Monograph Non-aqueous titration of acids and bases with potentiometric endpoint indication Peter Bruttel Non-aqueous titration of acids and bases with potentiometric endpoint indication Peter Bruttel All rights reserved, including translation rights. Printed in Switzerland by Metrohm Ltd., CH-9101 Herisau 08.1999 – 8.024.5003 Non-aqueous titration of acids and bases with potentiometric endpoint indication Contents Contents 1. Preface ................................................................................................... 3 2. Important terms ...................................................................................... 4 3. Remarks concerning solvents for non-aqueous titrations ....................... 5 4. Apparatus and accessories used ........................................................... 9 5. Titration of acids ..................................................................................... 9 6. Titration of bases .................................................................................. 12 7. pKA values of some selected acids ....................................................... 14 8. pKB values of some selected bases ...................................................... 15 9. Dielectric constants (DC) of some selected solvents ............................ 16 10. Literature references ............................................................................ 17 Compilation of results: bases as titrants ......................................................... 18 Standard deviations of the electrode signals ........................................ 24 Titration curves obtained with the Solvotrode LiCl sat. in ethanol ........................................................................... 25 0.4 mol/L TEA-Br in ethylene glycol ................................................ 31 Compilation of results: acids as titrants .......................................................... 37 Standard deviations of the electrode signals ........................................ 44 Titration curves obtained with the Solvotrode LiCl sat. in ethanol ........................................................................... 45 0.4 mol/L TEA-Br in ethylene glycol ................................................ 49 2 Peter Bruttel Preface 1 Preface Non-aqueous titrations continue to play an important role in analysis, no matter whether in the determination of acid or base numbers in oils and fats, for quantifying products with different acidic or basic strengths separately or for titrating substances that are insoluble in water. This monograph is not intended to be a textbook; it should rather help the practical chemist to decide which solvents, electrodes, titrants and instruments are the most suitable ones for the particular application. The monograph makes no claim to be complete; it also assumes a certain basic knowledge of potentiometric analysis. Non-aqueous titrations are not without their problems. Effects are experienced that do not occur in this form in purely aqueous systems. The main problems are: a) interferences caused by static electricity and b) the response behaviour of the electrodes used. As far as a) is concerned a wide range of different measures have already been introduced or at least tried. These include everything from titration in earthed solutions through shielding the complete titration system (Faraday cage) and up to the use of differential amplifiers and the three-electrode technique. This latter technique has its advantages in many cases, above all wherever work is carried out in nonpolar solvents with nonpolar samples (e.g. petrochemical products). The type of electrode(s) used also plays a major role, which brings us to point b). Many years of experience involving non-aqueous titration have resulted in Metrohm developing a special electrode that is particularly suitable for non-aqueous titration the 6.0229.100 Solvotrode. It meets all the demands that must be placed on such an electrode: large membrane surface, as small a membrane resistance as possible, rapid response, optimally designed ground-joint diaphragm, excellent shielding and appropriate electrolyte solutions. Non-aqueous titration of acids and bases with potentiometric endpoint indication 3 Important terms 2 Important terms Amphiprotic Appreciable self-dissociation (e.g. 2 CH3OH < as polar. > CH3OH2+ + CH3O ), also known Aprotic No self-dissociation, also known as nonpolar. Dielectric constant (DC) Proportionality factor between the electric displacement D and the electric field strength E in a vacuum. The DC depends strongly on temperature. Solvents with a higher DC promote the electrolytic dissociation of electrolytes. The DC is a substance-specific constant that depends to a large extent on the molecular structure. It is measured with so-called decameters. In nonpolar solvents (having a small DC) even strong electrolytes (e.g. NaCl, HClO4, etc.) are only weakly dissociated. Dissociation Formation of ions, e.g. CH3COOK < > CH3COO + K+ Levelling Equalising of base or acid strengths. In this case separation is not possible. Example: sulphuric acid: During the titration, e.g. in acetone, two well-differentiated steps are obtained. In an aqueous titration levelling occurs; only one potential jump is obtained, which corresponds to the sum of the two acids of different strengths. pK value Acidity or basicity constants KA = [H3O+] [A] / [HA] KB = [BH+] [OH] / [B] The negative logarithms of these values are known as pKA and pKB, respectively; they are analogous to the pH value. The smaller the value, the «stronger» the acid or base. In order to achieve a separation in an aqueous titration the difference between the pK values should be approx. 5. In suitable non-aqueous solvents a difference of 2 to 3 is sufficient. 4 Peter Bruttel Remarks concerning solvents for non-aqueous titrations 3 Remarks concerning solvents for non-aqueous titrations 3.1 Amphiprotic solvents acidic 3.1.1 Glacial acetic acid (HAc) Solvent for bases in particular. The water content should be less than 1%. In some cases acetic anhydride is added. However, this can lead to acetylation and therefore to incorrect results (primary, secondary and tertiary amines). For the titration of weak bases it is better to add an aprotic solvent, e.g. dioxane or toluene. 3.1.2 Formic acid Is only used for the titration of the weakest bases, e.g. caffeine (pKB = 13.4) or urea (pKB = 13.8). The water content should not exceed 1%. Should not be used with short-chain alcohols esterification! 