Department of Civil Engineering Sydney NSW 2006 AUSTRALIA http://www.civil.usyd.edu.au/ Centre for Advanced Structural Engineering Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Research Report No R845 Maura Lecce, BASc, MASc Kim JR Rasmussen, MScEng, PhD April 2005 Department of Civil Engineering Centre for Advanced Structural Engineering http://www.civil.usyd.edu.au/ Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Research Report No R845 Maura Lecce, BASc, MASc Kim Rasmussen, MScEng, PhD April 2005 Abstract: This report describes the numerical investigation of cold-formed, thin-walled stainless steel sections subject to distortional buckling under compression. Austenitic alloy 304 and ferritic alloys 430 and 3Cr12 were considered. A finite element model calibrated to the data gathered in a recent experimental programme (Lecce and Rasmussen 2005) shows that material anisotropy can be ignored and that an accurate calibration model can be achieved provided nonlinear yielding and enhanced corner properties are included in the model. FE analyses of more than 570 simple lipped and lipped channels with intermediate stiffeners covering a distortional buckling slenderness range 0.47 ≤ λd ≤ 3.64 reveal that enhanced corner properties may become significant for stocky sections with a large corner area (λd <1 with a corner area of at least 10%). The experimental and FE test data were used to evaluate the Australian, North American and European codes for stainless steel and cold-formed carbon steel. The evaluation reveals that both the effective width area approach and direct strength methods are generally inadequate for the design of stainless steel sections. Modified resistance factors are recommended for the effective width approach of current design codes to meet limit states design criteria. Direct strength design curves are developed for austenitic and ferritic stainless steel alloys. Keywords: Stainless steel, distortional buckling, cold-formed sections, effective width design, enhanced corner strength, direct strength method, imperfections, anisotropy, lipped channels, intermediate stiffeners. Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Copyright Notice Department of Civil Engineering, Research Report R845 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections © 2005 Maura Lecce, Kim JR Rasmussen [email protected] [email protected] This publication may be redistributed freely in its entirety and in its original form without the consent of the copyright owner. Use of material contained in this publication in any other published works must be appropriately referenced, and, if necessary, permission sought from the author. Published by: Department of Civil Engineering The University of Sydney Sydney NSW 2006 AUSTRALIA April 2005 This report and other Research Reports published by The Department of Civil Engineering are available on the Internet: http://www.civil.usyd.edu.au Department of Civil Engineering Research Report No R845 2 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table of Contents Table of Contents ..................................................................................................................3 List of Tables .............................................................................................................................4 List of Figures ............................................................................................................................5 Notation......................................................................................................................................7 1 Introduction ......................................................................................................................9 2 Numerical Investigation ...................................................................................................9 2.1 Scope of Numerical Study.......................................................................................9 2.2 Model Calibration ...................................................................................................9 2.2.1 General...........................................................................................................9 2.2.2 Elastic Perfectly Plastic Material Model ..........................................................12 2.2.3 Nonlinear Plastic Material Model based on Flats Only....................................12 2.2.4 Nonlinear Plastic Material Model based on Flats Only with Initial Anisotropy 13 2.2.5 Nonlinear Plastic Material Model with Enhanced Corner Properties ..............15 2.2.6 Calibration Model and All Experimental Tests................................................15 2.3 Simple Lipped Channels vs. Lipped Channels with Intermediate Stiffeners........19 2.4 Modelling Parameters: Further Investigation........................................................21 2.4.1 Investigating Anisotropy ..................................................................................22 2.4.2 Investigating Imperfection Magnitude and Element Type ...............................24 2.5 Modelling Parameters: Further Investigation........................................................27 2.5.1 General..............................................................................................................27 2.5.2 Boundary Conditions and Initial Imperfections ...............................................27 2.5.3 Material Properties ...........................................................................................28 2.5.4 FE Test Results.................................................................................................29 2.6 Conclusions of Numerical Investigation ...............................................................33 3 Evaluation of Current Design Practices..........................................................................33 3.1 General and Scope.................................................................................................33 3.2 Effective Width Approach ....................................................................................34 3.3 Direct Strength Method.........................................................................................44 4 Design Recommendations ..............................................................................................49 4.1 Ultimate Limit States Design Criteria...................................................................49 4.2 EWA Recommendations .......................................................................................49 4.3 Recommended Direct Strength Design Curves.....................................................51 5 Conclusions ....................................................................................................................54 6 References ......................................................................................................................55 Appendix A..............................................................................................................................57 Appendix B ..............................................................................................................................82 Department of Civil Engineering Research Report No R845 3 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 List of Tables Table 2. 1. Summary of Model Calibration Results ................................................................18 Table 3. 1. Experimental Tests and EWA Predicted Strengths for Simple Lipped Channels 35 Table 3. 2. Summary of FE Test to EWA Predicted Strengths for Simple Lipped Channels .36 Table 3. 3. Experimental Tests and EWA Evaluation of Lipped Channels with Intermediate Stiffeners.........................................................................................................................38 Table 3. 4. Summary of FE test to EWA Predicted Strengths for Lipped Channels with Intermediate Stiffeners ...................................................................................................39 Table 3. 5 Summary of Test to Current Cold-Formed Carbon Steel DSM Predicted Strengths for Simple Lipped Channels ...........................................................................................47 Table 3. 6. Summary of Test to Current Cold-Formed Carbon Steel DSM Predicted Strengths for Lipped Channels With Intermediate Stiffeners.........................................................48 Table 4. 1. Proposed φ Factors for EWA AS/NZS 4673: Simple Lipped Channels ...............49 Table 4. 2. Proposed φ Factors for EWA EC3 Part 1-4/1-3: Simple Lipped Channels...........50 Table 4. 3. Proposed φ Factors for AS/NZS 4673 EWA: Lipped Channels with Intermediate Stiffeners.........................................................................................................................50 Table 4. 4. Proposed φ Factors for EWA EC3 Part 1-4/1-3: Lipped Channels with Intermediate Stiffeners ...................................................................................................50 Table 4. 5. Summary of Test to Proposed DSM Predicted Strengths......................................53 Table 4. 6. Proposed φ Factors for DSM of Stainless Steel Sections: Simple Lipped Channels ........................................................................................................................................53 Table 4. 7. Proposed φ Factors for DSM of Stainless Steel Sections: Lipped Channels with Intermediate Stiffeners ...................................................................................................54 Department of Civil Engineering Research Report No R845 4 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 List of Figures Figure 2. 1. Test Specimens 304D1a (left) and 304D1b (right) for Calibration Model ..........10 Figure 2. 2. Boundary Conditions for Model Calibration FE Analyses ..................................10 Figure 2. 3. Close-up Images of FE Mesh for Model Calibration Analyses from FEMGV 6.4 ........................................................................................................................................11 Figure 2. 4. Model Calibration Build-up (inward flange movement) (ABAQUS image at advanced stages of buckling)..........................................................................................11 Figure 2. 5. Model Calibration Build-up (outward flange movement) (ABAQUS image at advanced stages of buckling)..........................................................................................12 Figure 2. 6. NLP_ISO Mises Stress Distributions at Ultimate Load for Inward (two left) and Outward (two right) Flange Movement of a Simple Lipped Channel............................13 Figure 2. 7. Experimental and Calibration FE Load vs. End Shortening Curves for Simple Lipped Channels .............................................................................................................16 Figure 2. 8. Experimental and Calibration FE Load vs. End Shortening Curves for Lipped Channels with Intermediate Stiffeners ...........................................................................17 Figure 2. 9. von Mises Membrane Stresses for Simple lipped Channel (top row) and Lipped Channel with Intermediate Stiffeners (bottom row) at Maximum Load ........................19 Figure 2. 10. Progression of Stress Distributions for a Simple Lipped Channel .....................20 Figure 2. 11. Progression of Stress Distributions in a Lipped Channel with Intermediate Stiffeners.........................................................................................................................21 Figure 2. 12. Investigating Anisotropy b/t=54.........................................................................22 Figure 2. 13. Distribution of von Mises stresses for Isotropic (left) and 50% Anisotropy (right) Analyses. (post-buckling end deflection approximately 3mm)..........................23 Figure 2. 14. 50% Anisotropy with (left) and without (right) Orientation (last increment, post-buckling).................................................................................................................23 Figure 2. 15. Investigating Anisotropy b/t=106.......................................................................24 Figure 2. 16. Investigating Anisotropy b/t=26.5......................................................................24 Figure 2. 17. Effects of Imperfection Magnitude for 304D1...................................................25 Figure 2. 18. Study on Imperfection Values and S4R/S4 Elements .......................................26 Figure 2. 19. Boundary Conditions of FE Tests ......................................................................28 Figure 2. 20. FE and Experimental Results: 304 Simple Lipped Channels.............................29 Figure 2. 21. FE and Experimental Results: 430 Simple Lipped Channels.............................30 Figure 2. 22. FE and Experimental Results: 3Cr12 Simple Lipped Channels.........................30 Figure 2. 23. FE and Experimental Results: 304 Lipped Channels with Intermediate Stiffeners ........................................................................................................................................31 Figure 2. 24. FE Test and Experimental Results: 430 Lipped Channels with Intermediate Stiffeners.........................................................................................................................31 Figure 2. 25. FE and Experimental Results: 3Cr12 Lipped Channels with Intermediate Stiffeners.........................................................................................................................32 Figure 2. 26. Austenitic 304 and Ferritic 430 and 3Cr12 Test Results....................................33 Figure 3. 1. Aeff/Ag vs. λd for Alloy 304 (Aeff determined by AS/NZS 4673) ...........................40 Figure 3. 2. 304 Test to AS/NZS 4673 Predicted Strengths vs. Aeff/Ag....................................40 Figure 3. 3. 430/3Cr12 Test to 4673 Predicted Strengths vs. Aeff/Ag .......................................41 Figure 3. 4. 304 Test to EC3 Part 1-4/1-3 Predicted Strengths vs. Aeff/Ag ...............................41 Figure 3. 5. 430/3Cr12 Test to EC3 Part 1-4/1-3 Predicted Strengths vs. Aeff/Ag ....................42 Figure 3. 6. 304 Test to AS/NZS 4673 Predicted Strengths vs. Percent Corner Area.............42 Figure 3. 7. 430/3Cr12 Test to EWA AS/NZS 4673 Predicted Strengths vs. Percent Corner Area ................................................................................................................................43 Department of Civil Engineering Research Report No R845 5 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Figure 3. 8. 304 Test to EWA EC3 Part1-4/1-3 Predicted Strengths vs. Percent Corner Area ........................................................................................................................................43 Figure 3. 9. 430/3Cr12 Test to EC3 Part 1-4/1-3 Predicted Strengths vs. Percent Corner Area ........................................................................................................................................44 Figure 3. 10. 304 Test Data Compared with Current DSM Curves for Cold-Formed Carbon Steel ................................................................................................................................45 Figure 3. 11. 430 Test Data Compared with Current DSM Curves for Cold-Formed Carbon Steel ................................................................................................................................45 Figure 3. 12. 3Cr12 Test Data Compared with Current DSM Curves for Cold-Formed Carbon Steel ................................................................................................................................46 Figure 4. 1. Proposed DSM Distortional Buckling Design Curve for Cold-Formed Austenitic Stainless Steel Sections ..................................................................................................52 Figure 4. 2. Proposed DSM Distortional Buckling Design Curve for Cold-Formed Ferritic Stainless Steel Sections ..................................................................................................52 Department of Civil Engineering Research Report No R845 6 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Notation Ac Aeff Ag Bf Bl Bw COV D Eo Es Et Fm L Lcr LC LT Mm Pn Pu Pu,FE Pu,T Pu,sc Vm Vm b d di di,w e f fcr fn fy fy,c fy,f fu fu,f k kf m n r ri t β ε εe εtp ε0.01 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = corner area effective area (total effective area also represented by Ae,t) gross area overall flange width overall lip width overall web width coefficient of variation dead load initial elastic modulus secant modulus tangent modulus ratio of mean to nominal cross-sectional properties column length; live load critical distortional buckling half-wavelength longitudinal compression longitudinal tension ratio of mean to nominal material properties design strength distortional test ultimate load (also Pu,t) finite element distortional test ultimate load experimental distortional test ultimate load stub column ultimate load COV of F COV of M element width section depth depth of intermediate stiffener width of intermediate stiffener parameter used in the modified Ramberg-Osgood equation stress critical buckling stress design strength yield strength predicted corner yield strength specified yield strength of the flats (virgin material) ultimate strength specified ultimate capacity of the flats (virgin material) plate buckling coefficient plate buckling coefficient of the flange parameter used in modified Ramberg-Osgood equation Ramberg-Osgood parameter centerline radius inner corner radius thickness reliability index for ultimate limit states design criteria strain engineering strain true plastic strain strain, 0.01% Department of Civil Engineering Research Report No R845 7 April 2005 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections ε0.2 φ λ λd λl σ σe σt σu σy σ0.01 σ0.01,c σ0.01,f σ0.2 σ0.2,c σ0.2,f ω ωd ωl τ χd χd,f χd,w = = = = = = = = = = = = = = = = = = = = = = = April 2005 strain, 0.2% resistance factor buckling slenderness distortional buckling slenderness local buckling slenderness normal stress engineering stress true stress ultimate stress yield stress 0.01% proportionality stress 0.01% proportionality stress of corners (cold-worked) 0.01% proportionality stress of flat (virgin material) 0.2% proof stress 0.2% proof stress of corners (cold-worked) 0.2% proof stress of flat (virgin material) imperfection measured or recommended imperfection at the flange-lip junction measured or recommended imperfection at the centre of the web element shear stress distortional buckling reduction factor distortional buckling reduction factor for the flange distortional buckling reduction factor for the web Department of Civil Engineering Research Report No R845 8 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections 1 April 2005 Introduction The purpose of this report is to present the numerical investigation of cold-formed stainless steel sections, based on a recent experimental progamme on cold-formed simple lipped and lipped channels with intermediate stiffeners made from austenitic 304 and ferritic 430 and 3Cr12 alloys (Lecce and Rasmussen 2005). The experimental and finite element (FE) test data gathered were used to evaluate current design procedures available for stainless steel. However, since design codes usually evolve along with cold-formed carbon steel codes, these were examined also. Finally, design recommendations are made for the design of stainless steel sections failing in the distortional buckling mode. 2 Numerical Investigation 2.1 Scope of Numerical Study Numerical studies were carried out to increase the number of data points, or test points, from which to draw conclusions and recommendations regarding the distortional buckling behaviour of stainless steel channel sections. First, a model calibration study was conducted using the 19 experimental distortional buckling tests by considering the experimentally measured material and geometric properties. Further numerical studies with respect to anisotropy, imperfections and element type (S4R vs S4) were carried out to confirm that the calibration model is valid for a greater range of section geometries and material properties. Following this, a total of 270 simple lipped channels with a distortional buckling slenderness range of 0.47 ≤ λd ≤ 3.64 and 306 lipped channels with intermediate stiffeners with a distortional buckling slenderness range of 0.47 ≤ λd ≤ 3.27 were tested by finite element analyses. To study the effects of enhanced corner properties, typical brake-pressed r/t ratios of 1 and 2.5 were chosen. The FE package ABAQUS (2001), Version 6.4, was used for the numerical analyses and input files were created using the engineering software FEMGV6.4-02 (FEMSYS 2002). Specific modelling issues are described in the following subsections. 2.2 Model Calibration 2.2.1 General All data used to develop the calibration model are reported in Lecce and Rasmussen (2005). Fixed-end boundary conditions with a uniform displacement applied to one end was used in the model and represented the actual experimental conditions. To save computational time, symmetrical failure mode was assumed about the mid-web axis and only half of the crosssection was modelled. This assumption is valid because the experimental tests developed essentially symmetrical distortional buckling deflections as shown in Figure 2.1. The boundary conditions are shown in Figure 2.2 and are given with respect to the ABAQUS 1-23 axes which correspond to the x,y and z axes. Over 9000 elements, typically 5mm by 5mm square were used for the model calibration described here. Images of the mesh from different perspectives are provided in Figure 2.3. The FE models representing the other experimental tests are similar. Average measured geometric dimensions for test specimens 304D1a and Department of Civil Engineering Research Report No R845 9 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 304D1b were used in the model (Lecce and Rasmussen 2005). Two sets of analyses were carried out; one for a positive (+ve) imperfection value, which would trigger inward flange movement and another for a negative (-ve) imperfection value which would trigger outward flange movement (as experienced in the experimental test). In the following discussions these will be referred to as inward model and outward model. The imperfection amplitude, ±0.25mm, is equal to the average of the absolute imperfection values measured at mid-height of the flange-lip junction of all “304D” test specimens (304D1a, 304D1b, 304D2a and 304D2b), a method adopted by Hasham and Rasmussen (2002). (The imperfection sign convention used in Lecce and Rasmussen (2005) is opposite to that used in FE modelling). Figure 2. 1. Test Specimens 304D1a (left) and 304D1b (right) for Calibration Model Figure 2. 2. Boundary Conditions for Model Calibration FE Analyses Department of Civil Engineering Research Report No R845 10 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Figure 2. 3. Close-up Images of FE Mesh for Model Calibration Analyses from FEMGV 6.4 For each set of analyses the material model was constructed by considering nonlinear stress-strain hardening, initial anisotropy, and enhanced corner properties. The discussions in the following subsections make reference to Figures 2.4 and 2.5. 125 304D1 Test (Pu,FE/Pu,T) PP_(1.23) NLP_ISO_(1.00) NLP_ANISO=5%_(1.01) NLP_EC_ISO_(1.03) NLP_EC_ANISO=5%_(1.04) Load (kN) 100 75 50 25 Imperfection=+0.25mm (flanges move in) 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 End Shortening (mm) Figure 2. 4. Model Calibration Build-up (inward flange movement) (ABAQUS image at advanced stages of buckling) Department of Civil Engineering Research Report No R845 11 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 125 304D1 Test PP_(1.14) (Pu,FE/Pu,T) NLP_ISO_(0.94) NLP_ANISO=5%_(0.95) NLP_EC_ISO_(1.00) NLP_EC_ANISO=5%_(1.01) Load (kN) 100 75 50 25 Imperfection=-0.25mm (flanges move out) 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 End Shortening (mm) Figure 2. 