
3.47
2.61
4.24
2.91
1.92
2.79
4.29
3.43
3.02
4.79
4.45
4.19
5.29
4.06
3.41
2.55
4.19
2.85
1.88
2.72
4.24
3.37
2.96
1
1
1
I
1
1
1
1
1
(
1
1
1
1
E a c h s e t o f p r e d i c t e d maximum o x y g e n u p t a k e v a l u e s w a s
r e g r e s s e d w i t h d i r e c t l y m e a s u r e d maximum o x y g e n u p t a k e m e a s u r e s
and t h e c a l c u l a t e d c o r r e l a t i o n c o e f f i c i e n t s compared.
Standard
e r r o r s of e s t i m a t e w e r e a l s o c a l c u l a t e d a n d r e c o r d e d i n T a b l e
XVI. A n a l y s i s f o r a s i g n i f i c a n t d i f f e r e n c e b e t w e e n c o r r e l a t i o n
c o e f f i c i e n t s d e t e r m i n e d f r o m t h e Astrand-Ryhming
(r=O.8043),
Fisher's
(l978),
0.05
and t h e Banister-Legge
nomogram,
nomogram,
(r=0.9791),
using
Z s t a t i s t i c , a s o u t l i n e d by K l e i n b a u m a n d Kupper
revealed a s t a t i s t i c a l l y significant difference at the
l e v e l of
s i g n i f i c a n c e . T h e s t a n d a r d e r r o r of e s t i m a t e w a s
s m a l l e r u s i n g t h e Banister-Legge
nomogram,
(SEEST=O. l 7 3 8 ) , a s
compared t o t h a t d e t e r m i n e d u s i n g t h e Astrand-Ryhming
nomogram,
( SEEST=0.5082).
Banister-Legge
P r e d i c t i o n s of maximum o x y g e n u p t a k e f r o m t h e
nomogram,
t h e r e f o r e , provided f o r a n improved
a c c u r a c y of p r e d i c t i o n c o m p a r e d t o t h e A s t r a n d - R y h m i n g
nomogram.
T a b l e XVI: C o m p a r i s o n ?f d i r e c t l y m e a s u r e d a n d
estimated
V02max v a l u e s w i t h t h e h e l p
of l i n e a r r e g r e s s i o n e q u a t i o n s .
...................................................
I
I Estimation
1
1
Method
Used
I- - - - - - - - - - - - - - - - - - - - - - - - - I
1
1
I
I
1
Number of
Subjects
Correlation
Coefficient
SEEST
S SEE^^
(
I
I
I
Astrand
14
0.8043
0.5082
PER
A11-PER
14
14
0.8622
0.8733
0.4332
0.4166
14.2
I
I
I
1
I
I
I
1
I
I
I
I
I
B-L
All-B-L
14
14 -
0.9791
0.9237
0.1738
0.3276
...................................................
4.65
8.72
I
)
1
I
.
F i g u r e s 2 6 a n d 27 s h o w t h e r e l a t i o n s h i p b e t w e e n o b s e r v e d
a n d p r e d i c t e d maximum o x y g e n u p t a k e s f r o m t h e A s t r a n d - R y h m i n g
nomogram,
and t h e B a n i s t e r - L e g g e
and u n t r a i n e d p r e d i c t i v e t a b l e s ,
nomogram u s i n g s e p a r a t e t r a i n e d
respectively.
Observed \jO2max
VS.
Astrand-R yhmng Predicted Q m u x
1
I
1
I
1
1
I
1
2.5
3
3.5
4
4.5
5
5.5
6
A-R Predicted VO~max (liters minute")
F i g u r e 2 6 : Showing t h e r e l a t i o n s h i p between o b s e r v e d a n d
p r e d i c t e d maximum o x y g e n u p t a k e u s i n g t h e
Astrand-Ryhming
nomogram.
Observed V0,max
VS.
Banister-Legge Predicted vo2max
1
I
1
1
1
1
i
1
2.5
3
3.5
4
4.5
5
5.5
6
8-L Predicted V0,max (I.rnin'' )
F i g u r e 2 7 : Showing t h e r e l a t i o n s h i p between o b s e r v e d a n d
p r e d i c t e d maximum o x y g e n u p t a k e u s i n g t h e
Banister-Legge
nomogram.
4.7 B a n i s t e r - L e g g e
-
Nomogram
Since t h e v a l i d a t i o n groups were found t o ,have t h e i r
maximum o x y g e n u p t a k e s p r e d i c t e d a c c u r a t e l y by t h e n e w l y
constructed Banister-Legge
nomogram p r o v i d i n g s e p a r a t e
p r e d i c t i v e t a b l e s f o r t r a i n e d and u n t r a i n e d i n d i v i d u a l s ,
the
v a l i d a t i o n and c o r e group d a t a were combined t o f o r m two l a r g e r
g r o u p s of
trained
c o m b i n i n g of
(n=20) and u n t r a i n e d (n=15) i n d i v i d u a l s .
The
c o r e and v a l i d i t y group d a t a was a l s o u n d e r t a k e n t o
i n c r e a s e t h e s t a t i s t i c a l p o w e r of
i n c r e a s i n g t h e s u b j e c t number.
d i f f e r e n c e (p<0.05)
t h e p r e d i c t i v e t e s t by
Using a small A s i g n i f i c a n t
w a s d e t e r m i n e d b e t w e e n i n t e r c e p t s of
the
r e g r e s s i o n e q u a t i o n s d e s c r i b i n g t h e r e l a t i o n s h i p between %
.
V02max a n d d e l t a h e a r t r a t e f o r t r a i n e d a n d u n t r a i n e d g r o u p d a t a
u s i n g a small sample t - t e s t
common i n t e r c e p t s ,
A s expected,
a s o u t l i n e d by K l e i n b a u m a n d Kupper ( 1 9 7 8 ) .
t h e s l o p e s of
significantly.
f o r s i g n i f i c a n t d i f f e r e n c e s between
t h e s e l i n e s d i d not d i f f e r
F i g u r e 28 s h o w s t h e r e g r e s s i o n e q u a t i o n s a n d
a s s o c i a t e d s t a n d a r d e r r o r s of e s t i m a t e f o r t h e t w o r e g r e s s i o n
e q u a t i o n s f o r t h e t r a i n e d (n-20)
and u n t r a i n e d (n=15) groups.
Percent of Maximum Oxygen Uptake
VS.
Delta Heart Rate
20
40
I
1
60
80
1
100
120
Delta Heart Rate (beats minute")
F i g u r e 28: Showing t h e r e g r e s s i o n $ q u a t i o n s d e s c r i b i n g t h e
r e l a t i o n s h i p b e t w e e n % V02max a n d d e l t a h e a r t r a t e
f o r t r a i n e d (n=20) and u n t r a i n e d (n=15) males
2 0 t o 29 y e a r s .
The B a n i s t e r - L e g g e
nomogram,
constructed from data
c o l l e c t e d f r o m 20 t r a i n e d a n d 15 u n t r a i n e d s u b j e c t s ,
p r e s e n t e d i n i t s f i n a l f o r m i n F i g u r e 29.
t h e p r e d i c t i o n of
is
The r e l a t e d t a b l e s f o r
maximum o x y g e n u p t a k e f r o m d e l t a h e a r t r a t e
r e s p o n s e s t o submaximum b i c y c l e e r g o m e t r y f o r t r a i n e d m a l e s a g e d
20 t o 29 a n d f o r u n t r a i n e d m a l e s of
a s T a b l e s X V I I and X V I I I ,
t h e same a g e , a r e p r e s e n t e d
respectively.
S a m p l e p r e d i c t i o n s of
maximum o x y g e n u p t a k e f o r b o t h a h y p o t h e t i c a l u n t r a i n e d a n d a
t r a i n e d i n d i v i d u a l h a v i n g t h e same d e l t a h e a r t r a t e of
6 8 barnin-I
a t d i f f e r e n t submaximum w o r k r a t e s ,
1200 kpm*min'l,
a r e s h o w n i n F i g u r e 30.
9 0 0 kpm*rnin'l
T h e p r e d i c t e d maximum
oxygen u p t a k e v a l u e s f o r t h e s e h y p o t h e t i c a l u n t r a i n e d and
t r a i n e d i n d i v i d u a l s a r e 2.66
a n d 4.00
l*min'l,
respectively.
and
A
Work
Heart Rate
Rate
(beats rn i n")'
(kprn-miti')
0, cost
(iitres-miril)
(watts)
F i g u r e 29 : B a n i s t e r - L e g g e
in litres-min
(U)
-
nomogram f o r p r e d i c t i n g
1
to2max
f o r Trained (T) and Untrained
m a l e s 2 0 t o 29 y e a r s .
Table X V I I :
Banister-Legge P r e d i c t i v e Table
f o r T r a i n e d M a l e s (20-29 y e a r s )
................................................
I TRAINED
I MAXIMAL O X Y G E N UPTAKE ( l i t r e s
I-----------------------------------------------( D e l t a ) Work R a t e
( H e a r t I (kpm*min" )
[Rate 1
300
)
600
I(b*m">l
I
I
I (watts>(
I
1 50
I
100
I
I
1
I
I
I
4.26 1
4.17 1
4.09 (
4.01 1
3.94 1
3.87 \
3.80 (
3.73 (
3.66 (
3.60 1
3.54 1
3.48 1
3.43 1
3.37 (
3.32- (
3.27 1
3.22 )
3.17 1
3.12 1
3.07 (
3.03 (
2.99 1
2.94 )
2.90 1
2.86 1
2.831
2.79 (
2.75 1
2.72 (
2.68 1
2.65 (
2.61 (
2.58 1
2.55 1
2.52 )
2.49 (
900
min" )
I
I
1
I
1200
I
150
(
200
1
I
1 1500
1
I
1
250
I
I
I
I
I
1
I
I
1
1
5.96 1
5.84 (
5.73 (
5.62 1
5.52 I
5.41 )
5.32 1
5.22 1
5.13 1
5.04 (
4.96 (
4.87 1
4.80 1
4.72 (
4.64 1
4.57 1
4.50 1
4.43 1
4.37 1
4.30 1
4.24 1
4.18 1
4.12 1
4.07 1
4.01 1
3.961
3.90 1
3.85 )
3.80 (
3.75 1
3.71 (
3.66 1
3.61 (
3.57 1
3.53 )
3.49 1
1
I
1
I
I
I
1
1
I
1
1
1
1
1
I
1
1
1
I
I
6.50 I
6.39 (
6.29 1
6.19 1
6.10)
6.00 )
5.91 1
5.82 1
5.74 (
5.66 1
5.57 1
5.50 1
5.42 1
5.35 1
5.271
5.20 1
5.14 1
5.07 1
5.00 (
4.94 (
4.88 1
4.82 (
4.76 1
4.70 1
4.65 (
I
I
I
I
-
I
I
I
I
I
1
I
I
1
1
I
6.49 1
6.401
6.32 (
6.24 )
6.16 1
6.08 1
6.00 (
5.93 )
5.85 1
5.78 I
5.71 1
5.64 1
................................
...c o n t ' d
Delta
I
I Heart
I Rate
[
1
(kpm-minm' )
300
(
600
I
(
900
I
1
1
1
1
100
1 150 1
I------------------------------------------------2.95 1
2.10 1
1 56
1 1.26 (
(
(
2.92
(
1.25 (
2.08
I 57
2.06
(
2.89 I
1 1.24 1
1 58
2.86 (
1 1.23 (
2.04 1
1 59
2.02 (
2.83 1
1 60
1 1.21 (
2.81 I
2.01 (
I 61
1 1.20)
2.78 1
1.99 1
I 62
1 1.19 1
1.97 1
2.76 1
1 63
1 1.18 (
2.73
1
1 1.17 1
1.95 1
1 64
2.71 (
1.93 1
1 65
1 1.16 1
1.92 1
2.68 1
1 66
1 1.15 1
1.90 1
2.66 1
1 67
)
1.14 )
1.88 (
2.63 (
1 68
1 1.13 (
1 69
1 1.12 1
1.87 (
2.61 (
1.85 1
2.59 (
1 70
1 1.11 1
2.57 (
1.83 (
I 71
I 1.10 1
1.82 (
2.54 1
1 1.09 1
1 72
2.52
1.80 1
1
I 73
)
1.08 (
1
1
.
7
9
1
2
.
5
0
(
1.07 1
I 74
1
1
.
7
7
1
2.48
/ 1.06 (
1 75
I 76
(
1-05 1
1.76 \
2.46 (
1.74 (
2.44 1
1 77
I 1.05 1
1.73 1
2.42 (
1 78
(
1.04 1
1.72 1
2.40 1
I 79
1 1.03 1
1.70 (
2.38 1
I 80
1 1.02)
2.36 1
1 1.01 1
1.69 I
I 81
2.34 1
1.67 (
1 82
(
1.00 1
1.66 1
2.33 (
I 83
1 1-00 (
1.65 1
2.31 1
1 84
1 0.99 1
1.64 1
2.29 (
1 0.98 1
1 85
1.62 1
2.27
)
1 86
1 0.97 (
1
1
.
6
1
(
2.26
(
1 87
1 0.97
1.60 (
2.24
1
I 88
1 0.96 )
)
1.59 1
2.22 (
I 89
(
0.95
1.581
2.21 1
1 90
1 0.95 1
I
(watts)
50
1
1
1200 (
I
1500
I
I
200
(
3.93
3-89
3.85
3.82
3.78
3.74
3-71
3.67
3.64
3.61
3.58
3.54
3.51
3.48
3.45
3-42
3.39
3.36
3-34
3.31
3.28
3.25
3.23
3-20
3.18
3.15
3.13
3-10
3.08
3.05
3.03
3.01
2-99
2-96
2.94
1
1
1
250
4-77
4-52
4.68
(
4.63
I 4.59
1 4-55
1 4-50
(
4-46
(
4.42
1 4.38
1 4-34
)
4.30
1 4.27
)
4.23
)
4.19
1 4.16
1 4.12
I 4.09
I 4.05
(
4.02
1 3.98
I 3.95
1 3.92
I 3-89
1-3.86
)
3.83
1 3.80
1 3.77
1 3-74
(
3.71
1 3.68
1 3.65
1 3.63
(
3.60
1 3.57
1
I
1
1
1
I
1
1
1
I
1
I
1
1
1
1
I
I
1
I
1
I
1
1
1
1
1
I
1
1
I
I
1
1
1
1
1
I
1
A
Work
Heart Rate
Rate
(kprn.rni6')
0, cost
(~itresmiri')
Watts
F i g u r e 30 : S a m p l e c a l c u l a t i o n s f o r p r e d i c t i n g
u s i n g t h e Banis ter-Legge
nomogram,
V02max
The r e g r e s s i o n e q u a t i o n s d e t e r m i n e d t o d e s c r i b e t h e %
io2max/delta h e a r t r a t e r e l a t i o n s h i p f o r t r a i n e d and u n t r a i n e d
group d a t a a r e p r e s e n t e d i n F i g u r e s 31 and 32, r e s p e c t i v e l y .
P r e d i c t i o n i n t e r v a l s f o r 95% c o n f i d e n c e w e r e c o m p u t e d a c c o r d i n g
t o t h e method o u t l i n e d i n K l e i n b a u m a n d Kupper ( 1 9 7 8 ) t o p r o v i d e
a n e s t i m a t e of
t h e v a r i a b i l i t y a s s o c i a t e d w i t h a maximum o x y g e n
u p t a k e p r e d i c t i o n o v e r t h e e n t i r e r a n g e of
values.
delta heart rate
I t i s i m p o r t a n t t o n o t e t h a t t h e minimum w i d t h
p r e d i c t i v e i n t e r v a l i s a l w a y s o b t a i n e d when t h e d e l t a h e a r t r a t e
u s e d t o p r e d i c t maximum o x y g e n u p t a k e i s e q u a l t o t h e m e a n d e l t a
h e a r t r a t e a n d t h u s t h e e s t i m a t e of
better.
mean,
Furthermore,
maximum o x y g e n u p t a k e i s
t h e f a r t h e r t h i s v a l u e i s away f r o m t h e
the wider the predictive i n t e r v a l .
T h i s may e x p l a i n t h e
r e a s o n why m o r e a c c u r a t e p r e d i c t i o n s a r e o b t a i n e d w h e n d e l t a
h e a r t r a t e v a l u e s b e t w e e n 5 0 a n d 70 b 0 m i n ' l
a r e used.
Percent of Maximum Oxygen Uptake
VS.
140
Delta Heart Rate
-
..
....'
#
120
-
.....
Q)
Y
u
+
,P
100-
s
Q)
ua
Y-
20
-
0
0
Trained (nZ0)
.-
....'..
....
,...
I
1
1
1
I
1
t
20
40
60
80
100
120
140
DeUa Heart Rate (beats minute-')
F i g u r e 3 1 : Showing t h e r e g r e s s i o n e q u a t i o n d e s c r i b i n g
t h e r e l a t i o n s h i p b e t w e e n X bo2max a n d
d e l t a h e a r t r a t e f o r t r a i n e d males (n=20).
Dotted l i n e s r e p r e s e n t p r e d i c t i v e i n t e r v a l s .
,
Percent of Maximum Oxygen Uptake
VS.
Delta Heart Rate
-
Untrained (~15)
,
Delta Heart Rate (beats minute-')
F i g u r e 32 : Showing t h e r e g r e s s i o n e q u a t i o n d e s c r i b i n g
t h e r e l a t i o n s h i p b e t w e e n % V02max a n d
d e l t a h e a r t r a t e f o r untrained males
(n=15).
Dotted l i n e s represent p r e d i c t i v e i n t e r v a l s .
4.7.1
S u b m a x i m a l P r o t o c o l U s e d t o P r e d i c t V02max u s i n g t h e B-L
Test
P r e d i c t i o n of V02max u s i n g t h e B a n i s t e r - L e g g e
nomogram
r e q u i r e s only the d e l t a h e a r t response t o the f i n a l completed
submaximum w o r k r a t e of
protocol.
t h e a p p r o p r i a t e submaximum w o r k r a t e
O x y g e n u p t a k e i s n o t m e a s u r e d i n t h e submaximum
predictive test.
I n o r d e r t o s e l e c t t h e a p p r o p r i a t e nomogram f o r
t h e m o s t a c c u r a t e p r e d i c t i o n of
maximum o x y g e n u p t a k e ,
one must
be a b l e t o d i s t i n g u i s h between t r a i n e d and u n t r a i n e d i n d i v i d u a l s
on t h e b a s i s of
d e l t a h e a r t r a t e r e s p o n s e s t o submaximum w o r k .
The r e l a t i o n s h i p b e t w e e n d e l t a h e a r t r a t e a n d d e l t a w o r k r a t e ,
t h e r e f o r e , was a n a l y z e d f - o r t r a i n e d a n d u n t r a i n e d g r o u p s ,
respectively,
a n d a s i g n i f i c a n t d i f f e r e n c e a t t h e 0.05
f o u n d t o e x i s t b e t w e e n t h e s l o p e s of
level
the corresponding
regression equations.
D i s c r i m i n a t i o n of
t h e s t a t e of
t r a i n i n g of
t r a i n e d o r u n t r a i n e d i s b a s e d on t h e s e t of
responses e l i c i t e d from t h e well-defined
test.
A g r a p h of
an individual as
delta heart rate
submaximum e x e r c i s e
submaximal d e l t a h e a r t r a t e s and r e l a t e d
submaximum w o r k r a t e s i s p r e s e n t e d i n F i g u r e 3 3 t o a i d i n t h e
s e l e c t i o n of
table.
t h e a p p r o p r i a t e maximum o x y g e n u p t a k e p r e d i c t i v e
A p l o t of
d e l t a h e a r t r a t e vs.
d e l t a work r a t e would b e
made f r o m t h e i n d i v i d u a l b e i n g t e s t e d a n d t h e s i m i l a r i t y t o
e i t h e r the trained or untrained response noted.
Individual
r e s p o n s e s f a l l i n g midway b e t w e e n t h e t w o r e g r e s s i o n l i n e s f o r
t r a i n e d a n d u n t r a i n e d mean d e l t a h e a r t r a t e a n d d e l t a w o r k r a t e
d a t a , w o u l d r e l y on t h e e x p e r i e n c e of
the investigator for a
d e c i s i o n on t h e s e l e c t i o n of a n a p p r o p r i a t e p r e d i c t i v e t a b l e o n
which t o p o s i t i o n t h e s u b j e c t f o r a n a l y s i s .
-
Oxygen U p t a k e a n d H e a r t R a t e K i n e t i c s
4.8.1
Q u a l i t a t i v e Oxygen U p t a k e K i n e t i c s
The r e l a t i o n s h i p s b e t w e e n o x y g e n u p t a k e v e r s u s t i m e f o r t h e
maximum work r a t e p r o t o c o l s w e r e e x a m i n e d i n a q u a l i t a t i v e
manner f o r r e p r e s e n t a t i v e t r a i n e d a n d u n t r a i n e d s u b j e c t s .
u p t a k e d a t a f o r two t r a i m e d s u b j e c t s were a n a l y z e d .
subject
kpm*min'l
Oxygen
One t r a i n e d
( A ) was a b l e t o c o m p l e t e o n l y o n e m i n u t e a t 2 4 0 0
w h i l e t h e o t h e r ( B ) was a b l e t o c o m p l e t e 5 m i n u t e s a t
t h i s h i g h r a t e of
c o n s t a n t s of
work.
No a t t e m p t w a s made t o d e t e r m i n e t i m e
the exercise response or other q u a n t i t a t i v e
m e a s u r e m e n t s f r o m t h e s e p a r t i c u l a r r e l a t i o n s h i p s . The f e a t u r e of
i n t e r e s t i n t h i s e x a m i n a t i o n w a s t h e g e n e r a l p r o g r e s s i o n of
oxygen u p t a k e w i t h i n c r e a s e s i n work r a t e o v e r t i m e . D u r i n g t h e
maximum ramp p r o t o c o l ,
t h e p r o g r e s s i o n of
oxygen u p t a k e from
submaximum t o maximum l e v e l s was f o c u s s e d u p o n .
I t w a s of
i n t e r e s t t o n o t e w h e t h e r a t n e a r maximum l e v e l s of
work t h e
oxygen u p t a k e r e a c h e d a n a s y m p t o t e o r c o n t i n u e d t o i n c r e a s e i n a
l i n e a r f a s h i o n t o maximum l e v e l s .
'
Delta Heart Rate
VS.
Delta Work Rate
I
I
I
1
1
I
I
2
4
6
8
10
12
14
DeUa Work Rate (kprn -.lo-: minute-')
F i g u r e 3 3 : S h o w i n g D e l t a H e a r t R a t e a n d D e l t a Work R a t e
R e l a t i o n s h i p s f o r Trained and Untrained groups
i n a p a r t i c u l a r age range (20-29). T h i s p r e l i m i n a r y
plot aids i n delegating individuals to. their
a p p r o p r i a t e c l a s s i f i c a t i o n t a b l e f o r V02max
predict ion.
F i g u r e s 3 4 , A and B ,
a n d 3 5 show r e p r e s e n t a t i v e o x y g e n
u p t a k e v e r s u s work r a t e c u r v e s f o r two t r a i n e d and one u n t r a i n e d
individual,
respectively.
Trained subjects demonstrate a
p l a t e a u i n g e f f e c t f o r o x y g e n u p t a k e a t n e a r maximum l e v e l s of
work,
while the untrained subject exhibited a nearly linear
p r o g r e s s i o n u p t o maximum e f f o r t .
4.8.2
Q u a l i t a t i v e Delta Heart Rate Kinetics
D e l t a h e a r t r a t e v a l u e s f o r t h e same t w o t r a i n e d a n d o n e
u n t r a i n e d i n d i v i d u a l d e s c r i b e d p r e v i o u s l y were p l o t t e d a g a i n s t
t i m e c o m p l e t e d , d u r i n g t h e maximum r a m p p r o t o c o l s .
