log 25 x - ln xy ez 100 log 10 x y 2 log 2log log x y z -

Math 1050 Homework – Section 6.2_b
Stitz & Zeager, “College Algebra”

Name ___________________________________

1. Expand and simplify log5 x 2  25 . Assume all quantities represent positive real numbers.


2. Expand and simplify log 1000x3 y 5 . Assume all quantities represent positive real numbers.
 xy 
 ez  . Assume all quantities represent positive real numbers.


3. Expand and simplify ln  4
 100 x y 
. Assume all quantities represent positive real numbers.
 3 10 


4. Expand and simplify log 
5. Use properties of logarithms to write
1
2
log3  x   2log3  y   log3  z  as a single logarithm.
6. Use properties of logarithms to write  13 ln  x   13 ln  y   13 ln  z  as a single logarithm.
Math 1050 Homework – Section 6.2_b
Stitz & Zeager, “College Algebra”
Name ___________________________________
7. Use properties of logarithms to write log 7  x   log 7  x  3  2 as a single logarithm.
8. Use properties of logarithms to write log 2  x   log 4  x  1 as a single logarithm.
9. Use the change of base formula to convert log3  x  2  to base 10.


10. Use the change of base formula to convert log x 2  1 to base e .
11. Use the change of base formula to approximate the logarithm log3 12  .
12. Use the change of base formula to approximate the logarithm log 4  101  .