5. Model Calibration Build-up (outward flange movement) (ABAQUS image at advanced stages of buckling) 2.2.2 Elastic Perfectly Plastic Material Model The first material model considered was an elastic perfectly-plastic material, labelled PP and the plastic yield stress was equal to the experimentally measured σ0.2 (242MPa) determined from the longitudinal compression coupons of the flats (virgin material). Unsurprisingly this simplistic material model offered a poor match to the experimental test, as shown in Figures 2.4 and 2.5. Studies in the past have also shown that an elastic perfectly-plastic analysis for stainless steel leads to erroneous results (Rasmussen et al. 2003). The ultimate FE load to ultimate experimental test load ratios, Pu,FE/Pu,T, (given in the legends of Figures 2.4 and 2.5) are 1.23 and 1.14 for inward and outward models, respectively. Evidently by simply changing the sign of the imperfection, different strengths can be obtained. In this example the ultimate FE load, Pu,FE, for the inward model is 7.4% greater than the outward model. Extensive studies (Silvestre and Camotim 2004) on this phenomenon for cold-formed carbon steel have shown that, for simple lipped channels the elastic post-buckling response leads to a greater ultimate load if the flanges move inwards and the same result is found here with the PP model. 2.2.3 Nonlinear Plastic Material Model based on Flats Only The next model included stainless steel material nonlinearity. The true stresses, σt, and true plastic strains, εtp, as required by ABAQUS, were derived from the longitudinal compression engineering stress-strain data of the 304 flat material using the following equations: σ t = σ e (1 + ε e ) ε tp = ln (1 + ε e ) − (1) σt (2) Eo where σe and εe are the engineering stresses and strains. For this model, only the “flat” properties were considered and applied to the entire cross-section. This nonlinear plastic (NLP) hardening model assumes an initially isotropic (ISO) yield surface described by the Department of Civil Engineering Research Report No R845 12 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 von Mises criterion and expands, or hardens, isotropically. The resulting load vs. end shortening NLP_ISO curves for inward and outward models correspond to Pu,FE/Pu,T ratios of 1.00 and 0.94 in Figures 2.4 and 2.5, respectively. Clearly the NLP_ISO model is a significant improvement from the previous PP model and the imperfection sign used in the model becomes less important in terms of ultimate load. Nevertheless, the shape of the loadend shortening curve is better described by the outward model. It is interesting to examine the von Mises stress distributions for the NLP_ISO model at ultimate load and these are shown in Figure 2.6 for inward and outward flange movement (the contours are scaled with respect to the ultimate load and deflections are amplified). Figure 2. 6. NLP_ISO Mises Stress Distributions at Ultimate Load for Inward (two left) and Outward (two right) Flange Movement of a Simple Lipped Channel At ultimate load, the section with outward flange movement has achieved greater deflections compared with the model with inward flange movement. As shown in the contours, both models show high stresses at the lip but the model with outward flange movement shows higher stresses at the flange-web corner and is likely a consequence of attaining greater deflections. Furthermore it is evident that the stresses in flange-lip region of the inward model is greater and consequently so is the ultimate load. 2.2.4 Nonlinear Plastic Material Model based on Flats Only with Initial Anisotropy Another material characteristic considered was the anisotropy. By using ABAQUS’ built-in modelling tools anisotropy was incorporated in the initial yield surface according to the Hill criteria described by: [ 2 f (σ ) = F (σ 22 + σ 33 ) 2 + G (σ 33 − σ 11 ) 2 + H (σ 11 − σ 22 ) 2 + 2 Lτ 23 + 2Mτ 132 + 2 Nτ 122 where F, G, H, L, M and N are given by: σ 02 ⎛⎜ 1 1 1 ⎞⎟ 1 ⎛⎜ 1 1 1 ⎞⎟ + − F= = + − 2 2 2 ⎜⎝ σ 02, 22 σ 02,33 σ 02,11 ⎟⎠ 2 ⎜⎝ R22 R33 R112 ⎟⎠ Department of Civil Engineering Research Report No R845 13 ] 1/ 2 (3) Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections G= σ 02 ⎛⎜ 1 1 1 + 2 − 2 2 2 ⎜⎝ σ 0,33 σ 0,11 σ 0, 22 F= σ 02 ⎛⎜ 1 1 1 ⎞ 1⎛ 1 1 1 ⎞ + 2 − 2 ⎟ = ⎜⎜ 2 + 2 − 2 ⎟⎟ 2 2 ⎜⎝ σ 0,11 σ 0, 22 σ 0,33 ⎟⎠ 2 ⎝ R11 R22 R33 ⎠ L= 3 ⎛⎜ τ 02 2 ⎜⎝ τ 02, 23 April 2005 ⎞ 1⎛ 1 1 1 ⎞ ⎟= ⎜ + 2 − 2 ⎟⎟ 2 ⎜ ⎟ 2 R ⎝ 33 R11 R22 ⎠ ⎠ ⎞ 3⎛ 1 ⎞ ⎟= ⎜ ⎟ ⎟ 2 ⎜ R2 ⎟ ⎝ 23 ⎠ ⎠ M= 3 ⎛⎜ τ 02 2 ⎜⎝ τ 02,13 ⎞ 3⎛ 1 ⎞ ⎟= ⎜ ⎟ ⎟ 2 ⎜ R2 ⎟ ⎝ 13 ⎠ ⎠ N= 3 ⎛⎜ τ 02 2 ⎜⎝ τ 02,12 ⎞ 3⎛ 1 ⎞ ⎟= ⎜ ⎟ ⎟ 2 ⎜ R2 ⎟ ⎝ 12 ⎠ ⎠ (4) where σ0 is the reference yield stress and τ0 is the reference shear yield stress, τ 0 = σ 0 3 . The yield criterion only has this form when the principal axes of anisotropy are the axes of reference. That is, for cold-rolled sheets, the principal axes lie in the direction of rolling, transversely in the plane of the sheet and normal to this plane (Hill 1950). The σ11 is the stress in the direction of rolling, σ22 is transverse to the direction of rolling and σ33 is normal (or through-thickness) anisotropy. By default ABAQUS assumes the direction of rolling is in the global x-1 axis and maintains this alignment unless the user defines otherwise. ABAQUS requires the user to define the following stress ratios to satisfy the Hill criteria: σ σ σ R11 = 11 = 1.00; R22 = 22 = 1.05; R33 = 33 = 1.00; σ0 σ0 σ0 R12 = τ τ τ 12 = 1.01; R13 = 13 = 1.00; R23 = 23 = 1.00 τ0 τ0 τ0 (5) For the example considered here, the reference stress of the 304 material, σ0 is equal to the σ0.2 value (242MPa) given by the longitudinal compression coupon tests of the flats. Since the test specimens were loaded in the longitudinal direction (with respect to rolling), the σ11 value is equal to σ0, giving R11 = 1.00. The σ22 value is equal to the transverse yield stress (254MPa) of the compression coupons and thus R22 = 1.05. The through thickness anisotropy was assumed to be unity (ie; σ33=σ11=σ0) which is reasonable for thin plates; thus R33 = 1.00. The reference shear yield stress, τ 0 = σ 0 3 and τ 12 = σ 12 3 where σ12 is the diagonal yield stress (244MPa) and thus R12 = 1.01. The ratios R13 = R23 = 1.00. These strength ratios are defined under the *PLASTIC card in the ABAQUS input file. The material model assumes that initial anisotropy remains constant and the plastic hardening, or expansion of the yield surface occurs isotropically. For a 3D model with multiple surfaces, it is important to define element orientation to ensure that the anisotropy is aligned correctly for every element and avoid erroneous results. In ABAQUS, this can be accomplished by using the *ORIENTATION card following the element definition. For the sections modelled in this study, it was important to map the local element longitudinal “11” direction axis to coincide with the global z-3-axis (direction of loading) and the transverse direction “22” normal to the “11” direction. (Failure to define the orientation can lead to significant errors, and this is demonstrated in a separate study presented in Section 2.4). Department of Civil Engineering 14 Research Report No R845 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 The results of the nonlinear plastic model with initial anisotropy, NLP_ANISO=5%, amounted to less than 1% difference in ultimate load compared to the initially isotropic model, NLP_ISO and the Pu,FE/Pu,T ratios are 1.01 and 0.95 in Figures 2.4 and 2.5, respectively. These results suggest that material anisotropy has little effect on the ultimate strength of the sections tested and may be ignored. However, to confirm that this is true also for sections of different material thicknesses and higher degrees of anisotropy further investigation was carried out and is described in Section 2.4. 2.2.5 Nonlinear Plastic Material Model with Enhanced Corner Properties The basic isotropic nonlinear plastic hardening model was modified to include the enhanced corner properties, which were applied strictly to the corner geometry of the section. The true stress and true plastic strain properties were derived from the corner coupon stress-strain data using Eqns. 1 and 2. The NLP_EC_ISO Pu,FE/Pu,T ratios are 1.03 and 1.00 for +ve imperfection and –ve imperfections, respectively (c.f. Pu,FE/Pu,T = 1.00, Pu,FE/Pu,T = 0.94 for NLP_ISO). Both sets of NLP_EC_ISO results show good agreement with the test result but the load versus end shortening behaviour is better described by the outward model which simulates the actual flange movement of the test. Overall, the sign of imperfection seems to be less important for the inelastic stainless steel material model compared to the elastic plastic material model. Finally initial anisotropy was included (NLP_EC_ANISO=5%) and again results show that the effect of anisotropy is negligible. 2.2.6 Calibration Model and All Experimental Tests The above discussion shows that material nonlinearity and enhanced corner strengths govern the ultimate section strength of a stainless steel section and initial anisotropy can be neglected. Thus the NLP_EC material model was used to evaluate all experimental tests. The imperfection sign does not have a great impact on the ultimate load but rather shows more influence in the post-ultimate range as seen in the experimental tests. Nevertheless, the imperfection sign used for the models simulated the actual flange movement observed during the tests. For sections which developed both inward and outward flange movement along the specimen length during the test, the imperfection sign assumed in the model was generally positive. The load vs. end shortening curves obtained from ABAQUS are shown along with the experimental plots in Figures 2.7 and 2.8 for simple lipped channels and channels with intermediate stiffeners, respectively. The ultimate loads are summarized in Table 2.1. Department of Civil Engineering Research Report No R845 15 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections 120 80 Load (kN) Load (kN) 100 60 304D2a (in) 40 304D2b (in) 20 FE_imp=+0.25mm (in) 0 0.5 1.0 1.5 End Shortening (mm) 50 45 40 35 30 25 20 15 10 5 0 2.0 430D2 (out) FE_imp=-0.10mm (out) 0.0 0.5 1.0 1.5 End Shortening (mm) 45 40 35 30 25 20 15 10 5 0 2.0 Load (kN) 430D1b (in/out) FE_imp=+0.10mm (in/out) 0.5 1.0 1.5 End Shortening (mm) 45 40 35 30 25 20 15 10 5 0 2.5 160 140 120 100 80 60 40 20 0 430D1a (in/out) 0.0 2.5 Load (kN) Load (kN) 0.0 April 2005 2.0 2.5 430D3a (in/out) 430D3b (in/out) FE_imp=+0.10mm (in/out) 0.0 1.0 2.0 End Shortening (mm) 3.0 3Cr12D2 (in/out) 3Cr12D1 (in/out) FE_imp=+0.36mm (in/out) 0.0 1.0 2.0 3.0 End Shortening (mm) 4.0 Figure 2. 7. Experimental and Calibration FE Load vs. End Shortening Curves for Simple Lipped Channels Department of Civil Engineering Research Report No R845 16 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections 160 140 120 100 80 60 40 20 0 70 60 40 304DS1a (out) 430DS1 (in/out) 30 304DS1b (in) FE_imp=+0.22mm (in) 20 FE_imp=-0.22mm (out) 10 FE_imp=-0.23mm (in/out) 0 1.0 2.0 3.0 4.0 End Shortening (mm) 5.0 6.0 0.0 70 70 60 60 50 50 40 2.0 3.0 End Shortening (mm) 40 430DS2 (in) 30 1.0 Load (kN) Load (kN) Load (kN) Load (kN) 50 0.0 4.0 5.0 430DS3 (out) 30 20 20 FE_imp=+0.23mm (in) 10 FE_imp=-0.23mm (out) 10 0 0 1.0 2.0 3.0 End Shortening (mm) 80 70 60 50 40 30 20 10 0 4.0 FE_imp=+0.23mm (in) 1.0 2.0 1.0 2.0 3.0 End Shortening (mm) 4.0 3.0 4.0 End Shortening (mm) 180 160 140 120 100 80 60 40 20 0 430DS4 (in) 0.0 0.0 Load (kN) 0.0 Load (kN) April 2005 5.0 6.0 3Cr12DS2 (in/out) 3Cr12DS1 (in/out) FE_imp=+0.16mm (in/out) 0.0 1.0 2.0 3.0 4.0 End Shortening (mm) 5.0 6.0 Figure 2. 8. Experimental and Calibration FE Load vs. End Shortening Curves for Lipped Channels with Intermediate Stiffeners Note that the 304DS1a and 304DS1b tests were the only set of experimental twin tests where one specimen exhibited inward flange movement and the other exhibited outward flange movement. The test and FE curves for these tests provide a clear example of the agreement that can be achieved if the correct flange movement is simulated (see Figure 2.8). From the plots in Figures 2.7 and 2.8 and Table 2.1, it is evident that very good agreement between the calibration model and experimental tests was achieved, with a mean Pu,FE/Pu,T ratio of 0.99 and a coefficient of variation (COV) of 0.0263. The same set of FE analyses were conducted using S4 elements but the differences in ultimate load were less than 0.5% (and at least double the computational time) thus confirming that S4R elements were adequate for the analyses of the experimental tests. Department of Civil Engineering Research Report No R845 17 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table 2. 1. Summary of Model Calibration Results ωda Specimen ID 304D1a 304D1b 304D2a 304D2b 430D1a 430D1b 430D2 430D3a 430D3b 3Cr12D1a 3Cr12D1b 304DS1a 304DS1b 430DS1 430DS2 430DS3 430DS4 3cr12DS1a 3cr12DS1b mm -0.25 +0.25 +0.10 -0.10 +0.10 +0.36 -0.22 +0.22 -0.23 +0.23 -0.23 +0.23 +0.16 +0.16 P u,T kN 102 101 104 104 39 39 45 40 39 138 139 132 134 60 62 64 72 163 161 P u,FE kN 101 103 40 43 38 140 138 133 58 60 64 69 160 mean stdv COV a P u,FE /P u,T 0.99 1.00 0.99 0.99 1.02 1.02 0.96 0.94 0.96 1.02 1.01 1.04 0.99 0.96 0.97 1.00 0.96 0.98 0.99 0.99 0.026 0.0263 imperfection amplification applied to the critical distortional buckling mode. Negative sign means outward flange movement (opposite sign to experimental data) Department of Civil Engineering Research Report No R845 18 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 2.3 Simple Lipped Channels vs. Lipped Channels with Intermediate Stiffeners By FE modelling, it is easy to plot the stress contours and visualize the development of stresses and deflections of simple lipped channels compared with those of lipped channels with intermediate stiffeners. To examine this, two sections are considered: the 304D1a/b simple lipped channel modelled in Section 2.2 with overall dimensions of Bw = 106mm, Bf = 90mm, Bl = 12.8mm, (λd = 0.96) and the 304DS1a/b section with similar overall dimensions of Bw = 122mm, Bf = 90.6mm, Bl = 12.8mm (λd = 0.85). The section length (800mm) and fixed-end conditions are identical for the two sections. For demonstration purposes, the material model does not include enhanced corner properties. The von Mises membrane stress distribution, at ultimate load, is depicted in Figure 2.9 for sections with inward flange movement. Figure 2. 9. von Mises Membrane Stresses for Simple lipped Channel (top row) and Lipped Channel with Intermediate Stiffeners (bottom row) at Maximum Load From these different views, one can see that the highest membrane stresses are developed around the flange/lip area for both section types and that intermediate stiffener provides an obstruction to the spread of stress to the flange-web corner. Figures 2.10 and 2.11 show the evolution of the mid-surface stresses for the two different cross-section types through seven images which correspond to the points in the accompanied load vs. end shortening graph. The contours are scaled with respect to the stress state of the last increment considered. Department of Civil Engineering 19 Research Report No R845 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 120 Load (kN) 100 80 60 40 20 0 0.0 1.0 2.0 3.0 End Shortening (mm) Figure 2. 10. Progression of Stress Distributions for a Simple Lipped Channel Department of Civil Engineering Research Report No R845 20 4.0 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 140 Load (kN) 120 100 80 60 40 20 0 0.0 1.0 2.0 3.0 End Shortening (mm) Figure 2. 11. Progression of Stress Distributions in a Lipped Channel with Intermediate Stiffeners The first four images show the progression of stresses leading up to the ultimate load (fifth image) and the last two show the post-peak stress development. By comparing Figures 2.10 and 2.11, it is clear that the simple lipped channel develops a higher concentration of stresses at the flange-web corner whereas the stresses in the channel with intermediate stiffeners involve a much larger area. This suggests that the latter is much more effective at distributing the load and therefore more of the cross-section reaches higher loads. This agrees with experimental results where channels with intermediate stiffeners exhibited greater material nonlinearity at ultimate load. Overall, the section corners, including intermediate stiffeners, are responsible to carry higher loads and for this reason it becomes important to consider the enhanced corner properties in the evaluation of the section strength. 2.4 Modelling Parameters: Further Investigation The calibration model developed in Section 2.2 provided excellent agreement experimental tests and cover a distortional buckling slenderness range of 0.76 ≤ λd ≤ 1.10. This section will confirm that the FE model also works for a greater range of sections by investigating further the effects of anisotropy, imperfection value and element type (S4R vs S4). Department of Civil Engineering Research Report No R845 21 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 2.4.1 Investigating Anisotropy From the calibration model, it was evident that material anisotropy had little influence on the ultimate strength. However, the actual measured anisotropy was relatively low (R22=1.05) and the question remains whether a higher degree of anisotropy would also have negligible influence. Three sections with thicknesses 1.96mm, 1mm and 4mm were considered with overall geometric properties of experimental test 304D1a/b. The corresponding b/t ratios are 54, 106 and 26.5. The imperfection value remained constant (-0.25mm) and the thicknesses were varied [t=1.96mm, (b/t=54); t=1mm, (b/t=106); t=4mm, (b/t=26.5)]. For each section, two anisotropy values were checked; the measured experimental anisotropy of 5% and an exaggerated anisotropy of 50%. The load versus end shortening curve for b/t=54 is given in Figure 2.12. Evidently, there is negligible difference between the isotropic (ISO) curve and the 5% anisotropy curve (ANISO=5%) with a marginal difference in ultimate load of approximately 1%. If the material anisotropy is exaggerated to 50% (ANISO=50%), the maximum increase in ultimate load is less than approximately 4%. Figure 2.13 displays the von Mises stresses at the midsurface of the shell elements for an isotropic model (left) and a model with 50% anisotropy (right). The comparison is made in the post-ultimate range where the axial compression is approximately 3mm and the load has dropped to approximately 65% of the ultimate. The contour plots show, as expected, that the transverse stresses developed are greater in the anisotropic model. For the same b/t ratio, material orientation was omitted from the analysis [see cyan curve for ANISO=50% (No orient.), Figure 2.12] resulting in a significantly different behaviour with an ultimate load 17% greater than the correctly oriented model. The von Mises stress distributions in the post-ultimate state for the models ANISO=50% and ANISO=50% (No orient.) is given in Figure 2.14 and shows the significantly different stress distributions. This example is given to demonstrate the importance of correct element orientation when anisotropy is applied. 120 Load (kN) 100 80 60 ISO_t=1.96mm ANISO=5%_t=1.96mm 40 ANISO=50%_t=1.96mm 20 ANISO=50% (No orient.)_t=1.96mm 0 0.0 1.0 2.0 3.0 4.0 End Shortening (mm) Figure 2. 12. Investigating Anisotropy b/t=54 Department of Civil Engineering Research Report No R845 22 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Figure 2. 13. Distribution of von Mises stresses for Isotropic (left) and 50% Anisotropy (right) Analyses. (post-buckling end deflection approximately 3mm) Figure 2. 14. 50% Anisotropy with (left) and without (right) Orientation (last increment, post-buckling) Figures 2.15 and 2.16 show the results for b/t=106 and b/t=26.5, respectively. The exaggerated anisotropy generally has the effect of improving material ductility with little strength benefits. Department of Civil Engineering Research Report No R845 23 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 35 Load (kN) 30 25 20 15 ISO_t=1mm 10 ANISO=5%_t=1mm ANISO=50%_t=1mm 5 0 0.0 1.0 2.0 3.0 4.0 End Shortening (mm) Figure 2. 15. Investigating Anisotropy b/t=106 300 Load (kN) 250 200 150 ISO_t=4mm 100 ANISO=5%_t=4mm 50 ANISO=50%_t=4mm 0 0.0 2.0 4.0 6.0 8.0 End Shortening (mm) Figure 2. 16. Investigating Anisotropy b/t=26.5 Overall, from a practical design-engineering viewpoint, the simple isotropic hardening plasticity model suffices for statically loaded stainless steel members. However, anisotropy is affected by material deformation and cold working and more accurate material modelling may become important for members under cyclic loading. This was shown by Olsson (1998) and Gozzi (2004) who developed a material model to account for, among other phenomenological behaviour, the effects of stainless steel material anisotropy and its evolution under repeated loading. 2.4.2 Investigating Imperfection Magnitude and Element Type Another modelling issue to consider in greater detail is the imperfection magnitude used. For the model calibration described in Section 2.2 (section 304D1a/b), the magnitude of the imperfection (-0.25mm) was equal to the average of the absolute measured imperfection values at the flange-lip junction located at mid-height. However, to investigate the sensitivity to imperfections two other magnitudes were considered including the average of the absolute maximum measured imperfections at the flange-lip junction (-0.32mm) and a calculated Department of Civil Engineering Research Report No R845 24 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 imperfection value according to the adopted Walker (1975) equation given by ωd = 0.3t(σ0.2/σcr)0.5, where σcr is the critical elastic distortional buckling stress obtained from the elastic buckling analysis (σ0.2 = 242MPa, σcr = 263MPa, t = 1.96mm; ωd = -0.56mm). Figure 2.17 shows the load vs. end shortening results of test specimen 304D1 (used in the model calibration of Section 2.2) and the FE analyses. Evidently, even if the imperfection value is doubled, the difference in ultimate load is marginal. It should be noted here that the distortional buckling slenderness for this fixed ended model is λd = (σ0.2/σcr)0.5 = 0.96. 120 Load (kN) 100 80 304D1 60 NLP_EC_imp=-0.25mm (average at mid-length) NLP_EC_imp=-0.32mm (max average) NLP_EC_imp=-0.56mm (walker equation) 40 20 0 0.0 1.0 2.0 3.0 4.0 End Shortening (mm) Figure 2. 17. Effects of Imperfection Magnitude for 304D1 Of the three imperfection values considered, only the Walker imperfection was calculated from the material and distortional buckling properties which makes the Walker equation particularly useful when experimentally measured imperfections are unavailable. Other methods to estimate initial geometric imperfections have been suggested by Schafer and Pekoz (1998). In their work, two types of imperfections are defined; Type 1: ωl for local buckling of the web, and Type 2: ωd for distortional buckling of the flange-lip and are both directly proportional to the section thickness. In the suggested probabilistic method, ωl = 0.14t and ωl = 0.66t (ωd = 0.64t and ωd = 1.55t ) respectively correspond to 25% and 75% probability that the imperfections will be less than these maximums and will be referred to as Schafer_25% and Schafer_75%. Type 1 imperfection magnitudes were comparable with the experimentally measured imperfections of the flange-lip corners and thus only ω = 0.14t (Schafer_25%) and ω = 0.66t (Schafer 75%) were considered. According to these equations, the imperfections are independent of the section slenderness and increase for increasing section thickness. Therefore, a stockier section, which is conceivably less susceptible to develop larger initial imperfections, is penalized. This is unlike the Walker equation where the imperfection amplitude is proportional to the square root of the distortional buckling slenderness value so that, keeping all other dimensions the same the imperfections decrease for increasing section thickness. Three pin-ended sections with λl = 3.122 (local buckling critical), λd = 1.203 and λd = 0.637 (distortional buckling critical) were modelled. Both S4R and S4 elements were considered and the results are presented in Figure 2.18. Department of Civil Engineering Research Report No R845 25 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 7 λ l =3.122 λ d =2.240 6 t=0.5mm Load (kN) 5 4 3 S4R_Walker_imp=0.44mm S4R_Schafer_25%_imp=0.07mm S4R_Schafer_75%_imp=0.33mm S4_Walker_imp=0.44mm S4_Schafer_25%_imp=0.07mm S4_Schafer_75%_imp=0.33mm 2 1 0 0 2 4 6 End Shortening (mm) 8 60 λ l =1.028 λ d =1.203 Load (kN) 50 t=1.5mm 40 30 S4R_Walker_imp=0.52mm S4R_Schafer_25%_imp=0.21mm S4R_Schafer_75%_imp=0.99mm S4_Walker_imp=0.52mm S4_Schafer_25%_imp=0.21mm S4_Schafer_75%_imp=0.99mm 20 10 0 0 2 4 6 End Shortening (mm) 8 10 250 λ l =NA λ d =0.637 Load (kN) 200 t=4.0mm 150 S4R_Walker_imp=0.76mm S4R_Schafer_25%_imp=0.56mm S4R_Schafer_75%_imp=2.64mm S4_Walker_imp=0.76mm S4_Schafer_25%_imp=0.56mm S4_Schafer_75%_imp=2.64mm 100 50 0 0 2 4 6 8 10 End Shortening (mm) 12 14 Figure 2. 