P l o t s of
delta
..
h e a r t r a t e v e r s u s work r a t e f o r b o t h t h e t r a i n e d a n d u n t r a i n e d
i n d i v i d u a l s e x h i b i t e d a p l a t e a u a t n e a r maximum r a t e s of
shown i n F i g u r e 3 6 A a n d B a n d F i g u r e 3 7 .
work a s
0
3
6
9
12
15
18
time (minutes)
time
(minutes)
F i g u r e 34: Showing t h e r e l a t i o n s h i p between oxygen u p t a k e
a n d t i m e d u r i n g a maximum r a m p p r o t o c o l IIB f o r
two t r a i n e d s u b j e c t s .
I
17
0
time
(minutes)
F i g u r e 35 : S h o w i n g t h e r e l a t i o n s h i p b e t w e e n o x y g e n u p t a k e
a n d t i m e d u r i n g a maximum r a m p p r o t o c o l I I A f o r
an untrained subject
.
0
3
6
9
12
15
18
time (minutes)
B.'
HR
time
(minutes)
F i g u r e 36: Showing t h e r e l a t i o n s h i p between
heart rate
a n d t i m e d u r i n g a maximum ramp p r o t o c o l I I B f o r
two t r a i n e d s u b j e c t s .
c f;'-8
Le
.-.-
L - A - - L
4--I
0
J
17
time
(minutes)
F i g u r e 3 7 : Showing t h e r e l a t i o n s h i p between
heart rate
a n d t i m e d u r i n g a maximum r a m p p r o t o c o l I I A f o r
an untrained subject.
161
4.8.3
Q u a n t i t a t i v e Oxygen U p t a k e K i n e t i c s
The t i m e c o n s t a n t s ,
T,of
t h e r e l a t i o n s h i p s between oxygen
u p t a k e a n d t i m e a n d h e a r t r a t e a n d t i m e d u r i n g t h e c o m p l e t i o n of
t h r e e m i n u t e s a t a submaximum w o r k r a t e of
6 0 0 kpm-min'l
for
b o t h t r a i n e d a n d u n t r a i n e d c o r e g r o u p s a r e shown i n T a b l e X I X .
A l s o s h o w n i n T a b l e X I X a r e t h e t i m e c o n s t a n t s of
the
r e l a t i o n s h i p s between oxygen u p t a k e and t i m e and h e a r t r a t e and
t i m e d u r i n g t h e c o m p l e t i o n of
t h r e e m i n u t e s a t a submaximum w o r k
r a t e d e m a n d i n g a p p r o x i m a t e l y 4 5 % of
maximum o x y g e n u p t a k e .
c o r r e s p o n d e d t b a submaximum w o r k r a t e of
u n t r a i n e d a n d 900 kpm-rnin'l
6 0 0 kpm=min'l
This
for
f o r trained groups, respectively.
s i g n i f i c a n t d i f f e r e n c e s w e r e d e t e r m i n e d f o r a n y of
No
the time
c o n s t a n t s f o r t h e oxygen u p t a k e and t i m e o r h e a r t r a t e and t i m e
r e l a t i o n s h i p s between t r a i n e d and u n t r a i n e d groups.
Table XIX:
S h o w i n g t h e t i m e c o n s t a n t s of t h e
r e l a t i o n s h i p s be tyeen oxygen
u p t a k e and t i m e (VG2/t) a n d
b e t w e e n h e a r t rate and time ( B R / t )
for u n t r a i n e d c o r e s u b j e c t s a t 600
kpm m i n (UNT600) a n d t r a i n e d c o r e
s u b j e c t s a t 600 k p m min ( T 6 0 0 )
a n d a t 9 0 0 k p m m i n (T90C).
T i m e c o n s t a n t s a r e in s e c o n d s ( s e c ) .
I
I
I
I
h p / t
70 s e c
I
I
66
57
1
I
1
5 . Discussion
5.1 I n t r o d u c t i o n
-
T h i s s t u d y h a s examined t h e r e l a t i o n s h i p between oxygen
u p t a k e a n d d e l t a h e a r t r a t e m e a s u r e d d u r i n g submaximum a n d
maximum b i c y c l e e r g o m e t r y f o r two g r o u p s of
y e a r s of a g e , v a r y i n g i n f i t n e s s l e v e l .
hypothesized t h a t a non-linear
describe the data best,
,
however,
males,
2 0 t o 29
I t had o r i g i n a l l y been
e x p o n e n t i a l r e l a t i o n s h i p would
a l i n e a r r e l a t i o n s h i p proved t o
r e p r e s e n t t h e d a t a most e f f e c t i v e l y .
E x a m i n a t i o n of
t h e oxygen u p t a k e l d e l t a f i e a r t r a t e
r e l a t i o n s h i p was deemed e s s e n t i a l t o a n u n d e r s t a n d i n g of
i n a c c u r a c y of
the
e x t r a p o l a t i o n p r o c e d u r e s u s e d t o p r e d i c t maximum
oxygen u p t a k e f r o m h e a r t r a t e r e s p o n s e s t o submaximal work.
The
i n a c c u r a c y w a s e s s e n t i a l l y a n u n d e r e s t i m a t i o n i n maximum o x y g e n
u p t a k e when p r e d i c t i n g V02max f r o m a s i m p l e o x y g e n u p t a k e / h e a r t
rate relationship.
The s p e c i f i c p r e d i c t i v e t e s t e x a m i n e d w h i c h
u s e d t h e l a t t e r r e l a t i o n was t h e Astrand-Ryhming
predictive t e s t
( 1 9 5 4 ) c o n s t r u c t e d on t h e p r e m i s e t h a t t h e r e was a l i n e a r
r e l a t i o n s h i p between h e a r t r a t e and oxygen u p t a k e .
The p r i m a r y a i m of
the present investigation,
therefore,
was t o a s s e s s t h e r e l a t i o n s h i p b e t w e e n o x y g e n u p t a k e a n d d e l t a
heart r a t e t o determine i t s l i n e a r i t y or non-linearity
e f f e c t of
t h e s t a t e of
t r a i n i n g of
. The
a n i n d i v i d u a l on t h i s
r e l a t i o n s h i p was a l s o a s s e s s e d i n o r d e r t o g a i n i n s i g h t i n t o t h e
b a s i s f o r t h e c o n s i s t e n t u n d e r e s t i m a t i o n of
u p t a k e d e t e r m i n e d by t h e Astrand-Ryhming
maximum o x y g e n
predictive test.
A
s u b s i d i a r y a i m was t o p r o v i d e a s i m p l e method f o r p r e d i c t i n g
maximum o x y g e n u p t a k e f r o m h e a r t r a t e r e s p o n s e s t o submaximum
w o r k r a t e s w h i c h w o u l d i m p r o v e u p o n t h e a c c u r a c y of
of
t h e Astrand-Ryhming
prediction
submaximum t e s t .
A s i g n i f i c a n t d e p a r t u r e of
i n v e s t i g a t i o n s w a s t h e u s e of
than absolute heart rates.
t h e p r e s e n t study from previous
d e l t a h e a r t r a t e measures r a t h e r
D e l t a h e a r t r a t e was d e f i n e d a s t h e
d i f f e r e n c e between a l l determined e x e r c i s e h e a r t r a t e s and t h e
h e a r t r a t e m e a s u r e d d u r i n g t h e f i f t h m i n u t e of u n l o a d e d
pedalling.
U n l o a d e d p e d a l l i n g w a s t h e minimum w o r k r a t e p o s s i b l e
on t h e b i c y c l e e r g o m e t e r a n d p r o v i d e d r e l a t i v e l y s t a b l e b a s e l i n e
h e a r t r a t e and oxygen u p t a k e measures.
T h e u s e of
delta heart
r a t e p r o v i d e d a p o s s i b l e s o l u t i o n t o t h e p r o b l e m of
v a r i a b i l i t y of
of
h e a r t r a t e r e s p o n s e s measured a t v a r i a b l e s t a t e s
" s o c a l l e d " r e s t , w h i c h h a v e b e e n a m a j o r s o u r c e of e r r o r i n
a l l e x t r a p o l a t i o n procedures heretof o r e (Margaria,
et al.,
of
the extreme
1 9 6 4 ; Hughson a n d M o r r i s s e y ,
zero provided a well-defined
uptake/heart
rate relationship.
1961 ; Rowel1
1982). A d e l t a h e a r t r a t e
l o w e r end p o i n t f o r t h e oxygen
The s t a n d a r d d e v i a t i o n
a s s o c i a t e d w i t h t h e mean u n l o a d e d p e d a l l i n g h e a r t r a t e v a l u e s
f o r both t r a i n e d and u n t r a i n e d groups did not d i f f e r
s i g n i f i c a n t l y f r o m t h e v a r i a b i l i t y r e l a t e d t o t h e mean r e s t i n g
heart rates.
of
T h i s f i n d i n g , however, was most l i k e l y t h e r e s u l t
r e p e a t e d e x p o s u r e of
the subjects t o the t e s t i n g procedures
and l a b o r a t o r y environment.
U s e of
unloaded p e d a l l i n g and d e l t a
heart r a t e values a r e s t i l l expected t o reduce the v a r i a b i l i t y
a s s o c i a t e d w i t h t h e r e s t i n g h e a r t r a t e s of new,
inexperienced
i n d i v i d u a l s d u r i n g a s i n g l e submaximum e x e r c i s e t e s t .
E x p r e s s i o n of
h e a r t r a t e v a l u e s as d e l t a h e a r t r a t e s helped
t o i d e n t i f y t h e t r a i n i n g s t a t u s of a n i n d i v i d u a l .
This w a s due
t o t h e b r a d y c a r d i a a s s o c i a t e d w i t h t r a i n i n g where a t r a i n e d
i n d i v i d u a l w o r k e d a t a r e d u c e d h e a r t r a t e f o r a g i v e n submaximum
work r a t e compared t o a n u n t r a i n e d i n d i v i d u a l .
I
A n o t h e r s i g n i f i c a n t d . e p a r t u r e of
f r o m o t h e r s w a s t h e e x a m i n a t i o n of
the present investigation
t h e oxygen u p t a k e l d e l t a h e a r t
r a t e r e l a t i o n s h i p i n c o n t r a s t t o t h e more u s u a l l y d e f i n e d h e a r t
rateloxygen uptake relationship
( i . e.
o r d i n a t e and a b s c i s s a
i n t e r c h a n g e d ) which was o r i g i n a l l y examined by A s t r a n d a n d
R y h m i n g ( 1 9 5 4 ) . P r e d i c t e d maximum o x y g e n u p t a k e w a s a s s u m e d
d e p e n d e n t upon d e l t a h e a r t r a t e ,
c o n v e n t i o n a l a s s i g n m e n t of
measured d i r e c t l y , and t h u s
the dependent variable t o t h e
o r d i n a t e was r e t a i n e d .
J u s t i f i c a t i o n of
t h e b a s i s f o r a s s i g n m e n t of
subjects into
e i t h e r t r a i n e d o r u n t r a i n e d c o r e groups w a s provided by t h e
s i g n i f i c a n t d i f f e r e n c e i n maxi-mum o x y g e n u p t a k e a n d maximum
d e l t a h e a r t r a t e between t h e s e groups.
Delta heart rate also
d i f f e r e d s i g n i f i c a n t l y a t e a c h submaximum w o r k r a t e b e t w e e n
trained and untrained groups.
No s i g n i f i c a n t d i f f e r e n c e w a s
determined between c o r e and s p e c i f i c v a l i d i t y groups f o r e i t h e r
the t r a i n e d o r untrained group data.
f i n a l l y c o m p l e t e d o n t w o s e t s of
Nomogram c o n s t r u c t i o n w a s
pooled t r a i n e d and u n t r a i n e d
group data.
P r i o r a t t e m p t s t o a s s e s s t h e r e l a t i o n s h i p between h e a r t
r a t e a n d o x y g e n u p t a k e b y A s t r a n d ( 1 9 5 2 ) , Wyndham e t al.
et al.
Rowell -
(1964) and Davies e t al.
(1959),
(1968) r e q u i r e d s u b j e c t s
t o p e r f o r m s i n g l e submaximal work r a t e s w i t h r e s t p e r i o d s
separating each t e s t protocol.
I n these tests,
submaximal work
r a t e s were performed f o r 5 t o 10 minutes i n o r d e r t o a t t a i n t r u e
s t e a d y s t a t e oxygen u p t a k e and h e a r t r a t e v a l u e s .
Maximum l e v e l s
of w o r k w e r e p e r f o r m e d f o r ' 1 t o 2 m i n u t e s o n l y .
The p r e s e n t s t u d y e m p l o y e d t w o s e p a r a t e w o r k p r o t o c o l s ,
s u b m a x i m u m a n d a maximum p r o t o c o l ,
c o m p l e t i o n of
b o t h of which r e q u i r e d t h e
a
.
t h r e e o r more c o n t i n u o u s l y i n c r e a s i n g work r a t e s .
The d e c i s i o n t o p e r f o r m s e v e r a l submaximum w o r k r a t e s r a t h e r
t h a n a s i n g l e submaximum w o r k r a t e w a s b a s e d o n a s y s t e m s
a n a l y s i s a p p r o a c h w h e r e b y c h a r a c t e r i s t i c s of
the system under
s t u d y , t h e c a r d i o r e s p i r a t o r y s y s t e m , w e r e more e f f e c t i v e l y
identified.
I n p u t o r s t i m u l i t o t h e s y s t e m was work r a t e ,
and
t h e o u t p u t w a s e i t h e r t h e h e a r t r a t e o r t h e corresponding oxygen
uptake.
While b i o l o g i c a l systems a r e b a s i c a l l y continuous i n
nature,
most e x p e r i m e n t a l d a t a measured t o d e s c r i b e them a r e
s a m p l e d a n d t h e c o n t i n u o u s n a t u r e of
from t h e s e sampled d a t a (Wolf,
the processes reconstructed
1 9 7 9 ) . P e r f o r m a n c e of a s i n g l e
s u b m a x i m a l w o r k r a t e may b e v i e w e d a s p r o v i d i n g l i t t l e a i d i n
u n d e r s t a n d i n g t h e f u n c t i o n a l c h a r a c t e r i s t i c s of
c a r d i o r e s p i r a t o r y system.
Astrand himself
the
(1954) s t a t e d t h a t t h e
p u l s e r a t e a t a s i n g l e submaximum t e s t r e v e a l e d n o t h i n g a b o u t a
subject's
s t a t e of
t r a i n i n g d u e t o t h e m a j o r r o l e p l a y e d by
constitutional factors.
M o r e i n f o r m a t i o n may b e g a i n e d b y
s t u d y i n g t h e d y n a m i c o r t r a n s i e n t p r o p e r t i e s of
e t al.,
cardiorespiratory system (Margaria Wasserman,
-
1 9 7 2 ; Whipp e t *a 1
the
1 9 6 5 ; Whipp a n d
1981).
A t r a n s i e n t r e s p o n s e i s c o m p o s e d of
a natural response,
e x c i t e d b y a n i n p u t o f e n e r g y t o t h e s y s t e m by a n y k i n d of
s t i m u l u s w h i c h d i e s o u t w i t h t i m e a s t h e e n e r g y of
dissipated,
the system i s
and a f o r c e d r e s p o n s e which d e p e n d s on t h e f o r m of
the input t o the system (Able,
1979).
A natural response i s
d i f f i c u l t t o m e a s u r e b u t a l t e r n a t i v e l y a f o r e e d r e s p o n s e may bee
measured by f o r c i n g t h e system w i t h a f u n c t i o n t h a t e l i c i t s t h e
c h a r a c t e r i s t i c r e s p o n s e s of
t h e system.
I n the present study,
t h e submaximum t e s t e m p l o y e d a t h r e e m i n u t e s t e p f u n c t i o n t o
a l l o w a t t a i n m e n t of
s t e a d y s t a t e v a l u e s of
h e a r t r a t e a t submaximum r a t e s .
of
oxygen u p t a k e and
I n t h i s case steady state values
oxygen u p t a k e a t e a c h work r a t e w e r e n e c e s s a r y s o t h a t t h e y
m i g h t b e r e l a t e d t o t h e t h e o r e t i c a l c o s t of
t h u s p r o v i d e a b a s i s f o r c o n s t r u c t i o n of
t h e work r a t e a n d
a p r e d i c t i v e nomogram
by t h e p r o c e s s u s e d b y A s t r a n d a n d R y h m i n g d e s c r i b e d p r e v i o u s l y .
The a t t a i n m e n t of
t h e s e s t e a d y s t a t e s w a s v e r i f i e d b y a l a c k of
s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e between measured v a l u e s and
t h e o r e t i c a l l y c a l c u l a t e d oxygen u p t a k e m e a s u r e s f r o m work r a t e .
The s p e c i f i c f o r c i n g f u n c t i o n c h o s e n i n t h e t e s t o f
maximum
o x y g e n u p t a k e w a s o n e u s e d commonly i n c u r r e n t t e s t i n g
methodology,
i.e.
a ramp f u n c t i o n i n w h i c h w o r k r a t e i s
i n c r e a s e d c o n t i n u o u s l y by s m a l l i n c r e m e n t s .
one-half
m i n u t e s l o p e of
100 kpmb30 sec'l
The ramp u s e d a
i n an attempt t o
e l i c i t a r a p i d r i s e t o maximum o x y g e n u p t a k e .
Maximum o x y g e n
u p t a k e h a s b e e n shown t o b e r e a d i l y d i s c e r n e d f r o m a ramp
e x e r c i s e t e s t p r o t o c o l and a l s o t o be i n v a r i a n t o v e r a wide
r a n g e of
ramp s l o p e s p r o v i d e d t h e c r i t e r i o n i s met t h a t a
perceptibly linear
(Whipp et al.,
vo2
r e s p o n s e t o t h e ramp s l o p e i s o b t a i n e d
1981; Davis
et &.,
1982).
S u b m a x i m a l a n d maxima-l p o r t i o n s of
t h e p r o t o c o l were
s e p a r a t e d by a r e c o v e r y p e r i o d t o p r e v e n t any i n c r e a s e i n h e a r t
r a t e d u e t o a n i n c r e a s e d b o d y t e m p e r a t u r e a s -a r e s u l t of
prolonged e x e r c i s e performance (Rowell,
1974), but u n r e l a t e d t o
t h e a c t u a l c o s t of
Thus t h e c u r r e n t
p e r f o r m i n g t h e work.
protocol included a l l t h e e s s e n t i a l f e a t u r e s determined from t h e
m o s t r e c e n t l i t e r a t u r e on e x e r c i s e t e s t i n g p r o t o c o l a n d f r o m
personal experience,
t o be most c o m p a t i b l e w i t h m i n i m i z i n g t e s t
d u r a t i o n w h i l e a c h i e v i n g s t e a d y s t a t e d u r i n g t h e submaximal
phase
.
T r a n s i t i o n f r o m t h e h i g h e s t s u b m a x i m a l work r a t e c o m p l e t e d
t o a maximum l e v e l w a s n o t c o m p o s e d of
states.
A t t a i n m e n t of
a s e r i e s of
steady
i n t e r m e d i a t e s t e a d y s t a t e s was n o t
r e q u i r e d i n maximum t e s t i n g s i n c e t h e f e a t u r e of
interest in
t h i s p h a s e w a s t h e a t t a i n m e n t of
maximum d e l t a h e a r t r a t e .
a maximum o x y g e n u p t a k e a n d
Oxygen u p t a k e a n d h e a r t r a t e b o t h
depended upon t h e f o r c i n g f u n c t i o n , work r a t e .
They v a r i e d
t o g e t h e r o v e r t h e r a n g e of w o r k r a t e s u p t o max5mum a n d
d e v i a t i o n s from s t e a d y s t a t e were r e f l e c t e d i n b o t h oxygen
uptake and h e a r t r a t e and t h e i r l i n e a r dependence maintained.
S t e a d y s t a t e v a l u e s w e r e n o t r e q u i r e d i n t h i s r e g i o n of
the
r e l a t i o n s h i p s i n c e t h e p r e d i c t i v e nomogram w a s b a s e d o n l y on
work r a t e s d e m a n d i n g a n o x y g e n u p t a k e of
80% of
a p p r o x i m a t e l y 70% t o
maximum o x y g e n u p t a k e .
F o r c i n g t h e s y s t e m w i t h a ramp f u n c t i o n h e l p e d i d e n t i f y t h e
d y n a m i c b e h a v i o u r of a n i n d i v i d u a l ' s
cardiorespiratory system
w h i c h i n t u r n i d e n t i f i e d t h e t r a i n i n g s t a t u s of
the individual
undertaking t h e test. Trained i n d i v i d u a l s produced a lower h e a r t
r a t e t h a n u n t r a i n e d i n d i v i d u a l s and t h e r e f o r e a lower d e l t a
h e a r t r a t e i n r e s p o n s e t o a g i v e n submaximum w o r k r a t e .
The t h e o r e t i c a l e x p o n e n t i a l m a t h e m a t i c a l m o d e l o r i g i n a l l y
hypothesized i n t h i s study t o provide the b e s t f i t f o r the h e a r t
r a t e l o x y g e n u p t a k e d a t a , was f i r s t p r o p o s e d by Wyndham et al.
(1959).
I t was p r o p o s e d i n r e s p o n s e t o t h e c o n s i s t e n t
u n d e r e s t i m a t i o n i n p r e d i c t e d maximum o x y g e n u p t a k e u s i n g t h e A-R
p r e d i c t i v e nomogram.
--
Wyndham e t a l .
(19'59) showed t h a t h e a r t
r a t e / oxygen u p t a k e p l o t s a p p e a r e d a s y m p t o t i c and s u g g e s t e d t h a t
oxygen u p t a k e p r e d i c t i o n s c o u l d b e improved i f
the relationship
was f i t t e d t o a n e x p o n e n t i a l f u n t i o n of
~
=
a
(
l
-
e
-
~
t h e form
~ ( E) q u a t i o n 12)
where y = h e a r t r a t e ,
x = oxygen u p t a k e ,
a = a c o n s t a n t , and
k = a r a t e constant.
A m a j o r c r i t i c i s m b y Wyndham e t al.
c r i t e r i o n of
t h e Astrand-Ryhming
maximum l e v e l s of
(1959) concerned t h e implied
predictive test,
that the
h e a r t r a t. .e a n d o x y g e n u p t a k e w e r e a t t a i n e d
c o i n c i d e n t a l l y i n t i m e a t a p p r o x i m a t e l y t h e same r a t e of
I n such c a s e s ,
work.
i f h e a r t r a t e were p l o t t e d a g a i n s t oxygen u p t a k e ,
t h e r e l a t i o n s h i p s h o u l d b e b e s t r e p r e s e n t e d by a s t r a i g h t l i n e
w h i c h w o u l d h o l d u p t o maximum h e a r t r a t e .
I n f a c t , t h e oxygen
u p t a k e / h e a r t r a t e r e l a t i o n s h i p was d e t e r m i n e d t o b e l i n e a r o n l y
up t o a p o i n t ,
a f t e r which t h e c u r v e d e v i a t e d s h a r p l y from
c o i n c i d e n c e a t h i g h e r r a t e s of
work.
A.fter t h i s p o i n t ,
higher
oxygen u p t a k e v a l u e s w e r e o b t a i n e d t h a n would b e p r e d i c t e d by
l i n e a r e x t r a p o l a t i o n t o maximum h e a r t r a t e v a l u e s .
i l l u s t r a t e s t h e u n d e r p r e d i c t i o n of
r e s u l t of
t h e s l o w e r approach of
maximum o x y g e n u p t a k e a s a
t h e oxygen u p t a k e / work r a t e t o
a s y m p o t i c v a l u e s compared t o t h e h e a r t r a t e / w o r k
relationship leading t
d
F i g u r e 40
t h e n o n - l i n e a r i t y of
rate
the heart r a t e /
o x y g e n u p t a k e r e l a t i o n s h i p a t h i g h l e v e l s of
e x t r a p o l a t i o n t o , a maximum a g e - p r e d i c t e d
i n a p r e d i c t e d ;02max
F i g u r e 40.
of
3.75
lamin-I
work.
Linear
h e a r t r a t e would r e s u l t
a s i n d i c a t e d by p o i n t A i n
P o i n t B r e v e a l s a h i g h e r p r e d i c t e d i b 2 m a x of
l * m i n - I a s a r e s u l t of
4.5
an asymptotic h e a r t rate/oxygen uptake
relationship.