3.1.3 Trifluoroacetic acid Suitable as a solvent for the weakest bases, where acetic anhydride cannot be used because of acetylation. An expensive solvent! 3.1.4 Others Propionic acid, cresols and phenol are not very important. Cresols are used in mixtures, e.g. with chloroform, as solvents for determinations of terminal amino groups in polyamides. As phenol has excellent solubilising properties for the salts of organic bases, its use with a mixture of chloroform and acetonitrile has been suggested for these applications. 3.2 Amphiprotic solvents basic 3.2.1 Ethylenediamine Used as a solvent for weak acids. Has good solubilising properties. Has a levelling effect for strong acids carboxylic acids and phenols can nevertheless be separated. It fumes when exposed to the air, is toxic and corrosive and also has an unpleasant odour. Takes up water and carbon dioxide from the air (blank values). 3.2.2 Butylamine Similar properties to ethylene diamine, but has slightly smaller solubilising properties. Offensive odour. 3.2.3 Benzylamine If it has to be a solvent from this class (3.2), then this one. Similar to butylamine, but better solubilising properties and less offensive odour. Non-aqueous titration of acids and bases with potentiometric endpoint indication 5 Remarks concerning solvents for non-aqueous titrations 3.3 Amphiprotic solvents neutral 3.3.1 Methanol and ethanol Compared with water they have lower dielectric constants but similar acidity and basicity. Not suitable for the determination of weak acids such as phenol. However, the carboxyl groups of dicarboxylic acids and the two acid groups of sulphuric acid can be separated. They also have certain solubilising properties for organic compounds that water does not possess. 3.3.2 Isopropanol Has excellent solubilising properties, e.g. for hydrocarbons, and is often used as a solubility promoter between these and water. As a secondary alcohol it is a weaker «acid» than the primary alcohols and can be used instead of them without any problems. The determination of weak acids is also not possible in this solvent. 3.3.3 tert. Butanol Unfortunately has a relatively high melting point of 25.8 °C. Approx. 5% isopropanol (IPA) should therefore be added. Tertiary alcohols can almost be classified as being aprotic solvents. Has no levelling properties and is therefore particularly suitable for the step-by-step titration of mixtures of acids up to the phenols. 3.3.4 Diols (ethylene glycol/propylene glycol) Particularly suitable as solvents for the salts of weak acids because of their high polarity. However, mostly used in 1:1 mixtures with chloroform, toluene or IPA. 3.3.5 Ethylene glycol monomethyl ether (methylglycol, methylcellosolve) Can be used for the titration of weak bases and has good solubilising properties. Is used together with acetic anhydride for the determination of small amounts of quaternary amines in other amines (the other amines are acetylated and are therefore not determined). 3.4 Aprotic solvents acidic 3.4.1 Nitromethane and nitroethane As a result of their high polarity, which favours the dissociation of salts, both would be very useful solvents for the titration of weak bases. Unfortunately both present explosion and fire hazards and are therefore seldom used. A special application would be the titration of mixtures of primary, secondary and tertiary aliphatic or aromatic amines in a solvent mixture made up of glacial acetic acid/ dioxane/nitromethane at a ratio of 5:75:20. 6 Peter Bruttel Remarks concerning solvents for non-aqueous titrations 3.5 Aprotic solvents basic 3.5.1 Pyridine Were it not for its unpleasant odour and its harmful side-effects this solvent would be particularly suitable for the separation of mixtures of acids. Levelling occurs only with strong mineral acids (HCl, HClO4, 1st proton of H2SO4). Otherwise acids up to phenol can be separated. A particular use of pyridine is for the determination of polyacids. A special advantage is that pyridine does not undergo any side reactions with strong acids, which allows exact determinations to be carried out. 3.5.2 Dimethylformamide (DMF) DMF is an excellent solvent for polar compounds, is not toxic and also has no odour. Can be used for the determination of weak acids, but only when water is almost completely absent (saponification). Unfortunately has a relatively high reactivity, which prevents the determination of mixtures that contain strong acids (errors of up to 20%). Mixtures containing alcohols are also unfavourable as the titration curves become extremely flat (also with alcoholic titrants). 3.5.3 Dimethylsulphoxide (DMSO) Similar properties to DMF, without its tendency to saponify. Warning: DMSO reacts violently with HClO4!!!! 3.6 Aprotic solvents neutral 3.6.1 Acetone and MIBK The ideal solvents for mixtures of acids, from HClO4 up to phenol. Practically no levelling occurs. Absorption of CO2 from the air takes place so slowly that, if need be, the titration can be carried out in an open beaker. 3.6.2 Acetonitrile Is used for the determination of basic amines having different basicities. Acids can also be separated. Acetates of Cu, Ni, etc. can be titrated in this solvent; this may be due to the formation of complexes. 3.6.3 Nitrobenzene Would give an excellent differentiation of amines having different basicities, but should not be used because of its toxicity. Non-aqueous titration of acids and bases with potentiometric endpoint indication 7 Remarks concerning solvents for non-aqueous titrations 3.6.4 Ethers (diethyl ether, dioxane, tetrahydrofuran, ethylene glycol dimethyl ether) Mostly only used for dilution purposes. HClO4 in dioxane is used as a titrant. Ethers often contain peroxides, which can react like acids during the titration. In pure dioxane and diethyl ether no potentiometric indication is possible the resistance is too high. Even a differential amplifier does not help. If these solvents have to be used, then for weak bases. 