18. Study on Imperfection Values and S4R/S4 Elements The Walker and Schafer_25% imperfections produced similar results for all sections whereas the Schafer_75% became significantly conservative for the stockier section (see plot where λd = 0.637). The Walker equation is suitable for all sections and conveniently takes into account the section slenderness and material strength without being overly conservative. Department of Civil Engineering Research Report No R845 26 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Finally, the results show that there is no significant advantage to using the S4 elements rather than the S4R. 2.5 Modelling Parameters: Further Investigation 2.5.1 General The sections tested by FE analyses were proportioned to fail by distortional buckling and the geometries generally fell within the limitations outlined by the cold-formed carbon steel code NAS Appendix 1 (2004). The distortional buckling slenderness values ranged from 0.47 ≤ λd ≤ 3.64 for simple lipped channels and 0.47 ≤ λd ≤ 3.27 for lipped channels with intermediate stiffeners. Section thickness ranged from 1mm to 8mm and r/t ratios of 1 and 2.5 were considered. The corner area to gross area, Ac /Ag ranged from 1.57% to 47%. Section geometry and material properties are given in Appendix A. 2.5.2 Boundary Conditions and Initial Imperfections ThinWall (Papangelis and Hancock 1995) finite strip elastic buckling analyses, which assumes pinned ends, were conducted for each section to determine the critical elastic buckling stress and buckling half-wavelength. This information was used to initially construct an ABAQUS model consisting of a column seven half-wavelengths long with fixedend boundary conditions and intermediate pins at each half-wavelength at the flange-web corners. The boundary conditions prevented overall buckling, whilst allowing distortional buckling to develop. The critical distortional failure occurred at the middle of the fourth halfwavelength (half the total column length) essentially under pin-ended conditions and this was confirmed by the excellent agreement found with the critical buckling stress obtained by ABAQUS with that determined by ThinWall. To save computational time, distortional buckling symmetry was assumed for all tests and this allowed one quarter (one half of the total length and one half of the cross-section) of the model to be analysed with the appropriate boundary conditions. Figure 2.19 shows an image of a channel with intermediate stiffeners created in FEMGV6.4-02. As shown in the image, three and a half critical distortional buckling lengths are modeled and at the fixed end, rotations about all axes are set to zero and only displacements in the 3-axis (z-axis) direction are allowed. At every distortional buckling critical length, pins are placed at the web-flange corner and displacements in the 2-axis are set to zero. At the half-length edge, symmetry is used and the boundary conditions include zero displacement in the 3-axis direction, and zero rotation about the 1-axis and 2-axis. The number of elements used varied for each test from approximately 3000 to over 20,000 elements, with a coarser mesh at the fixed end and a finer mesh at the half-length end where critical distortional buckling failure occurs. Department of Civil Engineering Research Report No R845 27 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Figure 2. 19. Boundary Conditions of FE Tests Initial imperfections were included in the nonlinear post-buckling Static Riks analysis as an amplification of the critical elastic distortional buckling mode. The imperfection amplitude, ωd, was based on the Walker equation (1975) where ωd = 0.3t(fy/fcr)0.5, and fcr is the critical elastic distortional buckling stress obtained from the FE elastic buckling analyses. 2.5.3 Material Properties The material properties are based on the longitudinal compression properties for the 304, 430 and 3Cr12 material specified in the AS/NZS 4673 (2001). Enhanced corner properties were calculated for r/t ratios of 1 and 2.5, where r is the centreline corner radius and t is the section thickness, and are based on the AS/NZS 4673 (2001) model for predicting corner strength. The design corner yield strength to design flat yield strength fy,c/fy,f for the 304 material was 2.34 and 1.85 for r/t=1.0 and r/t=2.5, respectively whereas the fy,c/fy,f ratios for the 430 and 3Cr12 material was approximately 1.77 (r/t=1.0) and 1.56 (r/t=2.5). The full-range stressstrain curve proposed by Rasmussen (2003) was used to construct stress-strain data needed for the material modelling according to the following equations: n ⎧ ⎛ f ⎞ f ⎪ for f ≤ f y + 0.002⎜ ⎟ ⎜ fy ⎟ ⎪⎪ E 0 ⎝ ⎠ ε =⎨ m ⎪ f − fy ⎛ f − fy ⎞ ⎟ + ε 0.2 for + εu ⎜ ⎪ ⎜ fu − f y ⎟ ⎪⎩ E 0.2 ⎝ ⎠ fy fu = 0.2 − 185e 1 − 0.0375(n − 5) E 0.2 = (6c) fy (6d) fu Department of Civil Engineering Research Report No R845 f > fy (6b) E0 1 + 0.002n / e m = 1 + 3 .5 (6a) 28 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections e= April 2005 fy (6e) E0 True stress and true plastic strains were then calculated using Eqns 1 and 2. Three sets of FE analyses were carried out for each alloy; the first set used material properties of the flats only for the entire cross-section and the second and third sets used enhanced material properties of the corners according to a ratio of r/t=1.0 and r/t=2.5, applied to the corners only. 2.5.4 FE Test Results All FE test results are presented in Appendix A. The FE data points have been plotted in Figures 2.20 to 2.25 in terms of fu/fy versus λd, where fu is the ultimate average stress obtained by FE or experimental tests, fy is the specified minimum yield strength of the flat (or virgin) material and λd is the distortional buckling slenderness given by λd = (fy/fcr)0.5. The FE results are labeled “flats”, “r/t=1”and “r/t=2.5” representing the material properties used in the model and “Test” represents the experimental test results. The experimental test sections, which had an r/t ratio of approximately 2.5 are in good agreement with the FE “r/t=2.5” test results for all alloys. By comparing the FE results for alloy 304 with those for alloys 430 and 3Cr12, it is evident that the enhanced corner properties have the greatest impact on 304 stainless steel sections and this is unsurprising since the corner strength enhancement was greater for this alloy. (The corner to flat yield strength ratio for the 304 stainless steel was 2.34 and 1.85 for r/t=1.0 and r/t=2.5, respectively, whereas the ratios were approximately 1.77 and 1.56 for r/t=1.0 and r/t=2.5 of the ferritic stainless steel). For simple lipped channels, notable strength improvements (up to 12% for alloy 304 and 6% for alloys 430 and 3Cr12) exist for fairly stocky sections (λd <1) with a corner area of at least 10% whereas sections beyond λd >1 exhibit little to no strength improvements. (See also Tables A.13-A.15 in Appendix A). 1.40 304 Test 1.20 304 Flats 304 r/t=1 1.00 304 r/t=2.5 fu/f y 0.80 0.60 0.40 0.20 0.00 0.00 0.50 1.00 1.50 λd 2.00 2.50 3.00 3.50 Figure 2. 20. FE and Experimental Results: 304 Simple Lipped Channels Department of Civil Engineering Research Report No R845 29 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 1.40 430 Test 1.20 430 Flats 430 r/t=1 1.00 430 r/t=2.5 fu/f y 0.80 0.60 0.40 0.20 0.00 0.00 0.50 1.00 1.50 λd 2.00 2.50 3.00 3.50 Figure 2. 21. FE and Experimental Results: 430 Simple Lipped Channels 1.40 3Cr12 Test 1.20 3Cr12 Flats 3Cr12 r/t=1 1.00 3Cr12 r/t=2.5 fu/f y 0.80 0.60 0.40 0.20 0.00 0.00 0.50 1.00 1.50 λd 2.00 2.50 3.00 3.50 Figure 2. 22. FE and Experimental Results: 3Cr12 Simple Lipped Channels Department of Civil Engineering Research Report No R845 30 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 1.40 304 Test 1.20 304 Flats 304 r/t=1 1.00 304 r/t=2.5 fu/f y 0.80 0.60 0.40 0.20 0.00 0.00 0.50 1.00 1.50 λd 2.00 2.50 3.00 3.50 Figure 2. 23. FE and Experimental Results: 304 Lipped Channels with Intermediate Stiffeners 1.40 430 Test 1.20 430 Flats 430 r/t=1 1.00 430 r/t=2.5 fu/f y 0.80 0.60 0.40 0.20 0.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 λd Figure 2. 24. FE Test and Experimental Results: 430 Lipped Channels with Intermediate Stiffeners Department of Civil Engineering Research Report No R845 31 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 1.40 3Cr12 Test 1.20 3Cr12 Flats 3Cr12 r/t=1 1.00 3Cr12 r/t=2.5 fu/f y 0.80 0.60 0.40 0.20 0.00 0.00 0.50 1.00 1.50 λd 2.00 2.50 3.00 3.50 Figure 2. 25. FE and Experimental Results: 3Cr12 Lipped Channels with Intermediate Stiffeners Furthermore, the enhanced corner properties have a greater influence on channels with intermediate stiffeners and the maximum strength enhancement is 25% for the austenitic alloy with r/t=2.5 and approximately 16% for the ferritic alloys. Again, the effect of enhanced corner properties is prevalent for stockier sections with a significant corner area. (See also Tables A.28-A.30 in Appendix A). It should be noted that the data points which have reached capacities beyond the yield strength, i.e., fu/fy > 1.00, have been plotted but have been ignored in the development of direct strength design equations. All results have been superimposed on one plot shown in Figure 2.26. From this plot one can see that the austenitic 304 band of results are generally lower than the ferritic 430 and 3Cr12 results apart from those sections which have developed greater strengths due to enhanced corner properties (approximately λd <1). This can be explained by the fact that austenitic stainless steels have a lower proportionality yield strength and experiences significant loss of stiffness compared to the ferritic stainless steels. The higher strengths in the stocky slenderness range of the austenitic stainless steels can be attributed to a higher hardening modulus at large strain values compared with the ferritic stainless steels. The ferritic 430 and 3Cr12 can be grouped together as their material properties are similar. Department of Civil Engineering Research Report No R845 32 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 1.40 Austenitic 304 1.20 Ferritic 430 and 3Cr12 1.00 fu/fy 0.80 0.60 0.40 0.20 0.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 λd Figure 2. 26. Austenitic 304 and Ferritic 430 and 3Cr12 Test Results 2.6 Conclusions of Numerical Investigation Several conclusions can be made from the numerical investigations including the following: - Stainless steel material nonlinearity must be accounted for, - Numerical analyses should be based on the compressive material properties for the longitudinal direction, - Anisotropy can be ignored for statically loaded members, - Distortional buckling flange movement, instigated by the imperfection sign, may be ignored as it does not have significant consequences for the ultimate load, - Section corners and intermediate stiffeners carry significant loads and the accuracy of a model can be improved by including the enhanced corner properties, - Enhanced corner properties can cause strength increases of approximately 5% or greater for sections with approximately λd <1.0 and with at least 10% corner area and is more significant for austenitic stainless steels. - A significant amount of data has been gathered in this numerical study and forms the basis of design code evaluation and the development of recommendations. 3 Evaluation of Current Design Practices 3.1 General and Scope Current cold-formed stainless steel design codes for distortional buckling, including the Australian/New Zealand Standard AS/NZS 4673 (2001), the North American ASCE (2002), and the Eurocode 3 prEN Part 1-4 (2004) in conjunction with prEN Part 1-3 (2004) (henceforth referred to as EC3 Part 1-4/1-3) have been uncritically based on cold-formed carbon steel codes and ignore stainless steel material characteristics. It has been unclear Department of Civil Engineering Research Report No R845 33 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 whether current design guidelines for distortional buckling are unconservative or overly conservative. The experimental and finite element data presented in Section 2.5 were used to evaluate the effective width approach (EWA) of the current cold-formed stainless steel codes. However, because cold-formed stainless steel codes usually evolve along with those for coldformed carbon steel, the EWA and Direct Strength Method (DSM) approaches available in the AS/NZS 4600 (1996), NAS (2001) and NAS Appendix 1 (2004) were also considered. 3.2 Effective Width Approach EWA for Simple Lipped Channels Distortional buckling is treated in the AN/NZS 4673 (2001), ASCE (2002) and the EC3 Part 1-4/1-3 (2004) under the “elements section” of the codes and the design strength is calculated according to the EWA. The section capacity is based on local plate instability with allowance for post-buckling strength development. In the Australian and North American design standards, a flange is partially stiffened if Is/Ia < 1.0 where Is is the moment of inertia of the lip and Ia is the adequate moment of inertia required for the flange element to behave as an adequately stiffened element. The lip effective width, treated as an outstand compression element is reduced according to the ratio Is/Ia, and the flange element plate buckling coefficient, kf ≤ 4, used to find the flange effective width, takes into account the distortional buckling. The AS/NZS 4673 (2001) and ASCE (2002) design rules for distortional buckling are identical and for simple lipped channels are essentially the same as those provided in the cold-formed carbon steel codes AS/NZS 4600 (1996) and the NAS (2001). The EC3 Part 1-4 (2004) for stainless steel distortional buckling refers to the procedures outlined in the cold-formed carbon steel code, EC3 Part 1-3 (2004), but prescribes more conservative plate buckling strength curves to take into account stainless steel nonlinearity (see Appendix B). Aside from this, the design procedures followed are in accordance with EC3 Part 1-3 (2004). The EC3 Part 1-4/1-3 approach to distortional buckling differs from that found in the Australian/New Zealand and North American codes in that rather than using an Is/Ia reduction factors and a reduced flange plate buckling coefficient, a distortional buckling slenderness reduction factor, χd is used to reduce the area of the edge stiffener (edge stiffener includes the effective lip and one half of the effective flange elements which have been already reduced for local buckling). The critical buckling stress of the edge stiffener, which is required for the calculation of the χd factor, can be found a) by equations based on the theory of an elastic foundation (Timoshenko and Gere 1961) and is given by fcr=2(KEIs)0.5/As where K is the spring stiffness of the edge stiffener and Is and As are geometric properties of the stiffener, or b) from a rational elastic buckling analysis, such as that provided by ThinWall or ABAQUS. Both methods of determining fcr are considered and the former will be referred to as the Traditional method and the latter will be referred to as the Alternative method. The value of χd is optionally refined iteratively (provided that χd < 1) and is done here only for the EC3 Traditional method. From a design perspective, the EC3 Alternative method is easier to use, particularly when the section geometry becomes complicated. The design procedures for simple lipped channels are outlined in Appendix B and gives reference to the appropriate code clauses. The section effective areas and predicted loads for all tests are also provided in Appendix B (detailed material and geometric properties are listed in Appendix A). The results of the EWA for Australian/New Zealand, North American and European codes for the 304, 430 and 3Cr12 alloys are summarized in Tables 3.1 and 3.2 for experimental and FE tests, respectively. The mean test to predicted load ratios, Pu,t/Pn, standard deviations (stdv) and coefficient of variations (cov) are shown for each set of results. Two different predicted design strengths have been calculated; the first Department of Civil Engineering Research Report No R845 34 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 set of predicted strengths ignores enhanced corner properties (EC Prop.) and is based on the total effective area times the yield strength of the flats (Pn=fy,f Ae,t) and fall under the heading “Without EC Prop.”. The second set of predicted design strengths includes enhanced corner properties and is based on the total effective area of the flats times the yield strength of the flats plus the effective area of the corners times the yield strength of the corners (Pn=fy,f Ae,f + fy,c Ae,c) and the results fall under the heading “With EC Prop.”. It should be clarified that the codes considered do not permit the use of enhanced corner strengths unless a section is fully effective and is not subject to heat treatment and thus the predicted capacities excluding enhanced corner properties are apt. However, sections that do actually benefit from enhanced corner properties (ie experimental and FE r/t=1 and FE r/t=2.5) may partially offset the detrimental effects of material nonlinearity, making the design strength predictions seem reasonable. If enhanced corner properties are considered, then the assessment is directed at determining if the carbon-steel based codes are valid and safe enough to account for stainless steel material nonlinearity. Table 3. 1. Experimental Tests and EWA Predicted Strengths for Simple Lipped Channels AS/NZS 4673 (2001), ASCE (2002), (AS/NZS 4600 (1996) NAS (2001)) Without EC Prop. P u,t Pn Test ID 304D1a 304D1b 304D2a 304D2b kN 102 101 104 104 430D1a 430D1b 430D2 430D3a 430D3b 39 39 45 40 39 kN 101 101 101 101 mean stdv cov 39 39 41 38 38 mean stdv cov 138 138 mean stdv cov 3Cr12D1a 138 3Cr12D1b 139 With EC Prop. EC3 Part 1-4/1-3 (2004) Traditional Method Without EC Prop. With EC Prop. P u,t /P n P n P u,t /P n P n P u,t /P n P n P u,t /P n 1.01 1.00 1.03 1.03 1.02 0.014 0.014 1.00 0.99 1.10 1.04 1.01 1.03 0.044 0.042 1.00 1.01 1.00 0.005 0.004 kN 121 120 121 121 42 43 45 42 42 155 155 0.84 0.84 0.86 0.86 0.85 0.012 0.014 0.91 0.90 1.00 0.94 0.92 0.93 0.041 0.044 0.89 0.90 0.89 0.004 0.005 kN 86 86 86 86 32 32 34 32 32 115 115 1.19 1.18 1.21 1.21 1.20 0.018 0.015 1.20 1.22 1.33 1.24 1.21 1.24 0.051 0.041 1.20 1.21 1.21 0.006 0.005 kN 100 100 100 100 35 35 37 35 35 127 127 1.02 1.01 1.04 1.04 1.03 0.015 0.015 1.11 1.12 1.22 1.14 1.11 1.14 0.047 0.041 1.09 1.10 1.09 0.006 0.005 EC3 Part 1-4/1-3 (2004) Alternative Method Without EC Prop. With EC Prop. Pn P u,t /P n P n P u,t /P n kN 95 95 96 96 kN 112 112 114 114 34 34 35 34 37 123 123 1.08 1.07 1.09 1.09 1.08 0.008 0.008 1.15 1.14 1.28 1.16 1.05 1.16 0.083 0.071 1.12 1.13 1.13 0.006 0.005 37 37 38 37 40 137 137 0.91 0.90 0.92 0.91 0.91 0.007 0.008 1.04 1.04 1.17 1.06 0.96 1.06 0.075 0.071 1.00 1.01 1.01 0.005 0.005 Referring to the experimental results and predicted design strengths in Table 3.1 it can be seen that for all alloys all codes are conservative as long as enhanced corner properties are ignored. In fact, the EC3 Part 1-4/1-3 (2004) Traditional method is overly conservative. The discrepancy between the mean Pu,t/Pn EC3 Traditional and Alternative strength predictions lies in the model to determine the critical elastic buckling stress. In the Traditional method, the critical buckling stress does not account for the fixed-end conditions whereas the critical buckling stress used in the Alternative method is obtained from the ABAQUS elastic buckling analyses of the fixed-ended experimental test models. As explained in Lecce and Rasmussen Department of Civil Engineering Research Report No R845 35 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 (2005) fixed-ends have the effect of increasing the critical distortional buckling strength compared to a pin-ended section. Therefore, the distortional buckling slenderness is greater for the Traditional method evaluation leading to a greater reduction for distortional buckling. If enhanced corner properties are included in the strength prediction, then all codes become unconservative except for the EC3 Part 1-4/Part 1-3 (2004) Traditional method. Considering the FE results shown in Table 3.2 the codes are noticeably less conservative or unconservative compared with the experimental results shown in Table 3.1, whether enhanced corner properties are ignored in the design strength predictions or not. The inconsistency between experimental and FE Pu,t/Pn results are due to the differences in end conditions of the experimental and FE tests. Furthermore, the FE tests cover a much larger range of cross-sections resulting in a greater spread of data. Table 3. 2. Summary of FE Test to EWA Predicted Strengths for Simple Lipped Channels AS/NZS 4673 (2001), ASCE (2002), (AS/NZS 4600 (1996) NAS (2001)) Without EC With EC Prop. Prop. Alloy/FE Test statistical Series variables mean 304/"flats" stdv COV mean 304/"r/t=1" stdv COV mean 304/"r/t=2.5" stdv COV mean 430/"flats" stdv COV mean 430/"r/t=1" stdv COV mean 430/"r/t=2.5" stdv COV mean 3Cr12/"flats" stdv COV mean 3Cr12/"r/t=1" stdv COV mean 3Cr12/"r/t=2.5" stdv COV EC3 Part 1-4/1-3 (2004) Traditional Method EC3 Part 1-4/1-3 (2004) Alternative Method Without EC Prop. With EC Prop. Without EC Prop. With EC Prop. P u,t /P n P u,t /P n P u,t /P n P u,t /P n P u,t /P n P u,t /P n 0.84 0.069 0.082 0.86 0.085 0.099 0.88 0.102 0.117 0.89 0.048 0.054 0.90 0.054 0.060 0.90 0.071 0.080 0.90 0.047 0.053 0.91 0.054 0.059 0.91 0.057 0.062 0.84 0.069 0.082 0.80 0.068 0.085 0.78 0.072 0.093 0.89 0.048 0.054 0.86 0.048 0.056 0.83 0.057 0.070 0.90 0.047 0.053 0.87 0.047 0.054 0.84 0.043 0.051 0.94 0.038 0.041 0.97 0.045 0.047 0.99 0.046 0.046 1.02 0.061 0.060 1.04 0.057 0.055 1.05 0.059 0.056 1.00 0.047 0.047 1.01 0.048 0.047 1.06 0.049 0.046 0.94 0.038 0.041 0.91 0.037 0.040 0.91 0.032 0.035 1.02 0.061 0.060 1.00 0.059 0.059 0.99 0.060 0.061 1.00 0.047 0.047 0.98 0.047 0.048 0.99 0.054 0.055 0.96 0.054 0.057 0.98 0.053 0.054 0.99 0.055 0.055 1.05 0.093 0.089 1.06 0.094 0.089 1.07 0.089 0.084 1.03 0.068 0.066 1.04 0.062 0.060 1.07 0.082 0.077 0.96 0.054 0.057 0.92 0.051 0.056 0.90 0.052 0.058 1.05 0.093 0.089 1.03 0.089 0.087 1.00 0.091 0.092 1.03 0.068 0.066 1.00 0.064 0.064 1.00 0.086 0.087 Looking at the results for the FE 304 study in Table 3.2, it is clear that all codes fail to adequately predict the section capacity. As long as enhanced corner properties are ignored, the Pu,t/Pn ratio marginally improves for r/t=1.0 and even more so for r/t=2.5 when compared to the Pu,t/Pn of the flats. As seen in Section 2, the sections tested which actually benefit from the enhanced corner properties are relatively few and therefore the Pu,t/Pn ratios improve only marginally. Department of Civil Engineering Research Report No R845 36 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 For the ferritic 430 and 3Cr12 alloys, the North American and Australian codes overestimate the section capacities even if enhanced corner properties are ignored and result in mean Pu,t/Pn ratios less than 1.00. The EC3 Part 1-4/1-3 (2004) methods work reasonably well for the ferritic stainless steels and becomes increasingly conservative for r/t=1.0 and r/t=2.5. For example, the mean Pu,t/Pn ratios for the 430 alloy, listed in Table 3.2 under the EC3 Alternative method, are 1.05, 1.06 and 1.07 for the flats, r/t=1 and r/t=2.5 test sets, respectively, provided enhanced corner properties are ignored. Nevertheless, the mean test to predicted strengths are marginally larger than unity and to satisfy limit states design criteria, a more conservative resistance factor than currently specified would be required. EWA for Lipped Channels with Intermediate Stiffeners The AS/NZS 4673 (2001) and ASCE (2002) EWA for lipped channels with intermediate stiffeners are identical and are similar to the AS/NZS 4600 (1996) and NAS (2001). For these codes, the intermediate stiffener of a partially stiffened flange element (where kf < 4) is completely ignored and the flange element is designed as a simple edge-stiffened element. The justification for ignoring the intermediate stiffener in cases where kf < 4 was given by research which suggested that the distortional buckling stress is altered by less than ±10% for sections with flanges that have both intermediate and edge stiffeners compared to those with just edge stiffeners (NAS Commentary 2002). For cases where kf = 4 the NAS (2001) allows the designer to take advantage of the added strength given by the intermediate stiffener. In this case, the effective width for local sub-element buckling and distortional buckling of the intermediate stiffener are evaluated and the governing buckling mode (local or distortional) is used to determine the element strength. The treatment of this case differs from the procedures outlined in the AS/NZS 4673 (2001) where if the intermediate stiffener satisfies the minimum moment of inertia, an equivalent flange thickness is found and an effective width is determined by plate local buckling rules. Only a few cross-sections fell into the case where kf = 4. Example calculations for all cases are provided in Appendix B for the codes considered. Only the Alternative method of the EC3 Part 1-4/1-3 (2004) was considered for the evaluation of the lipped channels with web intermediate stiffeners. The procedures are similar to those used for the simple lipped channel except that the web elements are also reduced for distortional buckling of the web intermediate stiffener. Two distortional buckling factors are calculated, χd,f and χd,w. The flange critical buckling stress is determined from finite element analyses of the section (as was done for the simple lipped channels). The critical distortional buckling stress of the web intermediate stiffener, however, is based on a model of the web element itself with pinned ends and the reduction χd,w applies only to the web intermediate stiffener plus adjacent effective sub element widths. This procedure completely ignores the instability of the flange-lip portion and its influence on the stability of the web element. The results of the code evaluations are provided in Tables 3.3 and 3.4 for experimental and FE tests. The EWA AS/NZS 4673 (2001) and NAS (2001) results are identical for the test specimens and seem reasonably conservative as long as enhanced corner properties are ignored. When the experimental results presented in Table 3.3 are compared with those in Table 3.1 for simple lipped channels these codes seem more conservative for channels with intermediate stiffeners. However, the experimental sections in Table 3.3 have approximately twice the corner area and are stockier compared with simple lipped channels, contributing to larger Pu,t/Pn ratios. Conversely, the EC3 Part 1-4/1-3 evaluation shows that the guidelines are unconservative and suggests that the models used to evaluate the effective widths are inadequate. Department of Civil Engineering Research Report No R845 37 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table 3. 