Rowel1 et al.
of
(1964) a l s o i d e n t i f i e d t h e a s y m p t o t i c n a t u r e
t h e h e a r t rate/oxygen u p t a k e r e l a t i o n s h i p a s t h e major
l i m i t a t i o n t o t h e d i r e c t p r e d i c t i o n of
maximum o x y g e n u p t a k e
f r o m submaximum h e a r t r a t e a n d w o r k r a t e m e a s u r e s .
et al.
-
( 1 9 6 4 ) a n d Wyndham e t al.
underestimations
Both Rowel1
(1959) found g r o s s
i n p r e d i c t e d maximum o x y g e n u p t a k e c o m p a r e d t o
et al.
d i r e c t l y o b t a i n e d measures-* L a t e r , Davies confirmed t h e underprediction.
(1968)
Work
Oxygen
F i g u r e 40:
Rate
Uptake
(kpm.min-')
(litres-min")
Showing t h e u n d e r p r e d i c t i o n i n
A s y m p t o t i c n a t u r e of
Hea.rt
V02max d u e t o
R e l a t i o n s h i p between
R a t e a n d Oxygen U p t a k e .
In t h i s study,
i n an attempt t o provide an increased
u n d e r s t a n d i n g of
e q u a t i o n of
the cardiorespiratory system, an exponential
t h e form
y = a g e kx
(Equation
1)
where y = oxygen u p t a k e and
x = delta heart rate,
b a s e d o n t h e o r e t i c a l c o n s i d e r a t i o n s , was c h o s e n t o f i t t h e
oxygen u p t a k e / d e l t a h e a r t - r a t e r e l a t i o n s h i p .
c o n t r a s t t o t h a t p r o p o s e d b y Wyndham et al.
r e v e r s a l of
t h e x and y axes.
This equation i s i n
(1959) due t o t h e
T h i s e q u a t i o n , - however,
also
d e s c r i b e s a s i m i l a r exponential r e l a t i o n s h i p but with a p o s i t i v e
exponent.
A c l e a r d i s t i n c t i o n m u s t b e made b e t w e e n t h e o r e t i c a l a n d
e m p i r i c a l model e q u a t i o n s a t t h i s p o i n t .
Theoretical equations
a r e t h o s e which have been d e r i v e d f r o m a n a l y t i c a l c o n s i d e r a t i o n s
of
t h e phenomenon o r s y s t e m s t u d i e d .
The items i n t h e e q u a t i o n
s h o u l d h a v e a n a l o g y t o known s y s t e m e l e m e n t s o r p r o c e s s e s .
Empirical equations,
on t h e o t h e r h a n d ,
a r e t h o s e which have
neither a d i r e c t nor an implied t h e o r e t i c a l origin.
From a
mathematical s t a n d p o i n t , t h e o r e t i c a l e q u a t i o n s and e m p i r i c a l
e q u a t i o n s a r e e q u a l l y u s e f u l i n d e s c r i b i n g t h e f u n c t i o n of a
s y s t e m component ( S p a i n ,
1982).
I t i s g e n e r a l l y t r u e , however,
t h a t a modeler would p r e f e r
t o employ e q u a t i o n s h a v i n g a t h e o r e t i c a l o r i g i n , b e c a u s e t h e y
c o n t r i b u t e m o r e t o t h e u n d e r s t a n d i n g of
the system under study.
F i t t i n g empirical equations t o experimental data i s generally
e a s i e r t o accomplish than f i t t i n g such d a t a t o t h e o r e t i c a l
e q u a t i o n s b e c a u s e t h e r e a r e none o r few s y s t e m c o n s t r u c t s t o
consider.
However,
from a t h e o r e t i c a l s t a n d p o i n t ,
polynomials
and o t h e r e m p i r i c a l e q u a t i o n s have l i t t l e s i g n i f i c a n c e , and f o r
t h i s r e a s o n a r e u s e d s p a r i n g l y by k n o w l e d g a b l e i n v e s t i g a t o r s .
If
a jump i s made i m m e d i a t e l y t o a n e m p i r i c a l s o l u t i o n w i t h o u t a t
l e a s t c u r s o r y a t t e m p t s t o employ t h e o r e t i c a l r e a s o n i n g t o
justify
t h e form of
t h e eq.uation,
o n e may b e m i s s i n g a n
opportunity t o understand system elements better.
An a n a l y t i c a l
e q u a t i o n o f t e n p r o v i d e s g r e a t e r i n s i g h t i n t o - t h e p r o c e s s of
i n t e r a c t i n g r e l a t i o n s h i p s within a system,
a n a l y t i c a l a p p r o a c h t o t h e s t u d y of
therefore an
oxygen u p t a k e l h e a r t r a t e
r e l a t i o n s h i p s i n submaximum a n d maximum w o r k w a s t a k e n i n t h i s
investigation.
The o r i g i n a l h y p o t h e s i s of
t h i s s t u d y was t h a t t h e
r e l a t i o n s h i p between oxygen u p t a k e and d e l t a h e a r t r a t e would b e
b e s t e x p r e s s e d by a n o n - l i n e a r
exponential relationship,
even
w i t h h e a r t r a t e e x p r e s s e d a s d e l t a h e a r t r a t e . However, w h i l e
apparent i n individual cases,
interindividual v a r i a t i o n obscured
t h i s hypothesized non-linearity
Thus, u l t i m a t e l y ,
when g r o u p d a t a w e r e e x a m i n e d .
a l i n e a r r e l a t i o n s h i p was f o u n d t o e x i s t
between oxygen u p t a k e and d e l t a h e a r t r a t e and t h e r e g r e s s i o n
e q u a t i o n s d e s c r i b i n g t h e d a t a b e s t a r e shown b e l o w , w h e r e o x y g e n
uptake p l o t s a s t h e o r d i n a t e and d e l t a h e a r t r a t e a s t h e
abscissa,
Trained
y = (0.03577)
x 4- 1 . 0 1 0 0
(Equation 13)
Untrained
y = (0.02292)
x -t 1 . 0 9 3 0
(Equation
5.2 R e c o n s t r u c t i o n of t h e A-R
,
14)
Nomogram
It i s l i k e l y t h a t Astrand's
( 1 9 5 2 ) o r i g i n a l g r o u p of
p h y s i c a l e d u c a t i o n s t u d e n t s c o n t a i n e d i n d i v i d u a l s w i t h t h e same
v a r i e t y of
f i t n e s s a b i l i t i e s a s t h e c o m b i n e d g r o u p of
a n d u n t r a i n e d s u b j e c t s of
the present study.
To a d e g r e e t h i s
v a r i a b i l i t y i n f i t n e s s l e v e l w o u l d a c c o u n t f o r some of
i n a c c u r a c y of
g r o u p of
trained
the
t h e o r i g i n a l nomogram e v e n w i t h i n a h o m o g e n e o u s
s i m i l a r age and sex.
B e c a u s e of
this similarity,
the
o x y g e n u p t a k e d a t a m e a s u r e d a t e a c h submaximum w o r k r a t e on
i n d i v i d u a l s of
t h e w h o l e m i x e d g r o u p of
t r a i n e d and u n t r a i n e d
i n d i v i d u a l s w e r e e x p r e s s e d a s p e r c e n t a g e s of
i02rnax ( % t02max).
t h e i r individual
The r e l a t i o n s h i p b e t w e e n % bo2max a n d h e a r t
r a t e was t h e n m a n i p u l a t e d i n t h e manner d e s c r i b e d by A s t r a n d a n d
R y h m i n g t o p r o d u c e a l m o s t a n e x a c t c o p y of
their published
results.
T h e d e g r e e of
coincidence between Astrand's
original
n o m o g r a m a n d t h a t p r e s e n t l y d e r i v e d may b e j u d g e d b y t h e r e s u l t s
of
r e g r e s s i o n a n a l y s i s which showed a n o n - s i g n i f i c a n t
difference
b e t w e e n t h e c o r r e l a t i o n c o e f f i c i e n t s a n d s t a n d a r d e r r o r of
e s t i m a t e s ( a s s e s s e d by S t u d e n t ' s
t-test)
nomogram r e g r e s s i o n l i n e s ( % ?02max v s .
of
the respective
h e a r t r a t e ).
H o w e v e r , when t r a i n e d a n d u n t r a i n e d % io2rnax a n d d e l t a
h e a r t r a t e d a t a w e r e u s e d i n t h e same m a n n e r f o r s u b j e c t s of
p r e s e n t s t u d y , t w o d i s t i n c t r e g r e s s i o n e q u a t i o n s of
max/delta h e a r t r a t e emerged,
untrained groups.
the
% VO*
one each f o r t h e t r a i n e d and
A s t a t i s t i c a l l y s i g n i f i c a n t d i f f e r e n c e was
f o u n d b e t w e e n t h e i n t e r c e p t s of
t h e s e e q u a t i o n s and was r e l a t e d
t o a s i g n i f i c a n t d i f f e r e n c e i n maximum o x y g e n u p t a k e a n d maximum
d e l t a h e a r t r a t e f o r the groups.
A s e c o n d nomogram w a s
c o n s t r u c t e d i n a m a n n e r s i m i l a r t o t h e A-R
n o m o g r a m a n d maximum
oxygen u p t a k e p r e d i c t e d f o r t h e v a l i d i t y group.
P r e d i c t e d V02max
(1
w a s d e t e r m i n e d t o b e h i g h l y c o r r e l a t e d w i t h o b s e r v e d V02max
v a l u e s a n d t h e s u b g r o u p s of
trained and untrained individuals
w i t h i n t h e whole c o r e group could be s e p a r a t e l y defined and
a s s i g n e d d i s t i n c t l y d i f f e r e n t n o m o g r a m VO2max p r e d i c t i o n l i n e s ,
a s i l l u s t r a t e d i n F i g u r e 28.
A c o r r e l a t i o n c o e f f i c i e n t of
0.9791
was d e t e r m i n e d f o r t h e r e l a t i o n s h i p b e t w e e n o b s e r v e d a n d
p r e d i c t e d V02max f o r t h e w h o l e v a l i d i t y g r o u p ,
including trained
and u n t r a i n e d s u b j e c t s .
P r e d i c t i o n s of V02max m a d e o n s u b j e c t s of
f o l l o w i n g t h e p r o c e d u r e s of
t h e o r i g i n a l A-R
the present study
submaximum t e s t
c o m p a r e d t o V02max m e a s u r e d d i r e c t l y , y i e l d e d a' c o r r e l a t i o n
c o e f f i c i e n t of
o n l y 0.8043.
w i t h t h e r a n g e of
values,
T h i s v a l u e was i n g e n e r a l agreement
0.60
studies outlined previously
1960; Rowel1 et al.,
al.,
-
al.,
-
determined i n other
( A s t r a n d a n d Ryhming,
1964; d e V r i e s and K l a f s ,
1965; T e r a s l i n n a et a l , 1966; Davies,
Jessup e t al.,
1980;
t o 0.83,
1977; Louhavaara e t al.,
Cink a n d Thomas,
1954; Astrand,
1965; G l a s s f o r d et
1968; Coleman,
1976;
1980; Myles a n d T o f t ,
1981; P a t t o n e t al.,
1982;
Siconolfi e t
1982).
Using F i s h e r ' s
Z stat.istic,
a s i g n i f i c a n t d i f f e r e n c e was
found between t h e two c o r r e l a t i o n c o e f f i c i e n t s
Astrand's
r=0.8043
and c u r r e n t t e s t r s 0 . 9 7 9 1 )
(p<O.O5),
( i . e.
revealing a
s i g n i f i c a n t i m p r o v e m e n t i n p r e d i c t i v e a b i l i t y u s i n g t h e new
nomogram w i t h s e p a r a t e l y d e f i n e d p r e d i c t i v e l i n e s f o r t r a i n e d
and u n t r a i n e d i n d i v i d u a l s w i t h i n a group.
The s t a n d a r d e r r o r of
e s t i m a t e w a s a l s o d e t e r m i n e d t o b e l o w e r u s i n g t h e new
p r e d i c t i v e m e t h o d t h a n t h a t d e t e r m i n e d u s i n g t h e A-R
5.3 B a s i c
-
5.3.1
Features of -a-New P r e d i c t i v e Nomogram
Age p r e d i c t e d Maximum
nomogram.
A m a j o r l i m i t a t i o n i n t h e p r e d i c t i v e a b i l i t y of a n y
nomogram u s i n g a n y f o r m of
e x t r a p o l a t i o n f r o m submaximal work a t
a f i x e d h e a r t r a t e t o maximum v a l u e s of
t h e s e parameters with
regard t o age d u r i n g cycling, walking,
and r u n n i n g o r s t e p p i n g ,
i s t h e a s s u m p t i o n of a f i x e d common m a x i m a l h e a r t r a t e w i t h i n
any age group.
I n t h i s study,
o n l y o n e a g e g r o u p was a s s e s s e d .
The maximum h e a r t r a t e d i d n o t d i f f e r s i g n i f i c a n t l y b e t w e e n
t r a i n e d and untrained individuals.
T h e r e s u l t s of
t h i s study
s u g g e s t t h a t i f maximum p e r f o r m a n c e i s a l w a y s e n s u r e d , maximum
h e a r t r a t e w i l l not be found t o v a r y s i g n i f i c a n t l y w i t h i n a n a g e
g r o u p a n d may c o n t i n u e t o b e u s e d i n a n e x t r a p o l a t i o n p r o c e d u r e .
A r e d u c e d o r e v e n e l e v a t e d a t t a i n a b l e maximum h e a r t r a t e i n
trained1 individuals,
a t t r i b u t e of
although an i n t r i n s i c a l l y appealing
f i t n e s s , was n o t e v i d e n t i n t h i s s t u d y .
The e x p r e s s i o n of
heart r a t e values a s delta heart rates
p r o v i d e d t h e k e y t o t h e i m p r o v e m e n t i n p r e d i c t i v e a b i l i t y of
newly d e v i s e d Banister-Legge
nomogram.
the
The e x t r a p o l a t i o n o r
c u r v e f i t t i n g p r o c e d u r e w a s d e p e n d e n t s o l e l y on t w o s e t s of
points.
They w e r e t h e h e a r t r a t e measured d u r i n g t h e f i f t h
m i n u t e of u n l o a d e d p e d a l l i n g a n d t h e maximum h e a r t r a t e .
together,
t h e s e v a l u e s p r o v i d e d t h e minimum a n d maximum d e l t a
h e a r t r a t e s a n d t h e r e f o r e d e f i n e d t h e s p a n of
values.
Taken
E x p r e s s i o n of
delta heart rate
c a r d i a c frequency measures a s d e l t a h e a r t
r a t e s provided f o r a coincident s t a r t i n g point f o r a l l
individuals,
r e g a r d l e s s of
fitness level,
s i n c e p e r f o r m a n c e of
u n l o a d e d p e d a l l i n g was d e f i n e d a s r e q u i r i n g a d e l t a h e a r t r a t e
equal t o zero.
A d i f f e r e n c e w i t h r e g a r d t o f i t n e s s l e v e l was
shown t o b e r e f l e c t e d r e a d i l y i n t h e d e l t a h e a r t r a t e f o r a
g i v e n submaximum work r a t e .
Maximum d e l t a h e a r t r a t e , w h i c h
v a r i e d s i g n i f i c a n t l y between t r a i n e d and u n t r a i n e d groups,
d e f i n e d t h e u p p e r e n d of
5.3.2
the delta heart r a t e scale.
T r a i n i n g a n d Age
Both a g e a n d t r a i n i n g s t a t e have a major i n f l u e n c e on t h e
oxygen u p t a k e / d e l t a h e a r t r a t e r e l a t i o n s h i p .
Trained individuals
h a v e b e e n shown t o h a v e a more r a p i d o x y g e n u p t a k e a d a p t a t i o n a t
t h e o n s e t of
therefore,
e x e r c i s e f o r t h e same a b s o l u t e w o r k r a t e a n d ,
..
oxygen u p t a k e r e q u i r e m e n t ,
(Whipp a n d Wasserman,
than untrained individuals
al.,
1972; Hagberg e t -
1 9 7 8 ) . The r a t e a t
which oxygen u p t a k e i n c r e a s e s t o a s t e a d y sta-te i n r e s p o n s e t o
t h e c h a l l e n g e of work b e l o w t h e o n s e t of
a c c u m u l a t i o n i s d e s c r i p t i v e of
f o r d e l i v e r y of
o x y g e n a n d of
u t i l i z e oxygen (deVries
et
blood l a c t a t e
t h e c a p a c i t y of
the circulation
t h e c e l l s of a c t i v e t i s s u e s t o
e.,1 9 8 2 ) .
T h i s f a c t may h a v e
c o n t r i b u t e d somewhat t o t h e s i g n i f i c a n t l y d i f f e r e n t oxygen
u p t a k e / d e l t a h e a r t r a t e s l o p e between t r a i n e d and u n t r a i n e d
g r o u p mean d a t a .
The b r a d y c a r d i a a s s o c i a t e d w i t h t r a i n i n g w i l l a l w a y s c o n f e r
a s i g n i f i c a n t l y h i g h e r d e l t a h e a r t r a t e maximum u p o n t r a i n e d
compared t o u n t r a i n e d i n d i v i d u a l s .
T h i s h a s been v e r i f i e d f o r
m a l e s w i t h i n t h e a g e r a n g e 2 0 t o 29 y e a r s i n t h i s s t u d y .
The
m a j o r f a c t o r d i f f e r e n t i a t i n g r a m p s of
individuals,
therefore,
t r a i n e d and u n t r a i n e d
was d u e t o a s i g n i f i c a n t l y l o w e r d e l t a
heart r a t e for trained individuals with respect
t o untrained f o r
a g i v e n submaximum w o r k r a t e s i n c e u n t r a i n e d i n d i v i d u a l s w o r k e d
a t a h i g h e r p e r c e n t a g e of
b o t h t h e i r maximum o x y g e n u p t a k e a n d
maximum h e a r t r a t e l e v e l s when e a c h p e r f o r m e d e q u i v a l e n t w o r k
rates.
T h i s w a s r e f l e c t e d i n a r e d u c e d s l o p e of
t h e oxygen
uptake/ d e l t a h e a r t r a t e curve f o r the untrained group s i n c e
e a c h w o r k r a t e r e q u i r e d t h e same a b s o l u t e o x y g e n u p t a k e b u t
d i f f e r e n t d e l t a heart r a t e values.
The mean maximum h e a r t r a t e s f o r t r a i n e d a n d u n t r a i n e d
groups a s s e s s e d i n the p r e s e n t s t u d y were not s i g n i f i c a n t l y
different.
T h i s f i n d i n g i s . .i n a g r e e m e n t w i t h t h a t of
Hermansen (1968).
s t r o k e volume
Ekblom a n d
T r a i n e d a t h l e t e s a r e c h a r a c t e r i z e d by a l a r g e
(Ekblom a n d Hermansen,
1968; Astrand and Rodahl,
1977). T h i s e n a b l e s a n a t h l e t e t o complete a-work r a t e w i t h a .
l o w e r h . e a r t r a t e s i n c e t h e c a r d i a c o u t p u t i s n o t d i f f e r e n t when
t r a i n e d and u n t r a i n e d i n d i v i d u a l s a r e compared a t e q u a l l e v e l s
of w o r k ( R o s t a n d H o l l m a n ,
1983). Oxygen u p t a k e o r oxygen
u t i l i z a t i o n f o r t h e same w o r k r a t e i s a l s o t h e same f o r t r a i n e d
and u n t r a i n e d i n d i v i d u a l s , a s determined i n t h e p r e s e n t s t u d y .
The i n c r e a s e i n s t r o k e v o l u m e i s a d i m e n s i o n a l a d a p t a t i o n a n d i s
r e a c h e d a f t e r m o r e t h a n a y e a r of
Hermansen,
1968).
DeVries e t al.
k i n e t i c s of
t r a i n i n g (Ekblom a n d
( 1 9 8 2 ) d e t e r m i n e d t h e e f f e c t of
a g e upon t h e
o x y g e n u p t a k e i n o l d a n d y o u n g men of e q u a l f i t n e s s
a n d f o u n d no s i g n i f i c a n t d i f f e r e n c e b e t w e e n t h e t w o g r o u p s w i t h
r e s p e c t t o t h e r a t e of
investigators,
r e s p o n s e t o submaximum w o r k r a t e s .
theref ore,
The
c a u t i o n e d t h e i n t e r p r e t a t i o n of
'agewise decrements observed i n t h o s e p h y s i o l o g i c a l v a r i a b l e s
w h i c h may a l s o b e s e n s i t i v e t o p h y s i c a l f i t n e s s s t a t u s .
V a r i a t i o n s i n maximum h e a r t r a t e w i t h i n a n a g e g r o u p ,
decade,
by
b e c a u s e o f a d e c r e m e n t i n maximum a t t a i n a b l e h e a r t r a t e
w i t h a g e , w e r e t y p i c a l l y m o d i f i e d by A s t r a n d w i t h a n a g e
correction factor.
The i n t e r r e l a t i o n s h i p b e t w e e n a g e a n d
t r a i n i n g s t a t u s a n d t h e i r e f f e c t o n t h e p r e d i c t i o n of
o x y g e n u p t a k e may b e a c c o u n t e d f o r b y t h e u s e of
r a t e measures.
I n t h i s way,
an older,
maximum
delta heart
t r a i n e d i n d i v i d u a l may
h a v e t h e s a m e , d e l t a h e a r t - r a t e maximum a s a y o u n g e r u n f i t
i n d i v i d u a l a n d u s e of
t h i s f a c t o r obviates the need f o r an
a r b i t r a r y age c o r r e c t i o n - f a c t o r .
The l i n e a r r e g r e s s i o n e q u a t i o n s d e s c r i b i n g t h e r e l a t i o n s h i p
b e t w e e n p e r c e n t maximum o x y g e n u p t a k e a n d d e l t a h e a r t r a t e f o r
t r a i n e d a n d u n t r a i n e d g r o u p mean d a t a h a d s i m i l a r s l o p e s .
was t h e c a s e s i n c e ,
p e r c e n t a g e s of
though both groups were working a t d i f f e r e n t
t h e i r maximum o x y g e n u p t a k e f o r a g i v e n
submaximum work r a t e ,
p e r c e n t a g e s of
This
t h e y were a l s o w o r k i n g a t d i f f e r e n t
t h e i r maximum h e a r t r a t e .
h o w e v e r , w a s t h e same.
The d e l t a h e a r t r a t e ,
The r e l a t i o n s h i p between oxygen u p t a k e
and d e l t a h e a r t r a t e was t h e r e f o r e ,
maintained.
I n t e r c e p t s of
t h e r e g r e s s i o n e q u a t i o n s , however, were s i g n i f i c a n t l y d i f f e r e n t .
T h i s r e f l e c t e d t h e a b i l i t y of
t r a i n e d i n d i v i d u a l s t o work a t a
l o w e r p e r c e n t a g e of
t h e i r maximum f o 2 m a x f o r a g i v e n d e l t a h e a r t
rate.
5.4 P e r f o r m a n c e of Test
-
Protocol
When t h e o r i g i n a l A-R
nomogram w a s c o n s t r u c t e d i n 1 9 5 4 , i t
h a d b e e n d e m o n s t r a t e d t h a t i d e n t i c a l V02max v a l u e s w e r e e l i c i t e d
d u r i n g c y c l e ergometry and t r e a d m i l l running.
T h e s e t w o f o r m s of
e x e r c i s e were consequently used interchangeably i n the
a p p l i c a t i o n of
t h e A-R
nomogram t o p r e d i c t V02max.