3.6.5 Hydrocarbons and chlorinated hydrocarbons Examples: hexane, benzene, toluene, chlorobenzene, trichloroethylene, chloroform, tetrachloroethane, etc. Mostly only used for diluting or dissolving. Solvents such as benzene and chlorobenzene are very questionable. Chlorinated hydrocarbons are disappearing more and more from the specifications. In pure solvents of this class the endpoint cannot be indicated potentiometrically or conductometrically. Only colour indicators can be used. 3.6.6 Acetic anhydride Is used for the removal of residual water in the titration of extremely weak bases (e.g. thiourea, acetylpiperidine). The acetyl ion is an even stronger acid than the acetonium ion (CH3COOH2+). CH3COOCOCH3 + HClO4 → CH3CO+ + ClO4 + CH3COOH The acetyl cation is extremely reactive. Primary, secondary and tertiary amines are acetylated and therefore removed from the titration. It is possible to determine quaternary amines in the presence of all the other amines. The presence of more than 10% acetic acid reduces the titrability of weak bases by buffering. Gel layers on glass electrodes are rapidly dehydrated; this results in a sluggish response. 8 Peter Bruttel Apparatus and accessories used Titration of acids 4 Apparatus and accessories used - 702, 716, 736, 751 or 785 Titrino or 726 Titroprocessor, 728 Magnetic stirrer, Metrodata TiNet software, printer and PC - 6.3014.223 Exchange Units - 6.0229.100 Solvotrode*; electrolyte a) 6.2312.000 LiCl sat. in ethanol, electrolyte b) 6.2320.000 TEA-Br 0.4 mol/L in ethylene glycol 5 Titration of acids The titrations were carried out in the «pH range»** of the titrator in the MET mode (volume increments 0.10 mL, fixed delay period 5 s). Electrodes 1) 6.0229.100 Solvotrode, electrolyte LiCl sat. in ethanol 2) 6.0229.100 Solvotrode, electrolyte TEA-Br c = 0.4 mol/L in ethylene glycol (TEA-Br = tetraethyl ammonium bromide) Acids tested (0.1 mol/L in ethanol) - Benzoic acid; pKA = 4.20 - Phenol; pKA = 9.95 Titrants a) c(TBAOH) = 0.1 mol/L in IPA (TBAOH = tetrabutyl ammonium hydroxide, IPA = isopropanol) b) c(KOH) = 0.1 mol/L in IPA Solvents Ethanol Isopropanol (IPA) tert. Butanol/IPA 95:5 Acetone Methyl isobutyl ketone (MIBK) Dimethyl formamide (DMF) Pyridine Acetonitrile 2.50 mL of the tested acid was treated with 50 mL of the corresponding solvent and titrated with TBAOH or KOH. * The Solvotrode is a combined pH glass electrode developed specially for non-aqueous titrations. ** The concept of pH really applies only to purely aqueous solutions. In organic solvents the values are displaced. The neutral point is no longer at «pH = 7» and negative values or values up to 20 can occur (extension of the pH scale). This means that at «high» pH values high alkali errors must be expected with glass electrodes. Non-aqueous titration of acids and bases with potentiometric endpoint indication 9 Titration of acids Results A) Benzoic acid (pKA = 4.20) KOH normally produces larger potential jumps than TBAOH, but TBAOH yields more symmetrical and steeper titration curves. In 11 (63%) out of 16 determinations larger jumps were obtained with Electrode 2 (underlined values). Summary of the delta pH values (mean value of 3 determinations, delta «pH init» to «pH end»): Solvent KOH/El.1 TBAOH/El.1 KOH/El.2 TBAOH/El.2 Ethanol 7.6 7.3 8.1 7.5 IPA 8.5 7.1 8.7 8.5 tert. Butanol/IPA 8.9 9.5 8.2 8.9 Acetone 9.0 6.4 8.1 7.6 MIBK 7.7 7.6 7.1 7.0 DMF 7.6 5.8 8.7 6.5 Pyridine 6.1 6.1 8.0 7.0 Acetonitrile 7.3 6.7 10.2 7.7 The highest pH values at the end of the titration were: with KOH; 18.2 in DMF/El.2, 16.8 in DMF/El.1 and in pyridine/El.2 with TBAOH; 16.0 in pyridine/El.2, 15.9 in tert. butanol/El.2 The lowest pH values at the end of the titration were: with KOH; 11.6 in ethanol/El.1, 12.4 in MIBK/El.1 with TBAOH; 11.1 in ethanol/El.1, 11.7 in MIBK/El.1 Li ions therefore appear to have a certain influence on the pH value (alkali error). The largest jump was obtained with KOH/El.2 in acetonitrile (delta pH = 10.2). However, acetonitrile is a problematic solvent. During the titration sticky precipitates formed with both titrants, which lead to blockage of the diaphragm. This means that with this solvent the electrode should be cleaned after each titration (H2O and ethanol). Very good solvents for medium-strength acids are tert. butanol/IPA, acetone, DMF and isopropanol (IPA). B) Phenol (pKA = 9.95) With TBAOH as titrant the endpoint is normally reached sooner. Electrode 2 usually gives titration curves that are easier to evaluate. 10 Peter Bruttel Titration of acids Summary of the delta pH values (mean value of 3 determinations, delta «pH init» to «pH end»): Solvent KOH/El.1 TBAOH/El.1 KOH/El.2 TBAOH/El.2 Ethanol 3.7 3.3 3.8 3.3 4.4 - 3.8 + 5.0 + 4.9 + IPA tert. Butanol/IPA 4.6 - 4.3 + 4.6 + 6.8 ++ 4.4 ++ 3.3 ++ 3.9 + 3.9 ++ MIBK 6.0 - 6.0 5.7 - 5.6 DMF 4.5 ++ 3.7 + 5.4 ++ 4.3 ++ Pyridine 3.2 + 4.4 ++ 5.3 + 4.8 + Acetonitrile 3.4 + 4.0 ++ 5.4 ++ 4.1 ++ Acetone + ++ no jump suggestion of a jump EP found pronounced jump, easy to evaluate In 12 (75%) out of 16 determinations larger jumps were obtained with Electrode 2. The highest pH values at the end of the titration were: with KOH; 17.4 in DMF/El.2, 16.4 in pyridine/El.2 with TBAOH; 16.0 in DMF/El.2 and in pyridine/El.2 The lowest pH values at the end of the titration were: with KOH; 11.6 in ethanol/El.1, 12.8 in MIBK/El.1 with TBAOH; 11.1 in ethanol/El.1, 11.5 in MIBK/El.1 The largest jump was obtained with TBAOH/El.2 in tert. butanol/IPA (delta pH = 6.8). Acetonitrile produced nice curves. Unfortunately sticky precipitates on the diaphragm were also produced here, which made it necessary to clean the electrode (H2O and ethanol) after each determination. Very good solvents for weak acids are acetone, DMF and tert. butanol/IPA (in ethanol no titration curves were obtained; it is too similar to water). Non-aqueous titration of acids and bases with potentiometric endpoint indication 11 Titration of bases 6 Titration of bases The titrations were carried out in the «pH range»** of the titrator in the MET mode (volume increments 0.10 mL, fixed delay period 5 s). ** See under 5 «Titration of acids» Electrodes 1) 6.0229.100 Solvotrode, electrolyte LiCl sat. in ethanol 2) 6.0229.100 Solvotrode, electrolyte TEA-Br c = 0.4 mol/L in ethylene glycol (TEA-Br = tetraethyl ammonium bromide) Bases tested (0.1 mol/L in ethanol) - Ethanolamine; pKB = 4.56 - Aniline; pKB = 9.42 - Urea; pKB = 13.80 Titrants a) c(HClO4) = 0.1 mol/L in glacial acetic acid b) c(HCl) = 0.2 mol/L in isopropanol (IPA) Solvents Ethanol Acetone Acetonitrile Dioxane/IPA 1:1 MIBK/glacial acetic acid/toluene 1:1:1 (DIN/ISO 3771) Toluene/IPA/H2O 500:495:5 (ASTM D 664) 2.50 mL of the tested base was treated with 50 mL of the corresponding solvent and titrated with HClO4 or HCl. Results A) Ethanolamine (pKB = 4.56) In most cases HClO4 produced better, larger and steeper jumps. In