3. Experimental Tests and EWA Evaluation of Lipped Channels with Intermediate Stiffeners AS/NZS 4673 (2001), ASCE (2002), (AS/NZS 4600 (1996)) Without EC Prop. P u,t Pn kN 119 120 mean stdv cov 430DS1 60 51 430DS2 62 52 430DS3 64 57 430DS4 72 57 mean stdv cov 3Cr12DS1a 163 152 3Cr12DS1b 161 152 mean stdv cov Test ID 304DS1a 304DS2b kN 132 134 With EC Prop. P u,t /P n P n kN 142 142 P u,t /P n NAS (2001) Without EC Prop. With EC Prop. EC Part 1-4/1-3 (2004) Alternative Method Without EC Prop. With EC Prop. P n P u,t /P n P n P u,t /P n Pn P u,t /P n P n P u,t /P n kN 119 120 kN 143 144 kN 180 181 1.11 0.93 1.11 1.12 0.94 1.12 1.11 0.94 1.11 0.0098 0.0083 0.0098 0.0088 0.0089 0.0088 1.17 57 1.05 51 1.17 1.20 58 1.07 52 1.20 1.12 63 1.01 57 1.12 1.27 62 1.15 57 1.27 1.19 1.07 1.19 0.0623 0.0570 0.0623 0.0525 0.0532 0.0525 1.07 171 0.95 152 1.07 1.06 171 0.94 152 1.06 1.07 0.95 1.07 0.0099 0.0085 0.0099 0.0093 0.0090 0.0093 kN 142 142 0.93 0.94 0.94 0.0083 0.0089 57 1.05 58 1.07 63 1.01 62 1.15 1.07 0.0570 0.0532 171 0.95 171 0.94 0.95 0.0085 0.0090 65 67 68 72 174 175 0.92 0.73 0.93 0.74 0.93 0.74 0.0089 0.0069 0.0096 0.0093 0.92 73 0.81 0.92 76 0.81 0.93 77 0.82 1.00 81 0.88 0.94 0.83 0.0378 0.0340 0.0401 0.0408 0.93 205 0.80 0.92 205 0.79 0.93 0.79 0.0097 0.0081 0.0104 0.0102 When the FE test results are considered (see Table 3.4) it is clear that all codes are more unsafe than those provided for the simple lipped channels and the necessity of capturing the stainless steel material behaviour becomes even more apparent. The AS/NZS 4673 (2001) and NAS (2001) provide essentially the same results and overall both are comparable to the results given by the EC3 Part 1-4/1-3 (2004). The spread in data is also significantly larger for channels with intermediate stiffeners. For example, the AS/NZS 4367 (2001) evaluation of the 304/”flats” results have a mean Pu,t/Pn=0.84 and COV=0.082 for simple lipped channels and Pu,t/Pn=0.78 and COV=0.143 for channels with intermediate stiffeners. Department of Civil Engineering Research Report No R845 38 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table 3. 4. Summary of FE test to EWA Predicted Strengths for Lipped Channels with Intermediate Stiffeners AS/NZS 4673 (2001), ASCE (2002),(AS/NZS 4600 (1996)) Without EC With EC Prop. Prop. Alloy/FE Test statistical Series variables mean 304/"flats" stdv COV mean 304/"r/t=1" stdv COV mean 304/"r/t=2.5" stdv COV mean 430/"flats" stdv COV mean 430/"r/t=1" stdv COV mean 430/"r/t=2.5" stdv COV mean 3Cr12/"flats" stdv COV mean 3Cr12/"r/t=1" stdv COV mean 3Cr12/"r/t=2.5" stdv COV NAS (2001) Without EC With EC Prop. Prop. EC3 Part 1-4/1-3 (2004) Alternative Method Without EC Prop. With EC Prop. P u,t /P n P u,t /P n P u,t /P n P u,t /P n P u,t /P n P u,t /P n 0.78 0.112 0.143 0.83 0.154 0.185 0.85 0.169 0.199 0.85 0.066 0.077 0.88 0.087 0.099 0.87 0.113 0.129 0.85 0.078 0.092 0.88 0.097 0.111 0.88 0.111 0.126 0.78 0.112 0.143 0.77 0.111 0.144 0.75 0.100 0.133 0.85 0.066 0.077 0.84 0.070 0.083 0.81 0.078 0.096 0.85 0.078 0.092 0.84 0.079 0.094 0.82 0.076 0.093 0.78 0.110 0.142 0.83 0.153 0.184 0.84 0.169 0.201 0.85 0.068 0.080 0.87 0.089 0.101 0.87 0.114 0.131 0.85 0.077 0.091 0.88 0.097 0.111 0.88 0.121 0.137 0.78 0.110 0.142 0.77 0.110 0.143 0.75 0.101 0.135 0.85 0.068 0.080 0.84 0.071 0.085 0.80 0.079 0.098 0.85 0.077 0.091 0.84 0.078 0.093 0.82 0.088 0.108 0.78 0.083 0.107 0.83 0.126 0.152 0.86 0.150 0.175 0.84 0.056 0.067 0.86 0.072 0.084 0.89 0.084 0.095 0.84 0.060 0.071 0.88 0.075 0.086 0.90 0.093 0.103 0.78 0.083 0.107 0.75 0.073 0.098 0.73 0.079 0.108 0.84 0.056 0.067 0.81 0.054 0.067 0.80 0.053 0.067 0.84 0.060 0.071 0.82 0.055 0.067 0.81 0.060 0.074 For alloy 304, the effective area (as determined by the AS/NZS 4673 (2001)) to gross area ratio, Aeff/Ag, has been plotted against the distortional buckling slenderness, λd in Figure 3.1 (note “IS”=intermediate stiffener). The data points representing the simple lipped channels generally lie below those for channels with intermediate stiffeners demonstrating that, for the same distortional buckling slenderness channels with intermediate stiffeners are more efficient and, for the same distortional buckling slenderness, the calculated Aeff/Ag is greater than that for a simple lipped channel. However, because channels with intermediate stiffeners are more efficient sections, and as demonstrated in Section 2, are better at distributing the load compared to a simple lipped channel, they are also more susceptible to the detrimental effects of nonlinear material behaviour. (Lecce and Rasmussen (2005) showed that, at mean ultimate stress, the loss of material stiffness was greater for lipped channels with intermediate stiffeners compared to simple lipped channels). Bearing in mind that the EWA methods used to evaluate the design strengths do not account for stainless steel material nonlinearity, this can help explain why the actual strength to EWA predicted strength ratios (Pu,t/Pu) for channels with intermediate stiffeners are distinctly lower than those for simple lipped channels (compare Tables 3.2 and 3.4). The data points that fall outside the band of results are channels with intermediate stiffeners for which kf = 4 and the flange intermediate stiffeners were not ignored in the effective width calculations. Department of Civil Engineering Research Report No R845 39 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 1 0.9 0.8 0.7 Aeff /Ag 0.6 304 Test 304 r/t=1 304 Flats 304 r/t=2.5 304 Test_IS 304 Flats_IS 304 r/t=1_IS 304 r/t=2.5_IS 0.5 0.4 0.3 0.2 0.1 0 0 0.5 1 1.5 2 2.5 3 3.5 λd Figure 3. 1. Aeff/Ag vs. λd for Alloy 304 (Aeff determined by AS/NZS 4673) The test to predicted load ratios are plotted against the effective to gross area ratio in Figures 3.2-3.5 for the AS/NZS 4673 (2001) and EC3 Part 1-4/1-3 (2004) Alternative method evaluations. (Note the predicted design strengths do not incorporate enhanced corner properties but rather assumes a uniform material model). These graphs reveal that the codes may be adequate as long as the section is nearly fully effective and/or the section develops increased distortional buckling stress due to the influence of fixed-ends (see the experimental test points). Interestingly, the trend for the AS/NZS 4673 evaluation shown in Figures 3.2 and 3.3 is that for Aeff/Ag < 1, Pu,t/Pn increases as Aeff/Ag increases whereas Pu,t/Pn decreases as Aeff/Ag increases for the EC3 Part1-4/1-3 evaluation (Figures 3.4 and 3.5). Therefore, if Aeff/Ag is considered as an indication of section slenderness, the AS/NZS 4673 seems to work better for more stockier sections whereas the EC3 Part1-4/1-3 works better for more slender sections. In all cases if the distortional buckling slenderness is actually increased by fixed end conditions, as seen with experimental tests, the Pu,t/Pn ratio is generally greater than unity. Furthermore, in Figures 3.2-3.5, at Aeff/Ag =1.0, Pu,t/Pn can be greater than 1.0. That is, the ultimate load is greater than the squash load given by Agfy because of the influence of enhanced corner properties and because the stress exceeds the proof stress in stocky sections. 1.40 1.20 Pu,t /Pn 1.00 304 Test 304 r/t=1 304 Flats 304 r/t=2.5 304 Test_IS 304 Flats_IS 304 r/t=1_IS 304 r/t=2.5_IS 0.80 0.60 0.40 0.20 0.00 0 0.2 0.4 0.6 0.8 1 A eff /A g Figure 3. 2. 304 Test to AS/NZS 4673 Predicted Strengths vs. Aeff/Ag Department of Civil Engineering Research Report No R845 40 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 1.40 1.20 Pu,t /Pn 1.00 0.80 430/3Cr12_Test 430/3Cr12_Flats 430/3Cr12_r/t=1 430/3Cr12_r/t=2.5 430/3Cr12_Test_IS 430/3Cr12_Flats_IS 430/3Cr12_r/t=1_IS 430/3Cr12_r/t=2.5_IS 0.60 0.40 0.20 0.00 0 0.2 0.4 0.6 0.8 1 A eff /A g (%) Figure 3. 3. 430/3Cr12 Test to 4673 Predicted Strengths vs. Aeff/Ag 1.40 1.20 Pu,t /Pn 1.00 304 Test 304 r/t=1 304 Flats 304 r/t=2.5 304 Test_IS 304 Flats_IS 304 r/t=1_IS 304 r/t=2.5_IS 0.80 0.60 0.40 0.20 0.00 0 0.2 0.4 0.6 0.8 1 A eff /A g Figure 3. 4. 304 Test to EC3 Part 1-4/1-3 Predicted Strengths vs. Aeff/Ag Department of Civil Engineering Research Report No R845 41 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 1.40 1.20 Pu,t /Pn 1.00 0.80 0.60 430/3Cr12_Test 430/3Cr12_Flats 430/3Cr12_r/t=1 430/3Cr12_r/t=2.5 430/3Cr12_Test_IS 430/3Cr12_Flats_IS 430/3Cr12_r/t=1_IS 430/3Cr12_r/t=2.5_IS 0.40 0.20 0.00 0 0.2 0.4 0.6 0.8 1 A eff /A g (%) Figure 3. 5. 430/3Cr12 Test to EC3 Part 1-4/1-3 Predicted Strengths vs. Aeff/Ag If the Pu,t/Pn ratios are plotted against the percent Ac/Ag, as shown in Figures 3.6-3.9, one can see that unless Ac/Ag ≥ 40%, the codes can be unsafe. 1.40 1.20 Pu,t /Pn 1.00 304 Test 304 r/t=1 304 Flats 304 r/t=2.5 304 Test_IS 304 Flats_IS 304 r/t=1_IS 304 r/t=2.5_IS 0.80 0.60 0.40 0.20 0.00 0 10 20 30 40 50 A c /A g (%) Figure 3. 6. 304 Test to AS/NZS 4673 Predicted Strengths vs. Percent Corner Area Department of Civil Engineering Research Report No R845 42 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 1.40 1.20 Pu,t /Pn 1.00 0.80 430/3Cr12_r/t=2.5 430/3Cr12_Test_IS 430/3Cr12_Flats_IS 430/3Cr12_r/t=1_IS 430/3Cr12_r/t=2.5_IS 0.60 0.40 0.20 0.00 0 10 20 30 40 50 A c /A g (%) Figure 3. 7. 430/3Cr12 Test to EWA AS/NZS 4673 Predicted Strengths vs. Percent Corner Area 1.40 1.20 Pu,t /Pn 1.00 304 Test 304 Flats 304 r/t=1 304 r/t=2.5 304 Test_IS 304 Flats_IS 304 r/t=1_IS 304 r/t=2.5_IS 0.80 0.60 0.40 0.20 0.00 0 10 20 30 40 50 A c /A g (%) Figure 3. 8. 304 Test to EWA EC3 Part1-4/1-3 Predicted Strengths vs. Percent Corner Area Department of Civil Engineering Research Report No R845 43 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 1.40 1.20 Pu,t /Pn 1.00 430/3Cr12_Test 430/3Cr12_Flats 430/3Cr12_r/t=1 430/3Cr12_r/t=2.5 430/3Cr12_Test_IS 430/3Cr12_Flats_IS 430/3Cr12_r/t=1_IS 430/3Cr12_r/t=2.5_IS 0.80 0.60 0.40 0.20 0.00 0 10 20 30 40 50 A c /A g (%) Figure 3. 9. 430/3Cr12 Test to EC3 Part 1-4/1-3 Predicted Strengths vs. Percent Corner Area 3.3 Direct Strength Method Cold-formed carbon steel codes which currently include the DSM guidelines are the AS/NZS 4600 (1996) and the NAS Appendix 1 (2004) and the design curves are provided below; AS/NZS 4600 (1996); fn λ2 = 1− d fy 4 for λ d < 1.414 fn 2 = 0.055(λ d − 3.6) + 0.237 fy (7a) for 1.414 ≤ λ d ≤ 3.605 (7b) NAS Appendix 1 (2004); fn =1 fy for λ d ≤ 0.561 fn 1 0.25 = 1.2 − 2.4 f y λd λd for λ d > 0.561 (8a) (8b) and λd = fy f cr (9) In the above equations, fn is the design strength so that the capacity of the section is calculated as fnAg, fy is the specified yield strength (of the flats), fcr is the critical elastic distortional buckling stress and λd is the distortional buckling slenderness. The curves above, and the familiar Winter curve for plate buckling, have been plotted with the experimental and FE test results in Figures 3.10, 3.11 and 3.12 for alloys 304, 430 and 3Cr12 respectively. A summary of the statistical mean test to predicted strengths are given in Tables 3.5 and 3.6 for simple lipped channels and channels with intermediate stiffeners. Data points where fu/fy > 1.0 have been ignored in the statistical evaluations. The plots and tables show that the DSM curves available in the cold-formed carbon steel codes are unconservative for the Department of Civil Engineering 44 Research Report No R845 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 austenitic alloy. At first glance the AS/NZS 4600 (1996) seems reasonable for the ferritic alloys but it actually fails to provide a safe envelope for sections with approximately 0.8 < λd < 1.2 (see Figures 3.11 and 3.12) which is conceivably the common slenderness range for most practical sections. The NAS Appendix 1 (2004) is generally less conservative or unconservative for ferritic alloys. Unlike the EWA where the actual to design strength ratio for channels with intermediate stiffeners were generally lower than that for simple lipped channels (see Section 3.2), the DSM evaluation leads to a comparable mean fu/fn for the simple lipped channels and lipped channels with intermediate stiffeners, showing that one curve will suffice for the two types of cross-sections considered. A new set of design curves is required for cold-formed stainless steel sections and this is developed in Section 4. 1.40 304 Test 1.20 304 Flats fn/fy, fu/fy 1.00 304 r/t=1 304 r/t=2.5 0.80 304 Test_IS 304 Flats_IS 0.60 304 r/t=1_IS 0.40 304 r/t=2.5_IS 0.20 AS 4600 DSM Winter NAS DSM 0.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 λd Figure 3. 10. 304 Test Data Compared with Current DSM Curves for Cold-Formed Carbon Steel 1.40 1.20 430 Test 430 Flats 430 r/t=1 430 Test_IS 430 Flats_IS 430 r/t=1_IS 430 r/t=2.5_IS Winter AS 4600 DSM NAS DSM fn/fy, fu/fy 1.00 0.80 0.60 0.40 0.20 0.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 λd Figure 3. 11. 430 Test Data Compared with Current DSM Curves for Cold-Formed Carbon Steel Department of Civil Engineering Research Report No R845 45 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 1.40 1.20 3Cr12 Test 3Cr12 Flats 3Cr12 r/t=1 3Cr12 r/t=2.5 3Cr12 Test_IS 3Cr12 Flats_IS 3Cr12 r/t=1_IS 3Cr12 r/t=2.5_IS Winter AS 4600 DSM NAS DSM fn/fy, fu/fy 1.00 0.80 0.60 0.40 0.20 0.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 λd Figure 3. 12. 3Cr12 Test Data Compared with Current DSM Curves for Cold-Formed Carbon Steel Department of Civil Engineering Research Report No R845 46 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table 3. 5 Summary of Test to Current Cold-Formed Carbon Steel DSM Predicted Strengths for Simple Lipped Channels Alloy/Test Series 304 Experimental 304/"flats" 304/"r/t=1" 304/"r/t=2.5" 430 Experimental 430/"flats" 430/"r/t=1" 430/"r/t=2.5" 3Cr12 Experimental 3Cr12/"flats" 3Cr12/"r/t=1" 3Cr12/"r/t=2.5" Department of Civil Engineering Research Report No R845 AS/NZS 4600 (1996) NAS Appendix 1 (2004) f u /f n f u /f n 0.97 0.0046 0.005 0.95 0.0710 0.075 0.97 0.0758 0.078 0.98 0.0783 0.080 1.02 0.0469 0.046 1.03 0.0861 0.083 1.05 0.0880 0.084 1.05 0.0886 0.084 1.00 0.0051 0.005 1.03 0.0858 0.083 1.05 0.0861 0.082 1.06 0.0857 0.081 0.96 0.0040 0.004 0.92 0.0649 0.070 0.94 0.0693 0.074 0.96 0.0717 0.075 1.03 0.0460 0.045 1.02 0.0944 0.093 1.03 0.0951 0.092 1.04 0.0937 0.090 1.00 0.0051 0.005 1.01 0.0894 0.089 1.02 0.0885 0.087 1.04 0.0878 0.085 statistical variables mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV 47 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table 3. 6. Summary of Test to Current Cold-Formed Carbon Steel DSM Predicted Strengths for Lipped Channels With Intermediate Stiffeners AS/NZS 4600 (1996) NAS Appendix 1 (2004) f u /f n f u /f n 1.06 0.0113 0.011 0.92 0.0989 0.107 0.95 0.0982 0.103 0.98 0.1003 0.102 1.08 0.0245 0.023 1.04 0.0902 0.087 1.06 0.0908 0.085 1.09 0.0926 0.085 1.08 0.0095 0.009 1.03 0.0919 0.089 1.06 0.0956 0.091 1.08 0.0944 0.088 1.03 0.0109 0.011 0.89 0.0771 0.086 0.93 0.0792 0.086 0.95 0.0798 0.084 1.06 0.0241 0.023 1.00 0.0853 0.085 1.03 0.0823 0.080 1.05 0.0821 0.078 1.07 0.0094 0.009 0.99 0.0840 0.085 1.02 0.0850 0.083 1.05 0.0822 0.079 statistical Alloy/Test Series variables mean 304 Experimental stdv COV mean 304/"flats" stdv COV mean 304/"r/t=1" stdv COV mean 304/"r/t=2.5" stdv COV mean 430 Experimental stdv COV mean 430/"flats" stdv COV mean 430/"r/t=1" stdv COV mean 430/"r/t=2.5" stdv COV mean 3Cr12 Experimental stdv COV mean 3Cr12/"flats" stdv COV mean 3Cr12/"r/t=1" stdv COV mean 3Cr12/"r/t=2.5" stdv COV Department of Civil Engineering Research Report No R845 48 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections 4 April 2005 Design Recommendations 4.1 Ultimate Limit States Design Criteria The following design recommendations have been calibrated to the ultimate limit states design criteria outlined in the ASCE (2002) code for cold-formed stainless steel. Statistical data including the mean test to predicted strength ratios and coefficient of variations were used in the first order second moment (FOSM) reliability analysis. A dead, D, and live, L, load combination was considered where D/L=1/5. The derivation of resistance factors uses the statistical mean and COV values for material and cross-section properties set out in the current standards for cold-formed stainless steel and are in line with those used for cold-formed carbon steel (ASCE 2002, AS/NZS 4673 2001, AS/NZS 4600 1996, NAS 2001) including Fm=1.00 (ratio of mean to nominal cross-sectional property), VF=0.05 (COV of F), and Mm=1.10 (ratio of the mean to the nominal material property) VM=0.10 (COV of M). (The subscript “m” represents the mean value). These statistical data are based on extensive investigations by Lin et al. (1992);(1988). Resistance factors have been determined for a target reliability index of β=3.0 and β=2.5. (The ASCE (2002) specification for cold-formed stainless steel sets β=3.0 which is higher than that set in cold-formed carbon steel codes where β=2.5). 4.2 EWA Recommendations From the design evaluations, it is clear that, apart from the EC3 Part1-4/1-3 for simple lipped channels, the EWA provided in North American, Australian and European codes are inadequate for stainless steel sections and require modification to provide safe designs. Van den Berg (2000) is credited for proposing the use of a plasticity reduction factor to modify the material model (Es/E0 or Et/E0, where appropriate) used in the effective width design equations to account for stainless steel nonlinearity but this leads to iterative calculations and may not be suitable for design engineers. As an immediate solution the recommended strength resistance factor (φ) can be lowered to meet limit states design criteria. A summary of the statistical mean and coefficient of variation (COV) of the test to predicted ratios, Pu/Pn, are provided in Tables 4.1 and 4.2 for simple lipped channels and Tables 4.3 and 4.4 for lipped channels with intermediate stiffeners. (Note the subscript “t” has been dropped). These values are listed for “all tests” (all experimental and FE analyses) and for the “flats” only. The latter reflects the case where enhanced corner properties cannot be used in design (e.g., welded or annealed sections). Table 4. 1. Proposed φ Factors for EWA AS/NZS 4673: Simple Lipped Channels P u /P n statistics β =2.5 β =3 data mean included 304 all 0.86 304 flats 0.84 430 all 0.90 430 flats 0.89 3Cr12 all 0.91 3Cr12 flats 0.90 alloy Department of Civil Engineering Research Report No R845 49 COV φ φ 0.105 0.082 0.072 0.054 0.059 0.053 0.72 0.72 0.77 0.77 0.79 0.78 0.63 0.63 0.68 0.69 0.70 0.69 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table 4. 2. Proposed φ Factors for EWA EC3 Part 1-4/1-3: Simple Lipped Channels P u /P n statistics β =2.5 β =3 data mean included 304 all 0.98 304 flats 0.96 430 all 1.07 430 flats 1.05 3Cr12 all 1.05 3Cr12 flats 1.03 alloy COV φ φ 0.060 0.057 0.087 0.089 0.070 0.066 0.85 0.83 0.91 0.89 0.90 0.89 0.75 0.74 0.80 0.78 0.80 0.79 Table 4. 3. Proposed φ Factors for AS/NZS 4673 EWA: Lipped Channels with Intermediate Stiffeners P u /P n statistics β =2.5 β =3 alloy 304 304 430 430 3Cr12 3Cr12 data included all flats all flats all flats mean COV φ φ 0.83 0.78 0.88 0.85 0.87 0.85 0.184 0.143 0.123 0.077 0.114 0.092 0.63 0.62 0.72 0.73 0.72 0.72 0.54 0.54 0.63 0.64 0.63 0.63 Table 4. 4. Proposed φ Factors for EWA EC3 Part 1-4/1-3: Lipped Channels with Intermediate Stiffeners P u /P n statistics β =2.5 β =3 alloy 304 304 430 430 3Cr12 3Cr12 data included all flats all flats all flats mean COV φ φ 0.82 0.78 0.86 0.84 0.87 0.84 0.152 0.107 0.086 0.067 0.090 0.071 0.65 0.65 0.73 0.72 0.74 0.72 0.56 0.57 0.65 0.64 0.65 0.64 Clearly, the foregoing tables show that a lower φ factor is needed for austenitic 304 material compared to that required by the ferritic 430 and 3Cr12 alloys. Furthermore, to avoid over conservatism the φ factor would also depend on the cross-section type. For example, if a target reliability index of β = 2.5 for is considered for the EWA of the AS/NZS 4673 (2001) then the recommended φ factor for the 430/3Cr12 ferritic alloys is 0.8 for simple lipped channels and 0.7 for channels with intermediate stiffeners. Department of Civil Engineering Research Report No R845 50 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 4.3 Recommended Direct Strength Design Curves From the experimental and FE studies it is clear that design recommendations can be developed for two groups – one for austenitic stainless steels and the other for ferritic stainless steels. The austenitic group requires a more conservative, or lower design curve, compared to the ferritic group. The following design curves are based on all experimental and FE results for distortional bucking of simple lipped channels and channels with intermediate stiffeners. For Austenitic Stainless Steels: fn =1 fy for λd ≤ 0.533 f n 0.80 0.15 = − f y λd 1.1 λd 2.2 for (9a) λd > 0.533 (9b) For Ferritic Stainless Steels and 3Cr12: fn =1 fy for λd ≤ 0.533 f n 0.90 0.20 = − f y λd 1.1 λd 2.2 for (10a) λd > 0.533 (10b) and, λd = fy (11) f cr In the above equations, fn is the design strength, fy is the specified yield strength (of the flats), fcr is the critical elastic distortional buckling stress and λd is the distortional buckling slenderness. The two sets of equations are valid for the same range of λd and differ only with the respect to the constants in the numerators of the equations. The proposed design curves have been plotted in Figures 4.1 and 4.2 for the austenitic 304 and ferritic 430/3Cr12 alloys, respectively. A summary of the statistical mean, standard deviation and coefficient of variation of the test to predicted strengths are given in Table 4.5. Department of Civil Engineering Research Report No R845 51 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 1.40 304 Test 304 Flats 1.20 304 r/t=1 304 r/t=2.5 1.00 fn/fy, fu/fy 304 Test_IS 304 Flats_IS 0.80 304 r/t=1_IS 304 r/t=2.5_IS 0.60 Proposed Design Curve 0.40 λ d =0.533 0.20 0.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 λd Figure 4. 