Many s t u d i e s
have b e e n c o n d u c t e d s i n c e 1954 which r e f u t e t h i s g e n e r a l i z a t i o n
and show t h a t t r e a d m i l l r u n n i n g e l i c i t s s i g n i f i c a n t l y h i g h e r
V02max v a l u e s on t h e o r d e r : - o f 4 t o 1 8 % g r e a t e r t h a n t h o s e o n t h e
--
bicycle ergometer (Glassford e t a l . ,
1965; Chase, 1966;
Hermansen a n d S a l t i n , 1 9 6 9 ; Hermansen et al.,
Magel,
1 9 7 0 ; Kamon a n d P a n C o l f
McArdle et al.,
,
1 9 7 0 ; McArdle a n d
1 9 7 2 ; Miyamura a n d Honda,
1 9 7 3 ; McKay a n d B a n i s t e r ,
et g . ,
1976; M a t s u i ,
1978; Hagberg
e t al.,
Keren -
1980; Pannier e t -*a 1
1972.;
1 9 7 6 ; Bergh et al.,
1978; Miles
et
a
l
1980; Verstappen
1 9 8 2 ) . D e s p i t e t h i s f i n d i n g , s i n c e t h e d e v e l o p m e n t of
e
,
et
1980;
c.,
the
nomogram. i n 1 9 5 4 , i n u m e r a b l e i n v e s t i g a t i o n s h a v e b e e n u n d e r t a k e n
t o d e t e r m i n e t h e v a l i d i t y of
t h e nomogram by c o r r e l a t i o n of
p r e d i c t e d V02max v a l u e s f r o m t h e A-R
nomogram w i t h d i r e c t l y
measured values.
An i m p o r t a n t e l e m e n t of
and v a l i d a t i o n s ,
of
course,
a l l such predictions
l i e s i n t h e e x a c t r e p l i c a t i o n of
t e s t protocol each time a t e s t i s performed.
the
Despite thi;
s t u d i e s of
l o g i c a l requirement,
i n v e s t i g a t o r s of n u m e r o u s
t h e v a l i d i t y of p r e d i c t i o n h a v e c o n t i n u e d t o u t i l i z e
t e s t i n g modes o r m e t h o d s i n c o n s i s t e n t w i t h t h e b a s i c p r e m i s e
(deVries and K l a f s ,
1976; J e s s u p e t *a 1
Toft,
et
1965; T e r a s l i n n a
9
1977; Louhevaara
-
s.,
1966;
et g . ,
1 9 8 0 ; Myles a n d
1980; S i c o n o l f i et al.,
1 9 8 0 ; P a t t o n e t -*a 1
Coleman,
1982).
I n a p p r o p r i a t e comparisons have r e s u l t e d and i n c l u d e u s i n g
maximal t r e a d m i l l r u n n i n g w i t h submaximal c y c l e e r g o m e t e r t e s t
(Jessup
et
e.,1 9 7 5 ;
-
G l a s s f o r d e t *a 1
1 9 6 5 ) . Maximal and
s u b m a x i m a l t r e a d m i l l t e s t s w o u l d b e a v a l i d c h e c k of
(Rowell et al.,
t h e nomgram
1964) b u t due t o t h e d i f f e r e n t h e a r t r a t e and
oxygen u p t a k e r e s p o n s e s i n t r e a d m i l l r u n n i n g compared t o b i c y c l e
e r g o m e t r y , u s e of
t h e t r e a d m i l l r e d u c e d t h e a c c u r a c y of a n y
.-
t r e a d m i l l p r e d i c t e d io2max. Even t h o s e s t u d i e s u s i n g a b i c y c l e
f o r s u b m a x i m a l a n d m a x i m a l t e s t s u s e d a s p e c i f i e d t i m e of
m i n u t e s a n d n o t t h e A-R
t h a n 130 bemin-I
q u o t e d c r i t e r i o n of
six
heart rate greater
d i f f e r i n g by no m o r e t h a n 5 b * m i n m l d u r i n g t h e
f i f t h and s i x t h minute.
H o w e v e r , when t h e A-R
followed exactly (Glassford et al.,
protocol was
1 9 6 5 ; Cink and Thomas,
1982)
i n v e s t i g a t o r s s t i l l r e p o r t q u i t e low c o r r e l a t i o n c o e f f i c i e n t s
r a n g i n g f r o m 0.63
t o 0.80.
P e d a l r a t e must n o t v a r y w i t h i n t h e
same t e s t a s o u t l i n e d i n t h e W o r l d H e a l t h O r g a n i z a t i o n (WHO)
--
test (Louharvaara e t a 1
., 1 9 8 0 ) ,
b u t must r e m a i n c o n s t a n t due
t o t h e v a r i a t i o n i n oxygen u p t a k e w i t h v a r i a t i o n s
i n pedal r a t e
a t a c o n s t a n t power o u t p u t ( B a n i s t e r a n d . J a c k s o n ,
1967).
With a l l t h e s e c o n s t r a i n t s i n mind,
it i s apparent t h a t f o r
t h e c u r r e n t p r e d i c t i v e nomogram t o b e of a n y v a l u e ,
the protocol
u p o n w h i c h t h e nomogram w a s c o n s t r u c t e d m u s t b e p e r f o r m e d
e x a c t l y a s o u t l i n e d f o r t h e p r e d i c t i o n s t o approximate most
c l o s e l y w i t h d i r e c t l y m e a s u r e d maximum o x y g e n u p t a k e .
It i s
e n t i r e l y r e a s o n a b l e t h a t t h e t e s t be performed a s i t was
designed and v a l i d a t e d s o t h a t the r e s l u t s l i e within the
r e l a t e d nomogram's
s t a n d a r d e r r o r of
estimate.
The c u r r e n t p r o t o c o l w a s s p e c i f i c a l l y d e v i s e d t o i n c l u d e
f e a t u r e s which would h e l p t o e l i c i t a r e s p o n s e t h a t would
p r o v i d e g r e a t e r i n s i g h t i n t o t h e a c t u a l c a p a c i t y of
individual being tested.
P r e c i s e d e t a i l s of
o u t l i n e d a f t e r a t h o r o u g h . r e v i e w of
A-R
the
the protocol were
t h e l i m i t i n g f e a t u r e s of
the
p r e d i c t i v e t e s t which i n c l u d e d t h e slow p e d a l r a t e ( 5 0 rpm)
and t h e s i n g l e work r a t e r e q u i r e d .
S p e c i f i c a l l y , new f e a t u r e s of
t h e best i n c l u d e a f i v e m i n u t e warm-up
p e r i o d of u n l o a d e d
p e d a l l i n g f o l l o w e d i m m e d i a t e l y by p r o g r e s s i v e l y i n c r e a s i n g w o r k
r a t e s each performed f o r t h r e e minutes d u r a t i o n .
For i n d i v i d u a l s
w i t h i n t h e a g e g r o u p a s s e s s e d i n t h i s s t u d y ( 2 0 t o 29 y e a r s ) ,
t h e e n d p o i n t of
t h e s u b m a x i m a l t e s t w a s r e a c h e d when t h e d e l t a
h e a r t r a t e h a d a t t a i n e d a v a l u e of
b e t w e e n 5 0 t o 70 b - m i n ' l .
i s e s s e n t i a l t h a t a p e d a l f r e q u e n c y of
throughout the e n t i r e t e s t ,
It
90 rpm b e m a i n t a i n e d
s i n c e o x y g e n u p t a k e h a s b e e n shown
t o c h a n g e w i t h v a r i o u s c o m b i n a t i o n s of
d e s p i t e a c o n s t a n t power o u t p u t
pedal r a t e and r e s i s t a n c e
( B a n i s t e r and Jackson,
1967).
The c u r r e n t p r o t o c o l a l s o i n c l u d e s a t h r e e m i n u t e r e c o v e r y
p e r i o d t o b e c o m p l e t e d a f t e r t h e f i n a l t h r e e m i n u t e work r a t e .
Thus t h i s i n v e s t i g a t i o n h a s a t t e m p t e d t o g o a s t e p f u r t h e r t h a n
p r e v i o u s i n v e s t i g a t i o n s whose i n t e n t of
p r o d u c i n g a more
a c c u r a t e means of p r e d i c t i n g V02max w a s s i m i l a r . The new
nomogram h a s r e s u l t e d f r o m a r a d i c a l a l t e r a t i o n i n t e s t p r o t o c o l
a n d n a t u r e of
t h e a n a l y s i s of
the results.
D e s p i t e numerous s t u d i e s which have b e e n s u c c e s s f u l i n
i m p r o v i n g t h e a c c u r a c y of p r e d i c t i o n of
(Myles and T o f t ,
1982;
e t al.,
1980; P a t t o n -
Siconolfi et al.,
1982),
t h e A-R
maximum o x y g e n u p t a k e
1980; Louhevaara et a1
9
predictive t e s t remains
f i r m l y e n t r e n c h e d i n t h e a r m o u r y of e x e r c i s e t e s t i n g r e g a r d l e s s
of
i t s r e l a t i v e l y low p r e d i c i t i v e power.
Thus,
it seems,
o r d e r f o r a new p r e d i c t i v e - . t e s t t o r e p l a c e t h e A-R
in
t e s t , i t must
b e c o m p e l l i n g l y s i m p l e a n d y e t p r o v i d e a n i m p r o v e d p o w e r of
p r e d i c t i n g maximum o x y g e n u p t a k e .
The t e s t p r o t o c o l d e v e l o p e d h e r e h a s b e e n s h o w n t o d o j u s t
t h i s and a d d i t i o n a l l y shows a n a b i l i t y t o d i s t i n g u i s h between
t r a i n e d and u n t r a i n e d i n d i v i d u a l s w i t h i n a n age group.
T a b l e s of
p r e d i c t e d v o 2 m a x h a v e b e e n p r o v i d e d f o r e a s e of u s e a n d may b e
u s e d s u c c e s s f u l l y when a l l r e l a t e d p r o t o c o l c r i t e r i a h a v e b e e n
completed.
T h e s e d a t a s u g g e s t t h a t +o2max p r e d i c t e d f r o m t h e
r e s u l t s of a r e l a t i v e l y s i m p l e c y c l e e r g o m e t e r t e s t c o r r e l a t e s
w e l l w i t h d i r e c t l y determined to2max t h u s p r o v i d i n g a s u i t a b l e
e s t i m a t e of a e r o b i c f i t n e s s .
5.5 L i m i t a t i o n s of the
-
P r e s e n t Study
P r e d i c t i o n s b a s e d u p o n e x t r a p o l a t i o n t o a n a s s u m e d maximum
value a r e subject t o considerable error.
A m e t h o d of p r e d i c t i n g
maximal oxygen u p t a k e which m e a s u r e s a s i n g l e submaximal work
r a t e and corresponding h e a r t r a t e o n l y , w i l l always provide only
a r o u g h a p p r o x i m a t i o n of
true aerobic capacity.
C o m p l e t i o n of
t h r e e o r more submaxiaml work r a t e s combined w i t h t h e
c o r r e s p o n d i n g h e a r t r a t e r e s p o n s e s h a v e i m p r o v e d t h e a c c u r a c y of
p r e d i c t i o n b u t a n y p r o c e d u r e a s s u m i n g a maximum v a r i a b l e m e a s u r e
is still subject t o error.
information,
I f o n e w i s h e s t o o b t a i n more p r e c i s e
it i s n e c e s s a r y t o m e a s u r e t h e a e r o b i c work
capacity directly.
...
S u b j e c t s i s t h i s study were males,
a g e d 20 t o 29 y e a r s ,
and
represented e i t h e r highly trained c y c l i s t s or relatively
untrained males.
T h e r e s u l t s of
the t e s t ,
and r e s t r i c t e d t o s i m i l a r p o p u l a t i o n s .
however,
theref ore, a r e limited
The i n v e s t i g a t i o n h a s ,
b e e n v a l u a b l e i n p r o v i d i n g e v i d e n c e t h a t t h e u s e of
d e l t a h e a r t r a t e and t h e chosen e x e r c i s e t e s t i n g p r o t o c o l
.
r e s u l t e d i n a m o r e a c c u r a t e e s t i m a t i o n of V02max t h a n h a d
p r e v i o u s l y b e e n d e t e r m i n e d u s i n g t h e t r a d i t i o n a l s u b m a x i m a l A-R
predictive test. This study, then, has outlined a predictive
m e t h o d w h i c h may c o n c e i v a b l y b e e x t e n d e d t o i n c l u d e p r e d i c t i v e
nomograms f o r b o t h f e m a l e s a n d m a l e s of a l l a g e s a n d f i t n e s s
levels.
groups.
As yet,
t h e v a l i d i t y of
t h e p r o t o c o l i s unknown f o r s u c h
5-6 Constraints of T e s t i n g
-
Apparatus
Due t o t h e c o n s t r a i n t s of
t h e e l e c t r o m a g n e t i c a l l y braked
b i c y c l e u s e d i n t h i s s t u d y , work r a t e c o u l d n o t b e i n c r e a s e d t o
l e v e l s a b o v e 2 4 0 0 kpm-min'l.
T h i s work r a t e d i d n o t p r o v i d e a
maximum s t i m u l u s f o r some i n d i v i d u a l s w i t h i n t h e t r a i n e d g r o u p .
Work r a t e , w h i c h s e r v e d a s t h e f o r c i n g f u n c t i o n , r e a c h e d a
maximum l e v e l a t 2 4 0 0 kpm-min'l
a f t e r which time t h e f i r s t o r d e r
l i n e a r r e s p o n s e b e t w e e n oxygen u p t a k e a n d work r a t e became
a s y m p t o t i c . T h i s w a s d u e t o t h e d i s c o n t i n u e n c e of
t h e ramp s l o p e
f o r c i n g f u n c t i o n which t h e n became a s t e p a t 2400 kpm*min-l.
S i n c e w o r k r a t e h a d r e a c h e d a maximum l e v e l ,
i n h e a r t r a t e w i t h t i m e w e r e t h e r e s u l t of
further increases
cardiovascular d r i f t
d u e t o i n c r e a s e d body c o r e t e m p e r a t u r e .
I f a n a d e q u a t e f o r c i n g f u n c t i o n c o u l d liave b e e n m a i n t a i n e d ,
i t may b e p o s t u l a t e d t h a t a c o n t i n u e d l i n e a r r e s p o n s e i n o x y g e n
u p t a k e / work r a t e a t h i g h work r a t e s would h a v e r e s u l t e d a s
s h o w n i n t h e maximum p o r t i o n of
t h e u n t r a i n e d group oxygen
u p t a k e a n d work r a t e r e l a t i o n s h i p .
The d e r i v e d r e l a t i o n s h i p
b e t w e e n o x y g e n u p t a k e a n d h e a r t r a t e may t h e n h a v e r e v e a l e d a
non-linear
t r e n d a s e x h i b i t e d by t h e u n t r a i n e d g r o u p d a t a i n t h e
maximum p o r t i o n of
kpm*min-l,
the relationship.
i n c o n t r a s t t o h a l f -minute
One m i n u t e s t e p s of
100
1 0 0 k p m * r n i n - l s t e p s , may
s e r v e a s a s u i t a b l e w o r k r a t e f o r c i n g f u n c t i o n (Whipp e t al.,
1981).
5.7 F u t u r e
-
Considerations
New g r o u p s of
both males and f e m a l e s v a r y i n g i n a g e and
f i t n e s s l e v e l must be t e s t e d i n a s i m i l a r f a s h i o n t o t h a t
o u t l i n e d i n t h i s s t u d y and t h e oxygen u p t a k e l d e l t a h e a r t r a t e
r e l a t i o n s h i p e x a m i n e d . R e l a t e d t a b l e s f o r t h e p r e d i c t i o n of
maximum o x y g e n u p t a k e f r o m d e l t a h e a r t r a t e r e s p o n s e s t o
submaximum w o r k m u s t b e c o n s t r u c t e d a n d v a l i d a t e d o n s i m i l a r
g r o u p s of
i n d i v i d u a l s a n d t h e f u l l s e t of a g e d e c a d e ,
t r a i n i n g s t a t e nomograms c o m p l e t e d .
of
d e l t a h e a r t r a t e measures,
The e f f e c t i v e n e s s of
the use
a s related t o a decrease i n
maximum h e a r t , r a t e w i t h i n . c r e a s i n g a g e ,
l e v e l of
sex and
combined w i t h a h i g h
c a r d i o v a s c u l a r f i t n e s s , may a l s o b e a s s e s s e d .
5.8 C o n c l u s i o n
-
In conclusion,
t h i s s t u d y h a s i n v e s t i g a t e d t h e b a s i c oxygen
u p t a k e 1 h e a r t r a t e r e l a t i o n s h i p d u r i n g submaximal and maximal
work p e r f o r m e d o n a b i c y c l e e r g o m e t e r a c c o r d i n g t o a
well-defined
p r o t o c o l a t a p e d a l r a t e of
90 rpm i n t w o g r o u p s of
m a l e s u b j e c t s a g e 2 0 t o 29 y e a r s v a r y i n g i n f i t n e s s l e v e l .
had o r i g i n a l l y been h y p o t h e s i z e d t h a t a n o n - l i n e a r
r e l a t i o n s h i p e x i s t e d between t h e s e v a r i a b l e s ,
t h i s was a p p a r e n t i n i n d i v i d u a l c a s e s ,
variations
obscured t h e non-linearity
,
It
exponential
however, w h i l e
interindividual
when g r o u p d a t a w e r e
analyzed.
The r e l a t i o n s h i p b e t w e e n V 0 2 l d e l t a h e a r t r a t e f o r b o t h
t r a i n e d a n d u n t r a i n e d g r o u p mean d a t a w a s f o u n d t o b e e x p r e s s e d
b e s t s t a t i s t i c a l l y by l i n e a r e q u a t i o n s .
S l o p e s of
equations were found t o d i f f e r s i g n i f i c a n t l y .
t h e two l i n e a r
The e x p o n e n t i a l
h y p o t h e s i s was abandoned and t h e r e m a i n i n g a n a l y s i s d e a l t
s t r i c t l y with the attained linear relationship.
A nomogram f o r p r e d i c t i n g V02max v a l u e s f r o m submaximum
h e a r t r a t e a n d work r a t e was c o n s t r u c t e d f o l l o w i n g a p r o c e d u r e
s i m i l a r t o t h a t u s e d t o c o n s t r u c t t h e A s t r a n d - R y h m i n g nomogram
(1954).
The l i n e a r r e g r e s s i o n e q u a t i o n s e x p r e s s i n g t h e %
m a x l d e l t a HR d a t a f o r u n t r a i n e d (11x15)
a n d t r a i n e d (11-20)
to2
group
mean d a t a were a s f o l l o w s :
Untrained
y = (0.70304)
x
+
31.906
(Equation 15)
Trained
y = (0.71486)
x
+
20.919
(Equation 16)
The new nomogram h a s b e e n v a l i d a t e d w i t h s i m i l a r b u t d i s t i n c t l y
s e p a r a t e g r o u p s of
s u b j e c t s from t h e t e s t groups from which t h e
nomogram w a s c o n s t r u c t e d .
The p r e d i c t i v e power was a s s e s s e d f r o m
t h e c o r r e l a t i o n c o e f f i c i e n t s a n d s t a n d a r d e r r o r s of e s t i m a t e ,
d e r i v e d f r o m a p l o t of
.
o b s e r v e d v e r s u s p r e d i c t e d V02max.
These
showed a s t a t i s t i c a l l y s i g n i f i c a n t improvement i n p r e d i c t i v e
p o w e r o v e r t h e A-R
nomogram p r e d i c t i o n s .
The nomogram d e s c r i b e d i s u n i q u e i n t h a t i t p r o v i d e s f o r a
d i s t i n c t i o n t o b e made r e g a r d i n g t h e s t a t e of
f i t n e s s l e v e l of
r e p l a c e t h e A-R
the individual.
T h e nomogram,
training or
therefore,
may
nomogram when t h e p r e d i c t i o n of V02max i s s o u g h t
f o r t r a i n e d a n d u n t r a i n e d m a l e s 2 0 t o 29 y e a r s of a g e .
Use of
t h e nomogram d e m a n d s t h a t t h e w o r k p r o t o c o l b e
s t r i c t l y a d h e r e d t o , w i t h t h e i n c l u s i o n of a f i v e m i n u t e warm-up
p e r i o d of u n l o a d e d p e d a l l i n g ,
b i c y c l e e r g o m e t e r a t 90 rpm.
a n d p e r f o r m a n c e of work on a
D e l t a h e a r t r a t e s b e t w e e n 40 a n d 70
b * m i n m l , o r h e a r t r a t e s b e t w e e n 1 4 0 a n d 1 6 0 b * m i n - I f o r 20 t o 29
.
I
y e a r o l d m a l e s w i l l r e s u l t - . - i n t h e b e s t e s t i m a t e of V02max.
T h i s i s t h e f i r s t nomogram o f
i t s kind t o provide a simple
method u s i n g d e l t a h e a r t r a t e v a l u e s t h a t a l l o w a d i s t i n c t i o n t o
b e made f o r v a r i a t i o n s i n f i t n e s s l e v e l .
T h e - d e v e l o p e d nomogra-m
s h o u l d p r o v e v e r y u s e f u l i n p r e d i c t i n g maximum a e r o b i c p o w e r
f r o m submaximum t e s t s .
BIBLIOGRAPHY
Adamson, G.T., J . E . C o t e s . S t a t i c a n d e x p l o s i v e m u s c l e f o r c e ;
relationship t o other variables. J. Physiol.
ondo don).,
189 :76-77P, 1 9 6 7 .
A l l e n , P . D . , K.B. P a n d o l f . P e r c e i v e d e x e r t i o n a s s o c i a t e d w i t h
b r e a t h i n g h y p e r o x i c m i x t u r e s d u r i n g submaxi.ma1 w o r k . Med.
S c i . S p o r t s , 9:122-127,
1977.
-
-
A n d e r s e n , K.L.,
a n d o t h e r s . F u n d a m e n t a l s of E x e r c i s e T e s t i n g .
World H e a l t h O r g a n i z a t i o n , Geneva, 1971.
A r i y o s h i , M . , K . Y a m a j i , R . J . S h e p h a r d . I n f l u e n c e of r u n n i n g
p a c e upon performance: e f f e c t s upon t r e a d m i l l endurance t i m e
1979.
and oxygen c o s t . E u r. J. Appl. P h y s i o l . , 41:83-91,
A r o n c h i c k . J . , E .J. Burke. P s y c h o - p h y s i c a l
r e s t i n t e r v a l s f o l l o w i n g warm-up. R e s .
1977.
Asmussen, E r l i n g .
1979.
Muscle F a t i g u e .
e f f e c t s of v a r i e d
Q u a r t . , 48:260-264,
Sci. Sports,
--
Med.
11 : 3 1 3 - 3 2 1 ,
A s m u s s e n , E . , N.H.
S e c h e r , E.A.
Andersen. H e a r t r a t e and
v e n t i l a t o r y frequency a s dimension-dependent v a r i a b l e s .
J . A p p l . P h y s i o l . , 4 6 : 3.-7 9 - 3 8 6 ,
1981.
-
Eur.
-
A s t r a n d , P.-0.'
E x p e r i m e n t a l S t u d i e s of P h y s i c a l W o r k i n g C a p a c i t y
i n R e l a t i o n t o S e x a n d Age. C_ o p e n h a g e n , M u n k s g a a r d , 1 9 5 2 .
-
I
_
-
A s t r a n d , P.-O.,
I . Rhyming. A nomogram f o r c a l c u l a t i o n of
a e r o b i c c a p a c i t y (physical f i t n e s s ) from p u l s e r a t e d u r i n g
s u b m a x i m a l work. J . Appl. P h y s i o l . , 7 :218-221, 1 9 5 4 .
7
A s t r a n d , P.-0.
Human p h y s i c a l f i t n e s s w i t h s p e c i a l r e f e r e n c e t o
sex and age. Physiol. 2
Rev '
36:307-335,
1956.
A s t r a n d , P.-O.,
B, S a l t i n . O x y g e n u p t a k e d u r i n g t h e f i r s t
m i n u t e s of h e a v y m u s c u l a r e x e r c i s e . J . A p p l . P h y s i o l . ,
16 :97 1 - 9 7 6 , 1 9 6 1.
-
A s t r a n d , P.-O.,
B. S a l t i n . M a x i m a l o x y g e n u p t a k e a n d h e a r t r a t e
i n v a r i o u s t y p e s of m u s c u l a r a c t i v i t y . J. A p p l . P h y s i o l . ,
16 : 9 7 7 - 9 8 1 , 1 9 6 1.
A s t r a n d , I . , P.-0.
A s t r a n d , K. R o d a h l . Maximal h e a r t r a t e d u r i n g
w o r k i n o l d e r men. J . A p p l . P h y s i o l . , 1 4 : 5 6 2 - 5 6 6 , 1 9 5 9 .