two cases the titration curves obtained were identical, in two cases better with Electrode 1 and in two cases better with Electrode 2. Summary of the delta pH values (mean value of 3 determinations, delta «pH init» to «pH end»): Solvent HClO4/El.1 HCl/El.1 HClO4/El.2 HCl/El.2 Ethanol 8.7 9.7 8.7 9.2 Acetone 11.9 10.1 11.8 10.4 Acetonitrile 13.1 10.7 12.9 10.8 Dioxane/IPA 9.1 7.8 9.0 7.9 MIBK/glacial acetic acid/ toluene 6.4 4.3 5.9 4.4 Toluene/IPA/H2O 9.2 7.6 8.7 8.0 12 Peter Bruttel Titration of bases The lowest pH values at the end of the titration were: with HClO4; with HCl; 5.7 in MIBK/glacial acetic acid/toluene/El.1 and 5.5 in acetone/El.1 3.7 in MIBK/glacial acetic acid/toluene/El.1 and 3.4 in the same solvent/El.2 Very good solvents for medium-strength bases are acetone, acetonitrile and toluene/IPA/H2O. B) Aniline (pKB = 9.42) Except for ethanol the jumps with HClO4 were larger, steeper and neater. In four cases the curves were identical with each electrode, in two cases Electrode 1 was better (MIBK/glacial acetic acid/toluene and toluene/IPA/H2O). Summary of the delta pH values (mean value of 3 determinations, delta «pH init» to «pH end»): Solvent HClO4/El.1 HCl/El.1 HClO4/El.2 HCl/El.2 Ethanol 5.8 5.5 5.7 5.1 Acetone 7.0 4.3 7.0 4.4 Acetonitrile 7.5 4.8 7.4 4.6 Dioxane/IPA 5.2 3.8 5.2 3.9 MIBK/glacial acetic acid/ toluene 5.8 4.0 5.7 4.0 Toluene/IPA/H2O 5.6 3.6 5.3 3.8 The lowest pH values at the end of the titration were: with HClO4; with HCl; 5.6 in MIBK/glacial acetic acid/toluene - El.1 and 5.3 in acetone - El.1 3.6 in MIBK/glacial acetic acid/toluene - El. 1 and 3.2 in the same solvent - El.2 Very good solvents for weak bases are acetone, MIBK/glacial acetic acid/ toluene and also ethanol. C) Urea (pKB = 13.80) This very weak base could not be determined in any of the solvents tested. No titration curves that could be evaluated were obtained! Non-aqueous titration of acids and bases with potentiometric endpoint indication 13 pKA values of some selected acids 7 pKA values of some selected acids Acetic acid .......................................... 4.73 Malonic acid 2nd step .......................... 5.68 Acrylic acid ......................................... 4.26 Nitric acid ......................................... 1.32 o-Aminophenol ................................. 10.68 o-Nitrophenol ..................................... 7.23 Benzoic acid ....................................... 4.20 Oxalic acid 1st step ............................. 1.42 Boric acid ........................................... 9.24 Oxalic acid 2nd step ............................ 4.31 Chloroacetic acid ............................... 2.81 Perchloric acid ......................... approx. 9 o-Chlorophenol .................................. 8.48 Phenol ................................................ 9.95 Citric acid 1 step .............................. 3.13 Phosphoric acid 1st step ..................... 1.96 Citric acid 2 step .............................. 4.76 Phosphoric acid 2nd step .................... 7.12 Citric acid 3rd step .............................. 6.40 Phosphoric acid 3rd step .................. 12.36 Dichloroacetic acid ............................. 1.30 o-Phthalic acid 1st step ....................... 2.90 Fluoroacetic acid ................................ 2.57 o-Phthalic acid 2nd step ...................... 5.51 Formic acid ........................................ 3.75 Picric acid ........................................... 0.71 Glycolic acid ....................................... 3.82 Propionic acid .................................... 4.87 Hydrobromic acid ..................... approx. 6 Salicylic acid ...................................... 2.98 Hydrochloric acid ..................... approx. 3 Sorbic acid ......................................... 4.77 Hydrocyanic acid ................................ 9.40 Succinic acid 1st step ......................... 4.18 Hydrofluoric acid ................................ 3.14 Succinic acid 2nd step ......................... 5.55 Hydrosulphuric acid 1 step ............... 6.90 Sulphuric acid 1st step .............. approx. 3 Hydrosulphuric acid 2nd step ............ 12.90 Sulphuric acid 2nd step ....................... 1.92 m-Hydroxybenzoic acid ..................... 4.08 Tartaric acid 1st step ........................... 3.01 o-Hydroxybenzoic acid ...................... 2.98 Tartaric acid 2nd step .......................... 4.16 p-Hydroxybenzoic acid ...................... 4.54 Trichloroacetic acid ............................ 0.70 Lactic acid .......................................... 3.86 Trifluoroacetic acid ............................. 0.23 st nd st Malonic acid 1st step .......................... 2.79 14 Peter Bruttel pKB values of some selected bases 8 pKB values of some selected bases Acridine .............................................. 9.89 Ethylenediamine 2nd step ................... 7.00 m-Aminobenzoic acid ...................... 10.92 Imidazole ............................................ 7.00 o-Aminobenzoic acid ....................... 11.85 Methylamine ...................................... 3.36 p-Aminobenzoic acid ....................... 11.64 α-Naphthylamine ............................. 10.08 Ammonia ............................................ 4.75 o-Nitroaniline .................................... 14.13 Aniline ................................................ 9.42 o-Phenylenediamine 1st step ............. 9.53 Benzidine 1st step ............................... 9.30 o-Phenylenediamine 2nd step .............. >12 Benzidine 2 step ............................ 10.37 2-Picoline ........................................... 7.52 Benzimidazole .................................... 8.47 Piperazine 1st step ............................. 4.18 Benzylamine ...................................... 4.62 Piperazine 2nd step ............................. 8.32 Brucine ............................................... 3.10 Piperidine ........................................... 2.80 Caffeine ............................................ 13.39 n-Propylamine .................................... 3.42 Collidine ............................................. 6.69 Pyridine .............................................. 8.81 Cyclohexylamine ................................ 3.36 Pyrimidine .......................................... 1.30 Diethanolamine .................................. 5.12 Quinine 1st step .................................. 