1. Proposed DSM Distortional Buckling Design Curve for Cold-Formed Austenitic Stainless Steel Sections 1.40 430/3Cr12 Test 430/3Cr12 Flats 1.20 430/3Cr12 r/t=1 430/3Cr12 r/t=2.5 fn/fy, fu/fy 1.00 430/3Cr12 Test_IS 430/3Cr12 Flats_IS 0.80 430/3Cr12 r/t=1_IS 430/3Cr12 r/t=2.5_IS 0.60 Proposed Design Curve 0.40 λ d =0.533 0.20 0.00 0.00 0.50 1.00 1.50 λd 2.00 2.50 3.00 3.50 Figure 4. 2. Proposed DSM Distortional Buckling Design Curve for Cold-Formed Ferritic Stainless Steel Sections Department of Civil Engineering Research Report No R845 52 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table 4. 5. Summary of Test to Proposed DSM Predicted Strengths Proposed Design Curves Simple Lipped Lipped Channels With Channels Intermediate Stiffeners Alloy/Test Series 304 Experimental 304/"flats" 304/"r/t=1" 304/"r/t=2.5" 430 Experimental 430/"flats" 430/"r/t=1" 430/"r/t=2.5" 3Cr12 Experimental 3Cr12/"flats" 3Cr12/"r/t=1" 3Cr12/"r/t=2.5" statistical variables mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV mean stdv COV f u /f n f u /f n 1.10 0.0052 0.005 1.05 0.0708 0.068 1.07 0.0760 0.071 1.09 0.0779 0.071 1.10 0.0501 0.046 1.05 0.0797 0.076 1.07 0.0803 0.075 1.08 0.0810 0.075 1.08 0.0055 0.005 1.05 0.0773 0.074 1.06 0.0755 0.071 1.08 0.0745 0.069 1.17 0.0124 0.011 1.01 0.0842 0.083 1.06 0.0900 0.085 1.09 0.0918 0.084 1.13 0.0266 0.023 1.04 0.0807 0.078 1.07 0.0797 0.075 1.09 0.0800 0.073 1.15 0.0100 0.009 1.03 0.0809 0.078 1.07 0.0808 0.076 1.09 0.0795 0.073 Table 4. 6. Proposed φ Factors for DSM of Stainless Steel Sections: Simple Lipped Channels f u /f n statistics β =2.5 β =3 data mean included 304 all 1.07 304 flats 1.05 430 all 1.07 430 flats 1.05 3Cr12 all 1.06 3Cr12 flats 1.05 alloy Department of Civil Engineering Research Report No R845 53 COV φ φ 0.070 0.068 0.074 0.076 0.071 0.074 0.92 0.90 0.92 0.90 0.91 0.90 0.81 0.80 0.81 0.79 0.81 0.80 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table 4. 7. Proposed φ Factors for DSM of Stainless Steel Sections: Lipped Channels with Intermediate Stiffeners f u /f n statistics β =2.5 β =3 alloy 304 304 430 430 3Cr12 3Cr12 data included all flats all flats all flats mean COV φ φ 1.06 1.01 1.07 1.04 1.07 1.03 0.089 0.083 0.076 0.078 0.078 0.078 0.90 0.86 0.92 0.89 0.92 0.88 0.79 0.76 0.81 0.79 0.81 0.78 Tables 4.6 and 4.7 show that if β=2.5, a recommended φ value of 0.90 would be suitable for all alloys. For sections which are subject to heat treatment or welding it would be prudent to use a φ factor of 0.85. The resistance factor φ = 0.90 is based on all tests (experimental plus FE analyses) whereas φ = 0.85 is based on the FE “flats” tests which represent those sections unaffected by cold working in the corners (i.e., no enhanced corner properties). By comparison if β =3.0 the recommended φ value is 0.80 (0.75 for sections subject to heat treatment). 5 Conclusions The results of the foregoing study shows that the behaviour of stainless steel cross-sections subject to distortional buckling can be adequately modeled by considering nonlinear yielding and enhanced corner properties. Anisotropy makes little difference to the ultimate load, even at high degrees of anisotropy. S4R elements and the Walker equation for determining geometric imperfection amplitudes provide reliable results for a large range of cross-sections. The FE study of more than 570 tests show that enhanced corner properties may become significant for stocky sections λd <1 with at least 10% corner area. The effects of enhanced corner properties may be ignored for slender sections or sections with a low percentage of corner area. The effects of nonlinearity are more pronounced for the austenitic 304 alloy sections which achieve lower strength compared with ferritic sections. However, the strength enhancement for the 304 material is greater than that for ferritic alloys and consequently, the stocky 304 sections are able to achieve greater strengths. The effective width evaluation for the experimental tests (fixed-ends) show that the current codes are reasonably safe. However, if the FE tests (pin-ended) sections are considered, the codes become unsafe, even if enhanced corner properties are ignored in design calculations (except for EC3 Part1-4/1-3 for simple lipped channels). Furthermore, the effective width evaluations of lipped channels with intermediate stiffeners are distinctly more unsafe than those for simple lipped channels and this accentuates the necessity of capturing the stainless-steel low proportionality yield stress and early loss of stiffness. Direct strength methods currently used for cold-formed carbon steel are inadequate for stainless steel. Design recommendations, which include modified resistance factors for the EWA methods and DSM design curves for austenitic and ferritic alloys have been proposed. Department of Civil Engineering Research Report No R845 54 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections 6 April 2005 References ABAQUS. (2001). "ABAQUS." ABAQUS, Inc., Pawtucket, RI. AS/NZS:4600. (1996). "Cold-Formed Steel Structures." Australian Standard/New Zealand Standards 4600:1996, Standards Australia, Sydney, Australia. AS/NZS:4673. (2001). "Cold-Formed Stainless Steel Structures." Australian Standard/New Zealand Standard 4673:2001, Standards Australia, Sydney, Australia. ASCE. (2002). "Specification for the Design of Cold-Formed Stainless Steel Structural Members." American Society of Civil Engineers, Virginia, USA. FEMSYS. (2002). "FEMGV." FEMSYS Engineering Software, Leichester, England. Gozzi, J. (2004). "Plastic Behaviour of Steel: Experimental Investigation and Modelling," Lulea University of Technology, Lulea. Hasham, A. S., and Rasmussen, K. J. R. (2002). "Nonlinear Analysis of Locally Buckled ISection Steel Beam-Columns." Australian Journal of Structural Engineering, 3(3), 171-199. Hill, R. (1950). "The Mathematical Theory of Plasticity." Oxford Univeristy Press, London. Lecce, M., and Rasmussen, K. J. R. (2005). "Experimental Investigation of the Distortional Buckling of Cold-Formed Stainless Steel Sections." Research Report No. 844, Department of Civil Engineering, University of Sydney, Sydney. Lin, S. H., Yu, W. W., and Galambos, T. V. (1988). "Load and Resistance Factor Design of Cold-Formed Stainless Steel - Statistical Analyses of Material Properties and Development of the LRFD provisions." Fourth Progress Report, University of Missouri-Rolla, October. Lin, S. H., Yu, W. W., and Galambos, T. V. (1992). "ASCE LRFD Method for Stainless Steel Structures." Journal of Structural Engineering, 118(4), 1056-1070. NAS. (2001). "North American Specification for the Design of Cold-Formed Steel Structural Members." American Iron and Steel Institute, Washington, D.C. NAS. (2004). "Appendix 1 Design of Cold-Formed Steel Structural Members with the Direct Strength Method." American Iron and Steel Institute, Washington, D.C. Olsson, A. (1998). "Constitutive Modelling of Stainless Steel." Journal of Constructional Steel Research, 46(1-3), 457. Papangelis, J. P., and Hancock, G. J. (1995). "Computer Analysis of Thin-Walled Structural Members." Computers & Structures, 56(1), 157-176. preEN-1993-Part.1-3. (2004). "Eurocode 3: Design of Steel Structures, Part 1.3: General Rules Supplementary Rules for Cold-Formed Members and Sheeting." CEN European Committee for Standardization, Brussels, Belgium. preEN-1993-Part.1-4. (2004). "Eurocode 3: Design of Steel Structures, Part 1.4: General Rules Supplementary Rules for Stainless Steels." CEN European Committee for Standardization, Brussels, Belgium. Rasmussen, K. J. R. (2003). "Full-Range Stress-Strain Curves for Stainless Steel Alloys." Journal of Constructional Steel Research, 59(1), 47-61. Rasmussen, K. J. R., Burns, T., Bezkorovainy, P., and Bambach, M. R. (2003). "Numerical Modelling of Stainless Steel Plates in Compression." Journal of Constructional Steel Research, 59(11), 1345-1362. Schafer, B. W., and Pekoz, T. (1998). "Computational Modeling of Cold-Formed Steel: Characterizing Geometric Imperfections and Residual Stresses." Journal of Constructional Steel Research, 47(3), 193-210. Silvestre, N., and Camotim, D. (2004). "Local-Plate and Distortional Post-Buckling Behavior of Cold-Formed Steel Lipped Channel Columns with Intermediate Stiffeners." Proc., Department of Civil Engineering Research Report No R845 55 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 17th International Specialty Conference on Cold-Formed Steel Structures, University of Missouri-Rolla, Orlando, USA, 1-18. Timoshenko, S. P., and Gere, J. M. (1961). Theory of Elastic Stability, McGraw-Hill Book Company, Inc., New York. van den Berg, G. J. (2000). "The Effect of the Non-Linear Stress-Strain Behaviour of Stainless Steels on Member Capacity." Journal of Constructional Steel Research, 54(1), 135-160. Walker, A. C. (1975). Design and Analysis of Cold-Formed Sections, International Textbook Company Ltd., London. Department of Civil Engineering Research Report No R845 56 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Appendix A This appendix gives the results of the FE ABAQUS analyses. In the following pages, the Test ID represents the alloy and centreline cross-section geometry in mm in the following form: Alloy_web_flange_lip_(intermediate stiffener)_thickness_(r/t). Department of Civil Engineering Research Report No R845 57 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 1. 304 Simple Lipped Channels: Experimental Material Properties Test ID 304D1a 304D1b 304D2a 304D2b Geometric Properties** Test Results f pf fy Eo f yc L, L cr Bw Bf Bl t r Ag MPa 164 164 164 164 MPa 242 242 242 242 MPa 187000 187000 187000 187000 MPa 565 565 565 565 mm 800 800 600 600 mm 106.3 105.8 105.5 105.6 mm 90.2 90.0 90.0 90.1 mm 12.7 12.5 12.5 12.5 mm 1.96 1.96 1.96 1.96 mm 4.00 4.00 4.00 4.00 mm 2 mm 565 565 565 565 61 61 61 61 A c A c /A g f cr 2 % 11 11 11 11 MPa 264 264 283 283 λd P u,t 0.96 0.96 0.92 0.92 kN MPa 102 181 0.75 101 179 0.74 104 184 0.76 104 184 0.76 fu f u /f y ** L and overall dimensions and inner radius given for experimental tests Table A. 2. 304 Simple Lipped Channels: Flats Material Properties Test ID 304_60_60_10_2 304_60_60_10_3 304_60_60_15_2 304_60_60_15_3 304_150_150_30_3 304_150_150_20_3 304_150_150_10_3 304_200_100_15_4 304_200_150_20_3 304_200_150_20_4 304_150_80_5_1 304_50_50_5_1 304_400_400_20_3 304_400_400_20_4 304_400_400_20_5 304_400_400_40_4 304_400_400_40_5 304_400_400_40_6 304_400_400_40_7 304_400_400_40_8 304_300_400_20_3 304_300_400_20_4 304_300_400_20_5 304_400_300_20_3 304_400_300_20_4 304_400_300_20_5 304_400_300_40_5 304_400_300_40_6 304_400_300_40_7 304_400_300_40_8 Geometric Properties** f pf fy Eo f yc L, L cr Bw Bf Bl t MPa 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 MPa 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 mm 300 270 400 350 1200 900 600 500 800 700 400 250 2000 1800 1600 3000 2300 2300 2000 2000 1800 1600 1400 1600 1400 1200 2000 2000 1800 1600 mm 60 60 60 60 150 150 150 200 200 200 150 50 400 400 400 400 400 400 400 400 300 300 300 400 400 400 400 400 400 400 mm 60 60 60 60 150 150 150 100 150 150 80 50 400 400 400 400 400 400 400 400 400 400 400 300 300 300 300 300 300 300 mm 10 10 15 15 30 20 10 15 20 20 5 5 20 20 20 40 40 40 40 40 20 20 20 20 20 20 40 40 40 40 mm 2.00 3.00 2.00 3.00 3.00 3.00 3.00 4.00 3.00 4.00 1.00 1.00 3.00 4.00 5.00 4.00 5.00 6.00 7.00 8.00 3.00 4.00 5.00 3.00 4.00 5.00 5.00 6.00 7.00 8.00 r Test Results Ag A c A c /A g f cr 2 2 mm mm mm 2.00 393 25 3.00 584 57 2.00 413 25 3.00 614 57 3.00 1514 57 3.00 1454 57 3.00 1394 57 4.00 1692 101 3.00 1604 57 4.00 2132 101 6 1.00 318 6 1.00 158 3.00 3704 57 4.00 4932 101 5.00 6156 157 4.00 5092 101 5.00 6356 157 6.00 7617 226 7.00 8874 308 8.00 10130 402 3.00 3404 57 4.00 4532 101 5.00 5656 157 3.00 3104 57 4.00 4132 101 5.00 5156 157 5.00 5356 157 6.00 6417 226 7.00 7474 308 8.00 8528 402 **centreline dimensions and L cr given for FE tests Department of Civil Engineering Research Report No R845 58 % 6.4 9.7 6.1 9.2 3.7 3.9 4.1 5.9 3.5 4.7 2.0 4.0 1.5 2.0 2.6 2.0 2.5 3.0 3.5 4.0 1.7 2.2 2.8 1.8 2.4 3.0 2.9 3.5 4.1 4.7 MPa 402 660 532 844 252 180 102 320 165 233 36 140 22 32 43 62 81 99 120 140 24 34 46 37 53 72 129 160 192 227 λd P u,t fu f u /f y 0.70 0.54 0.61 0.48 0.88 1.04 1.38 0.78 1.09 0.91 2.33 1.18 2.98 2.48 2.14 1.77 1.55 1.40 1.27 1.18 2.85 2.38 2.05 2.30 1.92 1.64 1.23 1.10 1.01 0.93 kN 65 112 74 124 213 183 153 257 191 300 20 18 176 292 443 347 516 727 947 1180 171 293 447 177 294 457 551 766 984 1199 MPa 164 192 178 202 140 126 110 152 119 141 63 117 48 59 72 68 81 95 107 116 50 65 79 57 71 89 103 119 132 141 0.84 0.98 0.91 1.03 0.72 0.64 0.56 0.78 0.61 0.72 0.33 0.60 0.24 0.30 0.37 0.35 0.42 0.49 0.55 0.60 0.26 0.33 0.40 0.29 0.37 0.45 0.53 0.61 0.68 0.72 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 3. 304 Simple Lipped Channels: r/t=1 Material Properties f pf fy Eo f yc Test ID MPa MPa MPa MPa 304_60_60_10_2_1 90 195 195000 457 304_60_60_10_3_1 90 195 195000 457 304_60_60_15_2_1 90 195 195000 457 304_60_60_15_3_1 90 195 195000 457 304_150_150_30_3_1 90 195 195000 457 304_150_150_20_3_1 90 195 195000 457 304_150_150_10_3_1 90 195 195000 457 304_200_100_15_4_1 90 195 195000 457 304_200_150_20_3_1 90 195 195000 457 304_200_150_20_4_1 90 195 195000 457 304_150_80_5_1_1 90 195 195000 457 304_50_50_5_1_1 90 195 195000 457 304_400_400_20_3_1 90 195 195000 457 304_400_400_20_4_1 90 195 195000 457 304_400_400_20_5_1 90 195 195000 457 304_400_400_40_4_1 90 195 195000 457 304_400_400_40_5_1 90 195 195000 457 304_400_400_40_6_1 90 195 195000 457 304_400_400_40_7_1 90 195 195000 457 304_400_400_40_8_1 90 195 195000 457 304_300_400_20_3_1 90 195 195000 457 304_300_400_20_4_1 90 195 195000 457 304_300_400_20_5_1 90 195 195000 457 304_400_300_20_3_1 90 195 195000 457 304_400_300_20_4_1 90 195 195000 457 304_400_300_20_5_1 90 195 195000 457 304_400_300_40_5_1 90 195 195000 457 304_400_300_40_6_1 90 195 195000 457 304_400_300_40_7_1 90 195 195000 457 304_400_300_40_8_1 90 195 195000 457 Geometric Properties** L, L cr Bw Bf Bl t mm 300 270 400 350 1200 900 600 500 800 700 400 250 2000 1800 1600 3000 2300 2300 2000 2000 1800 1600 1400 1600 1400 1200 2000 2000 1800 1600 mm 60 60 60 60 150 150 150 200 200 200 150 50 400 400 400 400 400 400 400 400 300 300 300 400 400 400 400 400 400 400 mm 60 60 60 60 150 150 150 100 150 150 80 50 400 400 400 400 400 400 400 400 400 400 400 300 300 300 300 300 300 300 mm 10 10 15 15 30 20 10 15 20 20 5 5 20 20 20 40 40 40 40 40 20 20 20 20 20 20 40 40 40 40 mm 2.00 3.00 2.00 3.00 3.00 3.00 3.00 4.00 3.00 4.00 1.00 1.00 3.00 4.00 5.00 4.00 5.00 6.00 7.00 8.00 3.00 4.00 5.00 3.00 4.00 5.00 5.00 6.00 7.00 8.00 r Test Results Ag A c A c /A g f cr 2 2 mm mm mm 2.00 393 25 3.00 584 57 2.00 413 25 3.00 614 57 3.00 1514 57 3.00 1454 57 3.00 1394 57 4.00 1692 101 3.00 1604 57 4.00 2132 101 6 1.00 318 6 1.00 158 3.00 3704 57 4.00 4932 101 5.00 6156 157 4.00 5092 101 5.00 6356 157 6.00 7617 226 7.00 8874 308 8.00 10130 402 3.00 3404 57 4.00 4532 101 5.00 5656 157 3.00 3104 57 4.00 4132 101 5.00 5156 157 5.00 5356 157 6.00 6417 226 7.00 7474 308 8.00 8528 402 **centreline dimensions and L cr given for FE tests Department of Civil Engineering Research Report No R845 59 % 6.4 9.7 6.1 9.2 3.7 3.9 4.1 5.9 3.5 4.7 2.0 4.0 1.5 2.0 2.6 2.0 2.5 3.0 3.5 4.0 1.7 2.2 2.8 1.8 2.4 3.0 2.9 3.5 4.1 4.7 MPa 402 660 532 844 252 180 102 320 165 233 36 140 22 32 43 62 81 99 120 140 24 34 46 37 53 72 129 160 192 227 λd P u,t fu f u /f y 0.70 0.54 0.61 0.48 0.88 1.04 1.38 0.78 1.09 0.91 2.33 1.18 2.98 2.48 2.14 1.77 1.55 1.40 1.27 1.18 2.85 2.38 2.05 2.30 1.92 1.64 1.23 1.10 1.01 0.93 kN 67 120 77 135 217 187 160 266 195 308 21 19 175 296 454 347 525 746 977 1219 175 301 457 176 302 467 558 780 1007 1232 MPa 171 205 187 219 143 129 115 157 121 145 65 120 47 60 74 68 83 98 110 120 51 66 81 57 73 91 104 122 135 144 0.88 1.05 0.96 1.12 0.74 0.66 0.59 0.81 0.62 0.74 0.33 0.62 0.24 0.31 0.38 0.35 0.42 0.50 0.56 0.62 0.26 0.34 0.41 0.29 0.37 0.46 0.53 0.62 0.69 0.74 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 4. 304 Simple Lipped Channels: r/t=2.5 Material Properties f pf fy Eo f yc Test ID MPa MPa MPa MPa 304_60_60_10_2_2.5 90 195 195000 360 304_60_60_10_3_2.5 90 195 195000 360 304_60_60_15_2_2.5 90 195 195000 360 304_60_60_15_3_2.5 90 195 195000 360 304_150_150_30_3_2.5 90 195 195000 360 304_150_150_20_3_2.5 90 195 195000 360 304_150_150_10_3_2.5 90 195 195000 360 304_200_100_15_4_2.5 90 195 195000 360 304_200_150_20_3_2.5 90 195 195000 360 304_200_150_20_4_2.5 90 195 195000 360 304_150_80_5_1_2.5 90 195 195000 360 304_50_50_5_1_2.5 90 195 195000 360 304_400_400_20_3_2.5 90 195 195000 360 304_400_400_20_4_2.5 90 195 195000 360 304_400_400_20_5_2.5 90 195 195000 360 304_400_400_40_4_2.5 90 195 195000 360 304_400_400_40_5_2.5 90 195 195000 360 304_400_400_40_6_2.5 90 195 195000 360 304_400_400_40_7_2.5 90 195 195000 360 304_400_400_40_8_2.5 90 195 195000 360 304_300_400_20_3_2.5 90 195 195000 360 304_300_400_20_4_2.5 90 195 195000 360 304_300_400_20_5_2.5 90 195 195000 360 304_400_300_20_3_2.5 90 195 195000 360 304_400_300_20_4_2.5 90 195 195000 360 304_400_300_20_5_2.5 90 195 195000 360 304_400_300_40_5_2.5 90 195 195000 360 304_400_300_40_6_2.5 90 195 195000 360 304_400_300_40_7_2.5 90 195 195000 360 304_400_300_40_8_2.5 90 195 195000 360 Geometric Properties** L, L cr Bw Bf Bl t r mm 300 270 400 350 1200 900 600 500 800 700 400 250 2000 1800 1600 3000 2300 2300 2000 2000 1800 1600 1400 1600 1400 1200 2000 2000 1800 1600 mm 60 60 60 60 150 150 150 200 200 200 150 50 400 400 400 400 400 400 400 400 300 300 300 400 400 400 400 400 400 400 mm 60 60 60 60 150 150 150 100 150 150 80 50 400 400 400 400 400 400 400 400 400 400 400 300 300 300 300 300 300 300 mm 10 10 15 15 30 20 10 15 20 20 5 5 20 20 20 40 40 40 40 40 20 20 20 20 20 20 40 40 40 40 mm 2.00 3.00 2.00 3.00 3.00 3.00 3.00 4.00 3.00 4.00 1.00 1.00 3.00 4.00 5.00 4.00 5.00 6.00 7.00 8.00 3.00 4.00 5.00 3.00 4.00 5.00 5.00 6.00 7.00 8.00 mm 5.00 7.50 5.00 7.50 7.50 7.50 7.50 10.00 7.50 10.00 2.50 2.50 7.50 10.00 12.50 10.00 12.50 15.00 17.50 20.00 7.50 10.00 12.50 7.50 10.00 12.50 12.50 15.00 17.50 20.00 Test Results Ag A c A c /A g f cr mm2 mm2 **centreline dimensions and L cr given for FE tests Department of Civil Engineering Research Report No R845 60 λd P u,t % MPa kN 382 63 16.4 411 0.69 68 561 141 25.2 689 0.53 123 402 63 15.6 542 0.60 78 591 141 23.9 868 0.47 139 1491 141 9.5 257 0.87 218 1431 141 9.9 184 1.03 188 1371 141 10.3 105 1.36 164 1650 251 15.2 328 0.77 268 1581 141 8.9 168 1.08 196 2090 251 12.0 239 0.90 315 5.0 316 16 38 2.28 21 156 16 10.1 142 1.17 19 3681 141 3.8 22 2.96 179 4890 251 5.1 32 2.46 305 6090 393 6.4 43 2.12 458 5050 251 5.0 63 1.76 346 6290 393 6.2 82 1.54 531 7522 565 7.5 106 1.36 755 8745 770 8.8 122 1.26 990 9959 1005 10.1 144 1.16 1234 3381 141 4.2 24 2.82 177 4490 251 5.6 35 2.36 305 5590 393 7.0 48 2.03 464 3081 141 4.6 37 2.28 183 4090 251 6.1 54 1.90 307 5090 393 7.7 74 1.63 477 5290 393 7.4 131 1.22 561 6322 565 8.9 163 1.09 784 7345 770 10.5 197 1.00 1014 8359 1005 12.0 233 0.92 1245 fu f u /f y MPa 177 219 194 236 146 131 120 163 124 151 65 124 49 62 75 68 84 100 113 124 52 68 83 59 75 94 106 124 138 149 0.91 1.13 1.00 1.21 0.75 0.67 0.61 0.83 0.64 0.77 0.33 0.63 0.25 0.32 0.39 0.35 0.43 0.51 0.58 0.64 0.27 0.35 0.43 0.30 0.38 0.48 0.54 0.64 0.71 0.76 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 5. 430 Simple Lipped Channels: Experimental Material Properties f pf Test ID 430D1a 430D1b 430D2 430D3a 430D3b fy MPa MPa 170 271 170 271 170 271 170 271 170 271 Geometric Properties** Eo f yc L,L cr Bw Bf MPa 193000 193000 193000 193000 193000 MPa 452 452 452 452 452 mm 800 800 480 780 782 mm 67.9 67.7 67.5 55.9 55.6 mm mm mm 57.4 8.4 1.13 57.6 8.6 1.13 58.5 10.0 1.13 54.8 8.6 1.13 54.9 8.7 1.13 Bl Test Results r Ag Ac mm 2.43 2.50 2.50 2.50 2.50 mm2 211 211 215 188 188 mm2 21 22 22 22 22 t A c /A g f cr % 10 10 10 12 12 MPa 224 224 245 254 254 λd P u,t fu f u /f y 1.10 1.10 1.05 1.03 1.03 kN 39 39 45 40 39 MPa 182 185 209 211 206 0.67 0.68 0.77 0.78 0.76 **L and overall dimensions and inner radius given for experimental tests Table A. 6. 430 Simple Lipped Channels: Flats Material Properties f pf Test ID 430_60_60_10_2 430_60_60_10_3 430_60_60_15_2 430_60_60_15_3 430_150_150_30_3 430_150_150_20_3 430_150_150_10_3 430_200_100_15_4 430_200_150_20_3 430_200_150_20_4 430_150_80_5_1 430_50_50_5_1 430_400_400_20_3 430_400_400_20_4 430_400_400_20_5 430_400_400_40_4 430_400_400_40_5 430_400_400_40_6 430_400_400_40_7 430_400_400_40_8 430_300_400_20_3 430_300_400_20_4 430_300_400_20_5 430_400_300_20_3 430_400_300_20_4 430_400_300_20_5 430_400_300_40_5 430_400_300_40_6 430_400_300_40_7 430_400_300_40_8 fy MPa MPa 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 Geometric Properties** Eo f yc L,L cr Bw Bf Bl t r MPa 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 MPa 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 mm 300 270 400 350 1200 900 600 500 800 700 400 250 2000 1800 1600 3000 2300 2300 2000 2000 1800 1600 1400 1600 1400 1200 2000 2000 1800 1600 mm 60 60 60 60 150 150 150 200 200 200 150 50 400 400 400 400 400 400 400 400 300 300 300 400 400 400 400 400 400 400 mm 60 60 60 60 150 150 150 100 150 150 80 50 400 400 400 400 400 400 400 400 400 400 400 300 300 300 300 300 300 300 mm 10 10 15 15 30 20 10 15 20 20 5 5 20 20 20 40 40 40 40 40 20 20 20 20 20 20 40 40 40 40 mm 2.00 3.00 2.00 3.00 3.00 3.00 3.00 4.00 3.00 4.00 1.00 1.00 3.00 4.00 5.00 4.00 5.00 6.00 7.00 8.00 3.00 4.00 5.00 3.00 4.00 5.00 5.00 6.00 7.00 8.00 mm 2.00 3.00 2.00 3.00 3.00 3.00 3.00 4.00 3.00 4.00 1.00 1.00 3.00 4.00 5.00 4.00 5.00 6.00 7.00 8.00 3.00 4.00 5.00 3.00 4.00 5.00 5.00 6.00 7.00 8.00 Test Results Ag Ac mm2 mm2 25 393 57 584 25 413 57 614 57 1514 57 1454 57 1394 1692 101 57 1604 2132 101 6 318 6 158 57 3704 4932 101 6156 157 5092 101 6356 157 7617 226 8874 308 10130 402 57 3404 4532 101 5656 157 57 3104 4132 101 5156 157 5356 157 6417 226 7474 308 8528 402 **centreline dimensions and L cr given for FE tests Department of Civil Engineering Research Report No R845 61 A c /A g f cr % 6.4 9.7 6.1 9.2 3.7 3.9 4.1 5.9 3.5 4.7 2.0 4.0 1.5 2.0 2.6 2.0 2.5 3.0 3.5 4.0 1.7 2.2 2.8 1.8 2.4 3.0 2.9 3.5 4.1 4.7 MPa 381 627 505 801 239 171 97 304 156 221 34 133 21 30 40 59 77 94 114 133 23 33 44 35 50 68 123 152 182 216 λd P u,t 0.85 0.66 0.74 0.59 1.07 1.27 1.69 0.95 1.33 1.11 2.84 1.44 3.64 3.02 2.61 2.16 1.89 1.71 1.55 1.44 3.47 2.90 2.50 2.80 2.33 2.00 1.50 1.35 1.23 1.13 kN MPa 85 216 0.79 146 250 0.91 96 232 0.84 163 266 0.97 280 185 0.67 240 165 0.60 200 143 0.52 338 200 0.73 244 152 0.55 390 183 0.67 26 83 0.30 24 151 0.55 231 62 0.23 356 72 0.26 579 94 0.34 424 83 0.30 647 102 0.37 950 125 0.45 1226 138 0.50 1531 151 0.55 225 66 0.24 383 85 0.31 579 102 0.37 231 74 0.27 397 96 0.35 594 115 0.42 699 130 0.47 980 153 0.56 1283 172 0.62 1563 183 0.67 fu f u /f y Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 7. 430 Simple Lipped Channels: r/t=1 Material Properties f pf Test ID 430_60_60_10_2_1 430_60_60_10_3_1 430_60_60_15_2_1 430_60_60_15_3_1 430_150_150_30_3_1 430_150_150_20_3_1 430_150_150_10_3_1 430_200_100_15_4_1 430_200_150_20_3_1 430_200_150_20_4_1 430_150_80_5_1_1 430_50_50_5_1_1 430_400_400_20_3_1 430_400_400_20_4_1 430_400_400_20_5_1 430_400_400_40_4_1 430_400_400_40_5_1 430_400_400_40_6_1 430_400_400_40_7_1 430_400_400_40_8_1 430_300_400_20_3_1 430_300_400_20_4_1 430_300_400_20_5_1 430_400_300_20_3_1 430_400_300_20_4_1 430_400_300_20_5_1 430_400_300_40_5_1 430_400_300_40_6_1 430_400_300_40_7_1 430_400_300_40_8_1 fy MPa MPa 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 170 275 Geometric Properties** Eo f yc L,L cr Bw Bf Bl t r MPa 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 MPa 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 479 mm 300 270 400 350 1200 900 600 500 800 700 400 250 2000 1800 1600 3000 2300 2300 2000 2000 1800 1600 1400 1600 1400 1200 2000 2000 1800 1600 mm 60 60 60 60 150 150 150 200 200 200 150 50 400 400 400 400 400 400 400 400 300 300 300 400 400 400 400 400 400 400 mm 60 60 60 60 150 150 150 100 150 150 80 50 400 400 400 400 400 400 400 400 400 400 400 300 300 300 300 300 300 300 mm 10 10 15 15 30 20 10 15 20 20 5 5 20 20 20 40 40 40 40 40 20 20 20 20 20 20 40 40 40 40 mm 2.00 3.00 2.00 3.00 3.00 3.00 3.00 4.00 3.00 4.00 1.00 1.00 3.00 4.00 5.00 4.00 5.00 6.00 7.00 8.00 3.00 4.00 5.00 3.00 4.00 5.00 5.00 6.00 7.00 8.00 mm 2.00 3.00 2.00 3.00 3.00 3.00 3.00 4.00 3.00 4.00 1.00 1.00 3.00 4.00 5.00 4.00 5.00 6.00 7.00 8.00 3.00 4.00 5.00 3.00 4.00 5.00 5.00 6.00 7.00 8.00 Test Results Ag Ac mm2 mm2 25 393 57 584 25 413 57 614 57 1514 57 1454 57 1394 1692 101 57 1604 2132 101 6 318 6 158 57 3704 4932 101 6156 157 5092 101 6356 157 7617 226 8874 308 10130 402 57 3404 4532 101 5656 157 57 3104 4132 101 5156 157 5356 157 6417 226 7474 308 8528 402 **centreline dimensions and L cr given for FE tests Department of Civil Engineering Research Report No R845 62 A c /A g f cr % 6.4 9.7 6.1 9.2 3.7 3.9 4.1 5.9 3.5 4.7 2.0 4.0 1.5 2.0 2.6 2.0 2.5 3.0 3.5 4.0 1.7 2.2 2.8 1.8 2.4 3.0 2.9 3.5 4.1 4.7 MPa 381 627 505 801 239 171 97 304 156 221 34 133 21 30 40 59 77 94 114 133 23 33 44 35 50 68 123 152 182 216 λd P u,t 0.85 0.66 0.74 0.59 1.07 1.27 1.69 0.95 1.33 1.11 2.84 1.44 3.64 3.02 2.61 2.16 1.89 1.71 1.55 1.44 3.47 2.90 2.50 2.80 2.33 2.00 1.50 1.35 1.23 1.13 kN MPa 87 222 0.81 153 261 0.95 98 238 0.87 171 278 1.01 284 188 0.68 243 167 0.61 203 145 0.53 345 204 0.74 246 153 0.56 397 186 0.68 27 83 0.30 24 153 0.55 231 62 0.23 357 72 0.26 586 95 0.35 430 84 0.31 650 102 0.37 953 125 0.46 1234 139 0.51 1547 153 0.56 228 67 0.24 388 86 0.31 586 104 0.38 234 75 0.27 402 97 0.35 601 116 0.42 704 131 0.48 988 154 0.56 1300 174 0.63 1589 186 0.68 fu f u /f y Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 8. 