-
A s t r a n d , P o - O . , a n d K. R o d a h l . T e x t b o o k of Work P h y s i o l o g y :
P h y s i o l o g i c a l B a s e s of E x e r c i s e . ( 2 n d e d . ). New Y o r k :
McGraw-Hill, 1977.
-
A s t r a n d , I . A e r o b i c w o r k c a p a c i t y i n men a n d women w i t h s p e c i a l
r e f e r e n c e t o a g e . Acta P h y s i o l . Scand. Suppl., 169:l-92,
1960.
A s t r a n d , I . , P.-0.
A s t r a n d , ' E.H. C h r i s t e n s e n , R.Hedman.
I n t e r m i t t e n t m u s c u l a r work. A c t a P h y s i o l . Scand., 48:
-
B a l a n e s c u , F. Some a s p e c t s c o n c e r n i n g t h e d y n a m i c e v a l u a t i o n of
oxygen consumption i n e x e r c i s e t e s t s . Ergonomics,
22:1337-1342,
1979.
R.C.
J a c k s o n . E f f e c t of s p e e d a n d l o a d c h a n g e s
B a n i s t e r , E.W.,
on o x y g e n i n t a k e f o r e q u i v a l e n t power o u t p u t s d u r i n g b i c y c l e
ergometry. I n t . Z
,Angew. P h y s i o l . , 2 4 : 2 8 4 - 2 9 0 , 1 9 6 7 .
The p e r c e p t i o n of e f f o r t : a n i n d u c t i v e a p p r o a c h .
B a n i s t e r , E.W.
E
u
r
.
J
.
Appl.
P h y s i o l . , 41:141-150,
1979.
-Barclay, J.K.,
W.N.
S t a i n s b y . The r o l e of b l o o d f l o w i n l i m i t i n g
m a x i m a l m e t a b o l i c r a t e i n m u s c l e . Med. S c i . S p o r t s ,
7:116-119,
1975.
--
B a u n , W.B.,
A . J a c k s o n , R. W. P a t t e n , P . B. R a v e n . C o m p a r i s o n of
h e a r t r a t e measurement p r o t o c o l s u s e d d u r i n g autonomic
f u n c t i o n t e s t s . J . Appl. P h y s i o l . : R e s p i r a t . E n v i r o n .
E x e r c i s e ~ h ~ s i o l . , 51 :516-519, 1981.
B e a v e r , W.L., K . W a s s e r m a n , B . J .
Whipp. O n - l i n e c o m p u t e r
a n a l y s i s a n d b r e a t h - b y - b r e a t h g r a p h i c a l d i s p l a y of e x e r c i s e
f u n c t i o n t e s t s . J . Appl. P h y s i o l . , 34:128-132, 1973.
-
Bedf o r d , T . B . , C.M. T i p t o n , N . C .
W i l s o n . Maximal oxygen
c o n s u m p t i o n of r a t s a n d i t s c h a n g e s w i t h v a r i o u s
e x p e r i m e n t a l procedure.^. J. A p p l . P h y s i o l . : R e s p i r a t .
Environ. E x e r c i s e P h y s i o l . , 47:1278-1283, 1979.
B e l l , A.C.,
M.M.Hinson.
P r e d i c t i o n of m a x i m a l o x y g e n i n t a k e i n
women t w e n t y t o f o r t y y e a r s of a g e . J . S p o r t s . Med.,
14:208-212, 1974.
-
Berg
g r e n , G . , E.H. C h r i s t e n s e n . H e a r t r a t e a n d body t e m p e r a t u r , e
- a s i n d i c e s of m e t a b o l i c r a t e d u r i n g work. 1 n t . - Z. ~ n ~ e w .
P h y s i o l . , 14:255-260, 1950.
--
B e r g h , U . , I . L . K a n s t r u p , B. Ekblom. M a x i m a l o x y g e n u p t a k e
d u r i n g v a r i o u s c o m b i n a t i o n s of a r m a n d l e g work. J . Appl.
P h y s i o l . , 41 :191-196, 1976.
B e r g h , U . , A . T h o r s t e n s s o n , B. S j o d i n , B e H u l t e r , K . P i e h 1 , J .
K a r l s s o n . Maximal oxygen u p t a k e a n d m u s c l e f i b e r t y p e s i n
t r a i n e d a n d u n t r a i n e d humans. Med. S c i . S p o r t s , 1 0 : 1 5 1 - 1 5 4 , .
1978.
--
B e r g h , U . , B. Ekblom. P h y s i c a l p e r f o r m a n c e a n d p e a k a e r o b i c
p o w e r a t d i f f e r e n t body t e m p e r a t u r e s . J . A p p l . P h y s i o l . ,
46:885-889,
1979.
-
B e r g h , U . , B. Ekblom. I n f l u e n c e of m u s c l e t e m p e r a t u r e on m a x i m a l
m u s c l e s t r e n g t h a n d p o w e r o u t p u t i n human s k e l e t a l m u s c l e s .
Acta P h y s i o l . Scand,, 107:33-37, 1979.
-
B e r n e , R.M.,
M.N. Levy. C a r d i o v a s c u l a r P h y s i o l o g y .
S a i n t L o u i s : C.V. Mosby Co., 1 9 7 7 .
(3rd ed).
P .Vanleeuwen. A r a p i d method f o r t h e
B i n k h o r s t , R.A.,
d e t e r m i n a t i o n of a e r o b i c c a p a c i t y . I n t . Z. Angew. P h y s i o l . ,
--
B l i t z , P.S.,
A. VanMoorst. P h y s i c a l f a t i g u e and t h e p e r c e p t i o n
of d i f f e r e n c e s i n l o a d : a s i g n a l d e t e c t i o n a p p r o a c h .
P e r c e p t . Motor S k i l l s , 46:779-790,
1978.
B o b b e r t , A.C.
P h y s i o l o g i c a l c o m p a r i s o n of t h r e e t y p e s of
J. Appl. P h y s i o l . , 1 5 :1007-1014, 1960.
ergometry. B o n e n , A . , V.H. H e y w a r d , K . J .
C u r e t o n . R.A. B o i l e a u , B.H.
M a s s e y . P r e d i c t i o n of m a x i m a l o x y g e n u p t a k e i n b o y s a g e s
7 - 1 5 y e a r s . Med. S c i . S p o r t s , 1 1 : 2 4 - 2 9 ,
1979.
--
B o r g , G.A.V.
methods.
Perceived e x e r t i o n : a n o t e on "history"
Med. S c i . S p o r t s , 5 ~ 9 0 - 9 3 , 1 9 7 3 .
--
and
B o r g , G.A.V.,
B.J. Noble. P e r c e i v e d E x e r t i o n . I n : E x e r c i s e and
S p o r t S c i e n c e R e v i e w s , V o l . 11. e d . J . H . W i l m o r e . New Y o r k :
A c a d e m i c P r e s s , pp. 1 3 1 - 1 5 3 , 1 9 7 4 .
B o r g , G.A.V.,
A. H o l m g r e n , I . L i n d b l a d . Q u a n t i t a t i v e e v a l u a t i o n
of c h e s t p a i n . A c t a Med. S c a n d . S u p p l . , 6 4 4 : 4 3 - 4 5 ,
1981.
--
B o u c h a r d . C. , P . G o d b o u t , J . C . M o n d a r , C. L e b l a n c . S p e c i f i c i t y
of m a x i m a l a e r o b i c p o w e r . E u r . J . A p p l . P h y s i o l . , 4 0 : 8 5 - 9 3 ,
1979.
--
B u r g e r , H.C.,
Physiol.
,
L.J.Koopman,
P . VanLoon.
22:913-922,
1967.
Work a n d e f f o r t .
J. Appl.
-
B u r k e , E.R.,
F, C e r n y , D . C o s t i l l , W. F i n k . C h a r a c t e r i s t i c s o f
s k e l e t a l m u s c l e i n c o m p e t i t i v e c y c l i s t s . Med. S c i . S p o r t s
9:109-112,
1977.
--
,
B u r k e , E.R. P h y s i o l o g i c a l c h a r a c t e r i s t i c s of c o m p e t i t i v e
c y c l i s t s . Phy. S p o r t s - M e d . , 8:78-84,
1980.
B u r k e , E.R.,
S. F l e c k , T. Dickson. P o s t - c o m p e t i t i o n b l o o d
lactate concentrations i n competitive track cyclists. B r i t .
J. S p o r t s Med., 1 5 : 2 4 2 - 2 4 5 ,
1981.
B u s u t t i l , C.P.,
R.O. R u h l i n g . Warm-up a n d c i r c u l o - r e s p i r a t o r y
a d a p t a t i o n s . J. S p o r t s Med., 1 7 : 6 9 - 7 4 , 1 9 7 7 .
C a f a r e l l i , E . , B. J . N o b l e . E f f e c t o f i n s p i r e d c a r b o n d i o x i d e o n
s u b j e c t i v e e s t i m a t e s of e x e r t i o n d u r i n g e x e r c i s e .
Ergonomics, 1 9 :581-589, 1976.
C a f a r e l l i , E. P e r i p h e r a l a n d c e n t r a l i n p u t s t o t h e e f f o r t s e n s e
d u r i n g c y c l i n g e x e r c i s e . E u r . 3 . Appl. P h y s i o l . , 37:
181-189, 1977.
--
S t e v e n s . E f f o r t of dynamic
C a f a r e l l i , E . , W.S. C a i n , J . C .
e x e r c i s e : i n f l u e n c e of l o a d d u r a t i o n a n d t a s k . E r g o n o m i c s ,
20:147-158,
1977.
C a f a r e l l i , E. E f f e c t o f c o n t r a c t i o n f r e q u e n c y o n e f f o r t
s e n s a t i o n s d u r i n g c y c l i n g a t a c o n s t a n t r e s i s t a n c e . Med.
S c i . S p o r t s , 10:270-275,
1978.
-
C a r l i l e , I?. E f f e c t o f p r e l i m i n a r y p a s s i v e w a r m i n g o n s w i m m i n g
p e r f o r m a n c e . Res. Q u a r t . , 27:143-151,
1956.
-
C e r r e t e l l i , P., R. S i k a n d , L . E . F a r h i . R e a d j u s t m e n t s i n c a r d i a c
o u t p u t a n d g a s e x c h a n g e d u r i n g o n s e t of e x e c i s e a n d
J . Appl. P h y s i o l . , 21:1345-1350,
1966.
recovery. C h a s e , G.A.,
C. G r a v e , L.B. R o w e l l . I n d e p e n d e n c e of c h a n g e s i n
f u n c t i o n a l and performance c a p a c i t i e s a t t e n d i n g prolonged
b e d r e s t . A e r o s p a c e Med., 3 7 : 1 2 3 2 - 1 2 3 6 ,
1966.
.
C i n k , R.E , T .R. Thomas. V a l i d i t y of t h e A s t r a n d - R y h m i n g
nomogram f o r p r e d i c t i n g m a x i m a l o x y g e n u p t a k e . B r i t .
S p o r t s Med., 1 5 : 1 8 2 - 1 8 5 , 1 9 8 1 .
J.
K . K l a u s e n , B. R a s m u s s e n , J . T r a p - J e n s e n . C e n t r a l
Clausen,J.P.,
a n d p e r i p h e r a l c i r c u l a t o r y c h a n g e s a f t e r t r a i n i n g of t h e
a r m s o r l e g s . Amer. J. P h y s i o l . , 2 2 5 : 6 7 5 - 6 8 2 ,
1973.
C l o s e , R . J . T h e d y n a m i c p r o p e r t i e s of m a m m a l i a n s k e l e t a l
m u s c l e s . P h y s i o l . 2,
Rev
52 : 1 2 9 - 1 9 7 , 1 9 7 2 .
C o b b , L.A., P.H. S m i t h , S . L w a i . F.A. S h o r t . E x t e r n a l i l i a c v e i n
flow; i t s r e s p o n s e t o e x e r c i s e and r e l a t i o n t o l a c t a t e
production. J . Appl. P h y s i o l . , 26:606-610,1969.
C o l e m a n , A . E . V a l i d a t i o n of a s u b m a x i m a l t e s t of
i n t a k e . J . S p o r t s Med., 1 6 : 1 0 6 - 1 1 1 ,
1976.
-
maximal oxygen
C o o p e r , D.F., G . G r i m b y , D . A . J o n e s , R.H.T.
Edwards. The
p e r c e p t i o n of e f f o r t i n i s o m e t r i c a n d d y n a m i c m u s c u l a r
c o n t r a c t i o n . E u r . J. Appl. P h y s i o l . , 4 1 :171-180, 1 9 7 9 .
--
J o h n s o n , R.O. R u h l i n g . D e s c r i p t i o n of a l o w
C o r d a i n , L . , s'.C.
c o s t microcomputer system i n t e r f a c e d t o e x e r c i s e s t r e s s
t e s t i n g equipment. Res. Q u a r t . , 53:73-77,
1982.
-
C o t e s , J . E . R e l a t i o n s h i p s of o x y g e n c o n s u m p t i o n , v e n t i l a t i o n a n d
c a r d i a c f r e q u e n c y t o body w e i g h t d u r i n g s t a n d a r d i z e d
submaximal e x e r c i s e i n normal s u b j e c t s . Ergonomics,
12:415-427, 1969.
Criellard, J.M.,
F. P i r n a y .
a t h l e t e s . E u r . J. Appl.
--
A n a e r o b i c a n d a e r o b i c p o w e r of
P h y s i o l . , 47:295-300,
1981.
top
Cumming, G . R . ,
W.D. A l e x a n d e r . The c a l i b r a t i o n of b i c y c l e
e r g o m e t e r s . Can. J. P h y s i o l . P h a r m a c o l . , 4 6 : 9 1 7 - 9 1 9 ,
1968.
Cumming, G.R. A p r a c t i c a l l a b o r a t o r y p r o g r a m t o a s s e s s e x e r c i s e
capacity i n athletes. Can.
-J . A p p l . S p o r t . S c i . , 2 : 2 3 - 2 6 ,
1977.
-
Custer, S.J.,
E.C.
Chaloupka. R e l a t i o n s h i p between p r e d i c t e d
m a x i m a l o x y g e n c o n s u m p t i o n a n d r u n n i n g p e r f o r m a n c e of
1979.
c o l l e g e f e m a l e s . Res. Q u a r t . , 48:47-50,
-
D a v i e s , C.T.M.
L i m i t a t i o n s t o t h e p r e d i c t i o n of m a x i m a l o x y g e n
i n t a k e f r o m c a r d i a c f r e q u e n c y measurements. J . Appl.
P h y s i o l . , 24:700-706,
1968.
-
D a v i e s , C.T.M.,
J . M u s g r o v e . A e r o b i c a n d a n a e r o b i c c o m p o n e n t s of
work d u r i n g submaximal e x e r c i s e on a b i c y c l e e r g o m e t e r .
Ergonomics, 14:257-263, 1971.
D a v i e s , C.T.M.,
P.E.
d i p r a m p e r o , P . C e r e t e l l i . K i n e t i c s of
c a r d i a c o u t p u t and r e s p i r a t o r y g a s exchange d u r i n g e x e r c i s e
J . Appl. P h y s i o l . , 32:618-625,
1972.
and r e c o v e r y . D a v i e s , C.T.M.,
A . J . S a r g e a n t . I n d i r e c t d e t e r m i n a t i o n of m a x i m a l
a e r o b i c p o w e r o u t p u t d u r i n g work w i t h o n e o r two l i m b s . E u r .
J. Appl. P h y s i o l . , 32:207-215,
1974.
-
D a v i e s , C.T.M.,
A . J . S a r g e a n t . The e f f e c t s of a t r o p i n e a n d
p r a c t o l o l o n t h e p e r c e p t i o n of e x e r t i o n d u r i n g t r e a d m i l l
e x e r c i s e . Ergonomics. 22:1141-1146,
1979.
D a v i e s , C.T.M.
I n f l u e n c e of s k i n t e m p e r a t u r e on s w e a t i n g a n d
a e r o b i c p e r f o r m a n c e d u r i n g s e v e r e work. J . Appl. P h y s i o l . :
R e s p i r a t . Environ. E x e r c i s e P h y s i o l . , 4 7 7 7 0 - 7 7 7 , 1979.
Davis, J.A.,
M.A.
F r a n k , B . J . Whipp, K . Wasserman. A n a e r o b i c
t h r e s h o l d a l t e r a t i o n s c a u s e d by e n d u r a n c e t r a i n i n g i n
m i d d l e - a g e d men. J . A p p l . P h y s i o l . : R e s p i r a t . E n v i r o n .
E x e r c i s e P h y s i o l . , 46:1039-1046, 1979.
B.J.Whipp,
K . Wasserman. The r e l a t i o n of
Davis, J.A.,
v e n t i l a t i o n t o metabolic r a t e d u r i n g moderate e x e r c i s e i n
man. E u r . J . Appl. P h y s i o l . , 4 4 : 9 7 - 1 0 7 , 1 9 8 0 .
--
Davis, H.A.,
G.C.Gass,
D . E a g e r , J . B a s s e t t . Oxygen d e f i c i t d u r i n g
i n c r e m e n t a l e x e r c i s e . -E u r . J. A p p l P h y s i o l . , 4 7 : 1 3 3 - 1 4 0 ,
1981.
Davis, J.A.,
B.J. Whipp, N*. L a m a r r a , D . J . H u n t s m a n , M.H. F r a n k ,
K. W a s s e r m a n . E f f e c t of ramp s l o p e on d e t e r m i n a t i o n of
a e r o b i c p a r a m e t e r s f r o m t h e ramp e x e r c i s e t e s t . Med. S c i .
S p o r t s E x e r c i s e , 14:339-343, 1982.
--
De B r u y n - P r e v o s t , P . The - e f f e c t s of v a r i o u s w a r m i n g - u p
i n t e n s i t i e s a n d d u r a t i o n s u p o n some p h y s i o l o g i c a l v a r i a b l e s
d u r i n g a n e x e r c i s e c o r r e s p o n d i n g t o t h e WC170. E u r . J. A p p l e
P h y s i o l . 43:93-100, 1980.
--
De B r u y n - P r e v o s t , P . , F. L e f e b v r e . The e f f e c t s of v a r i o u s
warming u p i n t e n s i t i e s a n d d u r a t i o n d u r i n g a s h o r t maximal
anaerobic exercise. E u r. J. Appl. P h y s i o l . , 43:101-107,
1980.
--
I.N.
S n e d d o n , M.E. W i s e . An I n t r o d u c t i o n t o t h e
Defares, J.G.,
M a t h e m a t i c s of M e d i c i n e a n d B i o l o g y . C h i c a g o : Y e a r Book
Medical p u b l i s h e r s , 1 9 7 3 7
d e V r i e s , H . A . E f f e c t s of v a r i o u s warm-up p r o c e d u r e s on 1 0 0 - y a r d
t i m e s of c o m p e t i t i v e s w i m m e r s . R e s . Q u a r t . 30: 1 1 - 2 0 , 1 9 5 9 .
d e v r i e s , H.A.,
C.E. K l a f s .
from submaximal t e s t s .
P r e d i c t i o n of m a x i m a l o x y g e n i n t a k e
J . S p o r t s Med., 5 : 2 0 7 - 2 1 4 , 1 9 6 5 .
-
d e V r i e s , H.A.,
R.A.
W i s w e l l , G . Romero, T . M o r i t a n i , R ,
B u l b u l i a n . C o m p a r i s o n of o x y g e n k i n e t i c s i n y o u n g a n d o l d
E u r. J. Appl. P h y s i o l . , 49:277-286, 1 9 8 2 .
subjects. D i a z , F . J . , R . D . H a g e n , J . E . W r i g h t , S.M. H o r v a t h . M a x i m a l a n d
s u b m a x i m a l e x e r c i s e i n d i f f e r e n t p o s i t i o n s . -Med. S c i .
Sports,
10:2'14-217,
1978.
H. Smith. A p p l i e d R e g r e s s i o n A n a l y s i s .
D r a p e r , N.R.,
Wiley and Sons, I n c . , 1966.
New Y o r k :
E d w a r d s , R.H.T.,
A. M e l c h e r , C.M. H e s s e r , 0 - W i g e r t z , L.G.
E k e l u n d . P h y s i o l o g i c a l c o r r e l a t e s of p e r c e i v e d e x e r t i o n i n
c o n t i n u o u s a n d i n t e r m i t t e n t e x e r c i s e w i t h t h e same a v e r a g e
1972.
p o w e r o u t p u t . E u r . J. C l i n . I n v e s t . , 2 : 1 0 8 - 1 1 4 ,
--
E d w a r d s , R.H.T.
The d i a p h r a g m a s a m u s c l e : mechanisms u n d e r l y i n g
f a t i g u e . Amer. Resp. D i s . ,
119 :81-84, 1979.
Ekblom, B., L . Hermansen.
P h y s i o l . , 25:619-623,
Cardiac ouput i n a t h l e t e s .
1968.
J . Appl.
-
E k b l o m , B . , A . N . G o l d b a r g . T h e i n f l u e n c e of p h y s i c a l t r a i n i n g
a n d o t h e r f a c t o r s o n t h e s u b j e c t i v e r a t i n g of p e r c e i v e d
1971.
e x e r t i o n . Acta. P h y s i o l . Scand., 83:399-406,
E k b l o m , B . , A . K i l b o m , J, S o l t y s i a k . P h y s i c a l t r a i n i n g ,
J. c l i n .
b r a d y c a r d i a , and autonomic n e r v o u s system. S cand. Lab, I n v e s t . , 32:251-256, 1973.
-
E l b e l , E.R., W . J . M i k o l s . T h e e f f e c t s of p a s s i v e o r a c t i v e
warm-up u p o n c e r t a i n p h y s i o l o g i c a l m e a s u r e s . I n t. 2. Angew.
P h y s i o l , 31 :41-52, 1972.
F a l l s , H e , B. W i e g e r g , B. J a c o b . E f f e c t s of p r e - e x e r c i s e
c o n d i t i o n s on h e a r t r a t e a n d o x y g e n u p t a k e d u r i n g e x e r i c s e
a n d r e c o v e r y . R e s . ~ u ~ r t .3 6
, :243-252, 1965.
-
F a r d y , P . S . , H . K . H e l l e r s t e i n . A - c o m p a r i s o n of c o n t i n u o u s a n d
i n t e r m i t t e n t p r o g r e s s i v e m u l t i s t a g e e x e r c i s e t e s t i n g . Med.
S c i , S p o r t s , 10:7-12, 1978.
-
-
Faulkner, J.A.,
D . E . R o b e r t s , R . L . E l k , J . Cenway.
C a r d i o v a s c u l a r r e s p o n s e s t o submaximum a n d maximum e f f o r t
c y c l i n g a n d r u n n i n g . J. A p p l . P h y s i o l . , 3 0 : 4 5 7 - 4 6 1 ,
1971.
F e r n a n d e z , E.A.,
J . G . M o h l e r , J.P. B u t l e r . C o m p a r i s o n of o x y g e n
consumption measured a t s t e a d y s t a t e and p r o g r e s s i v e r a t e s
1974.
of w o r k . J . Appl. P h y s i o l . , 37:982-987,
Few, J . D . , G.C.
Cashmore, G. T u r t o n . A d r e n o c o r t i c a l r e s p o n s e t o
o n e - l e g a n d t w o - l e g e x e r c i s e o n a b i c y c l e e r g o m e t e r . E u r , J.
Appl. P h y s i o l . , 44:167-174,
1980.
--
F o x , E.L. A s i m p l e , a c c u r a t e t e c h n i q u e f o r p r e d i c t i n g m a x i m a l
1973.
a e r o b i c p o w e r . J. A p p l . P h y s i o l . , 3 5 : 9 1 4 - 9 1 6 ,
F r a n k e n h a u s e r , M.,
B. P o s t , B. N o r d h e d e n , H . S j o e b e r g .
P h y s i o l o g i c a l and s u b j e c t i v e r e a c t i o n s t o d i f f e r e n t p h y s i c a l
w o r k l o a d s . P e r c e p t u a l a n d M o t o r S k i l l s , 28 : 2 4 3 - 2 4 9 , 1 9 6 9 .
-
F r e e d s o n P . , V.L. K a t c h , S . S a d y , A . W e l t m a n . C a r d i a c o u t p u t
d i f f e r e n c e s i n males and females d u r i n g mild c y c l e ergometer
e x e r c i s e . Med. S c i . S p o r t . , 11 :1 6 - 1 9 , 1 9 7 9 .