6.66 Diethylamine ...................................... 3.00 Quinine 2nd step ................................. 9.48 Dimethylamine ................................... 3.30 o-Toluidine .......................................... 9.61 Diphenylamine ................................... 8.79 Triethanolamine ................................. 6.23 Ethanolamine ..................................... 4.56 Triethylamine ...................................... 3.28 Ethylamine ......................................... 3.33 Trimethylamine ................................... 4.20 Ethylenediamine 1 step .................... 3.91 Urea ................................................. 13.80 nd st Non-aqueous titration of acids and bases with potentiometric endpoint indication 15 Dielectric constants (DC) of some selected solvents 9 Dielectric constants (DC) of some selected solvents Acetic acid ............................... 6.2 (20 °C) DMF ...................................... 27.0 (25 °C) Acetone ................................. 21.2 (20 °C) Ethanol .................................. 25.1 (20 °C) Acetonitrile ............................ 36.0 (20 °C) Ethylene glycol ...................... 38.7 (20 °C) Benzyl alcohol ....................... 13.0 (20 °C) Ethylenediamine ................... 12.9 (25 °C) tert. Butanol .......................... 10.9 (30 °C) Formic acid ........................... 58.5 (25 °C) Butylamine .............................. 5.3 (25 °C) Isopropanol ........................... 19.0 (20 °C) Carbon tetrachloride ............... 2.2 (20 °C) Methanol ............................... 33.6 (20 °C) Chlorobenzene ........................ 5.6 (25 °C) MIBK ..................................... 18.5 (25 °C) Cyclohexane ........................... 2.0 (20 °C) Phenol ..................................... 9.7 (48 °C) Cyclohexanol ........................ 16.8 (25 °C) Pyridine ................................. 13.5 (20 °C) Diethyl ether ............................ 4.2 (25 °C) Toluene .................................... 2.4 (20 °C) Dioxane ................................... 2.2 (25 °C) Water ..................................... 80.4 (20 °C) 16 Peter Bruttel Literature references 10 Literature references Gyenes, I. Titration in Non-Aqueous Media Krieger Publishing Company 1968 (ISBN 0442329253) Huber, W. Titrationen in nichtwässrigen Lösungsmitteln (Titrations in non-aqueous solvents; in German) Akademische Verlagsgesellschaft, Frankfurt a.M. 1964 Stammbach, K. Titrationen in nichtwässrigen Lösungsmitteln (Titrations in non-aqueous solvents; in German) SLZ (reprint) dated 1969/1970 Oehme, F., Richter, W. Instrumental Titration Techniques Hüthig Verlag, Heidelberg 1987 (ISBN 3-7785-1304-4) Metrohm Monograph «Practical Aspects of Modern Titration» Metrohm Monograph «Electrodes in Potentiometry» Metrohm Application Bulletins: No. 39 Potentiometric analysis of nitrating acid No. 68 Potentiometric determination of carboxyl and amino end groups in polyamide fibres No. 80 Determination of the acid/base number in petroleum products (TAN/ TBN) No. 175 Non-aqueous titrations of fatty acids in heptane extracts No. 200 Determination of the acid number, the hydroxyl number and the isocyanates in plastic materials through automatic potentiometric titration No. 206 Titre determinations in potentiometry Non-aqueous titration of acids and bases with potentiometric endpoint indication 17 Compilation of results: bases as titrants Compilation of results: bases as titrants a) Electrode with LiCl sat. in ethanol b) Electrode with TEA-Br in ethylene glycol I. Benzoic acid; titrant: KOH in IPA Solvent Electr. pH init pH end d pH pH EP «TAN» Ethanol a) 3.9 11.9 8.0 8.65 0.104 Ethanol a) 4.2 11.6 7.4 8.73 0.102 Ethanol a) 4.2 11.7 7.5 9.00 0.104 Ethanol b) 4.5 12.5 8.0 9.13 0.106 Ethanol b) 4.5 12.5 8.0 9.10 0.104 Ethanol b) 4.5 12.8 8.3 9.12 0.104 Isopropanol a) 5.0 13.5 8.5 9.63 0.106 Isopropanol a) 5.2 13.6 8.4 9.42 0.105 Isopropanol a) 5.0 13.6 8.6 9.59 0.108 Isopropanol b) 6.0 14.2 8.2 10.02 0.108 Isopropanol b) 5.6 14.2 8.6 10.56 0.106 Isopropanol b) 4.5 13.8 9.3 10.39 0.112 Tert. butanol a) 5.5 14.4 8.9 10.76 0.111 Tert. butanol a) 5.9 14.6 8.7 10.65 0.111 Tert. butanol a) 5.4 14.6 9.2 10.56 0.109 Tert. butanol b) 6.4 14.8 8.4 10.58 0.116 Tert. butanol b) 6.5 14.7 8.2 10.38 0.112 Tert. butanol b) 6.6 14.7 8.1 10.27 0.112 Acetone a) 5.3 14.0 8.7 10.98 0.104 Acetone a) 5.5 14.7 9.2 10.38 0.105 Acetone a) 6.5 15.6 9.1 10.38 0.104 Acetone b) 8.0 15.9 7.9 11.50 0.104 Acetone b) 8.2 16.1 7.9 11.73 0.104 Acetone b) 7.3 15.8 8.5 11.13 0.104 MIBK a) 5.9 13.6 7.7 9.83 0.117 MIBK a) 6.0 13.5 7.5 9.77 0.116 MIBK a) 5.9 13.7 7.8 9.82 0.116 MIBK b) 5.7 12.5 6.8 7.73 0.116 MIBK b) 5.6 12.4 6.8 7.96 0.115 MIBK b) 7.1 14.7 7.6 9.81 0.116 DMF a) 8.1 16.8 8.7 12.38 0.118 DMF a) 8.4 16.0 7.6 11.33 0.117 DMF a) 8.3 15.8 7.5 11.34 0.120 18 Remarks Peter Bruttel Compilation of results: bases as titrants Solvent Electr. pH init pH end d pH pH EP «TAN» DMF b) 8.8 18.0 9.2 13.67 0.114 DMF b) 9.3 18.2 8.9 13.38 0.116 DMF b) 9.5 17.5 8.0 13.01 0.114 Pyridine a) 7.7 13.7 6.0 10.12 0.113 Pyridine a) 8.0 13.8 5.8 10.52 0.116 Pyridine a) 7.7 14.3 6.6 10.32 0.114 Pyridine b) 9.0 16.8 7.8 13.68 0.110 Pyridine b) 8.7 16.7 8.0 13.03 0.111 Pyridine b) 8.7 16.8 8.1 13.17 0.113 Acetonitrile a) 6.9 13.6 6.7 9.47 0.107 Diaphragm clogged Acetonitrile a) 6.1 13.8 7.7 8.95 0.104 after titration Acetonitrile a) 6.2 13.8 7.6 9.63 0.107 Acetonitrile b) 5.8 16.3 10.5 12.36 0.104 Diaphragm clogged after titration Acetonitrile b) 6.0 16.3 10.3 12.51 0.104 Acetonitrile b) 6.2 16.0 9.8 11.98 0.104 Remarks II. Phenol; titrant: KOH in IPA Solvent Electr. pH init pH end d pH pH EP «TAN» Ethanol a) 7.8 11.7 3.9 - - Ethanol a) 8.2 11.7 3.5 - - Ethanol a) 7.9 11.6 3.7 - - Ethanol b) 9.2 12.8 3.6 - - Ethanol b) 8.9 12.7 3.8 - - Ethanol b) 8.6 12.7 4.1 - - Isopropanol a) 9.0 13.7 4.7 - - Isopropanol a) 9.0 13.8 4.8 - - Isopropanol a) 9.8 13.6 3.8 - - Isopropanol b) 9.3 14.3 5.0 13.48 0.105 Isopropanol b) 9.1 14.2 5.1 13.51 0.105 Isopropanol b) 9.4 14.2 4.8 13.33 0.103 Tert. butanol a) 8.7 14.0 5.3 - - Tert. butanol a) 9.2 14.2 5.0 - - Tert. butanol a) 10.8 14.2 3.4 - - Tert. butanol b) 9.6 14.5 4.9 13.42 0.113 Tert. butanol b) 10.1 14.5 4.4 13.55 0.114 Tert. butanol b) 10.1 14.5 4.4 13.41 0.108 Acetone a) 10.7 15.0 4.3 14.00 0.103 Acetone a) 10.7 15.0 4.3 13.61 0.103 Acetone a) 10.4 15.0 4.6 14.04 0.103 Non-aqueous titration of acids and bases with