430 Simple Lipped Channels: r/t=2.5 Material Properties f pf fy Test ID MPa MPa 430_60_60_10_2_2.5 170 275 430_60_60_10_3_2.5 170 275 430_60_60_15_2_2.5 170 275 430_60_60_15_3_2.5 170 275 430_150_150_30_3_2.5 170 275 430_150_150_20_3_2.5 170 275 430_150_150_10_3_2.5 170 275 430_200_100_15_4_2.5 170 275 430_200_150_20_3_2.5 170 275 430_200_150_20_4_2.5 170 275 430_150_80_5_1_2.5 170 275 430_50_50_5_1_2.5 170 275 430_400_400_20_3_2.5 170 275 430_400_400_20_4_2.5 170 275 430_400_400_20_5_2.5 170 275 430_400_400_40_4_2.5 170 275 430_400_400_40_5_2.5 170 275 430_400_400_40_6_2.5 170 275 430_400_400_40_7_2.5 170 275 430_400_400_40_8_2.5 170 275 430_300_400_20_3_2.5 170 275 430_300_400_20_4_2.5 170 275 430_300_400_20_5_2.5 170 275 430_400_300_20_3_2.5 170 275 430_400_300_20_4_2.5 170 275 430_400_300_20_5_2.5 170 275 430_400_300_40_5_2.5 170 275 430_400_300_40_6_2.5 170 275 430_400_300_40_7_2.5 170 275 430_400_300_40_8_2.5 170 275 Geometric Properties** Test Results Eo f yc L,L cr Bw Bf Bl t r Ag Ac MPa 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 MPa 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 mm 300 270 400 350 1200 900 600 500 800 700 400 250 2000 1800 1600 3000 2300 2300 2000 2000 1800 1600 1400 1600 1400 1200 2000 2000 1800 1600 mm 60 60 60 60 150 150 150 200 200 200 150 50 400 400 400 400 400 400 400 400 300 300 300 400 400 400 400 400 400 400 mm 60 60 60 60 150 150 150 100 150 150 80 50 400 400 400 400 400 400 400 400 400 400 400 300 300 300 300 300 300 300 mm 10 10 15 15 30 20 10 15 20 20 5 5 20 20 20 40 40 40 40 40 20 20 20 20 20 20 40 40 40 40 mm 2.00 3.00 2.00 3.00 3.00 3.00 3.00 4.00 3.00 4.00 1.00 1.00 3.00 4.00 5.00 4.00 5.00 6.00 7.00 8.00 3.00 4.00 5.00 3.00 4.00 5.00 5.00 6.00 7.00 8.00 mm 5.00 7.50 5.00 7.50 7.50 7.50 7.50 10.00 7.50 10.00 2.50 2.50 7.50 10.00 12.50 10.00 12.50 15.00 17.50 20.00 7.50 10.00 12.50 7.50 10.00 12.50 12.50 15.00 17.50 20.00 mm2 382 561 402 591 1491 1431 1371 1650 1581 2090 316 156 3681 4890 6090 5050 6290 7522 8745 9959 3381 4490 5590 3081 4090 5090 5290 6322 7345 8359 mm2 63 141 63 141 141 141 141 251 141 251 16 16 141 251 393 251 393 565 770 1005 141 251 393 141 251 393 393 565 770 1005 **centreline dimensions and L cr given for FE tests Department of Civil Engineering Research Report No R845 63 A c /A g f cr λd P u,t fu f u /f y % MPa kN MPa 16.4 390 0.84 87 228 0.83 25.2 654 0.65 154 275 1.00 15.6 514 0.73 99 245 0.89 23.9 823 0.58 173 293 1.07 9.5 243 1.06 286 192 0.70 9.9 175 1.25 244 171 0.62 10.3 100 1.66 205 150 0.54 15.2 311 0.94 346 209 0.76 8.9 160 1.31 247 156 0.57 12.0 226 1.10 399 191 0.69 5.0 36 2.78 26 83 0.30 10.1 135 1.43 24 156 0.57 3.8 21 3.61 236 64 0.23 5.1 31 3.00 343 70 0.25 6.4 41 2.59 586 96 0.35 5.0 60 2.15 437 87 0.31 6.2 78 1.88 650 103 0.38 7.5 100 1.65 953 127 0.46 8.8 116 1.54 1236 141 0.51 10.1 137 1.42 1556 156 0.57 4.2 23 3.44 229 68 0.25 5.6 33 2.87 390 87 0.32 7.0 45 2.47 590 106 0.38 4.6 36 2.78 235 76 0.28 6.1 51 2.31 404 99 0.36 7.7 70 1.98 605 119 0.43 7.4 125 1.49 704 133 0.48 8.9 155 1.33 992 157 0.57 10.5 187 1.21 1306 178 0.65 12.0 221 1.12 1598 191 0.70 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 9. 3Cr12 Simple Lipped Channels: Experimental f pf Test ID 3Cr12D1a 3Cr12D1b Material Properties f yf Eo f yc Bw Bf Geometric Properties** Ag r Bl t MPa MPa MPa MPa mm mm mm mm 234 339 208000 606 105.0 85.5 14.7 1.98 234 339 208000 606 105.0 85.4 14.8 1.98 mm 4.00 4.00 Ac A c /A g mm2 mm2 555 555 62 62 % 11 11 f cr λd Test Results P u,t fu MPa 321 1.03 321 1.03 kN 138 139 MPa 249 251 f u /f y 0.73 0.74 **overall dimensions and inner radius given for experimental tests Table A. 10. 3Cr12 Simple Lipped Channels: Flats Material Properties f pf Test ID 3Cr12_60_60_10_2 3Cr12_60_60_10_3 3Cr12_60_60_15_2 3Cr12_60_60_15_3 3Cr12_150_150_30_3 3Cr12_150_150_20_3 3Cr12_150_150_10_3 3Cr12_200_100_15_4 3Cr12_200_150_20_3 3Cr12_200_150_20_4 3Cr12_150_80_5_1 3Cr12_50_50_5_1 3Cr12_400_400_20_3 3Cr12_400_400_20_4 3Cr12_400_400_20_5 3Cr12_400_400_40_4 3Cr12_400_400_40_5 3Cr12_400_400_40_6 3Cr12_400_400_40_7 3Cr12_400_400_40_8 3Cr12_300_400_20_3 3Cr12_300_400_20_4 3Cr12_300_400_20_5 3Cr12_400_300_20_3 3Cr12_400_300_20_4 3Cr12_400_300_20_5 3Cr12_400_300_40_5 3Cr12_400_300_40_6 3Cr12_400_300_40_7 3Cr12_400_300_40_8 fy Eo Geometric Properties f yc MPa MPa MPa MPa 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 170 260 210000 260 Department of Civil Engineering Research Report No R845 Test Results L,L cr Bw Bf Bl t r Ag mm 300 270 400 350 1200 900 600 500 800 700 400 250 2000 1800 1600 3000 2300 2300 2000 2000 1800 1600 1400 1600 1400 1200 2000 2000 1800 1600 mm 60 60 60 60 150 150 150 200 200 200 150 50 400 400 400 400 400 400 400 400 300 300 300 400 400 400 400 400 400 400 mm 60 60 60 60 150 150 150 100 150 150 80 50 400 400 400 400 400 400 400 400 400 400 400 300 300 300 300 300 300 300 mm 10 10 15 15 30 20 10 15 20 20 5 5 20 20 20 40 40 40 40 40 20 20 20 20 20 20 40 40 40 40 mm 2.00 3.00 2.00 3.00 3.00 3.00 3.00 4.00 3.00 4.00 1.00 1.00 3.00 4.00 5.00 4.00 5.00 6.00 7.00 8.00 3.00 4.00 5.00 3.00 4.00 5.00 5.00 6.00 7.00 8.00 mm 2.00 3.00 2.00 3.00 3.00 3.00 3.00 4.00 3.00 4.00 1.00 1.00 3.00 4.00 5.00 4.00 5.00 6.00 7.00 8.00 3.00 4.00 5.00 3.00 4.00 5.00 5.00 6.00 7.00 8.00 mm mm 393 584 413 614 1514 1454 1394 1692 1604 2132 318 158 3704 4932 6156 5092 6356 7617 8874 10130 3404 4532 5656 3104 4132 5156 5356 6417 7474 8528 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 64 Ac 2 2 A c /A g f cr % 6.4 9.7 6.1 9.2 3.7 3.9 4.1 5.9 3.5 4.7 2.0 4.0 1.5 2.0 2.6 2.0 2.5 3.0 3.5 4.0 1.7 2.2 2.8 1.8 2.4 3.0 2.9 3.5 4.1 4.7 MPa 432 711 573 909 272 194 110 345 177 251 39 151 24 34 46 67 87 107 129 151 26 37 50 40 57 78 139 172 207 245 λd P u,t 0.78 0.60 0.67 0.53 0.98 1.16 1.54 0.87 1.21 1.02 2.59 1.31 3.32 2.76 2.38 1.97 1.73 1.56 1.42 1.31 3.17 2.65 2.28 2.56 2.13 1.83 1.37 1.23 1.12 1.03 kN MPa 83 211 0.81 142 243 0.93 93 226 0.87 157 256 0.98 278 184 0.71 243 167 0.64 201 144 0.56 335 198 0.76 254 158 0.61 389 182 0.70 27 85 0.33 24 155 0.59 237 64 0.25 382 77 0.30 602 98 0.38 444 87 0.34 709 112 0.43 1005 132 0.51 1267 143 0.55 1563 154 0.59 231 68 0.26 395 87 0.34 597 106 0.41 237 76 0.29 409 99 0.38 618 120 0.46 738 138 0.53 1022 159 0.61 1292 173 0.67 1556 182 0.70 fu f u /f y Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 11. 3Cr12 Simple Lipped Channels: r/t=1 Material Properties f pf Test ID 3Cr12_60_60_10_2_1 3Cr12_60_60_10_3_1 3Cr12_60_60_15_2_1 3Cr12_60_60_15_3_1 3Cr12_150_150_30_3_1 3Cr12_150_150_20_3_1 3Cr12_150_150_10_3_1 3Cr12_200_100_15_4_1 3Cr12_200_150_20_3_1 3Cr12_200_150_20_4_1 3Cr12_150_80_5_1_1 3Cr12_50_50_5_1_1 3Cr12_400_400_20_3_1 3Cr12_400_400_20_4_1 3Cr12_400_400_20_5_1 3Cr12_400_400_40_4_1 3Cr12_400_400_40_5_1 3Cr12_400_400_40_6_1 3Cr12_400_400_40_7_1 3Cr12_400_400_40_8_1 3Cr12_300_400_20_3_1 3Cr12_300_400_20_4_1 3Cr12_300_400_20_5_1 3Cr12_400_300_20_3_1 3Cr12_400_300_20_4_1 3Cr12_400_300_20_5_1 3Cr12_400_300_40_5_1 3Cr12_400_300_40_6_1 3Cr12_400_300_40_7_1 3Cr12_400_300_40_8_1 fy Eo Geometric Properties f yc MPa MPa MPa MPa 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 170 260 210000 460 Test Results L,L cr Bw Bf Bl t r Ag mm 300 270 400 350 1200 900 600 500 800 700 400 250 2000 1800 1600 3000 2300 2300 2000 2000 1800 1600 1400 1600 1400 1200 2000 2000 1800 1600 mm 60 60 60 60 150 150 150 200 200 200 150 50 400 400 400 400 400 400 400 400 300 300 300 400 400 400 400 400 400 400 mm 60 60 60 60 150 150 150 100 150 150 80 50 400 400 400 400 400 400 400 400 400 400 400 300 300 300 300 300 300 300 mm 10 10 15 15 30 20 10 15 20 20 5 5 20 20 20 40 40 40 40 40 20 20 20 20 20 20 40 40 40 40 mm 2.00 3.00 2.00 3.00 3.00 3.00 3.00 4.00 3.00 4.00 1.00 1.00 3.00 4.00 5.00 4.00 5.00 6.00 7.00 8.00 3.00 4.00 5.00 3.00 4.00 5.00 5.00 6.00 7.00 8.00 mm 2.00 3.00 2.00 3.00 3.00 3.00 3.00 4.00 3.00 4.00 1.00 1.00 3.00 4.00 5.00 4.00 5.00 6.00 7.00 8.00 3.00 4.00 5.00 3.00 4.00 5.00 5.00 6.00 7.00 8.00 mm mm Ac 393 584 413 614 1514 1454 1394 1692 1604 2132 318 158 3704 4932 6156 5092 6356 7617 8874 10130 3404 4532 5656 3104 4132 5156 5356 6417 7474 8528 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 2 **centreline dimensions given for FE tests Department of Civil Engineering Research Report No R845 65 2 A c /A g f cr % 6.4 9.7 6.1 9.2 3.7 3.9 4.1 5.9 3.5 4.7 2.0 4.0 1.5 2.0 2.6 2.0 2.5 3.0 3.5 4.0 1.7 2.2 2.8 1.8 2.4 3.0 2.9 3.5 4.1 4.7 MPa 432 711 573 909 272 194 110 345 177 251 39 151 24 34 46 67 87 107 129 151 26 37 50 40 57 78 139 172 207 245 λd P u,t 0.78 0.60 0.67 0.53 0.98 1.16 1.54 0.87 1.21 1.02 2.59 1.31 3.32 2.76 2.38 1.97 1.73 1.56 1.42 1.31 3.17 2.65 2.28 2.56 2.13 1.83 1.37 1.23 1.12 1.03 kN MPa 85 217 0.83 148 253 0.97 96 233 0.90 165 269 1.03 283 187 0.72 246 169 0.65 205 147 0.56 343 203 0.78 256 160 0.61 396 186 0.71 27 86 0.33 25 156 0.60 237 64 0.25 383 78 0.30 607 99 0.38 447 88 0.34 710 112 0.43 1009 132 0.51 1277 144 0.55 1581 156 0.60 234 69 0.26 399 88 0.34 603 107 0.41 240 77 0.30 413 100 0.38 621 120 0.46 741 138 0.53 1032 161 0.62 1311 175 0.67 1584 186 0.71 fu f u /f y Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 12. 3Cr12 Simple Lipped Channels: r/t=2.5 Material Properties f pf Test ID 3Cr12_60_60_10_2_2.5 3Cr12_60_60_10_3_2.5 3Cr12_60_60_15_2_2.5 3Cr12_60_60_15_3_2.5 3Cr12_150_150_30_3_2.5 3Cr12_150_150_20_3_2.5 3Cr12_150_150_10_3_2.5 3Cr12_200_100_15_4_2.5 3Cr12_200_150_20_3_2.5 3Cr12_200_150_20_4_2.5 3Cr12_150_80_5_1_2.5 3Cr12_50_50_5_1_2.5 3Cr12_400_400_20_3_2.5 3Cr12_400_400_20_4_2.5 3Cr12_400_400_20_5_2.5 3Cr12_400_400_40_4_2.5 3Cr12_400_400_40_5_2.5 3Cr12_400_400_40_6_2.5 3Cr12_400_400_40_7_2.5 3Cr12_400_400_40_8_2.5 3Cr12_300_400_20_3_2.5 3Cr12_300_400_20_4_2.5 3Cr12_300_400_20_5_2.5 3Cr12_400_300_20_3_2.5 3Cr12_400_300_20_4_2.5 3Cr12_400_300_20_5_2.5 3Cr12_400_300_40_5_2.5 3Cr12_400_300_40_6_2.5 3Cr12_400_300_40_7_2.5 3Cr12_400_300_40_8_2.5 fy Eo Geometric Properties f yc MPa MPa MPa MPa 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 170 260 210000 406 L,L cr Bw Bf Bl t mm 300 270 400 350 1200 900 600 500 800 700 400 250 2000 1800 1600 3000 2300 2300 2000 2000 1800 1600 1400 1600 1400 1200 2000 2000 1800 1600 mm 60 60 60 60 150 150 150 200 200 200 150 50 400 400 400 400 400 400 400 400 300 300 300 400 400 400 400 400 400 400 mm 60 60 60 60 150 150 150 100 150 150 80 50 400 400 400 400 400 400 400 400 400 400 400 300 300 300 300 300 300 300 mm 10 10 15 15 30 20 10 15 20 20 5 5 20 20 20 40 40 40 40 40 20 20 20 20 20 20 40 40 40 40 mm 2.00 3.00 2.00 3.00 3.00 3.00 3.00 4.00 3.00 4.00 1.00 1.00 3.00 4.00 5.00 4.00 5.00 6.00 7.00 8.00 3.00 4.00 5.00 3.00 4.00 5.00 5.00 6.00 7.00 8.00 Test Results r Ag Ac A c /A g f cr mm 5.00 7.50 5.00 7.50 7.50 7.50 7.50 10.00 7.50 10.00 2.50 2.50 7.50 10.00 12.50 10.00 12.50 15.00 17.50 20.00 7.50 10.00 12.50 7.50 10.00 12.50 12.50 15.00 17.50 20.00 mm2 mm2 382 561 402 591 1491 1431 1371 1650 1581 2090 316 156 3681 4890 6090 5050 6290 7522 8745 9959 3381 4490 5590 3081 4090 5090 5290 6322 7345 8359 63 141 63 141 141 141 141 251 141 251 16 16 141 251 393 251 393 565 770 1005 141 251 393 141 251 393 393 565 770 1005 % 16.4 25.2 15.6 23.9 9.5 9.9 10.3 15.2 8.9 12.0 5.0 10.1 3.8 5.1 6.4 5.0 6.2 7.5 8.8 10.1 4.2 5.6 7.0 4.6 6.1 7.7 7.4 8.9 10.5 12.0 MPa 443 742 583 935 276 198 113 353 181 257 40 153 24 35 47 68 88 114 132 155 26 38 51 40 58 79 141 176 212 251 **centreline dimensions given for FE tests Department of Civil Engineering Research Report No R845 66 λd P u,t fu f u /f y 0.77 0.59 0.67 0.53 0.97 1.15 1.51 0.86 1.20 1.01 2.54 1.30 3.29 2.74 2.36 1.96 1.71 1.51 1.40 1.29 3.14 2.62 2.25 2.54 2.11 1.81 1.36 1.22 1.11 1.02 kN 86 150 97 168 284 248 207 346 257 397 27 25 241 403 608 457 712 1008 1281 1592 235 401 606 240 415 631 739 1036 1316 1592 MPa 224 268 241 285 190 173 151 210 163 190 86 159 66 82 100 91 113 134 146 160 69 89 108 78 101 124 140 164 179 190 0.86 1.03 0.93 1.09 0.73 0.67 0.58 0.81 0.63 0.73 0.33 0.61 0.25 0.32 0.38 0.35 0.44 0.52 0.56 0.61 0.27 0.34 0.42 0.30 0.39 0.48 0.54 0.63 0.69 0.73 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 13. FE Test Results Summary: 304 Simple Lipped Channels Test ID 304_60_60_10_2 304_60_60_10_3 304_60_60_15_2 304_60_60_15_3 304_150_150_30_3 304_150_150_20_3 304_150_150_10_3 304_200_100_15_4 304_200_150_20_3 304_200_150_20_4 304_150_80_5_1 304_50_50_5_1 304_400_400_20_3 304_400_400_20_4 304_400_400_20_5 304_400_400_40_4 304_400_400_40_5 304_400_400_40_6 304_400_400_40_7 304_400_400_40_8 304_300_400_20_3 304_300_400_20_4 304_300_400_20_5 304_400_300_20_3 304_400_300_20_4 304_400_300_20_5 304_400_300_40_5 304_400_300_40_6 304_400_300_40_7 304_400_300_40_8 flats P flats kN 65 112 74 124 213 183 153 257 191 300 20 18 176 292 443 347 516 727 947 1180 171 293 447 177 294 457 551 766 984 1199 Department of Civil Engineering Research Report No R845 A c /A g % 6.4 9.7 6.1 9.2 3.7 3.9 4.1 5.9 3.5 4.7 2.0 4.0 1.5 2.0 2.6 2.0 2.5 3.0 3.5 4.0 1.7 2.2 2.8 1.8 2.4 3.0 2.9 3.5 4.1 4.7 λd 0.70 0.54 0.61 0.48 0.88 1.04 1.38 0.78 1.09 0.91 2.33 1.18 2.98 2.48 2.14 1.77 1.55 1.40 1.27 1.18 2.85 2.38 2.05 2.30 1.92 1.64 1.23 1.10 1.01 0.93 r/t=1 P r/t=1 kN 67 120 77 135 217 187 160 266 195 308 21 19 175 296 454 347 525 746 977 1219 175 301 457 176 302 467 558 780 1007 1232 67 P r/t=1 /P flats 1.04 1.07 1.05 1.09 1.02 1.02 1.04 1.03 1.02 1.03 1.02 1.03 0.99 1.01 1.03 1.00 1.02 1.03 1.03 1.03 1.03 1.03 1.02 1.00 1.03 1.02 1.01 1.02 1.02 1.03 A c /A g % 16.4 25.2 15.6 23.9 9.5 9.9 10.3 15.2 8.9 12.0 5.0 10.1 3.8 5.1 6.4 5.0 6.2 7.5 8.8 10.1 4.2 5.6 7.0 4.6 6.1 7.7 7.4 8.9 10.5 12.0 λd 0.69 0.53 0.60 0.47 0.87 1.03 1.36 0.77 1.08 0.90 2.28 1.17 2.96 2.46 2.12 1.76 1.54 1.36 1.26 1.16 2.82 2.36 2.03 2.28 1.90 1.63 1.22 1.09 1.00 0.92 r/t=2.5 P r/t=2.5 kN 68 123 78 139 218 188 164 268 196 315 21 19 179 305 458 346 531 755 990 1234 177 305 464 183 307 477 561 784 1014 1245 P r/t=2.5 /P flats 1.05 1.10 1.06 1.12 1.02 1.03 1.07 1.04 1.03 1.05 1.02 1.04 1.02 1.04 1.03 1.00 1.03 1.04 1.04 1.05 1.04 1.04 1.04 1.04 1.04 1.04 1.02 1.02 1.03 1.04 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 14. FE Test Results Summary: 430 Simple Lipped Channels Test ID 430_60_60_10_2 430_60_60_10_3 430_60_60_15_2 430_60_60_15_3 430_150_150_30_3 430_150_150_20_3 430_150_150_10_3 430_200_100_15_4 430_200_150_20_3 430_200_150_20_4 430_150_80_5_1 430_50_50_5_1 430_400_400_20_3 430_400_400_20_4 430_400_400_20_5 430_400_400_40_4 430_400_400_40_5 430_400_400_40_6 430_400_400_40_7 430_400_400_40_8 430_300_400_20_3 430_300_400_20_4 430_300_400_20_5 430_400_300_20_3 430_400_300_20_4 430_400_300_20_5 430_400_300_40_5 430_400_300_40_6 430_400_300_40_7 430_400_300_40_8 flats P flats A c /A g kN % 6.4 85 9.7 146 6.1 96 9.2 163 3.7 280 3.9 240 4.1 200 5.9 338 3.5 244 4.7 390 2.0 26 4.0 24 1.5 231 2.0 356 2.6 579 2.0 424 2.5 647 3.0 950 3.5 1226 4.0 1531 1.7 225 2.2 383 2.8 579 1.8 231 2.4 397 3.0 594 2.9 699 3.5 980 4.1 1283 4.7 1563 Department of Civil Engineering Research Report No R845 λd 0.85 0.66 0.74 0.59 1.07 1.27 1.69 0.95 1.33 1.11 2.84 1.44 3.64 3.02 2.61 2.16 1.89 1.71 1.55 1.44 3.47 2.90 2.50 2.80 2.33 2.00 1.50 1.35 1.23 1.13 r/t=1 P r/t=1 kN 87 153 98 171 284 243 203 345 246 397 27 24 231 357 586 430 650 953 1234 1547 228 388 586 234 402 601 704 988 1300 1589 68 P r/t=1 /P flats 1.02 1.04 1.03 1.05 1.01 1.01 1.02 1.02 1.01 1.02 1.01 1.01 1.00 1.00 1.01 1.02 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 A c /A g % 16.4 25.2 15.6 23.9 9.5 9.9 10.3 15.2 8.9 12.0 5.0 10.1 3.8 5.1 6.4 5.0 6.2 7.5 8.8 10.1 4.2 5.6 7.0 4.6 6.1 7.7 7.4 8.9 10.5 12.0 λd 0.84 0.65 0.73 0.58 1.06 1.25 1.66 0.94 1.31 1.10 2.78 1.43 3.61 3.00 2.59 2.15 1.88 1.65 1.54 1.42 3.44 2.87 2.47 2.78 2.31 1.98 1.49 1.33 1.21 1.12 r/t=2.5 P r/t=2.5 kN 87 154 99 173 286 244 205 346 247 399 26 24 236 343 586 437 650 953 1236 1556 229 390 590 235 404 605 704 992 1306 1598 P r/t=2.5 /P flats 1.03 1.05 1.03 1.06 1.02 1.02 1.03 1.02 1.01 1.02 1.00 1.01 1.02 0.96 1.01 1.03 1.00 1.00 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.01 1.02 1.02 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 15. FE Test Results Summary: 3Cr12 Simple Lipped Channels Test ID 3Cr12_60_60_10_2 3Cr12_60_60_10_3 3Cr12_60_60_15_2 3Cr12_60_60_15_3 3Cr12_150_150_30_3 3Cr12_150_150_20_3 3Cr12_150_150_10_3 3Cr12_200_100_15_4 3Cr12_200_150_20_3 3Cr12_200_150_20_4 3Cr12_150_80_5_1 3Cr12_50_50_5_1 3Cr12_400_400_20_3 3Cr12_400_400_20_4 3Cr12_400_400_20_5 3Cr12_400_400_40_4 3Cr12_400_400_40_5 3Cr12_400_400_40_6 3Cr12_400_400_40_7 3Cr12_400_400_40_8 3Cr12_300_400_20_3 3Cr12_300_400_20_4 3Cr12_300_400_20_5 3Cr12_400_300_20_3 3Cr12_400_300_20_4 3Cr12_400_300_20_5 3Cr12_400_300_40_5 3Cr12_400_300_40_6 3Cr12_400_300_40_7 3Cr12_400_300_40_8 flats P flats A c /A g kN % 6.4 83 9.7 142 6.1 93 9.2 157 3.7 278 3.9 243 4.1 201 5.9 335 3.5 254 4.7 389 2.0 27 4.0 24 1.5 237 2.0 382 2.6 602 2.0 444 2.5 709 3.0 1005 3.5 1267 4.0 1563 1.7 231 2.2 395 2.8 597 1.8 237 2.4 409 3.0 618 2.9 738 3.5 1022 4.1 1292 4.7 1556 Department of Civil Engineering Research Report No R845 λd 0.78 0.60 0.67 0.53 0.98 1.16 1.54 0.87 1.21 1.02 2.59 1.31 3.32 2.76 2.38 1.97 1.73 1.56 1.42 1.31 3.17 2.65 2.28 2.56 2.13 1.83 1.37 1.23 1.12 1.03 r/t=1 P r/t=1 kN 85 148 96 165 283 246 205 343 256 396 27 25 237 383 607 447 710 1009 1277 1581 234 399 603 240 413 621 741 1032 1311 1584 69 P r/t=1 /P flats 1.03 1.04 1.03 1.05 1.02 1.01 1.02 1.02 1.01 1.02 1.01 1.01 1.00 1.00 1.01 1.01 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.01 1.01 1.02 A c /A g % 16.4 25.2 15.6 23.9 9.5 9.9 10.3 15.2 8.9 12.0 5.0 10.1 3.8 5.1 6.4 5.0 6.2 7.5 8.8 10.1 4.2 5.6 7.0 4.6 6.1 7.7 7.4 8.9 10.5 12.0 λd 0.77 0.59 0.67 0.53 0.97 1.15 1.51 0.86 1.20 1.01 2.54 1.30 3.29 2.74 2.36 1.96 1.71 1.51 1.40 1.29 3.14 2.62 2.25 2.54 2.11 1.81 1.36 1.22 1.11 1.02 r/t=2.5 P r/t=2.5 kN 86 150 97 168 284 248 207 346 257 397 27 25 241 403 608 457 712 1008 1281 1592 235 401 606 240 415 631 739 1036 1316 1592 P r/t=2.5 /P flats 1.03 1.06 1.04 1.07 1.02 1.02 1.03 1.03 1.01 1.02 1.00 1.01 1.02 1.06 1.01 1.03 1.00 1.00 1.01 1.02 1.02 1.02 1.01 1.01 1.01 1.02 1.00 1.01 1.02 1.02 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 16. 304 Lipped Channels with Intermediate Stiffeners-Experimental Material Properties f pf Test ID 304DS1a 304DS2b fy Eo f yc Geometric Properties** L,L cr MPa MPa MPa MPa mm 164 242 187000 565 788 164 242 187000 565 785 Bw Bf Bl di t mm mm mm mm mm 122.1 90.6 15.0 10.0 1.96 122.2 90.6 15.0 10.0 1.96 Test Results Ac A c /A g r Ag mm 3.00 3.00 mm 2 mm 634 634 122 123 2 % 19 19 f cr λd MPa 333 0.85 333 0.85 P u,t fu f u /f y kN 132 134 MPa 208 211 0.86 0.87 **L, overall dimensions and inner radius given for experimental tests and di is an approximation used for FE only Table A. 17. 304 Lipped Channels with Intermediate Stiffeners-Flats Material Properties Test ID 304_200_160_25_10_2 304_200_160_25_10_3 304_200_160_25_10_4 304_400_160_25_10_2 304_400_160_25_10_3 304_400_160_25_10_4 304_400_160_25_20_2 304_400_160_25_20_3 304_400_160_25_20_4 304_800_400_40_15_3 304_800_400_40_15_4 304_800_400_40_15_5 304_800_400_40_15_6 304_800_400_40_30_4 304_800_400_40_30_5 304_800_400_40_30_6 304_150_100_10_10_1 304_150_70_15_10_1 304_150_70_15_10_2 304_200_80_15_10_1 304_200_80_15_10_2 304_150_110_15_10_2 304_300_200_20_15_2 304_300_200_20_15_3 304_100_70_20_10_1 304_250_95_20_10_2 304_250_95_20_10_3 304_100_60_10_10_1 304_200_150_15_15_2 304_90_60_10_5_1 304_150_70_15_10_4 304_150_70_15_10_5 304_200_160_35_20_6 304_200_160_35_20_7 Geometric Properties** Test Results f pf fy Eo f yc L,L cr Bw Bf Bl di t r Ag Ac A c /A g f cr MPa 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 MPa 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 mm 1400 1200 1000 600 600 500 1800 1600 1200 3500 3000 3000 2500 3500 3000 2500 900 900 600 1000 700 800 1600 1400 900 900 700 600 1000 500 400 400 900 800 mm 200 200 200 400 400 400 400 400 400 800 800 800 800 800 800 800 150 150 150 200 200 150 300 300 100 250 250 100 200 90 150 150 200 200 mm 160 160 160 160 160 160 160 160 160 400 400 400 400 400 400 400 100 70 70 80 80 110 200 200 70 95 95 60 150 60 70 70 160 160 mm 25 25 25 25 25 25 25 25 25 40 40 40 40 40 40 40 10 15 15 15 15 15 20 20 20 20 20 10 15 10 15 15 35 35 mm 10 10 10 10 10 10 20 20 20 15 15 15 15 30 30 30 10 10 10 10 10 10 15 15 10 10 10 10 15 5 10 10 20 20 mm 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 1.00 4.00 5.00 6.00 7.00 mm 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 1.00 4.00 5.00 6.00 7.00 mm2 mm2 1177 1755 2327 1577 2355 3127 1626 2430 3227 5123 6769 8505 10186 6966 8691 10410 392 341 681 412 817 837 1542 2303 302 997 1485 262 1122 239 1327 1643 3721 4318 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5.3 8.1 10.8 4.0 6.0 8.0 3.9 5.8 7.8 2.8 3.7 4.6 5.6 3.6 4.5 5.4 4.0 4.6 9.2 3.8 7.7 7.5 4.1 6.1 5.2 6.3 9.5 6.0 5.6 6.6 18.9 23.9 15.2 17.8 MPa 106 169 238 58 95 138 73 115 165 28 40 52 65 45 58 74 62 111 251 72 164 139 55 88 186 131 214 162 89 189 619 837 527 638 **L cr and centreline dimensions given for FE tests Department of Civil Engineering Research Report No R845 70 λd P u,t fu f u /f y 1.35 1.08 0.91 1.83 1.43 1.19 1.64 1.30 1.09 2.63 2.22 1.94 1.73 2.09 1.83 1.63 1.77 1.33 0.88 1.65 1.09 1.19 1.89 1.49 1.02 1.22 0.95 1.10 1.48 1.02 0.56 0.48 0.61 0.55 kN 116 215 328 116 211 328 128 232 355 252 408 577 792 484 683 902 36 32 90 32 90 101 129 235 36 98 182 31 123 27 250 330 669 817 MPa 99 123 141 73 90 105 79 96 110 49 60 68 78 70 79 87 91 94 132 78 110 120 84 102 118 98 123 118 109 113 188 201 180 189 0.51 0.63 0.72 0.38 0.46 0.54 0.40 0.49 0.56 0.25 0.31 0.35 0.40 0.36 0.40 0.44 0.47 0.48 0.68 0.40 0.57 0.62 0.43 0.52 0.60 0.50 0.63 0.61 0.56 0.58 0.97 1.03 0.92 0.97 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 18. 304 Lipped Channels with Intermediate Stiffeners: r/t=1 Material Properties Test ID 304_200_160_25_10_2_1 304_200_160_25_10_3_1 304_200_160_25_10_4_1 304_400_160_25_10_2_1 304_400_160_25_10_3_1 304_400_160_25_10_4_1 304_400_160_25_20_2_1 304_400_160_25_20_3_1 304_400_160_25_20_4_1 304_800_400_40_15_3_1 304_800_400_40_15_4_1 304_800_400_40_15_5_1 304_800_400_40_15_6_1 304_800_400_40_30_4_1 304_800_400_40_30_5_1 304_800_400_40_30_6_1 304_150_100_10_10_1_1 304_150_70_15_10_1_1 304_150_70_15_10_2_1 304_200_80_15_10_1_1 304_200_80_15_10_2_1 304_150_110_15_10_2_1 304_300_200_20_15_2_1 304_300_200_20_15_3_1 304_100_70_20_10_1_1 304_250_95_20_10_2_1 304_250_95_20_10_3_1 304_100_60_10_10_1_1 304_200_150_15_15_2_1 304_90_60_10_5_1_1 304_150_70_15_10_4_1 304_150_70_15_10_5_1 304_200_160_35_20_6_1 304_200_160_35_20_7_1 Geometric Properties** Test Results f pf fy Eo f yc L,L cr Bw Bf Bl di t r Ag Ac A c /A g f cr MPa 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 MPa 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 MPa 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 mm 1400 1200 1000 600 600 500 1800 1600 1200 3500 3000 3000 2500 3500 3000 2500 900 900 600 1000 700 800 1600 1400 900 900 700 600 1000 500 400 400 900 800 mm 200 200 200 400 400 400 400 400 400 800 800 800 800 800 800 800 150 150 150 200 200 150 300 300 100 250 250 100 200 90 150 150 200 200 mm 160 160 160 160 160 160 160 160 160 400 400 400 400 400 400 400 100 70 70 80 80 110 200 200 70 95 95 60 150 60 70 70 160 160 mm 25 25 25 25 25 25 25 25 25 40 40 40 40 40 40 40 10 15 15 15 15 15 20 20 20 20 20 10 15 10 15 15 35 35 mm 10 10 10 10 10 10 20 20 20 15 15 15 15 30 30 30 10 10 10 10 10 10 15 15 10 10 10 10 15 5 10 10 20 20 mm 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 1.00 4.00 5.00 6.00 7.00 mm 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 1.00 4.00 5.00 6.00 7.00 mm2 mm2 1177 1755 2327 1577 2355 3127 1626 2430 3227 5123 6769 8505 10186 6966 8691 10410 392 341 681 412 817 837 1542 2303 302 997 1485 262 1122 239 1327 1643 3721 4318 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5.3 8.1 10.8 4.0 6.0 8.0 3.9 5.8 7.8 2.8 3.7 4.6 5.6 3.6 4.5 5.4 4.0 4.6 9.2 3.8 7.7 7.5 4.1 6.1 5.2 6.3 9.5 6.0 5.6 6.6 18.9 23.9 15.2 17.8 MPa 106 169 238 58 95 138 73 115 165 28 40 52 65 45 58 74 62 111 251 72 164 139 55 88 186 131 214 162 89 189 619 837 527 638 **L cr and centreline dimensions given for FE tests Department of Civil Engineering Research Report No R845 71 λd P u,t fu f u /f y 1.35 1.08 0.91 1.83 1.43 1.19 1.64 1.30 1.09 2.63 2.22 1.94 1.73 2.09 1.83 1.63 1.77 1.33 0.88 1.65 1.09 1.19 1.89 1.49 1.02 1.22 0.95 1.10 1.48 1.02 0.56 0.48 0.61 0.55 kN 121 227 352 119 221 347 133 244 379 258 423 603 829 503 715 952 37 33 96 33 95 107 133 247 37 102 193 32 128 28 291 408 757 950 MPa 103 129 151 76 94 111 82 100 117 50 62 71 81 72 82 91 94 97 141 81 117 127 86 107 122 103 130 123 114 119 219 249 203 220 0.53 0.66 0.78 0.39 0.48 0.57 0.42 0.51 0.60 0.26 0.32 0.36 0.42 0.37 0.42 0.47 0.48 0.50 0.73 0.41 0.60 0.65 0.44 0.55 0.62 0.53 0.67 0.63 0.59 0.61 1.12 1.28 1.04 1.13 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 19. 