--
F r e u n d , H . , P . Z o u l o u m i a n . L a c t a t e a f t e r e x e r c i s e i n man: I .
E v o l u t i o n k i n e t i c s i n a r t e r i a l b l o o d . E u r . J. A p p l . P h y s i o l . ,
--
F r o e f i c h e r , V.F., H . B r o m m e l l . A c o m p a r i s o n of t h r e e m a x i m a l
t r e a d m i l l e x e r c i s e p r o t o c o l s . J . Appl. P h y s i o l . , 36:720-725,
1974.
-
G a e s s e r , G.A.,
G .A. B r o o k s . M u s c u l a r e f f i c i e n c y d u r i n g
s t e a d y - s t a t e e x e r c i s e : e f f e c t s of s p e e d a n d w o r k . J. A p p l .
P h y s i o l . , 38:1132-1139,
1975.
G a e s s e r , G.A.,
G.A.
Brooks. Glycogen r e p l e t i o n ' f o l l o w i n g
c o n t i n u o u s a n d i n t e r m i t t e n t e x e r c i s e t o e x h a u s t i o n . J, A p p l .
P h y s i o l . : R e s p i r a t . Environ. E x e r c i s e P h y s i o l . , 49:722-728,
1980.
G a m b e r a l e , I?. P e r c e i v e d e x e r t i o n , h e a r t r a t e o x y g e n u p t a k e , a n d
blood l a c t a t e i n d i f f e r e n t work o p e r a t i o n s . ~ r ~ o n o m i c s ,
15 :545-554, 1972.
G e b b e r , G.L. N e u r a l c o n t r o l of h e a r t r a t e : a r e v i e w . C e n t r a l
o s c i l l a t o r s responsible f o r sympathetic nerve discharge.
A m e r . J. P h y s i o l . , 239 :H 1 4 3 - 1 5 5 , 1 9 8 0 .
G i m e n e z , M. W. S a l i n a s , E . S e r v e r a , C. K u n t z . V02max d u r i n g
p r o g r e s s i v e a n d c o n s t a n t b i c y c l e e x e r c i s e i n s e d e n t a r y men
a n d women. E u r . J . A p p l . P h y s i o l . , 4 6 : 2 3 7 - 2 4 8 , 1 9 8 1 .
--
-
G l a d d e n , L.B.,
H.G.
Welch. E f f i c i e n c y of a n a e r o b i c w o r k . J .
Appl. P h y s i o l . : R e s p i r a t . Environ. E x e r c i s e . ~ h y s i o l . ,
44 :564-570,, 1 9 7 8 .
I
G l a s s f o r d , R . G . G.H.Y.
B a y c r o f t , A.E. Sedgwick, R.B.J.
MacNab.
C o m p a r i s o n of m a x i m a l o x y g e n - u p t a k e v a l u e s d e t e r m i n e d b y
p r e d i c t e d and a c t u a l methods. J . Appl. P h y s i o l . , 2 0 : 5 0 9 - 5 1 4 ,
1965.
V o g e l , J . A . E n d u r a n c e e x e r c i s e ; e f f e c t of
G l e s e r , M.A.,
w o r k - r e s t s c h e d u l e s and r e p e a t e d t e s t i n g . 3 . Appl. P h y s i o l . ,
31 :735-739, 1 9 7 1 .
-
a
G l e s e r , M.A.,
J.A. Vogel. Endurance c a p a c i t y f o r p r o l o n g e d
e x e r c i s e on t h e b i c y c l e e r g o m e t e r . J . A p p l . P h y s i o l . ,
34;438-442, 1973.
-
G l e s e r , M.A.,
D.H. H o r s t m a n , R.P. M e l l o . The e f f e c t o n +o2max of
a d d i n g a r m w o r k t o m a x i m a l l e g work. Med. S c i . S p o r t s , 6 ;
104-107, 1974.
--
G o l l n i c k , P . D m , K . P i e h 1 , B. S a l t i n . S e l e c t i v e g l y c o g e n d e p l e t i o n
p a t t e r n i n human m u s c l e f i b e r s a a g t e r e x e r c i s e of v a r y i n g
i n t e n s i t y a n d a t v a r y i n g p e d a l l i n g r a t e s . J.
P h y s i o l . (London). , 241 :45-57, 1 9 7 4 .
-
G r a s s i n o , A . , D. Gross. I n s p i r a t o r y muscle f a t i g u e a s a f a c t o r
l i m i t i n g e x e r c i s e . B u l l . Eur. P h y s i o p a t h . Resp., 15:105-111,
1979.
G r e e n , H . J . , M.E. H o u s t o n , M e t a b o l i c c o n s e q u e n c e s of
s u p r a m a x i m a l a r m work p e r f o r m e d d u r i n g p r o l o n g e d s u b m a x i m a l
l e g work. J . A p p l . P h y s i o l . : R e s p i r a t . E n v i r o n . E x e r c i s e
-
Physiol.,
Green, H.J.,
R.L. H u g h s o n , G.W. O r r , D . A . R a n n e y . A n a e r o b i c
t h r s h o l d , blood l a c t a t e , and m u s c l e m e t a b o l i t e s i n
p r o g r e s s i v e e x e r c i s e . J. A p p l . P h y s i o l . : R e s p i r a t . E n v i r o n .
E x e r c i s e P h y s i o l . , 54:1032-1038,
1983.
G r o s e , J . E . D e p r e s s i o n of m u s c l e f a t i g u e c u r v e s by h e a t a n d
c o l d . Res. Q u a r t . , 29:19-31,
1958.
-
G u e l i , D . , R. J . S h e p h a r d . P e d a l f r e q u e n c y i n b i c y c l e e r g o m e t r y .
Can. J. A p p l . S p o r t . S c i . , 1 : 1 3 7 - 1 4 1 , 1 9 7 6 .
--
G u i l f o r d , J.P. P s y c h o m e t r i c Methods.
McGraw-Hill, 1954.
2d e d . New Y o r k :
G u t i n , B . , R.K. F o y l e , K . S t e w a r t . R e l a t i o n s h i p b e t w e e n
submaximal h e a r t r a t e , a e r o b i c power and r u n n i n g p e r f o r m a n c e
1976.
i n c h i l d r e n . Res. Q u a r t . , 47:536-539,
G u t m a n n , I . , A.W. W a h l e f e l d . L - ( + ) - L a c t a t e .
1n:Bergmeyer H.U.
( e d ) M e t h o d s of e n z y m a t i c a n a l y s i ~ , 2 n d , e d . A c a d e m i c P r e s s ,
New Y o r k , pp 1 4 6 4 - 1 4 6 8 , 1 9 7 4 .
Hagberg, J.M.,
M.D.
G i e s e , J . P . M u l l i n . E f f e c t of d i f f e r e n t g e a r
r a t i o s o n t h e m e t a b o l i c r e s p o n s e s of c o m p e t i t i v e c y c l i s t s t o
c o n s t a n t s t e a d y s t a t e w o r k . Med. S c i . S p o r t s , 7 : 7 4 , 1 9 7 5 .
--
Hagberg, J.M.,
N.J.
N a g l e , J.L. C a r l s o n . T r a n s i e n t oxygen u p t a k e
r e s p o n s e a,t t h e o n s e t .of e x e r c i s e . J . A p p l . P h y s i o l . ,
44 :9O-92, 1 9 7 8 .
H a g b e r g , J .Me, J .P. M u l l i n , F, J . - M a g l e . O x y g e n c o n s u m p t i o n
d u r i n g c o n s t a n t - l o a d e x e r c i s e . J . Appl. P h y s i o l . ,
4 5 :38 1 - 3 8 4 , 1 9 7 8 .
-
Hagberg, J.M.,
M.D.Geise,
R.B. S c h n e i d e r . C o m p a r i s o n of t h e
t h r e e p r o c e d u r e s f o r m e a s u r i n g ?02max i n c o m p e t i t i v e
c y c l i s t s . E u r . J. A p p l . P h y s i o l . , 3 9 : 4 7 - 5 2 ,
1978.
.
--
Hagberg, J.M.,
R.C. H i c h s o n , A.A.
Ehsani, J.O. Holloszy. F a s t e r
a d j u s t m e n t t o and recovery f r o m submaximal e x e r c i s e i n t h e
t r a i n e d s t a t e . J . Appl. P h y s i o l . , 48:218-224,
1980.
-
Hamley, E . J . ,
V . Thomas. P h y s i o l o g i c a l a n d p o s t u r a l f a c t o r s i n
t h e t h e c a l i b r a t i o n of t h e b i c y c l e e r g o m e t e r . J .
P h y s i o l . (London) , 191:55-57P, 1967.
-
H e n r i k s s o n , J . , H . G . K n u t t g e n , F. B o n d e - P e t e r s o n . P e r c e i v e d
e x e r t i o n d u r i n g e x e r c i s e w i t h c o n c e n t r i c and e c c e n t r i c
muscle c o n t r a c t i o n s . Ergonomics, 1 5 :537-544, 1972.
H e n r y , F.M. A e r o b i c o x y g e n c o n s u m p t i o n a n d a l a c t i c d e b t i n
m u s c u l a r work. J . Appl. P h y s i o l . , 3 :427-438, 1951.
H e r m a n s e n , L. O x y g e n t r a n s p o r t d u r i n g e x e r c i s e i n human
s u b j e c t s . Acta P h y s i o l . Scand. S u p p l . , 3 9 9 , 1973.
-
H e r m a n s e n , L . , B. S a l t i n . O x y g e n u p t a k e d u r i n g m a x i m a l t r e a d m i l l
J . Appl. P h y s i o l . , 26:31-37,
1969.
and b i c y c l e e x e r c i s e . Hermansen, L.,
B.Ekblom,
B.
Saltin.
Cardiac output during
submaximal and maximal t r e a d m i l l and b i c y c l e e x e r c i s e .
A p p l . P h y s i o l . , 29 : 8 2 - 8 6 , 1 9 7 0 .
J.
J.A.
F a u l k n e r . P r e d i c t i o n of m a x i m a l o x y g e n
Hermiston, R.T.,
u p t a k e b y a s t e p w i s e r e g r e s s i o n t e c h n i q u e . J. Appl.
1971.
P h y s i o l . , 30:833-837,
H e t t i n g e r , T. N.C.
B i r k h e a d , S.M. H o r v a t h , B. I s s e k u t z , K.
R o d a h l . A s s e s s m e n t of p h y s i c a l w o r k c a p a c i t y . J. A p p l .
P h y s i o l . , 16 :153-156, 1961.
Hickson, R.C.,
H . A. Bomze, J . O . H o l l o s z y . F a s t e r a d j u s t m e n t of
o x y g e n u p t a k e t o t h e e n e r g y r e q u i r e m e n t of e x e r c i s e i n t h e
t r a i n e d s t a t e . J . Appl. ~ h ~ s i o l . R: e s g i r a t . E n v i r o n .
E x e r c i s e p h y s i o K , 44:877-881, 1978.
H i p p l e , J . E . Warm-up a n d f a t i g u e i n j u n i o r h i g h s c h o o l s p r i n t s .
Res Q u a r t . , 2 6 : 2 4 6 - 2 4 7 ,
1955.
Hoes, M . J . ,
R.A. B i n k o r s t , A. S m e e k e s k u y l . M e a s u r e m e n t o f f o r c e s
e x e r t e d o n p e d a l a n d c r a n k d u r i n g work on a b i c y c l e
e r g o m e t e r a t d i f f e r e n t l o a d s . I n t . Z. Angew. P h y s i o l . ,
26 : 3 3 - 4 2 , 1 9 6 8 .
--
H o l l o s z y , J . O . A d a p t a t i o n of s k e l e t a l m u s c l e t o e n d u r a n c e
e x e r c i s e . Med. S c i . S p o r t s , 7 :1 5 5 - 1 6 4 , 1 9 7 5 .
--
Holloszy, J.O.,
F.W. B o o t h . B i o c h e m i c a l a d a p t a t i o n s t o e n d u r a n c e
e x e r c i s e i n m u s c l e . Annu. Rev. P h y s i o l . , 3 8 : 2 7 3 - 2 9 1 , 1 9 7 6 .
..
-
H o r s t m a n , D .H:,
R. W e i s k o p f , S . R o b i n s o n . The n a t u r e of t h e
p e r c e p t i o n of e f f o r t a t s e a l e v e l a n d h i g h a l t i t u d e . Med.
S c i . S p o r t s , 1 1 : 1 5 0 - 1 5 4 , 1979'.
-
-
Horstman, D .H.,
W.P.Morgan,
A. Cymetmen, J.S t o k e s . P e r c e p t i o n of
e f f o r t d u r i n g c o n s t a n t work t o s e l f -imposed e x h a u s t i o n .
Perceptual a n d Motor S k i l l s , 48:1111-1126, 1979.
H o r v a t h , S.M.,
E . D . M i c h a e l . R e s p o n s e s of y o u n g women t o
g r a d u a l l y i n c r e a s i n g and c o n s t a n t l o a d maximal e x e r c i s e .
Med. S c i . S p o r t s , 2 : 1 2 8 - 1 3 1 ,
1970.
--
Howard, G . E . ,
C.S. B l y t h , W.E. T h o r n t o n .
t h e h e a r t r a t e d u r i n g e x e r c i s e . Res.
1966.
-
E f f e c t s of warm-up on
Q u a r t . , 37:360-367,
-
H u b b a r d , A.W.,
ed. R e s e a r c h Methods i n H e a l t h , P h y s i c a l
E d u c a t i o n a n d R e c r e a t i o n . 3d e d . W a s h i n g t o n . D . C . :
Am.
Assoc. f o r H e a l t h , P h y s i c a l E d u c a t i o n and R e c r e a t i o n , 1973.
u
7
M. M o r r i s s e y . D e l a y e d k i n e t i c s of r e s p i r a t o r y g a s
H u g h s o n , R.L.,
e x c h a n g e i n t h e t r a n s i t i o n f r o m p r i o r e x e r i c i s e . J . Appl.
Physiol.: R e s p i r a t . Environ. E x e r c i s e Physiol., 5E921-9292,
1982.
H u g h s o n , R.L.,
M.A. M o r r i s s e y . D e l a y e d k i n e t i c s of V02 i n t h e
t r a n s i t i o n f r o g p r i o r e x e r c i s e . E v i d e n c e f o r 02 t r a n s p o r t
l i m i t a t i o n of ~ 0 k2 i n e t i c s : A r e v i e w . I n t . J. S p o r t s ~ e d . ,
4:31-39,
1983.
--
I n b a r , O.,
0 . Bar-Or.
The e f f e c t s of
i n t e r m i t t e n t warm-up
-
on 7
t o 9 year-ol'd
boys.
E u r. J.
-
Appl.
Physiol.,
34:81-89,
1975.
P n g j e r , F . , S.B. S t r o m m e . E f f e c t s of a c t i v e , p a s s i v e , o r n o
warm-up o n t h e p h s i o l o g i c a l r e s p o n s e t o h e a v y e x e r c i s e . E u r .
J. Appl. P h y s i o l . , 40:273-282,
1979.
-
-
I s s e k u t z , B., N.C.
B i r k h e a d , K . R o d a h l . U s e of r e s p i r a t o r y
q u o t i e n t s i n a s s e s s m e n t of a a e r o b i c w o r k c a p a c i t y . J. A p p l e
P h y s i o l . , 47:17-20,
1962.
I v y , J.L.,
D.L. C o s t i l l , B.D. M a x w e l l . S k e l e t a l m u s c l e
d e t e r m i n a n t s of maximum a e r o b i c p o w e r i n man. E u r . J, A p p l .
Physiol., 44:l-8,
1980.
I v y , J.L.,
R.T. W i t h e r s , G . B r o s e , B.D.Maxwel1,
D.L. C o s t i l l .
I s o k i n e t i c c o n t r a c t i l e p r o p e r i e s of t h e q u a d r i c e p s w i t h
r e l a t i o n t o f i b e r type. E u r. J. Appl. P h y s i o l . , 4 7 : 2 4 7 - 2 5 5 ,
1981.
J a c o b s , I. L a c t a t e , muscle g l y c o g e n and e x e r c i s e performance i n
man. A c t a P h y s i o l . S c a n d . , S u p p l . , 4 9 5 : 1 - 3 5 , 1 9 8 1 .
-
J a n s s o n , E . D i e t a n d m u s c l e m e t a b o l i s m i n man.
Stand., S u p p l . , 4 8 7 : l - 2 4 ,
1980.
Acta P h y s i o l .
-
J a r a t s c h , C.E.,
B . J . Whipp, D . H u n t s m a n , M.Laks, K . W a s s e r m a n .
V e n t i l a t o r y c o n t r o l d u r i n g- e x p e r i m e n t a l m a l d i s t r i b u t i o n of
V A / Q i n t h e dog. J . A p p l . ~ h ~ s i o l . R: e s p i r a t . E n v i r o n .
E x e r c i s e P h y s i o l . , 52 :.2. 4 5 - 2 5 3 , 1 9 8 2 .
J e s s u p , G.T., 'c.E.
R i g g s , J . L a m b e r t , W.D.
M i l l e r . The e f f e c t o f
p e d a l l i n g s p e e d o n t h e v a l i d i t y of t h e A s t r a n d - R h y m i n g
a e r o b i c work c a p a c i t y t e s t . J . S p o r t s Med., 1 7 : 3 6 7 - 3 7 1 ,
1977.
J e s s u p , G.T.,
J.W.
T e r r y , C.W. L a n d i s s . P r e d i c t i o n of w o r k l o a d
f o r t h e Astrand-Rhyming t e s t u s i n g s t e p w i s e m u l t i p l e l i n e a r
r e g r e s s i o n . J. S p o r t s Med., 1 5 : 3 7 - 4 2 ,
1975.
J o n e s , N.L.
1967.
Exercise Testing.
Brit.
-J. D i s .
Chest.
61:169-189,
J o n e s , N.L.,
and E.J.
Campbell. C l i n i c a l E x e r c i s e T e s t i n g .
P h i l a d e l p h i a : W. B. S a u n d e r s , 1 9 8 2 .
J o r f e l d t , L., A.J. D a n n f e l t , J . K a r l s s o n . L a c t a t e r e l e a s e i n
r e l a t i o n t o t i s s u e l a c t a t e i n human s k e l e t a l m u s c l e d u r i n gexercise. J . Appl. P h y s i o l . : R e s p i r a t . E n v i r o n . E x e r c i s e
P h y s i o l . , 44:350-352,
1978.
'
Kamon, E . , K.B.
P a n d o l f . Maximal a e r o b i c power d u r i n g l a d d e r m i l l
climbing, u p h i l l running and cycling. J . Appl. P h y s i o l . ,
32:467-473,
1972.
Kamon, E . , K . M e t z , K . P a n d o l f . T h e c o s t o f c l i m b i n g a n d c y c l i n g
w i t h a d d i t i o n a l w e i g h t s a r o u n d t h e w a i s t a n d a n k l e s . Med.
S c i . S p o r t s , 4:67-68,
1972.
-
K a p p a g o d a , C.T., R . J . L i n d e n , J . P . N e w e l l . A c o m p a r i s o n of t h e
oxygen consumptionlbody w e i g h t r e l a t i o n s h i p o b t a i n e d d u r i n g
submaximal e x e r c i s e on a b i c y c l e e r g o m e t e r a n d on a
treadmill.
~ k a r t .J. Exper.
Physiol.,
64 : 2 0 5 - 2 1 5 ,
1979.
K a r l s s o n , J . , L.-0.
N o r d e s j o , L. J o r f e l t , B. S a l t i n . M u s c l e
l a c t a t e , ATP, a n d CP l e v e l s d u r i n g e x e r c i s e a f t e r p h y s i c a l
t r a i n i n g i n man. J. Appl. P h y s i o l . , 3 3 : 1 9 9 - 2 0 3 , 1 9 7 2 .
K a s c h , F.W.,
W.H.
P h i l l i p s , W . D . R o s s , J . E . C a r t e r , J . L. B o y e r .
A c o m p a r i s o n of m a x i m a l o x y g e n u p t a k e by t r e a d m i l l a n d
s t e p - t e s t procedures. J . Appl. P h y s i o l . , 21: 1387-1388, 1 9 6 6 .
K a s c h , F.W.,
J . P . W a l l a c e , R.R. Huhn, L.A. K r o g h , P H u r l .
Maximal o x y g e n u p t a k e d u r i n g h o r i z o n t a l and i n c l i n e d
t r e a d m i l l r u n n i n g . J . Appl. P h y s i o l . , 4 0 : 9 8 2 - 9 8 3 ,
1976.
-
K a t c h , F. I . , R . N . G i r a n d o l a , F.M. H e n r y . The i n f l u e n c e of t h e
e s t i m a t e d 0 2 c o s t of v e n t i l a t i o n on 0 2 d e f i c i t a n d r e c o v e r y
02 i n t a k e f o r m o d e r a t e l y heavy b i c y c l e e r g o m e t e r e x e r c i s e .
Med. S c i . S p o r t s , 4 : 7 1 - 7 6 , 1 9 7 2 .
--
Katch, F.I.,
W.D.
M c A r d l e , G.S. P e c h a r . R e l a t i o n s h i p of m a x i m a l
l e g f o r c e and l e g c o m p o s i t i o n t o t r e a d m i l l and b i c y c l e
e r g o m e t e r maximum o x y g e n u p t a k e . Med. S c i . S p o r t s , 6 : 3 8 - 4 3 ,
1974.
--
K a t c h , F. I . , G . D a n i e l s o n . B i c y c l e e r g o m e t e r e n d u r a n c e i n women
r e l a t e d t o maximal l e g f o r c e , l e g volume, and body
c o m p o s i t i o n . Res. Q u a r t . , 47:366-374, 1976.
-
K a t c h , V . , A. Weltman, R. M a r t i n , L . Gray. O p t i m a l t e s t
c h a r a c t e r i s t i c s f o r ma'ximal a n a e r o b i c work on t h e b i c y c l e
e r g o m e t e r . Res. Q u a r t . , 48:319-327,
1977.
-
Kauf mann, D.A.,
W. B. Ware. E f f e c f of warm-up a n d r e c o v e r y
t e c h n i q u e s on r e p e a t e d r u n n i n g e n d u r a n c e . R e s . Q u a r t . ,
48:328-332,
1977.
-
K a v a n a g h , T . , R . J . S h e p h a r d . Maximum e x e r c i s e t e s t s o n " p o s t
c o r o n a r y " p a t i e n t s . J . Appl. P h y s i o l . , 4 0 : 6 l l - 6 1 8 ,
1976.
-
Kay, J . D . ,
E.S. P e t e r s e n , H . V .
Christensen. Breathing p a t t e r n i n
man d u r i n g b i c y c l e e x e r c i s e a t d i f f e r e n t p e d a l l i n g
f r e q u e n c i e s . J, P h y s i o l . ( L o n d o n ) , 2 4 1 : l 2 3 - l 2 4 P , 1 9 7 4 .
K e r e n , G . , A . M a g a z a n i k , Y . E p s t e i n . A , c o m p a r i s o n of v a r i o u s
m e t h o d s f o r t h e d e t e r m i n a t i o n of m a x i m a l o x y g e n u p t a k e . E u r .
J. Appl. P h y s i o l . , 45:117-124,
1980.
-
K e r l i n g e r , F.N., E . J . P a d h a z u r . M u l t i p l e R e g r e s s i o n i n
B e h a v i o u r a l R e s e a r c h . New Y o r k : H o l t , R i n e h a r t a n d W i n s t o n ,
I n c . , 1973.
G . S i m o n , J . K e u l . The s i g n i f i c a n c e of t h e
Kindermann, W.,
a e r o b i c - a n a e r o b i c t r a n s i t i o n f o r t h e d e t e r m i n a t i o n of
workload i n t e n s i t i e s d u r i n g endurance t r a i n i n g . E u r. J.
Appl. P h y s i o l . , 42:25-34,
1979.