potentiometric endpoint indication Remarks 19 Compilation of results: bases as titrants Solvent Electr. pH init pH end d pH pH EP «TAN» Acetone b) 11.4 15.7 4.3 14.68 0.106 Remarks Acetone b) 11.8 15.6 3.8 14.43 0.106 Acetone b) 12.1 15.6 3.5 14.52 0.107 MIBK a) 6.6 13.3 6.7 - - MIBK a) 6.8 12.8 6.0 - - MIBK a) 7.6 13.0 5.4 - - MIBK b) 8.2 14.4 6.2 - - MIBK b) 8.6 14.6 6.0 - - MIBK b) 9.2 14.0 4.8 - - DMF a) 10.2 15.8 5.6 14.17 0.117 DMF a) 11.4 15.4 4.0 13.32 0.120 DMF a) 11.7 15.5 3.8 13.52 0.121 DMF b) 11.3 17.4 6.1 15.78 0.115 DMF b) 12.3 17.2 4.9 15.57 0.119 DMF b) 12.1 17.2 5.1 15.59 0.115 Pyridine a) 9.6 12.6 3.0 11.51 0.118 Pyridine a) 9.7 13.2 3.5 11.87 0.120 Pyridine a) 10.4 13.4 3.0 11.98 0.121 Pyridine b) 9.4 16.0 6.6 14.85 0.116 Pyridine b) 11.9 16.4 4.5 15.47 0.115 Pyridine b) 11.4 16.3 4.9 15.29 0.117 Acetonitrile a) 9.7 13.3 3.6 11.77 0.105 Diaphragm clogged Acetonitrile a) 10.3 13.4 3.1 11.88 0.105 after titration Acetonitrile a) 10.3 13.7 3.4 11.78 0.106 Acetonitrile b) 10.5 15.9 5.4 14.65 0.104 Diaphragm clogged Acetonitrile b) 10.8 16.2 5.4 14.80 0.103 after titration Acetonitrile b) 10.7 16.2 5.5 14.73 0.103 III. Benzoic acid; titrant: TBAOH in IPA Solvent Electr. pH init pH end d pH pH EP «TAN» Ethanol a) 3.9 11.1 7.2 8.50 0.103 Ethanol a) 3.8 11.3 7.5 8.49 0.104 Ethanol a) 3.8 11.2 7.4 8.34 0.103 Ethanol b) 4.8 12.1 7.3 9.94 0.100 Ethanol b) 4.6 12.6 8.0 9.51 0.104 Ethanol b) 4.7 11.8 7.1 9.20 0.101 Isopropanol a) 5.0 12.3 7.3 9.91 0.103 Isopropanol a) 5.0 11.8 6.8 9.52 0.104 Isopropanol a) 5.5 12.7 7.2 9.61 0.104 20 Remarks Peter Bruttel Compilation of results: bases as titrants Solvent Electr. pH init pH end d pH pH EP «TAN» Isopropanol b) 5.5 14.0 8.5 11.08 0.104 Isopropanol b) 5.8 14.2 8.4 11.30 0.104 Isopropanol b) 5.5 14.0 8.5 10.98 0.104 Tert. butanol a) 5.9 15.3 9.4 11.10 0.105 Tert. butanol a) 5.7 15.3 9.6 10.88 0.100 Tert. butanol a) 5.8 15.3 9.5 11.67 0.108 Tert. butanol b) 7.3 15.9 8.6 12.05 0.104 Tert. butanol b) 6.8 15.8 9.0 12.82 0.107 Tert. butanol b) 6.7 15.7 9.0 11.87 0.104 Acetone a) 7.5 13.0 5.5 11.33 0.103 Acetone a) 6.8 13.5 6.7 11.27 0.103 Acetone a) 6.4 13.4 7.0 10.97 0.102 Acetone b) 8.2 15.4 7.2 12.91 0.103 Acetone b) 8.0 15.8 7.8 13.13 0.103 Acetone b) 7.5 15.2 7.7 12.53 0.103 MIBK a) 4.4 11.7 7.3 9.09 0.108 MIBK a) 4.0 11.7 7.7 8.72 0.109 MIBK a) 4.1 11.8 7.7 8.75 0.104 MIBK b) 5.7 12.5 6.8 9.55 0.108 MIBK b) 5.6 12.6 7.0 10.04 0.111 MIBK b) 5.5 12.6 7.1 9.59 0.108 DMF a) 8.3 14.1 5.8 10.77 0.108 DMF a) 8.4 14.0 5.6 11.18 0.114 DMF a) 8.3 14.2 5.9 11.01 0.112 DMF b) 9.3 15.7 6.4 12.53 0.108 DMF b) 8.9 15.7 6.8 12.82 0.111 DMF b) 9.3 15.7 6.4 12.49 0.112 Pyridine a) 7.6 13.6 6.0 11.48 0.110 Pyridine a) 7.7 13.7 6.0 11.53 0.110 Pyridine a) 7.6 14.0 6.4 11.73 0.113 Pyridine b) 9.1 16.0 6.9 13.90 0.115 Pyridine b) 9.0 16.0 7.0 13.80 0.111 Pyridine b) 8.7 15.7 7.0 13.11 0.109 Acetonitrile a) 6.2 12.8 6.6 10.35 0.104 Diaphragm clogged Acetonitrile a) 6.7 13.0 6.3 10.16 0.104 after titration Acetonitrile a) 5.8 13.0 7.2 10.64 0.103 Acetonitrile b) 4.0 11.6 7.6 10.04 0.103 Diaphragm clogged Acetonitrile b) 6.0 13.3 7.3 11.22 0.102 after titration Acetonitrile b) 6.3 14.4 8.1 11.78 0.103 Non-aqueous titration of acids and bases with potentiometric endpoint indication Remarks 21 Compilation of results: bases as titrants IV. Phenol; titrant: TBAOH in IPA Solvent Electr. pH init pH end d pH pH EP «TAN» Ethanol a) 7.8 11.1 3.3 - - Ethanol a) 7.8 11.2 3.4 - - Ethanol a) 7.9 11.2 3.3 - - Ethanol b) 8.6 12.2 3.6 - - Ethanol b) 9.3 12.3 3.0 - - Ethanol b) 8.9 12.3 3.4 - - Isopropanol a) 8.7 12.3 3.6 11.93 0.106 Isopropanol a) 8.7 12.3 3.6 11.88 0.104 Isopropanol a) 7.5 11.6 4.1 11.26 0.101 Isopropanol b) 9.3 14.0 4.7 13.59 0.112 Isopropanol b) 9.5 13.8 4.3 13.31 0.105 Isopropanol b) 8.4 14.2 5.8 13.50 0.105 Tert. butanol a) 9.6 13.3 3.7 12.68 0.104 Tert. butanol a) 8.8 13.9 5.1 13.26 0.106 Tert. butanol a) 7.4 11.6 4.2 11.18 0.107 Tert. butanol b) 9.6 15.7 6.1 14.71 0.103 Tert. butanol b) 8.5 16.2 7.7 15.15 0.101 Tert. butanol b) 9.5 16.1 6.6 15.26 0.105 Acetone a) 9.6 13.0 3.4 12.07 0.104 Acetone a) 11.2 13.8 2.6 13.17 0.105 Acetone a) 10.1 14.0 3.9 13.33 0.104 Acetone b) 11.2 15.2 4.0 14.64 0.102 Acetone b) 11.3 15.1 3.8 14.58 0.101 Acetone b) 11.6 15.5 3.9 14.87 0.104 MIBK a) 5.0 11.5 6.5 - - MIBK a) 6.2 11.7 5.5 - - MIBK a) 5.6 11.6 6.0 - - MIBK b) 6.8 12.5 5.7 - - MIBK b) 7.5 12.5 5.0 - - MIBK b) 6.5 12.6 6.1 - - DMF a) 10.6 14.8 4.2 13.65 0.115 DMF a) 10.6 13.8 3.2 12.94 0.116 DMF a) 10.5 14.2 3.7 13.27 0.113 DMF b) 11.5 16.0 4.5 14.71 0.112 DMF b) 11.3 15.7 4.4 14.63 0.114 DMF b) 11.8 15.9 4.1 14.68 0.116 22 Remarks Peter Bruttel Compilation of results: bases as titrants Solvent Electr. pH init pH end d pH pH EP «TAN» Pyridine a) 9.7 14.1 4.4 13.14 0.113 Remarks Pyridine a) 9.6 14.2 4.6 13.22 0.116 Pyridine a) 10.0 14.2 4.2 13.18 0.117 Pyridine b) 9.7 14.8 5.1 14.20 0.120 Pyridine b) 11.2 16.0 4.8 14.94 0.114 Pyridine b) 11.2 15.8 4.6 14.91 0.114 Acetonitrile a) 8.5 12.7 4.2 11.54 0.104 Diaphragm clogged after titration Acetonitrile a) 9.3 13.1 3.8 11.96 0.106 Acetonitrile a) 9.4 13.3 3.9 12.29 0.107 Acetonitrile b) 10.0 14.2 4.2 13.28 0.104 Diaphragm clogged Acetonitrile b) 10.3 14.3 4.0 13.46 0.105 after titration Acetonitrile b) 10.4 14.4 4.0 13.47 0.103 Non-aqueous titration of acids and bases with potentiometric endpoint indication 23 Standard deviations of the electrode signals Standard deviations of the electrode signals Electrode s pH init s pH end s d pH LiCl sat. in ethanol (KOH) 0.309 0.181 0.349 s pH EP 0.149 TEA-Br in ethylene glycol (KOH) 0.333 0.178 0.332 0.186 LiCl sat. in ethanol (TBAOH) 0.297 0.227 0.281 0.160 TEA-Br in ethylene glycol (TBAOH) 0.323 0.217 0.258 0.218 LiCl sat. in ethanol 0.303 0.204 0.315 0.155 TEA-Br in ethylene glycol 0.328 0.197 0.295 0.202 Electrode Mean of d pH LiCl sat. in ethanol (KOH) 6.1 TEA-Br in ethylene glycol (KOH) 6.6 LiCl sat. in ethanol (TBAOH) 5.6 TEA-Br in ethylene glycol (TBAO 6.1 LiCl sat. in ethanol 5.8 TEA-Br in ethylene glycol 6.4 24 Peter Bruttel Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) Non-aqueous titration of acids and bases with potentiometric endpoint indication 25 Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) 26 Peter Bruttel Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) Non-aqueous titration of acids and bases with potentiometric endpoint indication 27 Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) 28 Peter