304 Lipped Channels with Intermediate Stiffeners: r/t=2.5 Material Properties Test ID 304_200_160_25_10_2_2.5 304_200_160_25_10_3_2.5 304_200_160_25_10_4_2.5 304_400_160_25_10_2_2.5 304_400_160_25_10_3_2.5 304_400_160_25_10_4_2.5 304_400_160_25_20_2_2.5 304_400_160_25_20_3_2.5 304_400_160_25_20_4_2.5 304_800_400_40_15_3_2.5 304_800_400_40_15_4_2.5 304_800_400_40_15_5_2.5 304_800_400_40_15_6_2.5 304_800_400_40_30_4_2.5 304_800_400_40_30_5_2.5 304_800_400_40_30_6_2.5 304_150_100_10_10_1_2.5 304_150_70_15_10_1_2.5 304_150_70_15_10_2_2.5 304_200_80_15_10_1_2.5 304_200_80_15_10_2_2.5 304_150_110_15_10_2_2.5 304_300_200_20_15_2_2.5 304_300_200_20_15_3_2.5 304_100_70_20_10_1_2.5 304_250_95_20_10_2_2.5 304_250_95_20_10_3_2.5 304_100_60_10_10_1_2.5 304_200_150_15_15_2_2.5 304_90_60_10_5_1_2.5 304_150_70_15_10_4_2.5 304_150_70_15_10_5_2.5 304_200_160_35_20_6_2.5 304_200_160_35_20_7_2.5 Geometric Properties** Bl di Test Results f pf fy Eo f yc L,L cr Bw Bf MPa 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 MPa 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 195000 MPa 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 mm 1400 1200 1000 600 600 500 1800 1600 1200 3500 3000 3000 2500 3500 3000 2500 900 900 600 1000 700 800 1600 1400 900 900 700 600 1000 500 400 400 900 800 mm 200 200 200 400 400 400 400 400 400 800 800 800 800 800 800 800 150 150 150 200 200 150 300 300 100 250 250 100 200 90 150 150 200 200 mm mm mm mm mm mm mm 160 25 10 2.00 5.00 1157 157 160 25 10 3.00 7.50 1711 353 160 25 10 4.00 9.00 2262 565 160 25 10 2.00 5.00 1557 157 160 25 10 3.00 7.50 2311 353 160 25 10 4.00 9.00 3062 565 160 25 20 2.00 5.00 1607 157 160 25 20 3.00 7.50 2386 353 160 25 20 4.00 10.00 3148 628 400 40 15 3.00 7.50 5078 353 400 40 15 4.00 10.00 6739 628 400 40 15 5.00 12.50 8382 982 400 40 15 6.00 12.00 10069 1131 400 40 30 4.00 10.00 6888 628 400 40 30 5.00 12.50 8569 982 400 40 30 6.00 15.00 10234 1414 39 100 10 10 1.00 2.50 387 39 70 15 10 1.00 2.50 337 157 70 15 10 2.00 5.00 657 39 80 15 10 1.00 2.50 407 157 80 15 10 2.00 5.00 797 157 110 15 10 2.00 5.00 817 200 20 15 2.00 5.00 1522 157 200 20 15 3.00 7.50 2258 353 39 70 20 10 1.00 2.50 297 157 95 20 10 2.00 5.00 977 95 20 10 3.00 7.50 1441 353 39 60 10 10 1.00 2.50 257 150 15 15 2.00 5.00 1102 157 39 60 10 5 1.00 2.50 234 70 15 10 4.00 8.50 1268 534 70 15 10 5.00 8.50 1586 668 160 35 20 6.00 15.00 3545 1414 160 35 20 7.00 17.50 4078 1924 t Ac Ag r 2 A c /A g f cr % 13.6 20.7 25.0 10.1 15.3 18.5 9.8 14.8 20.0 7.0 9.3 11.7 11.2 9.1 11.5 13.8 10.2 11.7 23.9 9.7 19.7 19.2 10.3 15.6 13.2 16.1 24.5 15.3 14.3 16.8 42.1 42.1 39.9 47.2 MPa 109 174 245 54 87 129 73 115 163 27 38 51 67 45 59 74 63 115 264 74 170 148 56 88 191 133 213 167 92 202 645 866 546 666 2 λd P u,t fu f u /f y 1.34 1.06 0.89 1.90 1.50 1.23 1.64 1.30 1.09 2.69 2.26 1.95 1.71 2.08 1.82 1.62 1.76 1.30 0.86 1.62 1.07 1.15 1.87 1.49 1.01 1.21 0.96 1.08 1.46 0.98 0.55 0.47 0.60 0.54 kN 122 228 356 121 227 360 135 248 384 255 391 590 832 509 721 958 37 34 100 34 98 109 134 249 37 104 196 33 131 29 302 413 793 1009 MPa 105 133 158 78 98 118 84 104 122 50 58 70 83 74 84 94 96 100 152 83 122 133 88 110 126 106 136 129 119 123 238 260 224 247 0.54 0.68 0.81 0.40 0.50 0.60 0.43 0.53 0.63 0.26 0.30 0.36 0.42 0.38 0.43 0.48 0.49 0.51 0.78 0.43 0.63 0.68 0.45 0.57 0.65 0.54 0.70 0.66 0.61 0.63 1.22 1.34 1.15 1.27 **L cr and centreline dimensions given for FE tests Table A. 20. 430 Lipped Channels with Intermediate Stiffeners: Experimental Material Properties Test ID 430DS1 430DS2 430DS3 430DS4 f pf fy MPa 170 170 170 170 MPa 271 271 271 271 Eo Geometric Properties** f yc MPa MPa 193000 452 193000 452 193000 452 193000 452 Test Results L,L cr Bw Bf Bl di t r Ag Ac A c /A g f cr mm 875 600 879 600 mm 79.6 79.5 79.6 79.5 mm 70.0 70.2 70.3 70.7 mm 10.5 10.7 14.3 14.2 mm 10.0 10.0 10.0 10.0 mm 1.13 1.13 1.13 1.13 mm 2.43 2.50 2.50 2.50 mm2 269 269 278 278 mm2 53 55 54 54 % 20 20 20 20 MPa 269 335 327 468 λd P u,t fu f u /f y 1.00 0.90 0.91 0.76 kN 60 62 64 72 MPa 222 230 228 258 0.82 0.85 0.84 0.95 **L, overall dimensions and inner radius given for experimental tests and di is an approximation used for FE only Department of Civil Engineering Research Report No R845 72 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 21. 430 Lipped Channels with Intermediate Stiffeners: Flats Material Properties Test ID 430_200_160_25_10_2 430_200_160_25_10_3 430_200_160_25_10_4 430_400_160_25_10_2 430_400_160_25_10_3 430_400_160_25_10_4 430_400_160_25_20_2 430_400_160_25_20_3 430_400_160_25_20_4 430_800_400_40_15_3 430_800_400_40_15_4 430_800_400_40_15_5 430_800_400_40_15_6 430_800_400_40_30_4 430_800_400_40_30_5 430_800_400_40_30_6 430_150_100_10_10_1 430_150_70_15_10_1 430_150_70_15_10_2 430_200_80_15_10_1 430_200_80_15_10_2 430_150_110_15_10_2 430_300_200_20_15_2 430_300_200_20_15_3 430_100_70_20_10_1 430_250_95_20_10_2 430_250_95_20_10_3 430_100_60_10_10_1 430_200_150_15_15_2 430_90_60_10_5_1 430_150_70_15_10_4 430_150_70_15_10_5 430_200_160_35_20_6 430_200_160_35_20_7 Geometric Properties** f pf fy Eo f yc L,L cr Bw Bf Bl di t r MPa 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 MPa 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 MPa 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 MPa 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 mm 1400 1200 1000 600 600 500 1800 1600 1200 3500 3000 3000 2500 3500 3000 2500 900 900 600 1000 700 800 1600 1400 900 900 700 600 1000 500 400 400 900 800 mm 200 200 200 400 400 400 400 400 400 800 800 800 800 800 800 800 150 150 150 200 200 150 300 300 100 250 250 100 200 90 150 150 200 200 mm 160 160 160 160 160 160 160 160 160 400 400 400 400 400 400 400 100 70 70 80 80 110 200 200 70 95 95 60 150 60 70 70 160 160 mm 25 25 25 25 25 25 25 25 25 40 40 40 40 40 40 40 10 15 15 15 15 15 20 20 20 20 20 10 15 10 15 15 35 35 mm 10 10 10 10 10 10 20 20 20 15 15 15 15 30 30 30 10 10 10 10 10 10 15 15 10 10 10 10 15 5 10 10 20 20 mm 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 1.00 4.00 5.00 6.00 7.00 mm 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 1.00 4.00 5.00 6.00 7.00 Test Results **L cr , centreline dimensions given for FE tests Department of Civil Engineering Research Report No R845 73 Ac Ag 2 2 mm mm 63 1177 1755 141 2327 251 63 1577 2355 141 3127 251 63 1626 2430 141 3227 251 5123 141 6769 251 8505 393 10186 565 6966 251 8691 393 10410 565 16 392 16 341 63 681 16 412 63 817 63 837 63 1542 2303 141 16 302 63 997 1485 141 16 262 63 1122 16 239 1327 251 1643 393 3721 565 4318 770 A c /A g f cr % 5.3 8.1 10.8 4.0 6.0 8.0 3.9 5.8 7.8 2.8 3.7 4.6 5.6 3.6 4.5 5.4 4.0 4.6 9.2 3.8 7.7 7.5 4.1 6.1 5.2 6.3 9.5 6.0 5.6 6.6 18.9 23.9 15.2 17.8 MPa 101 160 226 55 90 131 69 109 157 27 38 49 62 42 55 70 59 105 238 68 156 132 52 84 177 124 203 153 84 125 587 794 500 605 λd P u,t fu f u /f y 1.65 1.31 1.10 2.23 1.75 1.45 2.00 1.59 1.32 3.21 2.71 2.37 2.11 2.55 2.23 1.98 2.16 1.62 1.07 2.01 1.33 1.45 2.30 1.81 1.25 1.49 1.16 1.34 1.81 1.48 0.68 0.59 0.74 0.67 kN 155 284 431 154 282 439 167 312 476 316 527 762 1049 625 907 1198 44 43 118 42 121 134 170 310 48 131 241 41 162 36 322 434 873 1068 MPa 131 162 185 97 120 140 103 128 147 62 78 90 103 90 104 115 112 125 173 102 148 160 110 135 158 131 162 158 145 150 243 264 234 247 0.48 0.59 0.67 0.35 0.44 0.51 0.37 0.47 0.54 0.22 0.28 0.33 0.37 0.33 0.38 0.42 0.41 0.46 0.63 0.37 0.54 0.58 0.40 0.49 0.57 0.48 0.59 0.57 0.53 0.54 0.88 0.96 0.85 0.90 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 22. 430 Lipped Channels with Intermediate Stiffeners: r/t=1 Material Properties Test ID 430_200_160_25_10_2_1 430_200_160_25_10_3_1 430_200_160_25_10_4_1 430_400_160_25_10_2_1 430_400_160_25_10_3_1 430_400_160_25_10_4_1 430_400_160_25_20_2_1 430_400_160_25_20_3_1 430_400_160_25_20_4_1 430_800_400_40_15_3_1 430_800_400_40_15_4_1 430_800_400_40_15_5_1 430_800_400_40_15_6_1 430_800_400_40_30_4_1 430_800_400_40_30_5_1 430_800_400_40_30_6_1 430_150_100_10_10_1_1 430_150_70_15_10_1_1 430_150_70_15_10_2_1 430_200_80_15_10_1_1 430_200_80_15_10_2_1 430_150_110_15_10_2_1 430_300_200_20_15_2_1 430_300_200_20_15_3_1 430_100_70_20_10_1_1 430_250_95_20_10_2_1 430_250_95_20_10_3_1 430_100_60_10_10_1_1 430_200_150_15_15_2_1 430_90_60_10_5_1_1 430_150_70_15_10_4_1 430_150_70_15_10_5_1 430_200_160_35_20_6_1 430_200_160_35_20_7_1 f pf fy MPa 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 MPa 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 Eo Geometric Properties** f yc L,L cr Bw Bf Bl di t r MPa MPa mm 185000 479 1400 185000 479 1200 185000 479 1000 185000 479 600 185000 479 600 185000 479 500 185000 479 1800 185000 479 1600 185000 479 1200 185000 479 3500 185000 479 3000 185000 479 3000 185000 479 2500 185000 479 3500 185000 479 3000 185000 479 2500 185000 479 900 185000 479 900 185000 479 600 185000 479 1000 185000 479 700 185000 479 800 185000 479 1600 185000 479 1400 185000 479 900 185000 479 900 185000 479 700 185000 479 600 185000 479 1000 185000 479 500 185000 479 400 185000 479 400 185000 479 900 185000 479 800 mm 200 200 200 400 400 400 400 400 400 800 800 800 800 800 800 800 150 150 150 200 200 150 300 300 100 250 250 100 200 90 150 150 200 200 mm 160 160 160 160 160 160 160 160 160 400 400 400 400 400 400 400 100 70 70 80 80 110 200 200 70 95 95 60 150 60 70 70 160 160 mm 25 25 25 25 25 25 25 25 25 40 40 40 40 40 40 40 10 15 15 15 15 15 20 20 20 20 20 10 15 10 15 15 35 35 mm 10 10 10 10 10 10 20 20 20 15 15 15 15 30 30 30 10 10 10 10 10 10 15 15 10 10 10 10 15 5 10 10 20 20 mm 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 1.00 4.00 5.00 6.00 7.00 mm 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 1.00 4.00 5.00 6.00 7.00 Test Results Ag mm2 mm2 63 1177 1755 141 2327 251 63 1577 2355 141 3127 251 63 1626 2430 141 3227 251 5123 141 6769 251 8505 393 10186 565 6966 251 8691 393 10410 565 16 392 16 341 63 681 16 412 63 817 63 837 63 1542 2303 141 16 302 63 997 1485 141 16 262 63 1122 16 239 1327 251 1643 393 3721 565 4318 770 **L cr , centreline dimensions given for FE tests Department of Civil Engineering Research Report No R845 74 Ac A c /A g f cr % 5.3 8.1 10.8 4.0 6.0 8.0 3.9 5.8 7.8 2.8 3.7 4.6 5.6 3.6 4.5 5.4 4.0 4.6 9.2 3.8 7.7 7.5 4.1 6.1 5.2 6.3 9.5 6.0 5.6 6.6 18.9 23.9 15.2 17.8 MPa 101 160 226 55 90 131 69 109 157 27 38 49 62 42 55 70 59 105 238 68 156 132 52 84 177 124 203 153 84 125 587 794 500 605 λd P u,t fu f u /f y 1.65 1.31 1.10 2.23 1.75 1.45 2.00 1.59 1.32 3.21 2.71 2.37 2.11 2.55 2.23 1.98 2.16 1.62 1.07 2.01 1.33 1.45 2.30 1.81 1.25 1.49 1.16 1.34 1.81 1.48 0.68 0.59 0.74 0.67 kN 157 292 448 155 288 452 170 319 491 323 538 780 1075 635 930 1233 48 43 123 42 124 134 144 319 48 134 248 42 167 37 353 491 937 1165 MPa 133 166 193 98 122 145 105 131 152 63 79 92 106 91 107 118 122 127 180 103 152 160 93 139 160 134 167 161 149 153 266 299 252 270 0.49 0.60 0.70 0.36 0.45 0.53 0.38 0.48 0.55 0.23 0.29 0.33 0.38 0.33 0.39 0.43 0.44 0.46 0.66 0.38 0.55 0.58 0.34 0.50 0.58 0.49 0.61 0.59 0.54 0.56 0.97 1.09 0.92 0.98 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 23. 430 Lipped Channels with Intermediate Stiffeners: r/t=2.5 Material Properties f pf Test ID fy MPa MPa Geometric Properties** Test Results f yc L,L cr Bw Bf Bl di t r Ag Ac A c /A g f cr MPa mm mm mm mm mm mm mm mm2 mm2 % MPa 200 160 25 10 2.00 5.00 1157 157 13.6 103 1.63 200 200 400 400 400 400 400 400 800 800 800 800 800 800 800 150 150 150 200 200 150 300 300 100 250 250 100 200 90 150 150 200 200 160 160 160 160 160 160 160 160 400 400 400 400 400 400 400 100 70 70 80 80 110 200 200 70 95 95 60 150 60 70 70 160 160 25 25 25 25 25 25 25 25 40 40 40 40 40 40 40 10 15 15 15 15 15 20 20 20 20 20 10 15 10 15 15 35 35 10 10 10 10 10 20 20 20 15 15 15 15 30 30 30 10 10 10 10 10 10 15 15 10 10 10 10 15 5 10 10 20 20 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 1.00 4.00 5.00 6.00 7.00 7.50 9.00 5.00 7.50 9.00 5.00 7.50 10.00 7.50 10.00 12.50 12.00 10.00 12.50 15.00 2.50 2.50 5.00 2.50 5.00 5.00 5.00 7.50 2.50 5.00 7.50 2.50 5.00 2.50 8.50 8.50 15.00 17.50 1711 2262 1557 2311 3062 1607 2386 3148 5078 6739 8382 10069 6888 8569 10234 387 337 657 407 797 817 1522 2258 297 977 1441 257 1102 234 1268 1586 3545 4078 353 565 157 353 565 157 353 628 353 628 982 1131 628 982 1414 39 39 157 39 157 157 157 353 39 157 353 39 157 39 534 668 1414 1924 20.7 25.0 10.1 15.3 18.5 9.8 14.8 20.0 7.0 9.3 11.7 11.2 9.1 11.5 13.8 10.2 11.7 23.9 9.7 19.7 19.2 10.3 15.6 13.2 16.1 24.5 15.3 14.3 16.8 42.1 42.1 39.9 47.2 165 233 51 83 122 69 110 155 26 36 49 63 43 56 70 60 109 251 70 161 140 53 84 181 126 202 159 87 134 612 821 518 632 430_200_160_25_10_2_2.5 170 275 185000 424 430_200_160_25_10_3_2.5 430_200_160_25_10_4_2.5 430_400_160_25_10_2_2.5 430_400_160_25_10_3_2.5 430_400_160_25_10_4_2.5 430_400_160_25_20_2_2.5 430_400_160_25_20_3_2.5 430_400_160_25_20_4_2.5 430_800_400_40_15_3_2.5 430_800_400_40_15_4_2.5 430_800_400_40_15_5_2.5 430_800_400_40_15_6_2.5 430_800_400_40_30_4_2.5 430_800_400_40_30_5_2.5 430_800_400_40_30_6_2.5 430_150_100_10_10_1_2.5 430_150_70_15_10_1_2.5 430_150_70_15_10_2_2.5 430_200_80_15_10_1_2.5 430_200_80_15_10_2_2.5 430_150_110_15_10_2_2.5 430_300_200_20_15_2_2.5 430_300_200_20_15_3_2.5 430_100_70_20_10_1_2.5 430_250_95_20_10_2_2.5 430_250_95_20_10_3_2.5 430_100_60_10_10_1_2.5 430_200_150_15_15_2_2.5 430_90_60_10_5_1_2.5 430_150_70_15_10_4_2.5 430_150_70_15_10_5_2.5 430_200_160_35_20_6_2.5 430_200_160_35_20_7_2.5 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 185000 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 424 1400 1200 1000 600 600 500 1800 1600 1200 3500 3000 3000 2500 3500 3000 2500 900 900 600 1000 700 800 1600 1400 900 900 700 600 1000 500 400 400 900 800 **L cr , centreline dimensions given for FE tests Department of Civil Engineering Research Report No R845 λd Eo MPa 75 P u,t fu kN MPa f u /f y 157 136 0.49 1.29 294 1.09 452 2.31 157 1.82 288 1.50 465 2.00 169 1.58 321 1.33 492 3.27 322 2.75 523 2.38 753 2.09 1071 2.54 640 2.22 932 1.98 1229 2.15 45 1.59 44 1.05 128 1.98 43 1.31 126 1.40 139 2.28 170 1.81 319 1.23 49 1.48 134 1.17 249 1.32 43 1.78 168 1.43 37 0.67 363 0.58 497 0.73 964 0.66 1207 172 200 101 125 152 105 134 156 63 78 90 106 93 109 120 116 131 194 106 157 170 112 141 165 137 173 167 153 158 286 314 272 296 0.62 0.73 0.37 0.45 0.55 0.38 0.49 0.57 0.23 0.28 0.33 0.39 0.34 0.40 0.44 0.42 0.48 0.71 0.38 0.57 0.62 0.41 0.51 0.60 0.50 0.63 0.61 0.55 0.57 1.04 1.14 0.99 1.08 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 24. 3Cr12 Lipped Channels with Intermediate Stiffeners: Experimental Material Properties f pf Test ID 3Cr12DS1a 3Cr12DS1b fy Eo Geometric Properties** f yc L,L cr Bw Bf Bl di r Ag Ac A c /A g mm 3.00 3.00 mm2 mm2 565 565 124 124 % 22 22 t MPa MPa MPa MPa mm mm mm mm mm mm 234 339 208000 606 1175 110.7 75.5 15.0 10.0 1.98 234 339 208000 606 1176 111.1 75.7 15.0 10.0 1.98 Test Results f cr λd MPa 387 0.94 387 0.94 P u,t fu f u /f y kN MPa 163 288 0.85 161 285 0.84 **L, overall dimensions and inner radius given for experimental tests and di is an approximation used for FE only Table A. 25. 3Cr12 Lipped Channels with Intermediate Stiffeners: Flats Material Properties Test ID 3Cr12_200_160_25_10_2 3Cr12_200_160_25_10_3 3Cr12_200_160_25_10_4 3Cr12_400_160_25_10_2 3Cr12_400_160_25_10_3 3Cr12_400_160_25_10_4 3Cr12_400_160_25_20_2 3Cr12_400_160_25_20_3 3Cr12_400_160_25_20_4 3Cr12_800_400_40_15_3 3Cr12_800_400_40_15_4 3Cr12_800_400_40_15_5 3Cr12_800_400_40_15_6 3Cr12_800_400_40_30_4 3Cr12_800_400_40_30_5 3Cr12_800_400_40_30_6 3Cr12_150_100_10_10_1 3Cr12_150_70_15_10_1 3Cr12_150_70_15_10_2 3Cr12_200_80_15_10_1 3Cr12_200_80_15_10_2 3Cr12_150_110_15_10_2 3Cr12_300_200_20_15_2 3Cr12_300_200_20_15_3 3Cr12_100_70_20_10_1 3Cr12_250_95_20_10_2 3Cr12_250_95_20_10_3 3Cr12_100_60_10_10_1 3Cr12_200_150_15_15_2 3Cr12_90_60_10_5_1 3Cr12_150_70_15_10_4 3Cr12_150_70_15_10_5 3Cr12_200_160_35_20_6 3Cr12_200_160_35_20_7 Geometric Properties** Test Results f pf fy Eo f yc L,L cr Bw Bf Bl di t r Ag Ac A c /A g f cr MPa 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 MPa 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 MPa 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 MPa 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 mm 1400 1200 1000 600 600 500 1800 1600 1200 3500 3000 3000 2500 3500 3000 2500 900 900 600 1000 700 800 1600 1400 900 900 700 600 1000 500 400 400 900 800 mm 200 200 200 400 400 400 400 400 400 800 800 800 800 800 800 800 150 150 150 200 200 150 300 300 100 250 250 100 200 90 150 150 200 200 mm 160 160 160 160 160 160 160 160 160 400 400 400 400 400 400 400 100 70 70 80 80 110 200 200 70 95 95 60 150 60 70 70 160 160 mm 25 25 25 25 25 25 25 25 25 40 40 40 40 40 40 40 10 15 15 15 15 15 20 20 20 20 20 10 15 10 15 15 35 35 mm 10 10 10 10 10 10 20 20 20 15 15 15 15 30 30 30 10 10 10 10 10 10 15 15 10 10 10 10 15 5 10 10 20 20 mm 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 1.00 4.00 5.00 6.00 7.00 mm 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 1.00 4.00 5.00 6.00 7.00 mm2 mm2 1177 1755 2327 1577 2355 3127 1626 2430 3227 5123 6769 8505 10186 6966 8691 10410 392 341 681 412 817 837 1542 2303 302 997 1485 262 1122 239 1327 1643 3721 4318 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5.3 8.1 10.8 4.0 6.0 8.0 3.9 5.8 7.8 2.8 3.7 4.6 5.6 3.6 4.5 5.4 4.0 4.6 9.2 3.8 7.7 7.5 4.1 6.1 5.2 6.3 9.5 6.0 5.6 6.6 18.9 23.9 15.2 17.8 MPa 114 182 256 63 102 149 78 124 178 30 43 56 70 48 63 79 67 119 270 77 177 149 59 95 201 141 231 174 95 142 666 901 567 687 **L cr , centreline dimensions given for FE tests Department of Civil Engineering Research Report No R845 76 λd P u,t fu f u /f y 1.51 1.20 1.01 2.03 1.60 1.32 1.82 1.45 1.21 2.93 2.47 2.16 1.92 2.33 2.03 1.81 1.97 1.48 0.98 1.83 1.21 1.32 2.10 1.65 1.14 1.36 1.06 1.22 1.65 1.35 0.62 0.54 0.68 0.62 kN 160 287 428 159 290 449 175 316 481 334 551 789 1008 658 929 1224 48 44 120 44 122 133 175 312 49 134 247 41 162 36 312 419 848 1032 MPa 136 164 184 101 123 144 107 130 149 65 81 93 99 94 107 118 122 128 176 107 150 160 114 136 162 135 166 158 145 151 235 255 228 239 0.52 0.63 0.71 0.39 0.47 0.55 0.41 0.50 0.57 0.25 0.31 0.36 0.38 0.36 0.41 0.45 0.47 0.49 0.68 0.41 0.58 0.61 0.44 0.52 0.62 0.52 0.64 0.61 0.56 0.58 0.90 0.98 0.88 0.92 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 26. 3Cr12 Lipped Channels with Intermediate Stiffeners: r/t=1 Material Properties Test ID 3Cr12_200_160_25_10_2_1 3Cr12_200_160_25_10_3_1 3Cr12_200_160_25_10_4_1 3Cr12_400_160_25_10_2_1 3Cr12_400_160_25_10_3_1 3Cr12_400_160_25_10_4_1 3Cr12_400_160_25_20_2_1 3Cr12_400_160_25_20_3_1 3Cr12_400_160_25_20_4_1 3Cr12_800_400_40_15_3_1 3Cr12_800_400_40_15_4_1 3Cr12_800_400_40_15_5_1 3Cr12_800_400_40_15_6_1 3Cr12_800_400_40_30_4_1 3Cr12_800_400_40_30_5_1 3Cr12_800_400_40_30_6_1 3Cr12_150_100_10_10_1_1 3Cr12_150_70_15_10_1_1 3Cr12_150_70_15_10_2_1 3Cr12_200_80_15_10_1_1 3Cr12_200_80_15_10_2_1 3Cr12_150_110_15_10_2_1 3Cr12_300_200_20_15_2_1 3Cr12_300_200_20_15_3_1 3Cr12_100_70_20_10_1_1 3Cr12_250_95_20_10_2_1 3Cr12_250_95_20_10_3_1 3Cr12_100_60_10_10_1_1 3Cr12_200_150_15_15_2_1 3Cr12_90_60_10_5_1_1 3Cr12_150_70_15_10_4_1 3Cr12_150_70_15_10_5_1 3Cr12_200_160_35_20_6_1 3Cr12_200_160_35_20_7_1 Geometric Properties** Test Results f pf fy Eo f yc L,L cr Bw Bf Bl di t r Ag Ac A c /A g f cr MPa 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 MPa 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 MPa 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 MPa 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 460 mm 1400 1200 1000 600 600 500 1800 1600 1200 3500 3000 3000 2500 3500 3000 2500 900 900 600 1000 700 800 1600 1400 900 900 700 600 1000 500 400 400 900 800 mm 200 200 200 400 400 400 400 400 400 800 800 800 800 800 800 800 150 150 150 200 200 150 300 300 100 250 250 100 200 90 150 150 200 200 mm 160 160 160 160 160 160 160 160 160 400 400 400 400 400 400 400 100 70 70 80 80 110 200 200 70 95 95 60 150 60 70 70 160 160 mm 25 25 25 25 25 25 25 25 25 40 40 40 40 40 40 40 10 15 15 15 15 15 20 20 20 20 20 10 15 10 15 15 35 35 mm 10 10 10 10 10 10 20 20 20 15 15 15 15 30 30 30 10 10 10 10 10 10 15 15 10 10 10 10 15 5 10 10 20 20 mm 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 1.00 4.00 5.00 6.00 7.00 mm 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 1.00 4.00 5.00 6.00 7.00 mm2 mm2 1177 1755 2327 1577 2355 3127 1626 2430 3227 5123 6769 8505 10186 6966 8691 10410 392 341 681 412 817 837 1542 2303 302 997 1485 262 1122 239 1327 1643 3721 4318 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5.3 8.1 10.8 4.0 6.0 8.0 3.9 5.8 7.8 2.8 3.7 4.6 5.6 3.6 4.5 5.4 4.0 4.6 9.2 3.8 7.7 7.5 4.1 6.1 5.2 6.3 9.5 6.0 5.6 6.6 18.9 23.9 15.2 17.8 MPa 114 182 256 63 102 149 78 124 178 30 43 56 70 48 63 79 67 119 270 77 177 149 59 95 201 141 231 174 95 142 666 901 567 687 **L cr , centreline dimensions given for FE tests Department of Civil Engineering Research Report No R845 77 λd P u,t fu f u /f y 1.51 1.20 1.01 2.03 1.60 1.32 1.82 1.45 1.21 2.93 2.47 2.16 1.92 2.33 2.03 1.81 1.97 1.48 0.98 1.83 1.21 1.32 2.10 1.65 1.14 1.36 1.06 1.22 1.65 1.35 0.62 0.54 0.68 0.62 kN 163 296 448 161 296 462 178 324 495 340 562 806 1106 670 952 1257 49 44 125 45 126 137 178 321 50 137 255 42 167 37 347 479 918 1136 MPa 138 169 193 102 126 148 109 133 153 66 83 95 109 96 110 121 125 130 183 109 154 164 116 139 165 137 172 162 149 154 261 292 247 263 0.53 0.65 0.74 0.39 0.48 0.57 0.42 0.51 0.59 0.26 0.32 0.36 0.42 0.37 0.42 0.46 0.48 0.50 0.70 0.42 0.59 0.63 0.44 0.54 0.63 0.53 0.66 0.62 0.57 0.59 1.01 1.12 0.95 1.01 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 27. 3Cr12 Lipped Channels with Intermediate Stiffeners: r/t=2.5 Material Properties Test ID 3Cr12_200_160_25_10_2_2.5 3Cr12_200_160_25_10_3_2.5 3Cr12_200_160_25_10_4_2.5 3Cr12_400_160_25_10_2_2.5 3Cr12_400_160_25_10_3_2.5 3Cr12_400_160_25_10_4_2.5 3Cr12_400_160_25_20_2_2.5 3Cr12_400_160_25_20_3_2.5 3Cr12_400_160_25_20_4_2.5 3Cr12_800_400_40_15_3_2.5 3Cr12_800_400_40_15_4_2.5 3Cr12_800_400_40_15_5_2.5 3Cr12_800_400_40_15_6_2.5 3Cr12_800_400_40_30_4_2.5 3Cr12_800_400_40_30_5_2.5 3Cr12_800_400_40_30_6_2.5 3Cr12_150_100_10_10_1_2.5 3Cr12_150_70_15_10_1_2.5 3Cr12_150_70_15_10_2_2.5 3Cr12_200_80_15_10_1_2.5 3Cr12_200_80_15_10_2_2.5 3Cr12_150_110_15_10_2_2.5 3Cr12_300_200_20_15_2_2.5 3Cr12_300_200_20_15_3_2.5 3Cr12_100_70_20_10_1_2.5 3Cr12_250_95_20_10_2_2.5 3Cr12_250_95_20_10_3_2.5 3Cr12_100_60_10_10_1_2.5 3Cr12_200_150_15_15_2_2.5 3Cr12_90_60_10_5_1_2.5 3Cr12_150_70_15_10_4_2.5 3Cr12_150_70_15_10_5_2.5 3Cr12_200_160_35_20_6_2.5 3Cr12_200_160_35_20_7_2.5 Geometric Properties** Test Results f pf fy Eo f yc L,L cr Bw Bf Bl di t r Ag MPa 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 MPa 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 MPa 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 210000 MPa 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 406 mm 1400 1200 1000 600 600 500 1800 1600 1200 3500 3000 3000 2500 3500 3000 2500 900 900 600 1000 700 800 1600 1400 900 900 700 600 1000 500 400 400 900 800 mm 200 200 200 400 400 400 400 400 400 800 800 800 800 800 800 800 150 150 150 200 200 150 300 300 100 250 250 100 200 90 150 150 200 200 mm 160 160 160 160 160 160 160 160 160 400 400 400 400 400 400 400 100 70 70 80 80 110 200 200 70 95 95 60 150 60 70 70 160 160 mm 25 25 25 25 25 25 25 25 25 40 40 40 40 40 40 40 10 15 15 15 15 15 20 20 20 20 20 10 15 10 15 15 35 35 mm 10 10 10 10 10 10 20 20 20 15 15 15 15 30 30 30 10 10 10 10 10 10 15 15 10 10 10 10 15 5 10 10 20 20 mm 2.00 3.00 4.00 2.00 3.00 4.00 2.00 3.00 4.00 3.00 4.00 5.00 6.00 4.00 5.00 6.