--
K i r k , R.E. E x p e r i m e n t a l Design: P r o c e d u r e s f o r t h e B e h a v i o u r a l
S c i e n c e s . Belmont, C a l i f o r n i a : Brooks / C o l e , 1968Kleinbaum, D.G.,
L.L. K u p p e r . A p p l i e d R e g r e s s i o n A n a l y s i s and
O t h e r M u l t i v a r i a b l e Methods. M a s s a c h u s e t t s : Duxbury P r e s s ,
K n o w l t o n , R.G.,
E.S. M i l e s , M . N .
S a w k a . M e t a b o l i c r e s p o n s e s of
u n t r a i n e d i n d i v i d u a l s t o warm-up. E u r. J. A p p l e P h y s i o l . ,
40:l-5,
1978.
K n u t t g e n , H.G.,
F.B. P e t e r s e n , K . K l a u s e n . O x y g e n u p t a k e a n d
h e a r t r a t e responses t o e x e r c i s e performed with c o n c e n t r i c
a n d e c c e n t r i c m u s c l e c o n t r a c t i o n s . Med. S c i . S p o r t s , 3 : 1 - 5 ,
1971.
--
K o h l , J . , K.A. K o l l e r , M. J a g e r . R e l a t i o n b e t w e e n p e d a l l i n g a n d
1981.
b r e a t h i n g rhythm. E u r. J. Appl. P h y s i o l . , 47:223-237,
L e B l a n c , C . , C. B o u c h a r d , P . G o d b o u t , J . M o n d o r .
submaximal working c a p a c i t y . J . S p o r t s Med.,
S p e c i f i c i t y of
21:15-22,
1981.
L e g e r , L.A.,
V . S e l i g e r , L. B r a s s a r d . B a c k w a r d e x t r a p o l a t i o n of
V02max v a l u e s f r o m t h e o x y g e n r e c o v e r y c u r v e . Med. S c i .
S p o r t . , 12 :24-27, 1980.
Lehmann, M.,
J . K e u l , A. B e r g , S . S t i p- p- i g- . P l a s m a c a t e c h o l a m i n e s
a n d a e r o b i c - a n a e r o b i c c a p a c i t y i n women d u r i n g g r a d u a t e d
t r e a d m i l l e x e r c i s e . E u r . J. A p p l . P h y s i o l . , 4 6 : 3 0 5 - 3 1 5 ,
1981.
--
Lemon, P.W.R.,
J.M.
H a g b e r g , R.T. H e r m i s t o n .
e s t i m a t i o n u s i n g r e c o v e r y s a m p l i n g . Can.
S c i . , 5 : 6 4 - 6 8 , 1 9 8 0 . ..
-
E x e r c i s e V02
Sport
J. A p p l e
L e s t e r , M . , L.T. S h e f f i e l d , P. T r a m m e l l , T . J . R e e v e s . T h e e f f e c t
of a g e a n d a t h l e t i c t r a i n i n g on t h e m a x i m a l h e a r t r a t e
Am. H e a r t . J.,
76:370-376, 1968.
during muscular exercise. Levy, M.N.,
P . J . M a r t i n . - N e u r a l c o n t r o l of t h e h e a r t . I n
A m e r i c a n P h y s i o l o g i c a l S o c i e t y , H a n d b o o k - of P h y s i o l o g y : The
C a r d i o v a s c u l a r System I
Maryland: Waverly P r e s s , 1979.
.
-
L e w i s , S . , P . T h o m p s o n , N.H.
A r e s k o g , P . V o d e k , M. M a r c o n y a k .
T r a n s f e r e f f e c t s of e n d u r a n c e t r a i n i n g t o e x e r c i s e w i t h
E u r. J. Appl. P h y s i o l . , 44:25-34,
1980
untrained limbs. L i n n a r s s o n , D . D y n a m i c s of p u l m o n a r y
- g
-as exchange and h e a r t r a t e
c h a n g e s a t s t a r t a n d e n d of e x e r c i s e . A c t a . - ~ h ~ s i o l .S c a n d .
Suppl., 415:5-68,
1974.
L o l l g e n , H . , H.V. U l m e r , R. G r o s s , G . W i l b e r t , G.v.
Jeiding.
M e t h o d o l o g i c a l a s p e c t s of p e r c e i v e d e x e r t i o n r a t i n g a n d i t s
r e l a t i o n t o p e d a l l i n g r a t e a n d r o t a t i n g mass. E u r . J. A P P ~ .
P h y s i o l . , 34:205-215,
1975.
N i e d i n g . Heart r a t e and p e r c e p t u a l
L o l l g e n , H . , H . V . U l m e r , G.v.
response t o e x e r c i s e with d i f f e r e n t p e d a l l i n g speed i n
normal s u b j e c t s and p a t i e n t s . E u r. J. A p p l . P h y s i o l . ,
37:299-304,
1977.
L o l l g e n , H . , T. Graham, G. S j o g a a r d . M u s c l e m e t a b o l i t e s , f o r c e ,
and p e r c e i v e d e x e r t i o n b i c y c l i n g a t v a r y i n g p e d a l r a t e s .
Med. S c i . S p o r t . E x e r c i s e , 1 2 : 3 4 5 - 3 5 1 , 1 9 8 0 .
--
L o t t e r , W.S.
E f f e c t s of
f a t i g u e a n d warm-up
o n s p e e d of a r m
movements.
Re's. Q u a r t . ,
-
30:57-65,
1959.
L o u h e v a a r a , V., J . I l m a r i n e n , 0. P e k k a . C o m p a r i s o n of t h e
A s t r a n d nomogram a n d t h e WHO e x t r a p o l a t i o n m e t h o d s f o r
e s t i m a t i n g m a x i m a l o x y g e n u p t a k e . .Stand. J. S p o r t s S c i .
2:21-25,
1980.
,
J . R . M a g e l . P h y s i c a l w o r k c a p a c i t y a n d maximum
M c A r d l e , N.P.,
o x y g e n u p t a k e i n t r e a d m i l l a n d b i c y c l e e x e r c i s e . Med. S c i .
S p o r t s , 2:118-123,
1970.
McArdle, W.D.,
F . I . K a t c h , G.S, P e c h a r . C o m p a r i s o n of c o n t i n u o u s
a n d d i s c o n t i n u o u s t r e a d m i l l a n d b i c y c l e t e s t s f o r maximum
o x y g e n u p t a k e . Med. S c i . S p o r t . , 5 : 1 5 6 - 1 6 0 ,
1973.
--
W.E.
S i n n i n g . Workload d u r a t i o n and i n c r e m e n t
M c C o n n e l l , T.R.,
e f f e c t s i n submaximal b i c y c l e ergome t e r t e s t i n g . J . S p o r t .
Med., 2 0 : 1 6 1 - 1 6 6 , 1 9 8 0 .
-
McKay, G.A.
A c o m p a r i s o n of maximum o x y g e n u p t a k e d e t e r m i n a t i o n
& b i c y c i e e r g o m e t r y of v a r i o u s p e d a l l i n g f r e q u e n c i e s a n d by
t r e a d m i l l r u n n i n g a t v a r i o u s s p e e d s . (M.Sc. T h e s i s ).
B u r n a b y , B.C.,
1975.
--
McKay, G . A . ,
E.W.
B a n i s t e r . A c o m p a r i s o n of m a x i m a l o x y g e n
u p t a k e d e t e r m i n a t i o n s by b i c y c l e e r g o m e t r y a t v a r i o u s
p e d a l l i n g f r e q u e n c i e s a n d by t r e a d m i l l r u n n i n g a t v a r i o u s
speeds. E u r. J. Appl. P h y s i o l . , 35:191-200, 1 9 7 6 .
Maksud, M . G . ,
K.D. C o u r t s , - ' C o m p a r i s o n of a c o n t i n u o u s g r a d e d
t r e a d m i l l t e s t f o r m a x i m a l o x y g e n u p t a k e . Med. S c i . S p o r t . ,
3:63-65,
1971.
E . R o v e l l i . I n d i r e c t d e t e r m i n a t i o n of
M a r-g a r i a , R . , P . Aghemo,
m a x i m a l o x y g e n c o n s u m p t i o n i n man. J. A p p l . P h y s i o l . ,
20:1070-1073,
1965.
M a r g a r i a , R . , F. M a n g i l i , F. C u t t i c a , P. C e r r e t e l l i . The
k i n e t i c s of t h e o x y g e n c o n s u m p t i o n a t t h e o n s e t of m u s c u l a r
e x e r c i s e i n man. E r g o n o m i c s . , 8 : 4 9 - 5 4 , 1 9 6 5 .
M a r i t z , J.S.,
J . F . M o r r i s o n , J . P e t e r , N.B.
S t r ~ d o m , C.H.
Wyndham. A p r a c t i c a l m e t h o d of e s t i m a t i n g a n i n d i v i d u a l ' s
maximal oxygen i n t a k e . Ergonomics, 4:97-101,
1961.
M a r t i n , B. J . , S . R o b i n s o n , D .L. Weigman, L .H. A u l i c k . E f f e c t of
warm-up on m e t a b o l i c r e s p o n s e s t~ s t r e n u o u s e x e r c i s e . Med.
S c i . S p o r t . , 7:146-149,
1975.
W.R.
J o h n s o n , G.F. K r a m e r . E f f e c t of warm-up
M a s s e y , B.H.,
e x e r c i s e upon muscular performance u s i n g h y p n o s i s t o c o n t r o l
t h e p h y s i o l o g i c a l . v a r i a b l e . Res. Quart., 32:63-71,
1961.
Mastropaolo, J.A.
P r e d i c t i o n of . m a x i m a l o x y g e n c o n s u m p t i o n i n
m i d d l e - a g e d men by m u l t i p l e r e g r e s s i o n . - ~ e d . S c i . - S p o r t s ,
2:l24-127,
1970.
--
Mathews, D.K.,
dash. Res.
H.A.
S n y d e r . E f f e c t o f warm-up
30:446-451,
1959.
-Quart,,
Matsui, H.,
K.
K i t a m u r a , M.
Miyamura.
on t h e 440-yard
Oxygen u p t a k e a n d b l o o d
'
f l o w of t h e l o w e r l i m b i n m a x i m a l t r e a d m i l l a n d b i c y c l e
1978.
exercise. E u r. J. A p p l . P h y s i o l . , 4 0 : 5 7 - 6 2 ,
M i c h a e l , E . , L. E c k a r d t . The s e l e c t i o n of h a r d w o r k by t r a i n e d
a n d n o n - t r a i n e d s u b j e c t s . Med. S c i . S p o r t s , 4 : 1 0 7 - 1 1 0 9 1 9 7 2 *
--
M i l e s , D.S.,
J . B . C r i t z , R.G. K n o w l t o n . C a r d i o v a s c u l a r ,
m e t a b o l i c a n d v e n t i l a t o r y r e s p o n s e s of women t o e q u i v a l e n t
c y c l e e r g o m e t e r a n d t r e a d m i l l e x e r c i s e . Med- S c i * S p o r t s ,
12:14-19, 1980.
M i l l s , J .N.
1966.
Human C i r c a d i a n R h y t h m s
. Physiol.
Rev.,
M i y a m u r a , M . , Y . Honda. O x y g e n i n t a k e a n d c a r d i a c o u t p u t d u r i n g
m a x i m a l t r e a d m i l l a n d b i c y c l e e x e r c i s e . J. A p p l e P h ~ s i o l * ,
32:185-188,
1972.
M i l e s i s , B.H. M a s s e y . C o m p a r i s o n of m a x i m a l
M o l n a r , S . , C.A.
oxygen consumption e l i c i t e d a t d i f f e r e n t t r e a d m i l l g r a d e s *
J. S p o r t s Med., 1 4 : 8 5 - 9 2 ,
1974.
M o n t g o m e r y , S . , L.W. T i t l o w , D . J . J o h n s o n . E s t i m a t i o n of m a x i m a l
oxygen consumption from a sta.nd-up b i c y c l e t e s t *
Sports
Med
1
8
:27
1
2
7
6
,
1
9
7
8
.
4'
k
M o n t p e t i t , R.R, L.A. L e g e r , J . - M .
~ a v o i e ,G . C a z o r l a . V02 p e a k
d u r i n g f r e e swimming u s i n g t h e b a c k w a r d e x t r a p o l a t i o n of t h e
0 2 r e c o v e r y c u r v e . E u r . J. A p p l . P h y s i o l . , 4 7 : 3 8 5 - 3 9 1 ,
1981.
--
M o r g a n , W.P.,
P.B. R a v e n , B.L. D r i n k w a t e r ,
C l i n . Exp. Hypnosis, 2 1 : 8 6 - 1 0 1 ,
1973.
-
S.M.
- -J.
Horvath* Into
M o s t a r d i , R., R . K u b i c a , A. V e i c s t e i n a s , R . M a r g a r i a - T h e e f f e c t
of i n c r e a s e d b o d y t e m p e r a t u r e d u e t o e x e r c i s e on t h e h e a r t
r a t e a n d on t h e maximal a e r o b i c power. E u r .
Apple
P h y s i o l . , 3 3 :237-245, 1974.
M y l e s , W.S., R . J . T o f t .
a e r o b i c power. Eur.
A c y c l e e r g o m e t e r t e s t of maximal
J. Appl. P h y s i o l . , 4 9 :121-129,
1982.
--
N e u b e r g e r , T. What t h e r e s e a r c h q u a r t e r l y s a y s a b o u t w a r m - u p *
J.O.H.P.E.R.,
40:75-77,
1969.
N i e m a l a , K . , I . P a l a t s i , J . T a k k u n e n . The o x y g e n
u p t a k e - w o r k - o u t p u t r e l a t i o n s h i p of r u n n e r s d u r i n g g r a d e d
c y c l i n g exercise,: s p r i n t e r s vs. endurance runners
Brit
S p o r t s Med., 1 4 : 2 0 4 - 2 0 9 , 1 9 8 0 .
J*
Noble, B.J.,
K.F. M e t z , K . B . P a n d o l f , C.W.
B e l l , E* Cafarelli,
W.E. S i m e . P e r c e i v e d e x e r t i o n d u r i n g w a l k i n g a n d r u n n i n g
11. Med. S c i . S p o r t s , 5 : 1 1 6 - 1 2 0 , 1 9 7 3 .
-
--
Noble, B.J.,
C.M. M a r e s h , T.G. A l l i s o n , A . D r a s h .
C a r d i o - r e s p i r a t o r y a n d p e r c e p t u a l r e c o v e r y f ram a m a r a t h o n
r u n . Med. S c i . S p o r t s , 1 1 : 2 3 9 - 2 4 3 , 1 9 7 9 .
--
Noguchi, H . , Y. O g u s h i , I . Y o s h i y a , N . I t a k u r a , H* Y a m a b a ~ a s h i B r e a t h - b y - b r e a t h VC02 a n d V02 r e n u i r e c o m p e n s a t i o n f o r
t r a n s p o r t d e l a y a n d d y n a m i c r e s p o n s e . J . k p p l * P h ~ s i o l 9*
52;79-84, 1982.
-
N o r d e e n - S n y d e r , K . S , The e f f e c t o f b i c y c l e s e a t h e i g h t v a r i a t i o n
u p o n 0 2 c o n s u m p t i o n a n d l o w e r l i m b k i n e m a t i c s . Med. S c i .
S p o r t s , 9;113-117, 1977.
O r l a n d e r , J . , K . H . K i e s s l u n g , B. Ekblom. Time c o u r s e of
a d a p t a t i o n t o l o w i n t e n s i t y t r a i n i n g i n s e d e n t a r y men:
d i s s o c i a t i o n of c e n t r a l a n d l o c a l e f f e c t s . A c t a P h y s i o l .
Scand., 108:85-90, 1980.
P a n d o l f , K.B.,
E . C a f a r e l l i , B . J . N o b l e , K.F. M.etz. P e r c e p t u a l
r e s p o n s e s d u r i n g p r o l o n g e d work. P e r c e p t u a l and Motor
S k i l l s , 35:975-985,
1972.
-
B.J. Noble. E f f e c t of p e d a l l i n g s p e e d and
P a n d o l f , K.B.,
r e s i s t a n c e c h a n g e s on p e r c e i v e d e x e r t i o n f o r e q u i v a l e n t
p o w e r o u t p u t s o n t h e b i c y c l e e r g o m e t e r . Med. S c i . S p o r t s ,
5:132-136,
1973.
P a n d o l f , K.B.
I n f l u e n c e of l o c a l a n d c e n t r a l f a c t o r s d o m i n a t i n g
r a t e d p e r c e i v e d e x e r t i o n d u r i n g p h y s i c a l work. P e r c e p t u a l
and Motor S k i l l s , 46:683-698,
1978.
P a n d o l f , K.B.,
E . Kamon, B . J . N o b l e . P e r c e i v e d e x e r t i o n a n d
p h y s i o l o g i c a l r e s p o n s e s d u r i n g n e g a t i v e a n d p o s i t i v e work i n
c l i m b i n g a l a d d e r m i l l . J . S p o r t s Med., 1 8 : 2 2 7 - 2 3 6 , 1 9 7 8 .
-
P a n n i e r , J .Lo, J . V r i j e n s , C. V a n C a u t e r . C a r d i o r e s p i r a t o r y
r e s p o n s e t o t r e a d m i l l and b i c y c l e e x e r c i s e i n runners. Eur.
J.
- Appl. P h y s i o l . , 43:243-251, 1980.
P a t e r s o n , D.H.',
D.A.
C u n n i n g h a m , A. D o n n e r . T h e e f f e c t of
d i f f e r e n t t r e a d m i l l s p e e d s o n t h e v a r i a b i l i t y of V02max i n
1981.
E u r. J. A p p l . P h y s i o l . , 4 7 : 1 1 3 - 1 2 2 ,
children. P a t t o n , J.F.,
J . A . ~ ~ g e R.P.
l ;
H e l l o . E v a l u a t i o n of a m a x i m a l
p r e d i c t i v e c y c l e e r g o m e t e r t e s t o f a e r o b i c p o w e r . E u r . J.
Appl. P h - y s i o l . , 49:131-140,
1982.
P e r e z , H.R. T h e e f f e c t s of c o m p e t i t i v e r o a d - r a c i n g , on t h e b o d y
c o m p o s i t i o n , pulmonary f u n c t i o n , and c a r d i o v a s c u l a r s y s t e m
J . S p o r t . Med., 2 1 : 1 6 5 - 1 7 2 ,
1981.
of s p o r t c y c l i s t s . -
-
P e t r o f s k y , J.S.,
R.R.
R o c h e l l e , J . S . R h i n e h a r t , R.L. B u r s e , A.A.
Lind. Assessment of t h e s t a t i c component i n rhythmic
1975.
exercise. E u r. J. Appl. P h y s i o l . , 34:55-63,
P e t r o f s k y , J . S . T h e i n f l u e n c e of r e c r u i t m e n t o r d e r a n d
temperature on muscle c o n t r a c t i o n w i t h s p e c i a l r e f e r e n c e t o
m o t o r u n i t f a t i g u e . E u r . J. Appl. P h y s i o l . , 47:17-25,
1981.
--
P u g h , L.G.C.E.
The r e l a t i o n of o x y g e n i n t a k e a n d s p e e d i n
c o m p e t i t i o n c y c l i n g a n d c o m p a r a t i v e o b s e r v a t i o n s on t h e
b i c y c l e e r g o m e t e r . J. P h y s i o l . , 241 :795-808, 1974.
-
Purvis, J.W.,
W.P. Morgan. I n f l u e n c e of r e p e a t e d m a x i m a l t e s t i n g
o n a n x i e t y a n d w o r k c a p a c i t y i n c o l l e g e women. R e s . Q u a r t . ,
49 : 5 1 2 - 5 1 9 , 1 9 7 8 .
-
R e y b r o u c k , T . , G.F. H e i g e n h o u s e r , J . A .
Faulkner. Limitations t o
maximum o x y g e n u p t a k e i n a r m , l e g a n d c o m b i n e d a r m - l e g
ergometry.
J . Appl.
-
Physiol.,
38 :774-779,
1975.
R i b i s l , P.M., W.A. K a c h a d o r i a n . M a x i m a l o x y g e n i n t a k e p r e d i c t i o n
J . s p o ; f s Med., 2 : i 7 - 2 2 ,
i n young-and middle-aged males. 1969.
J.W.
A l s p a u g h . S p e c i f i c i t y of t r a i n i n g e f f e c t s
Roberts, J.A.,
r e s u l t i n g f r o m p r o g r a m s of t r e a d m i l l r u n n i n g a n d b i c y c l e
1972.
e r g o m e t e r r i d i n g . Med. S c i . S p o r t s , 4 : 6 - 1 0 ,
--
R o s t , R . , W. H o l l m a n n . A t h l e t e ' s h e a r t - a r e v i ' e w of i t s
h i s t o r i c a l a s s e s s m e n t a n d new a s p e c t s . I n t . J. S p o r t s Med.,
4:147-165,
1983.
the prediction of t h e maximal
R o w e l l , L.B. F a c t o r s a f f e c t i n g o x y g e n i n t a k e f r o m m e a s u r e m e n t s made d u r i n g s u b m a x i m a l w o r k
w i t h o b s e r v a t i o n s r e l a t e d t o f a c t o r s which m a y l i m i t maximal
o x y g e n i n t a k e . (PhD. ~ h e s i s ) . M i n n e a p o l i s , 1 9 6 2 .
-
R o w e l l , L.B.,
H.L. T a y l o r , Y . Wang.
maximal oxygen i n t a k e . J . Appl.
L i m i t a t i o n s t o p r e d i c t i o n of
P h y s i o l . , 19;919-927, 1964.
R o w e l l , L.B., H . J . M a r x , R . A . B r u c e , R . D .
Conn, F. Kusumi.
R e d u c t i o n of c a r d i a c o u t p u t , c e n t r a l b l o o d v o l u m e , a n d
s t r o k e v o l u m e w i t h t h e r m a l s t r e s s i n n o r m a l man d u r i n g
exercise. J . C l i n . I n v e s t . , 45:1801-1816,
1966.
R o w e l l , L.B. Human c a r d i o v a s c u l a r a d j u s t m e n t s t o e x e r c i s e a n d
t h e r m a l s t r e s s . P h y s i o.l.. R e v i e w s , 5 4 : 7 5 - 1 5 9 ,
1974.
R o w e l l , L.B. w h a t s i g n a l s g o v e r n t h e c a r d i o v a s c u l a r r e s p o n s e s t o
e x e r c i s e . Med. S c i . S p o r t s , - 1 2 : 3 0 7 - 3 1 5 , 1 9 8 0 .
--
S a l t i n , B . , P.-0.
A s t r a n d . Maximal o x y g e n u p t a k e i n a t h l e t e s .
Appl. P h y s i o l . , 23:353-358,
1967.
J.
-
S a l t i n , B . , A.P. G a g g e , J . A . J .
S t o l w j i k . Muscle t e m p e r a t u r e
d u r i n g s u b m a x i m a l e x e r c i s e i n man. J . Appl. P h y s i o l . ,
25 : 6 7 9 - 6 8 8 , 1 9 6 8 .
S a l t i n , B. M e t a b o l i c f u n d a m e n t a l s i n e x e r c i s e .
5:137-146,
1973.
Sci. Sports,
--
Med.
S a n c h e z , J . , H . Monod. P h y s i o l o g i c a l e f f e c t s of d y n a m i c w o r k on
a b i c y c l e e r g o m e t e r c o m b i n e d w i t h d i f f e r e n t t y p e s of s t a t i c
c o n t r a c t i o n . - E u r . J. Appl. P h y s i o l . , 4 1 :259-250, 1979.
--
S a r g e a n t , A.J.,
E . H o r n v i l l e , A. Young. M a x i m a l l e g f o r c e a n d
power o u t p u t d u r i n g s h o r t - t e r m d y n a m i c e x e r c i s e J. A p p l e
P h y s i o l . : R e s p i r a t . Environ. E x e r c i s e P h y s i o l . ,
51 : l l 7 5 - 1 1 8 2 , 1 9 8 1 .
S c h e e n , A . , J . J u c h m e s , A. C e s s i o n - F o s s i o n . C r i t i c a l a n a l y s i s of
t h e "Anaerobic Threshold" d u r i n g e x e r c i s e a t c o n s t a n t
w o r k l o a d s . E u r . J. A p p l . P h y s i o l . , 4 6 : 3 6 7 - 3 7 7 , 1 9 8 1 .