Bruttel Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) Non-aqueous titration of acids and bases with potentiometric endpoint indication 29 Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) 30 Peter Bruttel Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) Non-aqueous titration of acids and bases with potentiometric endpoint indication 31 Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) 32 Peter Bruttel Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) Non-aqueous titration of acids and bases with potentiometric endpoint indication 33 Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) 34 Peter Bruttel Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) Non-aqueous titration of acids and bases with potentiometric endpoint indication 35 Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) 36 Peter Bruttel Compilation of results: acids as titrants Compilation of results: acids as titrants a) Electrode with LiCl sat. in ethanol b) Electrode with TEA-Br in ethylene glycol I. Ethanolamine; titrant: perchloric acid in glacial acetic acid (HAc) Solvent Electr. pH init pH end d pH pH EP «TAN» Ethanol a) 6.7 -1.9 8.6 0.56 0.100 Ethanol a) 6.8 -1.8 8.6 0.40 0.100 Ethanol a) 7.1 -1.7 8.8 0.65 0.100 Ethanol b) 7.3 -1.0 8.3 1.40 0.101 Ethanol b) 7.6 -1.0 8.6 1.03 0.099 Ethanol b) 8.1 -1.0 9.1 1.30 0.100 Acetone a) 6.4 -5.4 11.8 -1.75 0.098 Acetone a) 6.5 -5.5 12.0 -0.90 0.096 Acetone a) 6.4 -5.5 11.9 -2.31 0.099 Acetone b) 7.6 -4.2 11.8 -1.12 0.099 Acetone b) 7.5 -4.2 11.7 -1.02 0.100 Acetone b) 7.7 -4.2 11.9 -0.30 0.098 Acetonitrile a) 7.8 -5.2 13.0 -1.86 0.100 Acetonitrile a) 7.7 -5.4 13.1 -0.79 0.100 Acetonitrile a) 7.8 -5.3 13.1 -2.08 0.099 Acetonitrile b) 8.4 -4.6 13.0 -1.03 0.098 Acetonitrile b) 8.4 -4.3 12.7 -1.29 0.100 Acetonitrile b) 8.5 -4.4 12.9 -1.51 0.099 Dioxane/IPA 1:1 a) 5.8 -3.2 9.0 -0.17 0.102 Dioxane/IPA 1:1 a) 5.8 -3.3 9.1 -0.53 0.102 Dioxane/IPA 1:1 a) 6.0 -3.3 9.3 -0.58 0.102 Dioxane/IPA 1:1 b) 6.8 -2.4 9.2 0.31 0.100 Dioxane/IPA 1:1 b) 6.7 -2.3 9.0 0.30 0.099 Dioxane/IPA 1:1 b) 6.7 -2.2 8.9 1.01 0.100 MIBK/HAc/toluene 1:1:1 a) 0.7 -5.7 6.4 -3.11 0.100 MIBK/HAc/toluene 1:1:1 a) 0.7 -5.7 6.4 -2.66 0.101 MIBK/HAc/toluene 1:1:1 a) 0.7 -5.7 6.4 -3.31 0.100 MIBK/HAc/toluene 1:1:1 b) 0.7 -5.2 5.9 -2.98 0.099 MIBK/HAc/toluene 1:1:1 b) 1.0 -5.0 6.0 -2.66 0.099 MIBK/HAc/toluene 1:1:1 b) 1.1 -4.8 5.9 -2.49 0.100 Toluene/IPA/water 500:495:5 a) 6.7 -2.9 9.6 -0.58 0.099 Toluene/IPA/water 500:495:5 a) 6.5 -2.7 9.2 -0.40 0.099 Toluene/IPA/water 500:495:5 a) 6.4 -2.3 8.7 0.38 0.100 Non-aqueous titration of acids and bases with potentiometric endpoint indication 37 Compilation of results: acids as titrants Solvent Electr. pH init pH end d pH pH EP «TAN» Toluene/IPA/water 500:495:5 b) 7.4 -1.2 8.6 1.02 0.100 Toluene/IPA/water 500:495:5 b) 7.6 -1.2 8.8 0.92 0.098 Toluene/IPA/water 500:495:5 b) 7.3 -1.4 8.7 0.77 0.100 II. Aniline; titrant: perchloric acid in glacial acetic acid (HAc) Solvent Electr. pH init pH end d pH pH EP «TAN» Ethanol a) 4.2 -1.6 5.8 -0.01 0.100 Ethanol a) 4.2 -1.6 5.8 -0.06 0.100 Ethanol a) 4.2 -1.6 5.8 -0.08 0.100 Ethanol b) 4.7 -0.8 5.5 0.57 0.101 Ethanol b) 5.1 -0.9 6.0 0.60 0.101 Ethanol b) 4.8 -0.9 5.7 0.61 0.100 Acetone a) 1.8 -5.2 7.0 -2.83 0.099 Acetone a) 1.8 -5.2 7.0 -2.84 0.099 Acetone a) 1.8 -5.3 7.1 -2.86 0.100 Acetone b) 3.0 -4.0 7.0 -1.47 0.100 Acetone b) 2.9 -4.1 7.0 -1.49 0.100 Acetone b) 3.0 -4.1 7.1 -1.73 0.100 Acetonitrile a) 2.5 -5.0 7.5 -2.56 0.101 Acetonitrile a) 2.5 -5.1 7.6 -2.71 0.100 Acetonitrile a) 2.5 -4.9 7.4 -2.56 0.100 Acetonitrile b) 3.0 -4.4 7.4 -1.97 0.101 Acetonitrile b) 3.0 -4.4 7.4 -1.93 0.101 Acetonitrile b) 3.0 -4.5 7.5 -2.05 0.100 Dioxane/IPA 1:1 a) 1.8 -3.4 5.2 -1.78 0.097 Dioxane/IPA 1:1 a) 2.0 -3.3 5.3 -1.76 0.097 Dioxane/IPA 1:1 a) 2.0 -3.2 5.2 -1.75 0.098 Dioxane/IPA 1:1 b) 3.0 -2.2 5.2 -0.66 0.098 Dioxane/IPA 1:1 b) 3.0 -2.3 5.3 -0.72 0.098 Dioxane/IPA 1:1 b) 3.0 -2.2 5.2 -0.71 0.097 MIBK/HAc/toluene 1:1:1 a) 0.3 -5.6 5.9 -3.15 0.100 MIBK/HAc/toluene 1:1:1 a) 0.3 -5.6 5.9 -3.01 0.101 MIBK/HAc/toluene 1:1:1 a) 0.2 -5.5 5.7 -3.22 0.100 MIBK/HAc/toluene 1:1:1 b) 0.7 -5.1 5.8 -2.53 0.100 MIBK/HAc/toluene 1:1:1 b) 0.7 -4.9 5.6 -2.48 0.100 MIBK/HAc/toluene 1:1:1 b) 0.7 -4.9 5.6 -2.41 0.101 38 Peter Bruttel Compilation of results: acids as titrants Solvent Electr. pH init pH end d pH pH EP «TAN» Toluene/IPA/water 500:495:5 a) 3.0 -2.6 5.6 -1.07 0.101 Toluene/IPA/water 500:495:5 a) 3.2 -2.6 5.8 -1.05 0.101 Toluene/IPA/water 500:495:5 a) 3.1 -2.4 5.5 -1.03 0.101 Toluene/IPA/water 500:495:5 b) 4.1 -1.2 5.3 0.07 0.101 Toluene/IPA/water 500:495:5 b) 3.8 -1.5 5.3 -0.02 0.101 Toluene/IPA/water 500:495:5 b) 4.0 -1.2 5.2 -0.07 0.101 III. Urea; titrant: perchloric acid in glacial acetic acid (HAc) Solvent Electr. pH init pH end d pH pH EP «TAN» Ethanol a) - - - - - Ethanol a) - - - - - Ethanol a) - - - - - Ethanol b) - - - - - Ethanol b) - - - - - Ethanol b) - - - - - Acetone a) - - - - - Acetone a) - - - - - Acetone a) - - - - - Acetone b) - - - - - Acetone b) - - - - - Acetone b) - - - - - Acetonitrile a) - - - - - Acetonitrile a) - - - - - Acetonitrile a) - - - - - Acetonitrile b) - - - - - Acetonitrile b) - - - - - Acetonitrile b) - - - - - Dioxane/IPA 1:1 a) - - - - - Dioxane/IPA 1:1 a) - - - - - Dioxane/IPA 1:1 a) - - - - - Dioxane/IPA 1:1 b) - - - - - Dioxane/IPA 1:1 b) - - - - - Dioxane/IPA 1:1 b) - - - - - MIBK/HAc/toluene 1:1:1 a) - - - - - MIBK/HAc/toluene 1:1:1 a) - - - - - MIBK/HAc/toluene 1:1:1 a) - - - - - Non-aqueous titration of acids and bases with potentiometric endpoint indication 39 Compilation of results: acids as titrants Solvent Electr. pH init pH end d pH pH EP «TAN» MIBK/HAc/toluene 1:1:1 b) - - - - - MIBK/HAc/toluene 1:1:1 b) - - - - - MIBK/HAc/toluene 1:1:1 b) - - - - - Toluene/IPA/water 500:495:5 a) - - - - - Toluene/IPA/water 500:495:5 a) - - - - - Toluene/IPA/water 500:495:5 a) - - - - - Toluene/IPA/water 500:495:5 b) - - - - - Toluene/IPA/water 500:495:5 b) - - - - - Toluene/IPA/water 500:495:5 b) - - - - - IV. Ethanolamine; titrant: HCl in IPA Solvent Electr. pH init pH end d pH pH EP «TAN» Ethanol a) 8.5 -1.1 9.6 1.99 0.102 Ethanol a) 8.4 -1.3 9.7 2.28 0.104 Ethanol a) 8.4 -1.3 9.7 1.83 0.103 Ethanol b) 8.7 -0.4 9.1 2.83 0.102 Ethanol b) 8.8 -0.4 9.2 2.91 0.101 Ethanol b) 8.8 -0.5 9.3 2.85 0.101 Acetone a) 8.1 -2.0 10.1 2.13 0.100 Acetone a) 8.4 -1.8 10.2 2.10 0.100 Acetone a) 8.3 -1.8 10.1 2.40 0.099 Acetone b) 9.4 -1.1 10.5 2.92 0.100 Acetone b) 9.3 -1.1 10.4 3.05 0.099 Acetone b) 9.2 -1.2 10.4 3.12 0.099 Acetonitrile a) 8.7 -2.0 10.7 1.72 0.102 Acetonitrile a) 8.7 -2.0 10.7 2.10 0.101 Acetonitrile a) 8.8 -2.0 10.8 1.96 0.101 Acetonitrile b) 9.0 -1.8 10.8 3.02 0.100 Acetonitrile b) 9.0 -1.8 10.8 2.98 0.100 Acetonitrile b) 9.1 -1.8 10.9 2.17 0.101 Dioxane/IPA 1:1 a) 6.4 -1.5 7.9 1.94 0.099 Dioxane/IPA 1:1 a) 6.1 -1.6 7.7 1.95 0.099 Dioxane/IPA 1:1 a) 6.3 -1.6 7.9 1.59 0.100 Dioxane/IPA 1:1 b) 7.0 -0.8 7.8 3.00 0.098 Dioxane/IPA 1:1 b) 7.1 -0.7 7.8 3.00 0.098 Dioxane/IPA 1:1 b) 7.2 -0.8 8.0 2.94 0.098 40 Peter Bruttel Compilation of results: acids as titrants Solvent Electr. pH init pH end d pH pH EP «TAN» MIBK/HAc/toluene 1:1:1 a) 0.6 -3.7 4.3 -1.47 0.099 MIBK/HAc/toluene 1:1:1 a) 0.6 -3.6 4.2 -1.40 0.099 MIBK/HAc/toluene 1:1:1 a) 0.7 -3.7 4.4 -1.35 0.099 MIBK/HAc/toluene 1:1:1 b) 1.0 -3.4 4.4 1.04 0.098 MIBK/HAc/toluene 1:1:1 b) 1.1 -3.3 4.4 -0.94 0.098 MIBK/HAc/toluene 1:1:1 b) 1.0 -3.3 4.3 -1.03 0.098 Toluene/IPA/water 500:495:5 a) 6.9 -0.5 7.4 2.33 0.101 Toluene/IPA/water 500:495:5 a) 6.6 -0.5 7.1 2.88 0.099 Toluene/IPA/water 500:495:5 a) 7.9 -0.5 8.4 2.84 0.100 Toluene/IPA/water 500:495:5 b) 7.6 0.2 7.4 3.55 0.099 Toluene/IPA/water 500:495:5 b) 8.3 0.2 8.1 3.83 0.099 Toluene/IPA/water 500:495:5 b) 8.6 0.2 8.4 4.29 0.098 Solvent Electr. pH init pH end d pH pH EP «TAN» Ethanol a) 4.1 -1.4 5.5 0.30 0.100 Ethanol a) 4.4 -1.2 5.6 0.32 0.099 Ethanol a) 4.2 -1.3 5.5 0.28 0.100 Ethanol b) 4.6 -0.5 5.1 0.91 0.099 Ethanol b) 4.8 -0.5 5.3 0.87 0.100 Ethanol b) 4.5 -0.5 5.0 0.92 0.099 Acetone a) 2.2 -2.1 4.3 -0.50 0.100 Acetone a) 2.2 -2.0 4.2 -0.38 0.099 Acetone a) 2.4 -2.0 4.4 -0.41 0.100 Acetone b) 3.0 -1.2 4.2 0.40 0.099 Acetone b) 2.8 -1.6 4.4 0.48 0.099 Acetone b) 3.2 -1.3 4.5 0.31 0.100 Acetonitrile a) 2.4 -2.5 4.9 -0.91 0.100 Acetonitrile a) 2.5 -2.4 4.9 -0.98 0.100 Acetonitrile a) 1.8 -2.7 4.5 -1.19 0.099 Acetonitrile b) 2.6 -2.1 4.7 -0.63 0.100 Acetonitrile b) 2.6 -2.0 4.6 -0.59 0.100 Acetonitrile b) 2.5 -2.0 4.5 -0.60 0.100 Dioxane/IPA 1:1 a) 2.2 -1.6 3.8 -0.44 0.099 Dioxane/IPA 1:1 a) 2.3 -1.6 3.9 -0.47 0.100 Dioxane/IPA 1:1 a) 2.2 -1.6 3.8 -0.44 0.099 V. Aniline; titrant: HCl in IPA Non-aqueous titration of acids and bases with potentiometric endpoint indication 41 Compilation of results: acids as titrants Solvent Electr. pH init pH end d pH pH EP «TAN» Dioxane/IPA 1:1 b) 3.0 -0.8 3.8 0.40 0.099 Dioxane/IPA 1:1 b) 3.2 -0.8 4.0 0.36 0.099 Dioxane/IPA 1:1 b) 3.0 -0.8 3.8 0.32 0.099 MIBK/HAc/toluene 1:1:1 a) 0.5 -3.5 4.0 -1.84 0.100 MIBK/HAc/toluene 1:1:1 a) 0.4 -3.6 4.0 -1.83 0.100 MIBK/HAc/toluene 1:1:1 a) 0.5 -3.5 4.0 -1.77 0.100 MIBK/HAc/toluene 1:1:1 b) 0.9 -3.2 4.1 -1.41 0.099 MIBK/HAc/toluene 1:1:1 b) 0.8 -3.2 4.0 -1.39 0.099 MIBK/HAc/toluene 1:1:1 b) 0.8 -3.2 4.0 -1.47 0.100 Toluene/IPA/water 500:495:5 a) 3.3 -0.5 3.8 0.46 0.099 Toluene/IPA/water 500:495:5 a) 3.1 -0.5 3.6 0.43 0.099 Toluene/IPA/water 500:495:5 a) 3.0 -0.4 3.4 0.46 0.099 Toluene/IPA/water 500:495:5 b) 3.7 -0.1 3.8 1.08 0.098 Toluene/IPA/water 500:495:5 b) 3.5 -0.4 3.9 1.06 0.098 Toluene/IPA/water 500:495:5 b) 3.5 -0.1 3.6 1.04 0.098 Solvent Electr. pH init pH end d pH pH EP «TAN» Ethanol a) - - - - - Ethanol a) - - - - - Ethanol a) - - - - - Ethanol b) - - - - - Ethanol b) - - - - - Ethanol b) - - - - - Acetone a) - - - - - Acetone a) - - - - - Acetone a) - - - - - Acetone b) - - - - - Acetone b) - - - - - Acetone b) - - - - - Acetonitrile a) - - - - - Acetonitrile a) - - - - - Acetonitrile a) - - - - - Acetonitrile b) - - - - - Acetonitrile b) - - - - - Acetonitrile b) - - - - - VI. Urea; titrant: HCl in IPA 42 Peter Bruttel Compilation of results: acids as titrants Solvent Electr. pH init pH end d pH pH EP «TAN» Dioxane/IPA 1:1 a) - - - - - Dioxane/IPA 1:1 a) - - - - - Dioxane/IPA 1:1 a) - - - - - Dioxane/IPA 1:1 b) - - - - - Dioxane/IPA 1:1 b) - - - - - Dioxane/IPA 1:1 b) - - - - - MIBK/HAc/toluene 1:1:1 a) - - - - - MIBK/HAc/toluene 1:1:1 a) - - - - - MIBK/HAc/toluene 1:1:1 a) - - - - - MIBK/HAc/toluene 1:1:1 b) - - - - - MIBK/HAc/toluene 1:1:1 b) - - - - - MIBK/HAc/toluene 1:1:1 b) - - - - - Toluene/IPA/water 500:495:5 a) - - - - - Toluene/IPA/water 500:495:5 a) - - - - - Toluene/IPA/water 500:495:5 a) - - - - - Toluene/IPA/water 500:495:5 b) - - - - - Toluene/IPA/water 500:495:5 b) - - - - - Toluene/IPA/water 500:495:5 b) - - - - - Non-aqueous titration of acids and bases with potentiometric endpoint indication 43 Standard deviations of the electrode signals Standard deviations of the electrode signals Electrode s pH init s pH end s d pH s pH EP LiCl sat. in ethanol (perchloric acid) 0.059 0.072 0.093 0.196 TEA-Br in ethylene glycol (perchloric acid) 0.095 0.074 0.107 0.140 LiCl sat. in ethanol (HCl) 0.141 0.053 0.117 0.099 TEA-Br in ethylene glycol (HCl) 0.108 0.046 0.111 0.166 LiCl sat. in ethanol 0.100 0.062 0.105 0.147 TEA-Br in ethylene glycol 0.102 0.060 0.109 0.153 Electrode Mean of d pH LiCl sat. in ethanol (perchloric acid) 7.9 TEA-Br in ethylene glycol (perchloric acid) 7.8 LiCl sat. in ethanol (HCl) 6.4 TEA-Br in ethylene glycol (HCl) 6.4 LiCl sat. in ethanol 7.2 TEA-Br in ethylene glycol 7.1 44 Peter Bruttel Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) Non-aqueous titration of acids and bases with potentiometric endpoint indication 45 Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) 46 Peter Bruttel Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) Non-aqueous titration of acids and bases with potentiometric endpoint indication 47 Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) 48 Peter Bruttel Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) Non-aqueous titration of acids and bases with potentiometric endpoint indication 49 Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) 50 Peter Bruttel Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) Non-aqueous titration of acids and bases with potentiometric endpoint indication 51 Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) 52 Peter Bruttel Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) Non-aqueous titration of acids and bases with potentiometric endpoint indication 53 Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) 54 Peter Bruttel Titration curves obtained with the Solvotrode (LiCl sat. in ethanol) Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) Non-aqueous titration of acids and bases with potentiometric endpoint indication 55 Titration curves obtained with the Solvotrode (0.4 mol/L TEA-Br in ethylene glycol) 56 Peter Bruttel
© Copyright 2026 Paperzz