--
S c h e u e r , J . , C.M.
Tipton. Cardiovascular adaptations t o physical
t r a i n i n g . Ann. Rev. P h y s i o l . , 39 : 2 2 1 - 2 S l , 1 9 7 7 .
--
S c h o l a n d e r , P .F. A n a l y z e r f o r a c c u r a t e e s t i m a t i o n of r e s p i r a t o r y
g a s e s i n o n e - h a l f c u b i c c e n t i m e t e r s a m p l e s . J . B i o l . Chem.,
-
-
S e a b u r y , J . J . , W.D.
Adams. M.R. Ramey. I n f l u e n c e of p e d a l l i n g
r a t e and power-output on energy e x p e n d i t u r e d u r i n g b i c y c l e
e r g o m e t r y . Ergonomics,- 20:491-498,
1977.
M.R.Ruberg-Larsen,
R.A.
B i n k h o r s t , F.
S e c h e r , N.H.,
B o n d e - P e t e r s e n . Maximal oxygen u p t a k e d u r i n g arm c r a n k i n g
and combined arm p l u s l e g e x e r c i s e . J . Appl. P h y s i o l . ,
36:515-518,
1974.
H .R. W h a l e n . E f f e c t o f p a s s i v e warm-up on
S e d g w i c k , A.W.,
m u s c u l a r s t r e n g t h and e n d u r a n c e . Res. Q u a r t . , 35:45-49,
1964.
S h e p h a r d , R . J . The r e l a t i v e m e r i t s of t h e s t e p t e s t , b i c y c l e
e r g o m e t e r a n d t r e a d m i l l i n t h e a s s e s s m e n t of
I n t. Z. Angew. P h y s i o l . ,
caidio-respiratory fitness. 23 : 2 1 9 - 2 3 0 , 1 9 6 6 .
S h e p h a r d , R . J . What c a n t h e a p p l i e d p h y s i o l o g i s t p r e d i c t f r o m
J . S p o r t s Med., 2 0 : 2 9 7 - 3 0 8 ,
1980.
h i s data. S h i r e , T.L.,
A v o l l o n e , R.A. B o i l e a u , T.G. L o h m a n , J . C .
Wirth.
E f f e c t of h i g h r e s i s t a n c e a n d low r e s i s t a n c e b i c y c l e
e r g o m e t e r t r a i n i n g i n c o l l e g e women on c a r d i o r e s p i r a t o r y
f u n c t i o n a n d body c o m p o s i t i o n . Res. Q u a r t . , 48:391-400,
1977.
S h v a r t z , E . , Y . S h a p i r o , H-. B i r n f i e l d , A. M a g a z a n i k . M a x i m a l
o x y g e n u p t a k e , h e a t t o l e r a n c e a n d r e c t a l t e m p e r a t u r e . Med.
S c i . S p o r t s , 1 0 : 2 5 6 - 2 6 0 ,' 1 9 7 8 .
-
-
S i c o n o l f i , S . F . , E.M. C u l l i n a n e , R . C .
C a r l e t o n , P.D. Thompson.
A s s e s s i n g V02max i n e p i d e m i o l o g i c s t u d i e s : m o d i f i c a t i o n of
t h e strand-Ryhrning t e s t . Med. S c i . S p o r t s E x e r c i s e ,
l4:335-338,1982.
--
R. J . S h e p h a r d . Maximal and submaximal e x e r c i s e
S i d n e y , K.H.,
t e s t s i n men a n d women i n t h e s e v e n t h , e i g h t h a n d n i n t h
1977.
d e c a d e s of l i f e . J . A p p l . P h y s i o l . , 4 3 : 2 8 0 - 2 8 7 ,
-
S i l l s , F.D.,
V . E . O ' R i l e y . C o m p a r a t i v e e f f e c t s of r e s t , e x e r c i s e
a n d - c o l d s p r a y upon p e r f o r m a n c e i n s p o t - r u n n i n g . Res.
Q u a r t . , 27:217-219,
1956.
S k i n n e r , J.S.,
R. H u s t l e r , V . B e r g s t e i n o v a , E.R. B u s k i r k .
P e r c e p t i o n o f e f f o r t d u r i n g d i f f e r e n t t y p e s of e x e r c i s e a n d
u n d e r d i f f e r e n t e n v i r o n m e n t a l c o n d i t i o n s . Med. S c i . S p o r t s ,
5:llO-115, 1973.
--
S k u b i c , V . , J . H o d g k i n s . E f f e c t o f warm-up a c t i v i t i e s o n s p e e d ,
s t r e n g t h , and a c c u r a c y . Res. Q u a r t . , 28: 147-152, 1957.
-
S p a i n , J .D. B a s i c microcomputer models i n b i o l o g y .
L o n d o n : A d d i s o n - W e s l e y P u b . Co., 1 9 8 2 ,
S t a i n s b y , W.N.,
L.B. G l a d d e n , J . K . B a r c l a y , B.A.
Wilson.
E x e r c i s e e f f i c i e n c y : v a l i d i t y of b a s e - l i n e s u b t r a c t i o n s .
Appl. P h y s i o l . : R e s p i r a t . E n v i r o n . E x e r c i s e P h y s i o l . ,
J.
S t a m f o r d , B.A.,
B . J . N o b l e . M e t a b o l i c c o s t a n d p e r c e p t i o n of
e f f o r t d u r i n g b i c y c l e e r g g o m e t e r w o r k p e r f o r m a n c e . Med. S c i .
S p o r t s 5:226-231,
1974.
--
S t a m f o r d , B.A.
Step increment versus constant load t e s t s f o r
d e t e i m i n a t i o n bf m a x i m a l o x y g e n u p t a k e . E u r. J. Appl.
P h y s i o l . , 35:89-93,
1976.
A Weltman, R. M o f f a t t , S. S a d y ; E x e r c i s e
S t a m f o r d , B.A.,
r e c o v e r y above and below a n a e r o b i c t h r e s h o l d f o l l o w i n g
maximal work. J. Appl. P h y s i o l . : R e s p i r a t . E n v i r o n . E x e r c i s e
P h y s i o l . , 51 :8m-844, 1981.
S t e n b e r g , J . , P,-0.
A s t r a n d , B. E k b l o m , J . R o y c e , B. S a l t i n .
Hemodynamic r e s p o n s e t o w o r k w i t h d i f f e r e n t m u s c l e g r o u p s ,
1967.
s i t t i n g a n d s u p i n e . J. A p p l . P h y s i o l . , 2 2 : 6 1 - 7 0 ,
S t e v e n s , S . S , On t h e p s y c h o p h y s i c a l l a w .
64:153-181,
1957.
Stevens, J.C.,
Psychol.,
J . D . Mack.
58:405-413,
Psychol.
Rev.,
S c a l e s of a p p a r e n t f o r c e .
1959.
J . Exp.
--
S t r o m m e , S.B.,
J . I n g j e r , H . D . Meen. A s s e s s m e n t o f m a x i m a l
a e r o b i c power i n s p e c i f i c a l l y t r a i n e d a t h l e t e s . J . Appl.
P h y s i o l . , 42 : 8 3 3 - 8 3 7 , 1 9 7 7 .
-
S t u a r t , K.M.,
E.T. Howley ,-..L.B. G l a d d e n , R.H. Cox. E f f i c i e n c y of
t r a i n e d s u b j e c t s d i f f e r i n g i n maximal oxygen u p t a k e and t y p e
of t r a i n i n g . J . A p p l . P h y s i . 0 1 . :
R e s p i r a t . Environ. Exercise
P h y s i o l . , 50:=4-449,
1981. S u z u k i , Y . M e c h a n i c a l e f f i c i e n c y of f a s t a n d s l o w - t w i t c h m u s c l e
47:263-267,
f i b e r s i n man d u r i n g c y c l i n g . J . A p p l . P h y s i o l . ,
1979.
-
S u z u k i , Y . Mean a r t e r i a l p r e s s u r e , 0 2 - u p t a k e , a n d m u s c l e f o r c e
t i m e d u r i n g d y n a m i c a n d r h y t h m i c - s t a t i c e x e r c i s e i n men w i t h
h i g h p e r c e n t a g e s of f a s t a n d s l o w - t w i t c h f i b e r s . E u r . J.
Appl. P h y s i o l . , 43:143-155,
1980.
--
T a n a k a , M 3 , M.A. V o l l e , G.R. B r i s s o n , M. D i o n . Body t e m p e r a t u r e
and h e a r t r a t e r e l a t i o n s h i p s d u r i n g submaximal b i c y c l e
e r g o m e t e r e x e r c i s e s . E u r . J. A p p l . P h y s i o l . , 42 : 2 6 3 - 2 7 0 ,
1979.
--
T a n n e r , J .M. F a l l a c y of p e r - w e i g h t a n d p e r - s u r f a c e a r e a
s t a n d a r d s , and t h e i r r e l a t i o n t o s p u r i o u s c o r r e l a t i o n . J.
Appl. P h y s i o l . , 2 : l - 1 5 ,
1949.
T a n n e r , J , M . T h e r e l a t i o n s h i p b e t w e e n t h e f r e q u e n c y of t h e
h e a r t , a n d t e m p e r a t u r e a n d r e c t a l t e m p e r a t u r e i n man a t
r e s t . J. P h y s i o l . , 1 1 5 : 3 9 1 - 4 0 9 , 1 9 5 1 .
T a n n e r , J . M . T h e r e l a t i o n s h i p b e t w e e n t h e f r e q u e n c y of t h e h e a r t
r a t e , o r a l t e m p e r a t u r e a n d r e c t a l t e m p e r a t u r e i n man a t
rest. J. P h y s i o l . (London), 115:391-409, 1957.
T a y l o r , H.L.,
E.
B u s k i r k , A. Henschel.
Maximal oxygen i n t a k e a s
a n o b j e c t i v e ' m e a s u r e of c a r d i s - r e s p i r a t o r y
Appl. P h y s i o l . , 8:73-80,
1955.
performance.
&
T e l f o r d , R.D.,
L.A. H o o p e r , M.H.D.
Chennells. Calibration and
c o m p a r i s o n of a i r - b r a k e d a n d m e c h a n i c a l l y - b r a k e d b i c y c l e
e r g o m e t e r s . A u s t . J. S p o r t . Med., 1 2 : 4 0 - 4 6 , 1 9 8 0 .
-
T e r a s l i n n a , P . , A.H. I s m a i l , D.F. MacLeod. Nomogram by A s t r a n d
a n d R h y m i n g a s a p r e d i c t o r of maximum o x y g e n i n t a k e * J.
Appl. P h y s i o l . , 21:513-515,
1966.
J o h n s o n , G.T. J e s s u p * A w o r k l o a d
T e r r y , J . W., H. T o l s o n , D . J .
s e l e c t i o n p r o c e d u r e f o r t h e A s t r a n d - R h y m i n g t e s t . J. S p o r t .
Med 9 1 7 3 3 6 1 - 3 6 6 , 1 9 7 7 .
2
T e s c h , P . , B. S j o d i n , A. T h o r s t e n , J. K a r l s s o n . M u s c l e f a t i g u e
a n d i t s r e l a t i o n t o l a c t a t e a c c u m u l a t i o n a n d LDH a c t i v i t y i n
man. A c t a P h y s i o l . S c a n d . , 1 0 3 : 4 1 3 - 4 2 0 , 1 9 7 8 .
-
T h o m p s o n , H . E f f e c t o f warm-up u p o n p h y s i c a l p e r f o r m a n c e i n
s e l e c t e d a c t i v i t i e s . Res. Q u a r t . , 29:231-246,
1958.
-
V e r s p r i l l e , A . , M.E.
Wise. Q u a n t i t a t i v e e f f e c t of v a g a f
s t i m u l a t i o n on h e a r t i n t e r v a l i n newborn a n d o l d e r r a b b i t s .
P f l u e g e r s Arch. European J. P h y s i o l . , 325:61-76,
1971.
V e r s t a p p e n , F.T .J., R.M. H u p p e r t z , L.H.E . H . S n o e c k x - E f f e c t o f
t r a i n i n g s p e c i f i c i t y on maximal t r e a d m i l l and b i c y c l e
e r g o m e t e r e x e r c i s e . I n t . J. S p o r t s Med., 3 : 4 3 - 4 6 , 1 9 8 2 .
--
-
Von D o b e l n , W., I . A s t r a n d , A. B e r g s t r o m . An a n a l y s i s of a g e a n d
o t h e r f a c t o r s r e l a t e d t o m a x i m a l o x y g e n u p t a k e . J. A p p l .
P h y s i o l . , 22:934-938,
1967. W e i s e r , P.C.,-R.A.
K i n s m a n , D.A.
Stamper. Task-specific
symptomatology changes r e s u l t i n g f r o m p r o l o n g e d submaximal,
b i c y c l e r i d i n g . Med. S c i . S p o r t s , 5 ; 7 9 - 8 5 , 1 9 7 3 .
A. O r e n , N . L a m a r r a , B.J.
Whipp, K .
W e i s s m a n , M.L.,
P.W.Jones,
Wasserman. C a r d i a c o u t p u t i n c r e a s e a n d g a s e x c h a n g e a t s t a r t
of e x e r c i s e . J . Appl. P h y s i o l . : R e s p i r a t . E n v i r o n - E x e r c i s e
P h y s i o l . , 52 :=6-244,
1982.
Weltman, A., V. Katch. Minute-by-minute. r e s p i r a t o r y exchange a n d
oxygen u p t a k e k i n e t i c s d u r i n g s t e a d y - s t a t e e x e r c i s e i n
s u b j e k t s of h i g h a n d l o w maximal o x y g e n u p t a k e . Res. Q u a r t . ,
47:490-498,
1976.
S t a m f o r d , R . J . Mof f a t t , V.L. K a t c h . E x e r c i s e
W e l t m a n , A . , B.A.
r e c o v e r y l a c t a t e removal, and s u b s e q u e n t h i g h i n t e n s i t y
e x e r c i s e performance. R e s . Quart., 48:786-796,
1977.
-
W e l t m a n , A * , V . K a t c h , S . S a d y . E f f e c t s of i n c r e a s i n g o x y g e n
a v a i l a b i l i t y on b i c y c l e e r g o m e t e r e n d u r a n c e p e r f o r m a n c e .
E r g o n o m i c s , 2 1: 4 2 7 - 4 3 8 , 1 9 7 8 .
D.L. G i b b s . E n e r g y p r o d u c t i o n of m a m m a l i a n f a s t a n d
Wendt, I . R . ,
s l o w t w i t c h m u s c l e d u r i n g d e v e l o p m e n t . Am. J . P h y s i o l . ,
226 :642-647, 1 9 7 4 .
--
Whipp,
B.J.,
K.V.
W a s s e r m a n . E f f i c i e n c y of
m u s c u l a r work.
J.
Appl.
Physiol.,
26 : 6 4 4 - 6 4 8 .
1969.
Whipp, B . J . ,
K . Wasserman. Oxygen u p t a k e k i n e t i c s f o r v a r i o u s
i n t e n s i t i e s of c o n s t a n t - l o a d w o r k . J . Appl. P h y s i o l . ,
33 : 3 5 1 - 3 5 6 , 1 9 7 2 .
Whipp, B. J . , S .A. Ward. V e n t i l a t o r y c o n t r o l d y n a m i c s d u r i n g
m u s c u l a r e x e r c i s e i n man. I n t. J. S p o r t s Med., 1 : 1 4 6 - 1 5 9 ,
19 8 0 .
J.A.
D a v i s , F. T o r r e s , K . ~ a s s e r m a n . A t e s t t o
Whipp, B . J . ,
d e t e r m i n e p a r a m e t e r s of a e r o b i c f u n c t i o n d u r i n g e x e r c i s e .
Appl. P h y s i o l . : R e s p i r a t . Environ. E x e r c i s e P h y s i o l . ,
50:217-221,
1981.
J.
-
Whipp, B. J . , R . C a s a b u r i . C h a r a c t e r i z i n g 0 2 u p t a k e r e s p o n s e
kinet i c s during exercise. I n t. J. s p o r t s Med.,
1982.
W i l e y , J . F . , L.G. S h a v e r . P r e d i c t i o n of m a x i m a l o x y g e n i n t a k e
f r o m r u n n i n g p e r f o r m a n c e s of u n t r a i n e d y o u n g men. R e s .
Q u a r t . , 43:89-93, 1972.
-
G.A.G.
B r e d e l l , C.H. Wyndham, N.B.
Strydom, J.F.
W i l l i a m s , C.G.,
M o r r i s o n , J . P e t e r , P.W. F l e m i n g , J . S . Ward. C i r c u l a t o r y a n d
m e t a b o l i c r e a c t i o n s t o work i n h e a t . J . Appl. P h y s i o l . ,
17 : 6 2 5 - 6 3 8 , 1 9 6 2 .
W i l l i a m s , R.S.,
R.S. E d e n , M A E . M o l l , R.M. L e s t e r , A.G. ~ a l i a c e .
A u t o n o m i c - m e c h a n i s m s of t r a i n i n g b r a d y c a r d i a : B - a d r e n e r g i c
r e c e p t o r i n humans. J . A p p l . P h y s i o l . : R e s p i r a t - E n v i r o n .
E x e r c i s e P h y s i o l . , 5 E 1 2 3 2 - 1 2 3 7 , 1981. 51 :l232-1237, 1981.
Winder, W.W.,
J . M . H a g b e r g , R.C. H i c k s o n , A.A.
Ehsani, J.A.
McLane. Time c o u r s e of s y m p a t h o a d r e n a l a d a p t a t i o n t o
e n d u r a n c e t r a i n i n g i n man. J . A p p l . P h y s l o l . , 4 5 : 3 7 0 - 3 7 4 ,
1978.
-
W i s w e l l , R.A.,
H.A.
d e V r i e s . Time c o u r s e of o x y g e n - p u l s e d u r i n g
v a r i o u s t e s t s of a e r o b i c p o w e r . E u r. J. A p p l . P h y s i o l . ,
41 : 2 2 1 - 2 3 2 , 1 9 7 9 .
W.M.
S h e r m a n , J . M . M i l l e r , D.L. C o s t i l l ,
W i t h e r s , R.T.,
S p e c i f i c i t y of t h e a n a e r o b i c t h r e s h o l d i n e n d u r a n c e t r a i n e d
c y c l i s t s a n d r u n n e r s . E u r . J. A p p l . P h y s i o . , 4 7 : 9 3 - 1 0 4 ,
1981.
--
T h e o r y a n d p r o p e r t i e s of c o n t r o l s y s t e m s . I n : F.L.
W o l f , M.B.
A b e l a n d E.P. ~ c ~ u t c h e o( nE d s . ) , C a r d i o v a s c u l a r F u n c t i o n ,
P r i n c i p l e s a n d A p p l i c a t i o n s . B o s t o n : L i t t l e Brown a n d
Company, 1 9 7 9 . 1 9 7 9 .
-
W r i g h t , G.R.,
K . S i d n e y , R . J . S h e p h a r d . V a r i a n c e of d i r e c t a n d
i n d i r e c t m e a s u r e m e n t s of a e r o b i c p o w e r . J. S p o r t s Med.,
18 : 3 3 - 4 1 , 1 9 7 8 .
-
N.B.
Strydom, J.S. M a r i t z , J.F. M o r r i s o n , J.
Wyndham, C . H . ,
P e t e r , Z . U . P o t g i e t e r . Maximum o x y g e n i n t a k e a n d maximum
h e a r t r a t e d u r i n g s t r e n u o u s work. J . Appl. P h y s i o l . ,
14:927-936, 1959.
-
Wyndham, C . H , ,
N.B. S t r y d o m , W.P. L e a r y , C . G . W i l l i a m s . S t u d i e s
of t h e maximum c a p a c i t y of men f o r p h y s i c a l e f f o r t I n to Z.
Angew. P h y s i o l . , 2 2 : 2 8 5 - 2 9 5 , 1 9 6 6 .
Y a m a j i , K., M. M i y a s h i t a . D i f f e r e n c e s i n c a r d i o - r e s p i r a t o r y
responses t o exhaustive e x e r c i s e between a t h l e t e s and
1978.
non-athletes. E u r, J. A p p l . P h y s i o l . , 3 8 : 2 3 3 - 2 3 8 ,
Y o s h i d a , T . , A. N a g a t a , N . T a k e u c h i , Y . S u d a . T h e v a l i d i t y of
a n a e r o b i c t h r e s h o l d d e t e r m i n a t i o n by a D o u g l a s b a g method
c o m p a r e d w i t h a r t e r i a l b l o o d l a c t a t e c o n c e n t r a t i o n . E u r . J.
Appl. P h y s i o l . , 46:423-430,
1981.
--
APPENDIX A
Efficiency
Work
1 ) Gross E f f i c i e n c y =work a c c o m p l i s h e d
e n e r g y expended
2 ) N e t E f f i c i e n c y = work a c c o m p l i s h e d
e n e r g y expended above t h a t a t r e s t
3)Work E f f i c i e n c y =work a c c o m p l i s h e d
e n e r g y expended above t h a t i n c y c l i n g
without a load
El-Eu
--
4 ) D e l t a E f f i c i e n c y = d e l t a work a c c o m p l i s h e d
d e l t a energy expended
where W = c a l o r i c e q u i v a l e n t of e x t e r n a l work p e r f o r m e d
E = g r o s s c a l o r i c output i n c l u d i n g r e s t i n g metabolism
e = resting caloric output
E l = caloric output,
loaded cycling
Eu = c a l o r i c o u t p u t , - - u n l o a d e d c y c l i n g
DW = c a l o r i c e q u i v a l e n t o f i n c r e m e n t i n w o r k p e r f o r m e d
above p r e v i o u s r a t e
AE = i n c r e m e n t i n c a l o r i c o u t p u t above ? h a t a t p r e v i o u s
rate
'
APPENDIX B
Borg S c a l e
-
for
Rating of P e r c e i v e d E x e r t i o n ,
1981
Nothing a t a l l
E x t r e m e l y weak
(just noticeable)
Very weak
Weak
(light)
Moderate
Somewhat s t r o n g
Strong
(heavy)
Very S t r o n g
Extremely S t r o n g
Maximal
( a l m o s t max)
APPENDIX C
Oxy e n C o s tof P e r f o r m i n g S t e a d y S t a t e Work
&
L e t X r e p r e s e n t work r a t e i n k g m * m i n u t e " '
X k g m - m i n u t e'l
C o n v e r t t o gm cm.min-l
X
1000
100
g m cm-min"
C o n v e r t t o d y n e cm-min'l
X
1000
100
9 8 1 d y n e cm-min'l
1 d y n e cm = 1 e r g
10
ergs
= 1 joule
1 c a l o r i e = 4.18
joules
1000 c a l o r i e s = 1 k i l o c a l
Assuming
25% e f f i c i e n c y ( t o t a l e f f i c i e n c y i n t r a n s f o r m i n g
food energy i n t o muscular work):
~ e t a ' b o l i cWork
X
1000
100
981
4
kcalmmin-I
-------------------------______________________________________________________
10
4.18
1000
U s i n g 4.82 k c a l a s c a l o r i f i c v a l u e of e a c h l i t r e of
consumed a t t h e R v a l u e of 0 . 8 0 :
oxygen
. 1 0 0 0 ~ 1 0 0 v 9 8 1 ~l i4t r e 02.min-1
..................................
x
10 7
4.18
1000
4-82
Therefore,
Work t 0 2
= X
-
= X
Total to2
0.00195
1 02-rnin'l
1000 m l 02-min'l
0.00195
= Work d 0 2
+
rest to2
= ( X - 0 . 0 0 1 9 5 olOOO)
= ( X o 1.95)
A t a w o r k r a t e . of
A t a w o r k r a t e of
3 0 0 kgm
6 0 0 kgm
.m i n ' l ,
300 m l 0 2 - m i n - l
300 m l 0 2 . m i n - l
oxygen c o s t i s
-
( 300.1.95)
-
0.885
-
0.9
mi n ' l ,
+
+
+
300
1 02-min'l
1 02emin-l
oxygen c o s t i s 1.5
.............................................
I
I
I
WORK R A T E
(
O X Y G E N CONSUMPTION
I
I
1 02-min'l
© Copyright 2026 Paperzz