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00 3.00 1.00 2.00 3.00 1.00 2.00 1.00 4.00 5.00 6.00 7.00 mm 5.00 7.50 9.00 5.00 7.50 9.00 5.00 7.50 10.00 7.50 10.00 12.50 12.00 10.00 12.50 15.00 2.50 2.50 5.00 2.50 5.00 5.00 5.00 7.50 2.50 5.00 7.50 2.50 5.00 2.50 8.50 8.50 15.00 17.50 mm mm 1157 1711 2262 1557 2311 3062 1607 2386 3148 5078 6739 8382 10069 6888 8569 10234 387 337 657 407 797 817 1522 2258 297 977 1441 257 1102 234 1268 1586 3545 4078 157 353 565 157 353 565 157 353 628 353 628 982 1131 628 982 1414 39 39 157 39 157 157 157 353 39 157 353 39 157 39 534 668 1414 1924 **centreline dimensions given for FE tests Department of Civil Engineering Research Report No R845 78 Ac 2 2 A c /A g f cr % 13.6 20.7 25.0 10.1 15.3 18.5 9.8 14.8 20.0 7.0 9.3 11.7 11.2 9.1 11.5 13.8 10.2 11.7 23.9 9.7 19.7 19.2 10.3 15.6 13.2 16.1 24.5 15.3 14.3 16.8 42.1 42.1 39.9 47.2 MPa 117 188 264 58 94 139 78 124 176 29 41 55 72 48 63 80 68 124 285 80 183 159 60 95 206 143 229 180 99 152 694 932 588 717 λd P u,t fu f u /f y 1.49 1.18 0.99 2.11 1.66 1.37 1.82 1.45 1.22 2.99 2.51 2.17 1.90 2.32 2.03 1.80 1.96 1.45 0.96 1.81 1.19 1.28 2.08 1.66 1.12 1.35 1.07 1.20 1.62 1.31 0.61 0.53 0.66 0.60 kN 163 300 454 161 298 478 179 325 497 339 541 776 1110 674 953 1255 49 45 130 45 129 139 179 323 50 138 256 43 168 38 358 485 949 1184 MPa 141 175 201 103 129 156 111 136 158 67 80 93 110 98 111 123 127 135 198 111 161 170 118 143 169 141 178 168 153 160 282 306 268 290 0.54 0.67 0.77 0.40 0.50 0.60 0.43 0.52 0.61 0.26 0.31 0.36 0.42 0.38 0.43 0.47 0.49 0.52 0.76 0.43 0.62 0.65 0.45 0.55 0.65 0.54 0.68 0.65 0.59 0.62 1.09 1.18 1.03 1.12 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 28. FE Test Results Summary: 304 Lipped Channels with Intermediate Stiffeners Test ID 304_200_160_25_10_2 304_200_160_25_10_3 304_200_160_25_10_4 304_400_160_25_10_2 304_400_160_25_10_3 304_400_160_25_10_4 304_400_160_25_20_2 304_400_160_25_20_3 304_400_160_25_20_4 304_800_400_40_15_3 304_800_400_40_15_4 304_800_400_40_15_5 304_800_400_40_15_6 304_800_400_40_30_4 304_800_400_40_30_5 304_800_400_40_30_6 304_150_100_10_10_1 304_150_70_15_10_1 304_150_70_15_10_2 304_200_80_15_10_1 304_200_80_15_10_2 304_150_110_15_10_2 304_300_200_20_15_2 304_300_200_20_15_3 304_100_70_20_10_1 304_250_95_20_10_2 304_250_95_20_10_3 304_100_60_10_10_1 304_200_150_15_15_2 304_90_60_10_5_1 304_150_70_15_10_4 304_150_70_15_10_5 304_200_160_35_20_6 304_200_160_35_20_7 Department of Civil Engineering Research Report No R845 flats P flats kN 116 215 328 116 211 328 128 232 355 252 408 577 792 484 683 902 36 32 90 32 90 101 129 235 36 98 182 31 123 27 250 330 669 817 A c /A g % 5.3 8.1 10.8 4.0 6.0 8.0 3.9 5.8 7.8 2.8 3.7 4.6 5.6 3.6 4.5 5.4 4.0 4.6 9.2 3.8 7.7 7.5 4.1 6.1 5.2 6.3 9.5 6.0 5.6 6.6 18.9 23.9 15.2 17.8 λd 1.35 1.08 0.91 1.83 1.43 1.19 1.64 1.30 1.09 2.63 2.22 1.94 1.73 2.09 1.83 1.63 1.77 1.33 0.88 1.65 1.09 1.19 1.89 1.49 1.02 1.22 0.95 1.10 1.48 1.02 0.56 0.48 0.61 0.55 r/t=1 P r/t=1 kN 121 227 352 119 221 347 133 244 379 258 423 603 829 503 715 952 37 33 96 33 95 107 133 247 37 102 193 32 128 28 291 408 757 950 79 P r/t=1 /P flats 1.04 1.06 1.07 1.03 1.05 1.06 1.03 1.05 1.07 1.03 1.04 1.04 1.05 1.04 1.05 1.06 1.03 1.03 1.07 1.03 1.06 1.06 1.03 1.05 1.03 1.05 1.06 1.05 1.05 1.05 1.16 1.24 1.13 1.16 A c /A g % 13.6 20.7 25.0 10.1 15.3 18.5 9.8 14.8 20.0 7.0 9.3 11.7 11.2 9.1 11.5 13.8 10.2 11.7 23.9 9.7 19.7 19.2 10.3 15.6 13.2 16.1 24.5 15.3 14.3 16.8 42.1 42.1 39.9 47.2 λd 1.34 1.06 0.89 1.90 1.50 1.23 1.64 1.30 1.09 2.69 2.26 1.95 1.71 2.08 1.82 1.62 1.76 1.30 0.86 1.62 1.07 1.15 1.87 1.49 1.01 1.21 0.96 1.08 1.46 0.98 0.55 0.47 0.60 0.54 r/t=2.5 P r/t=2.5 kN 122 228 356 121 227 360 135 248 384 255 391 590 832 509 721 958 37 34 100 34 98 109 134 249 37 104 196 33 131 29 302 413 793 1009 P r/t=2.5 /P flats 1.05 1.06 1.09 1.04 1.08 1.10 1.05 1.07 1.08 1.01 0.96 1.02 1.05 1.05 1.06 1.06 1.05 1.06 1.11 1.05 1.08 1.08 1.04 1.06 1.05 1.06 1.07 1.07 1.07 1.07 1.21 1.25 1.19 1.23 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 29. FE Test Results Summary: 430 Lipped Channels with Intermediate Stiffeners Test ID 430_200_160_25_10_2 430_200_160_25_10_3 430_200_160_25_10_4 430_400_160_25_10_2 430_400_160_25_10_3 430_400_160_25_10_4 430_400_160_25_20_2 430_400_160_25_20_3 430_400_160_25_20_4 430_800_400_40_15_3 430_800_400_40_15_4 430_800_400_40_15_5 430_800_400_40_15_6 430_800_400_40_30_4 430_800_400_40_30_5 430_800_400_40_30_6 430_150_100_10_10_1 430_150_70_15_10_1 430_150_70_15_10_2 430_200_80_15_10_1 430_200_80_15_10_2 430_150_110_15_10_2 430_300_200_20_15_2 430_300_200_20_15_3 430_100_70_20_10_1 430_250_95_20_10_2 430_250_95_20_10_3 430_100_60_10_10_1 430_200_150_15_15_2 430_90_60_10_5_1 430_150_70_15_10_4 430_150_70_15_10_5 430_200_160_35_20_6 430_200_160_35_20_7 Department of Civil Engineering Research Report No R845 flats P flats A c /A g kN % 5.3 155 8.1 284 10.8 431 4.0 154 6.0 282 8.0 439 3.9 167 5.8 312 7.8 476 2.8 316 3.7 527 4.6 762 5.6 1049 3.6 625 4.5 907 5.4 1198 4.0 44 4.6 43 9.2 118 3.8 42 7.7 121 7.5 134 4.1 170 6.1 310 5.2 48 6.3 131 9.5 241 6.0 41 5.6 162 6.6 36 18.9 322 23.9 434 15.2 873 1068 17.8 λd 1.65 1.31 1.10 2.23 1.75 1.45 2.00 1.59 1.32 3.21 2.71 2.37 2.11 2.55 2.23 1.98 2.16 1.62 1.07 2.01 1.33 1.45 2.30 1.81 1.25 1.49 1.16 1.34 1.81 1.48 0.68 0.59 0.74 0.67 r/t=1 P r/t=1 kN 157 292 448 155 288 452 170 319 491 323 538 780 1075 635 930 1233 48 43 123 42 124 134 171 319 48 134 248 42 167 37 353 491 937 1165 80 P r/t=1 /P flats 1.02 1.03 1.04 1.01 1.02 1.03 1.02 1.02 1.03 1.02 1.02 1.02 1.03 1.02 1.03 1.03 1.09 1.02 1.04 1.02 1.03 1.00 1.01 1.03 1.01 1.02 1.03 1.02 1.03 1.02 1.10 1.13 1.07 1.09 A c /A g % 13.6 20.7 25.0 10.1 15.3 18.5 9.8 14.8 20.0 7.0 9.3 11.7 11.2 9.1 11.5 13.8 10.2 11.7 23.9 9.7 19.7 19.2 10.3 15.6 13.2 16.1 24.5 15.3 14.3 16.8 42.1 42.1 39.9 47.2 λd 1.63 1.29 1.09 2.31 1.82 1.50 2.00 1.58 1.33 3.27 2.75 2.38 2.09 2.54 2.22 1.98 2.15 1.59 1.05 1.98 1.31 1.40 2.28 1.81 1.23 1.48 1.17 1.32 1.78 1.43 0.67 0.58 0.73 0.66 r/t=2.5 P r/t=2.5 kN 157 294 452 157 288 465 169 321 492 322 523 753 1071 640 932 1229 45 44 128 43 126 139 170 319 49 134 249 43 168 37 363 497 964 1207 P r/t=2.5 /P flats 1.01 1.03 1.05 1.02 1.02 1.06 1.01 1.03 1.03 1.02 0.99 0.99 1.02 1.02 1.03 1.03 1.02 1.03 1.08 1.03 1.04 1.04 1.00 1.03 1.02 1.03 1.04 1.04 1.04 1.03 1.13 1.15 1.10 1.13 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Table A. 30. FE Test Results Summary: 3Cr12 Lipped Channels with Intermediate Stiffeners Test ID 3Cr12_200_160_25_10_2 3Cr12_200_160_25_10_3 3Cr12_200_160_25_10_4 3Cr12_400_160_25_10_2 3Cr12_400_160_25_10_3 3Cr12_400_160_25_10_4 3Cr12_400_160_25_20_2 3Cr12_400_160_25_20_3 3Cr12_400_160_25_20_4 3Cr12_800_400_40_15_3 3Cr12_800_400_40_15_4 3Cr12_800_400_40_15_5 3Cr12_800_400_40_15_6 3Cr12_800_400_40_30_4 3Cr12_800_400_40_30_5 3Cr12_800_400_40_30_6 3Cr12_150_100_10_10_1 3Cr12_150_70_15_10_1 3Cr12_150_70_15_10_2 3Cr12_200_80_15_10_1 3Cr12_200_80_15_10_2 3Cr12_150_110_15_10_2 3Cr12_300_200_20_15_2 3Cr12_300_200_20_15_3 3Cr12_100_70_20_10_1 3Cr12_250_95_20_10_2 3Cr12_250_95_20_10_3 3Cr12_100_60_10_10_1 3Cr12_200_150_15_15_2 3Cr12_90_60_10_5_1 3Cr12_150_70_15_10_4 3Cr12_150_70_15_10_5 3Cr12_200_160_35_20_6 3Cr12_200_160_35_20_7 Department of Civil Engineering Research Report No R845 flats P flats A c /A g kN % 5.3 160 8.1 287 10.8 428 4.0 159 6.0 290 8.0 449 3.9 175 5.8 316 7.8 481 2.8 334 3.7 551 4.6 789 5.6 1008 3.6 658 4.5 929 5.4 1224 4.0 48 4.6 44 9.2 120 3.8 44 7.7 122 7.5 133 4.1 175 6.1 312 5.2 49 6.3 134 9.5 247 6.0 41 5.6 162 6.6 36 18.9 312 23.9 419 15.2 848 1032 17.8 λd 1.51 1.20 1.01 2.03 1.60 1.32 1.82 1.45 1.21 2.93 2.47 2.16 1.92 2.33 2.03 1.81 1.97 1.48 0.98 1.83 1.21 1.32 2.10 1.65 1.14 1.36 1.06 1.22 1.65 1.35 0.62 0.54 0.68 0.62 81 r/t=1 P r/t=1 kN 163 296 448 161 296 462 178 324 495 340 562 806 1106 670 952 1257 49 44 125 45 126 137 178 321 50 137 255 42 167 37 347 479 918 1136 P r/t=1 /P flats 1.01 1.03 1.05 1.01 1.02 1.03 1.02 1.02 1.03 1.02 1.02 1.02 1.10 1.02 1.02 1.03 1.02 1.02 1.04 1.02 1.03 1.03 1.02 1.03 1.02 1.02 1.03 1.03 1.03 1.02 1.11 1.14 1.08 1.10 A c /A g % 13.6 20.7 25.0 10.1 15.3 18.5 9.8 14.8 20.0 7.0 9.3 11.7 11.2 9.1 11.5 13.8 10.2 11.7 23.9 9.7 19.7 19.2 10.3 15.6 13.2 16.1 24.5 15.3 14.3 16.8 42.1 42.1 39.9 47.2 λd 1.49 1.18 0.99 2.11 1.66 1.37 1.82 1.45 1.22 2.99 2.51 2.17 1.90 2.32 2.03 1.80 1.96 1.45 0.96 1.81 1.19 1.28 2.08 1.66 1.12 1.35 1.07 1.20 1.62 1.31 0.61 0.53 0.66 0.60 r/t=2.5 P r/t=2.5 kN 163 300 454 161 298 478 179 325 497 339 541 776 1110 674 953 1255 49 45 130 45 129 139 179 323 50 138 256 43 168 38 358 485 949 1184 P r/t=2.5 /P flats 1.02 1.04 1.06 1.01 1.03 1.06 1.02 1.03 1.03 1.01 0.98 0.98 1.10 1.02 1.03 1.03 1.03 1.04 1.09 1.02 1.05 1.04 1.02 1.03 1.03 1.02 1.04 1.05 1.04 1.04 1.15 1.16 1.12 1.15 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Appendix B This appendix shows the evaluation of current design codes for simple lipped channels and channels with intermediate stiffeners. The stainless steel codes considered are the AS/NZS 4673 (2001) which is equivalent to the ASCE (2002) and the Eurocode 3 Part1-4 (2004)/Part 13 (2004). The cold-formed carbon steel codes AS/NZS 4600 (1996) and NAS (2001) and NAS Appendix 1 (2004) are also considered and references to applicable clauses are provided. The general notation used in the following pages are shown below. NOTE that EC3 code uses centreline dimensions in calculations. Also, the sections used for FE analyses are defined at the centreline (see Appendix A). Bl Bf rm id t Bw r Figure B. 1. General Cross-Section Notation for Simple Lipped Channels* f Bl 0.5Bf 0.5Bw di Bw rmid rmid r 2di Figure B. 2. General Cross-Section Notation for Lipped Channels with Intermediate Stiffeners* *NB: ABAQUS cross-section dimensions given in APPENDIX A are centreline dimensions Department of Civil Engineering Research Report No R845 82 April 2005 bw2 bw Bw bw Bw bw1 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Figure B. 3. General Symbols used for Web Elements* *NB: EC3 uses centreline widths Bf bf1 bl Bl bl Bl bf bf2 bf Bf Figure B. 4. General Symbols used for Flange and Lip Elements* *NB: EC3 uses centreline widths Department of Civil Engineering Research Report No R845 83 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EFFECTIVE WIDTH CALCULATIONS FOR SIMPLE LIPPED CHANNELS: AS/NZS 4673 (EQUIVALENT TO ASCE 2002) Cross-section and Material Properties Thickness Inner Corner Radius Centerline Corner Radius Web overall width Flange Overall width Lip Overall length 0.2% Yield Stress of flats 0.2% Yield Stress of corners Initial Modulus of Elasticity WEB t := 1.96mm r := 4mm rmid := 4.98mm Bw := 106.3 ⋅mm Bf := 90.2 ⋅mm Bl := 12.7 ⋅mm fy := 242 ⋅MPa fycrns := 565MPa E0 := 187000 ⋅MPa (CL 2.2.1) bw := Bw − 2( t + r) bw = 94.38 mm kw := 4 1.052 ⋅ λ w := bw t ⋅ fy E0 kw ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎥⎤ ⎜ λw ⎠ ⎥ ⎢ ⎝ ρ w := if λ w < 0.673 , 1 , ⎢ ⎥ λw ⎣ ⎦ bew := ρ w ⋅bw λ w = 0.911 Eqn. 2.2.1.2(4). ρ w = 0.833 Eqn. 2.2.1.2(3) bew = 78.572 mm Eqn. 2.2.1.2(2) FLANGES (CL 2.4.3) S := 1.28 ⋅ E0 fy Department of Civil Engineering Research Report No R845 S = 35.581 Eqn. 2.4.1(3) 84 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections bf := Bf − 2 ⋅( t + r) April 2005 bf = 78.28 mm bf = 39.939 t bl := Bl − ( t + r) θ := 90 ⋅ Ia := bl = 6.74 mm π 180 3 Is := bl ⋅t ⋅ bf 0 if 4 Is = 50.01 mm 12 S 3 ≤ t ( sin( θ ) ) 2 3 4 Ia = 1.979 × 10 mm 3 ⎞ ⎛ bf ⎜ t ku bf bf S 4 399 ⋅⎜ − ⋅t if < S∧ > 3 4 ⎠ t t ⎝ S ⎡⎡ ⎛ bf ⎞ ⎤ ⎤ ⎜ ⎢⎢ ⎥ ⎥ ⎢⎢115 ⋅ ⎝ t ⎠ + 5⎥ ⋅t4⎥ otherwise S ⎣⎣ ⎦ ⎦ ⎛ Is C2 := min⎜ ,1 ⎞ C2 = 0.025 ⎝ Ia ⎠ ⎡ kf := 4 if ⎛ bl ⎞ ⎤ , 4⎥ ⎝ bf ⎠ ⎦ ka := min⎢5.25 − 5 ⋅⎜ ku := 0.43 ⎣ bf t ≤ ka = 4 S 3 ( C2) 0.5⋅( ka − ku) + ku kf = 1.479 bf ⎛ bf S⎞ < S∧ > t 3⎠ ⎝ t if ⎜ ⎡⎣( C2) 0.333⋅( ka − ku) + ku⎤⎦ otherwise 1.052 ⋅ λ f := bf t ⋅ fy E0 λ f = 1.243 kf ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎥⎤ ⎜ λf ⎠ ⎥ ⎢ ⎝ ρ f := if λ f < 0.673 , 1 , ⎢ ⎥ λf ⎣ ⎦ Department of Civil Engineering Research Report No R845 ρ f = 0.662 85 Eqn. 2.2.1.2(4). Eqn. 2.2.1.2(3) Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections bef := ρ f ⋅bf April 2005 bef = 51.835 mm Eqn. 2.2.1.2(2) LIP (CL 2.4.3) bl := Bl − ( r + t) bl = 6.74 mm kl := 0.5 1.052 ⋅ λ l := bl t ⋅ fy E0 λ l = 0.184 kl ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎤⎥ ⎜ λl ⎠ ⎥ ⎢ ⎝ ρ l := if λ l < 0.673 , 1 , ⎢ ⎥ λl ⎣ ⎦ bele := ρ l⋅bl bel := Eqn. 2.2.1.2(4). ρl = 1 bele = 6.74 mm bele if bf t ≤ S 3 bel = 0.17 mm bf ⎛ bf S⎞ < S∧ > t 3⎠ ⎝ t C2 ⋅bele if ⎜ C2 ⋅bele otherwise TOTAL EFFECTIVE AREA Aeflats := t ⋅( bew + 2 ⋅bef + 2 ⋅bel) ⎛ ⎝ Aecrns := 2π t ⋅⎜ r + t⎞ 2⎠ Aetotal := Aeflats + Aecrns 2 Aeflats = 357.9 mm 2 Aecrns = 61.3 mm 2 Aetotal = 419.2 mm PREDICTED LOADS Without Enhanced Corner Properties Pn := Aetotal ⋅fy Pn = 101.4 kN With Enhanced Corner Properties Department of Civil Engineering Research Report No R845 86 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Pn := Aeflats ⋅fy + Aecrns ⋅fycrns Department of Civil Engineering Research Report No R845 Pn = 121.3 kN 87 April 2005 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EFFECTIVE WIDTH CALCULATIONS FOR SIMPLE LIPPED CHANNELS: NAS (2001) Cross-section and Material Properties Thickness Inner Corner Radius Centerline Corner Radius Web overall width Flange Overall width Lip Overall length 0.2% Yield Stress of flats 0.2% Yield Stress of corners Initial Modulus of Elasticity WEB t := 1.96mm r := 4mm rmid := 4.98mm Bw := 106.3 ⋅mm Bf := 90.2 ⋅mm Bl := 12.7 ⋅mm fy := 242 ⋅MPa fycrns := 565MPa E0 := 187000 ⋅MPa (CL B2.1) bw := Bw − 2( t + r) bw = 94.38 mm kw := 4 1.052 ⋅ λ w := bw t ⋅ fy E0 kw ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎥⎤ ⎜ λw ⎠ ⎥ ⎢ ⎝ ρ w := if λ w < 0.673 , 1 , ⎢ ⎥ λw ⎣ ⎦ bew := ρ w ⋅bw λ w = 0.911 Eqns. B2.1-4&B2.1-5 ρ w = 0.833 Eqn. B2.1-3 bew = 78.572 mm Eqn. B2.1-2 FLANGES (CL B4.2) S := 1.28 ⋅ E0 fy bf := Bf − 2 ⋅( t + r) Department of Civil Engineering Research Report No R845 S = 35.581 Eqn. B4-1 bf = 78.28 mm 88 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 bf = 39.939 t bl := Bl − ( t + r) θ := 90 ⋅ Ia := bl = 6.74 mm π 180 3 Is := bl ⋅t ⋅ bf 0 if ( sin( θ ) ) 2 4 Is = 50.01 mm 12 Eqn. B4-2 3 ≤ 0.328S t 4 Ia = 1.979 × 10 mm 3 ⎡⎡ bf ⎛ bf ⎞ ⎤⎥ ⎛ ⎢⎢ ⎜ t ⎜ t 4 4 min⎢ ⎢399 ⋅⎜ − 0.327 ⋅t ⎥ , t ⎜ 5 + 115 ⋅ S ⎣⎣ ⎝ S ⎠ ⎦ ⎝ ⎞ ⎤⎥ bf ⎥ if > 0.328S t ⎠⎦ Eqns. B4.2-1&B4-2-10 bf ⎞ ⎤ ⎡⎛ ⎢⎜ 1⎥ t n := max⎢⎜ 0.582 − , ⎥ 4S ⎠ 3 ⎦ ⎣⎝ ⎛ Is R1 := min⎜ ⎝ Ia kf := ,1 ⎞ ⎠ ( n min 3.57 ⋅R1 + 0.43 , 4 ⎡⎡⎛ Bl ⎞ ⎣⎣⎝ bf ⎠ min⎢⎢⎜ 4.82 − 5 1.052 ⋅ λ f := bf t ⋅ ) if Bl bf n ≤ 0.25 n = 0.333 Eqn. B4-2-11 R1 = 0.025 Eqn. B4.2-9 kf = 1.478 ⎤ ⎤ Bl ⎦ ⎦ bf R1 + 0.43⎥ , 4⎥ if 0.25 < Table B4.2 ≤ 0.8 fy E0 λ f = 1.243 kf ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎥⎤ ⎜ λf ⎠ ⎥ ⎢ ⎝ ρ f := if λ f < 0.673 , 1 , ⎢ ⎥ λf ⎣ ⎦ bef := ρ f ⋅bf ρ f = 0.662 Eqn. B2.1-3 bef = 51.835 mm Eqn. B2.1-2 LIP (CL B4.2) bl := Bl − ( r + t) Department of Civil Engineering Research Report No R845 bl = 6.74 mm 89 Eqns. B2.1-4&B2.1-5 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 kl := 0.43 1.052 ⋅ λ l := bl t ⋅ fy E0 kl ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎤⎥ ⎜ λl ⎠ ⎥ ⎢ ⎝ ρ l := if λ l < 0.673 , 1 , ⎢ ⎥ λl ⎣ ⎦ bele := ρ l⋅bl bel := bele if bf t ≤ 0.328S λ l = 0.198 Eqns. B2.1-4&B2.1-5 ρl = 1 Eqn. B2.1-3 bele = 6.74 mm Eqn. B2.1-2 bel = 0.17 mm Eqns. B4.2-3&B4.2-7 ⎛ bf ⎞ > 0.328S ⎝ t ⎠ R1⋅bele if ⎜ TOTAL EFFECTIVE AREA Aeflats := t ⋅( bew + 2 ⋅bef + 2 ⋅bel) ⎛ ⎝ Aecrns := 2π t ⋅⎜ r + t⎞ 2⎠ Aetotal := Aeflats + Aecrns 2 Aeflats = 357.8 mm 2 Aecrns = 61.3 mm 2 Aetotal = 419.1 mm PREDICTED LOADS Without Enhanced Corner Properties Pn := Aetotal ⋅fy Pn = 101.4 kN With Enhanced Corner Properties Pn := Aeflats ⋅fy + Aecrns ⋅fycrns Department of Civil Engineering Research Report No R845 Pn = 121.2 kN 90 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EFFECTIVE WIDTH CALCULATIONS FOR SIMPLE LIPPED CHANNELS: EUROCODE 3 PART 1-4/PART 1-3 Cross-section and Material Properties Thickness Inner Corner Radius Centerline Corner Radius Web overall width Flange Overall width Lip Overall length 0.2% Yield Stress of flats 0.2% Yield Stress of corners Initial Modulus of Elasticity Poisson’s Ratio t := 1.96mm r := 4mm t rmid := r + 2 rmid := 4.98mm Bw := 106.3mm Bf := 90.2mm Bl := 12.7mm fy := 242 ⋅ MPa fycrn := 565 ⋅ MPa E0 := 187000 ⋅ MPa υ := 0.3 Notional Dimensions taking into account rounded corners CL 5.1 Part 1-3 1 ⎞ ⎤ ⎡ ⎛ bf := if⎢ r ≤ 5t ∧ r ≤ 0.1 ⋅ ( Bf − t) , ( Bf − t) , Bf − ( rmid) ⋅ ⎜ 1 − ⋅ 2⎥ bf = 88.2 mm 2⎠ ⎦ ⎣ ⎝ ⎡ ⎣ ⎛ ⎝ bw := if⎢ r ≤ 5t ∧ r ≤ 0.1 ⋅ ( Bw − t) , ( Bw − t) , Bw − ( rmid) ⋅ ⎜ 1 − ⎡ ⎣ ⎛ ⎝ bl := if⎢ r ≤ 5t ∧ r ≤ 0.1 ⋅ ⎜ Bl − 1 ⎞ 2⎠ ⎤ ⎦ ⋅ 2⎥ t⎞ ⎛ t⎞ 1 ⎞⎤ ⎛ , ⎜ Bl − , ( Bl) − ( rmid) ⋅ ⎜ 1 − ⎥ 2⎠ ⎝ 2⎠ 2⎠⎦ ⎝ bw = 104.3 mm bl = 11.2 mm Estimated Gross Area A := ( 2 ⋅ bl + 2bf + bw) ⋅ t Department of Civil Engineering Research Report No R845 2 A = 594 mm 91 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 WEB (CL 5.5.2 Part 1-3) ⎛ 235 ⋅ E ⎞ ⎝ fy ⋅ 210000 ⎠ λ p.w := .5 ε := ⎜ kw := 4 bw t ⋅ 1 λ p.w = 1.007 28.4 ⋅ ε ⋅ kw ⎡⎢ ⎛⎜ 0.772 − 0.125 ⎞⎤⎥ λ p.w ⎟⎥ ⎢ ⎜ ρ w := if λ p.w < 0.673 , 1 , ⎢ ⎜ ⎥ λ p.w ⎣ ⎝ ⎠⎦ ρ w = 0.643 bew := ρ w ⋅ bw bew1 := 0.5 ⋅ bew bew = 67.118 mm bew2 := 0.5 ⋅ bew bew2 = 33.6 mm bew1 = 33.6 mm Initial Effective-Width Calculations assuming flanges are doubly supported CL 5.5.3.2 (3) Part 1-3 with λ and ρ from CL 5.2.3 Part 1-4 FLANGES (CL 5.2.3 Part 1-4) ⎛ 235 ⋅ E ⎞ ⎝ fy ⋅ 210000 ⎠ .5 ε := ⎜ λ p.f := bf t ⋅ kf := 4 1 λ p.f = 0.852 28.4 ⋅ ε ⋅ kf ⎡⎢ ⎛⎜ 0.772 − 0.125 ⎞⎤⎥ λ p.f ⎟⎥ ⎢ ⎜ ρ f := if λ p.f < 0.673 , 1 , ⎢ ⎜ ⎥ λ p.f ⎣ ⎝ ⎠⎦ ρ f = 0.734 bef := ρ f ⋅ bf bef1 := 0.5 ⋅ bef bef = 64.739 mm bef2 := 0.5 ⋅ bef bef2 = 32.4 mm Department of Civil Engineering Research Report No R845 bef1 = 32.4 mm 92 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 LIPS (CL 5.5.3.2 (5) Part 1-3 and 5.2.3 Part 1-4) ⎛ 235 ⋅ E ⎞ ⎝ fy ⋅ 210000 ⎠ .5 ε := ⎜ 2⎤ ⎡⎢ ⎥ 3 ⎛ bl ⎞ ⎥ ⎢ bl kl := if ⎢ bf < 0.35 , 0.5 , 0.5 + 0.83 ⋅ ⎜ bf − 0.35 ⎥ ⎣ ⎝ ⎠ ⎦ λ p.l := bl t ⋅ 1 kl = 0.5 λ p.l = 0.307 28.4 ⋅ ε ⋅ kl ⎡⎢ ⎛⎜ 1.0 − 0.231 ⎞⎤⎥ λ p.l ⎟⎥ ⎢ ⎜ ρ l := if λ p.l < 0.673 , 1 , ⎢ ⎜ ⎥ λ p.l ⎣ ⎝ ⎠⎦ ρl = 1 bel := ρ l ⋅ bl bel = 11.2 mm Initial effective area of stiffeners CL 5.5.3.2 (6) Part 1-3 As1 := t ⋅ ( bef2 + bel) 2 As1 = 85.5 mm Spring Stiffness and Critical Stress Calculation for Edge Stiffener CL 5.5.3.1 Part 1-3 2 ( bef2 + bel ⋅ t) x1 := x1 = 12.27 mm 2 ⋅ ( bef2 + bel) y1 := ( bel2 + bef2 ⋅ t) y1 = 2.18 mm 2 ⋅ ( bef2 + bel) B1 = 75.97 mm B1 := bf − x1 kf1 := 1 3 K1 := E0 ⋅ t ( 4⋅ 1 − υ ) 2 ⋅ 1 2 3 2 B1 ⋅ bw + B1 + 0.5 ⋅ B1 ⋅ bw ⋅ kf1 Department of Civil Engineering Research Report No R845 93 K1 = 0.2883 N 2 mm Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections ⎛ bel ⎞ t t⎞ 3 t ⎛ + bel ⋅ + bef2 ⋅ t ⋅ ⎜ y1 − + bel ⋅ t ⋅ ⎜ − y1 12 12 2⎠ ⎝ ⎝ 2 ⎠ 3 Is1 := bef2 ⋅ April 2005 2 2 4 Is1 = 605 mm Elastic Critical Buckling Stress σ cr.s1 := 2 ⋅ K1 ⋅ E0 ⋅ Is1 σ cr.s1 = 134 As1 N 2 mm Initial Reduction factor for distortional buckling CL 5.5.3.1 (7) Part 1-3 λ d1 := χ d1 := fy λ d1 = 1.346 σ cr.s1 1 if λ d1 ≤ 0.65 ( 1.47 − 0.723 ⋅ λ d1) 0.66 λ d1 if 0.65 < λ d1 < 1.38 if λ d1 ≥ 1.38 χ d1 = 0.497 Iterate for reduction factor -Stiffener CL 5.5.3.2 Part 1-3 Department of Civil Engineering Research Report No R845 94 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections ( ) x χ d1 := April 2005 λ p.f.red1 ← λ p.f ⋅ χ d1 0.125 ⎡⎢ ⎤⎥ 0.772 − λ λ − λ ( ) p.f.red1 p.f p.f.red1 ⎥ ⎢ ρ f ← if λ p.f.red1 < 0.673 , 1 , + 0.18 ⋅ ⎢ λ p.f.red1 ( λ p.f − 0.6) ⎥⎦ ⎣ bef ← ρ f ⋅ bf bef2 ← 0.5 ⋅ bef λ p.l.red1 ← λ p.l ⋅ χ d1 0.231 ⎡⎢ ⎤⎥ 1.0 − λ λ − λ ( ) p.l.red1 p.l p.l.red1 ⎥ ⎢ + 0.18 ⋅ ρ l ← if λ p.l.red1 < 0.673 , 1 , ⎢ λ λ − ( p.l 0.6) ⎥⎦ p.l.red1 ⎣ bel ← bl ⋅ ρ l x1 ← ( bef22 + bel ⋅ t) 2 ⋅ ( bef2 + bel) 2 ( bel + bef2 ⋅ t) y1 ← 2 ⋅ ( bef2 + bel) As1 ← t ⋅ ( bef2 + bel) ⎞ ⎛ bel t t⎞ 3 t ⎛ + bel ⋅ + bef2 ⋅ t ⋅ ⎜ y1 − + bel ⋅ t ⋅ ⎜ − y1 12 12 2⎠ ⎝ ⎝ 2 ⎠ 3 Is1 ← bef2 ⋅ 2⋅ σ cr.s1 ← λ d1 ← χ d1 ← 2 ( K1 ⋅ E0 ⋅ Is1) As1 fy σ cr.s1 1 if λ d1 ≤ 0.65 ( 1.47 − 0.723 ⋅ λ d1) 0.66 λ d1 ans := if 0.65 < λ d1 < 1.38 if λ d1 ≥ 1.38 ( ) χ d1 ← x χ d1 ( ) χ d1 ← x( χ d1) while χ d1 − x χ d1 ( ) > 0.001 ∧ χ d1 < x χ d1 χ d1 χ d1 := ans Department of Civil Engineering Research Report No R845 χ d1 = 0.441 95 2 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections ( ) bef2temp λ p.f , χ d1 := April 2005 λ p.f.red1 ← λ p.f ⋅ χ d1 .125 ⎡⎢ ⎤⎥ 0.772 − λ λ − λ ( ) p.f.red1 p.f p.f.red1 ⎥ ⎢ ρ f ← if λ p.f.red1 < 0.673 , 1 , + 0.18 ⋅ ⎢ λ p.f.red1 ( λ p.f − 0.6) ⎥⎦ ⎣ bef ← ρ f ⋅ bf bef2 ← 0.5 ⋅ bef ( ) bef2temp λ p.f , χ d1 = 44.1 mm ( bef2 := bef2temp λ p.f , χ d1 ( ) beltemp λ p.l , χ d1 := ) bef2 = 44.12 mm λ p.c.red1 ← λ p.l ⋅ χ d1 0.231 ⎡⎢ ⎤⎥ 1.0 − λ p.c.red1 ( λ p.l − λ p.c.red1) ⎥ ⎢ ρ l ← if λ p.c.red1 < 0.673 , 1 , + 0.18 ⋅ ⎢ λ p.c.red1 ( λ p.l − 0.6) ⎥⎦ ⎣ bel ← bl ⋅ ρ l ( ) beltemp λ p.l , χ d1 = 11.2 mm bel := beltemp λ p.l , χ d1 ( ) bel = 11.241 mm TOTAL EFFECTIVE AREA Aetotal := t ⋅ ⎡⎣ bew + 2bef1 + 2( bef2 + bel) ⋅ χ d1 ⎤⎦ Aetotal = 354.1 mm Aecrns := ⎡⎣π ⋅ t ⋅ ( rmid)⎤⎦ ⋅ χ d1 + π ⋅ t ⋅ ( rmid) Aecrns = 44.2 mm Aeflats := Aetotal − Aecrns Aeflats = 309.9 mm 2 2 2 PREDICTED LOADS Without Enhanced Corner Properties Pn := Aetotal ⋅ fy Pn = 85.7 kN With Enhanced Corner Properties Pn := Aeflats ⋅ fy + Aecrns ⋅ fycrn Department of Civil Engineering Research Report No R845 Pn = 100.0 kN 96 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EFFECTIVE WIDTH CALCULATIONS FOR LIPPED CHANNELS WITH INTERMEDIATE STIFFENERS : AS/NZS 4673 (2001), ASCE (2002) (k f < 4; FLANGE IS NOT ADEQUATELY EDGE - STIFFENED ) Cross-section and Material Properties Thickness Inner Corner Radius Centerline Corner Radius t := 1.96 mm r := 3 mm t rmid := r + 2 r mid = 3.98 mm Web overall width B w := 122.2 mm Flange Overall width B f := 90.6 mm Lip Overall length B l := 15 mm Intermediate Stiffener height d i := 9.7 mm NOTE: according to the nominal geometric proportions, the stiffener width, di,w , di,w=2di but measured dimensions of the experimental test specimens show that better agreement is given if di,w=(2di + r). This adjustment is reflected in the calculations. For all FE analyses, di,w=2di. 0.2% Yield Stress of flats 0.2% Yield Stress of corners Initial Modulus of Elasticity Total Corner Area fy := 242 ⋅MPa fycrns := 565MPa E0 := 187000 ⋅MPa Acrns := 2.5 ⋅ ⎡⎣2 ⋅ π ⋅ t ⋅ ( rmid)⎤⎦ 2 Acrns = 122.5 mm Measured Gross Area WEB 2 Ag := 634mm (CL 2.4.2) Moment of Inertia of Intermediate stiffener I s := 377 mm 4 Total Area of Intermediate stiffener A s := 57 mm 2 Corner Area of Intermediate stiffener Ascrns := π t ⋅ rmid A scrns = 24.507 mm Flat Area of Intermediate stiffener Asflats := As − Ascrns A sflats = 32.493 mm Department of Civil Engineering Research Report No R845 97 2 2 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections S := 1.28 ⋅ April 2005 E0 fy S = 35.581 Eqn. 2.4.1 (3) web element b w = 112.28 mm bw := Bw − 2 ⋅ ( t + r) web sub element bw b w1 := 2 − (di + r ) − π⋅r 8 b w1 = 42.262 mm Determine effectiveness of Web Intermediate Stiffener bw t = 57.286 Ia := 0 if bw 4 ≤ S t Ia = 450.108 mm Eqn. 2.4.2.2(3), (6) bw ⎞ ⎛ 1 bw ⋅ − 50 if S < < 3S S t t ⎝ ⎠ bw ⎞ 1 bw 4 ⎛ t ⋅ ⎜ 128 ⋅ − 285 if ≥ 3⋅S S t t ⎝ ⎠ t ⋅ ⎜ 50 ⋅ 4 n := 1 2 1 3 bw if S < if bw ⎛ Is C2 := min⎜ n = 0.5 < 3S ≥ 3S t ,1 t ⎞ C2 = 0.838 ⎝ Ia ⎠ ( n kw := min 3 ⋅ C2 + 1 , 4 ) kw = 3.746 Eqn. 2.4.2.2(7) 2 Aes := C2 ⋅ As A es = 47.742 mm Aescrns := C2 Ascrns A escrns = 20.526 mm Aesflats := C2 ⋅ Asflats A esflats = 27.215 mm 2 2 Determine effectiveness of Web sub element CL 2.4.2 1.052 ⋅ λ w := bw1 t ⋅ fy E0 kw ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎥⎤ ⎜ λw ⎠ ⎥ ⎢ ⎝ ρ w := if λ w < 0.673 , 1 , ⎢ ⎥ λw ⎣ ⎦ Department of Civil Engineering Research Report No R845 98 λw = 0.422 Eqn. 2.2.1.2(4) ρw = 1 Eqn. 2.2.1.2(3) Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 bw1e := bw1 ⋅ ρ w b w1e = 42.262 mm bw2e := bw1e b w2e = 42.262 mm bew := bw1e + bw2e b ew = 84.524 mm Aewflats := bew ⋅ t + Aesflats 2 A ewflats = 192.882 mm 2 Aewcrns := Aescrns A ewcrns = 20.526 mm FLANGES (CL 2.4.3) bf := Bf − 2 ⋅ ( t + r) bf t bf = 80.68 mm = 41.163 b f1 := bf 2 caseA := − (di + r ) − 1 if 2 if 3 if bf t S 3 bf t ≤ < π⋅r 8 S 3 bf t b f1 = 26.462 mm caseA = 2 ≤ S > S CaseA=2 or 3: Flange is Not Fully Effective, temporarily ignore intermediate stiffener and find kf according to CL 2.4.3 FLANGES (CL 2.4.3) (continued) bf := Bf − 2 ⋅ ( t + r) bf = 80.68 mm bl := Bl − ( t + r) bl = 10.04 mm Is := 3 bl ⋅ t 12 ku := 0.43 4 Is = 165.301 mm 3 ⎡ ⎞ ⎤⎥ ⎛ bf ⎢ ⎜ t ku bf S 4 Ia := ⎢399 ⋅ ⎜ − ⋅ t ⎥ if < < S 4 ⎠ 3 t ⎣ ⎝ S ⎦ bf ⎞ ⎛ ⎜ bf t 4 t if ≥ S ⎜ 5 + 115 ⋅ S ⎠ t ⎝ Department of Civil Engineering Research Report No R845 3 4 Ia = 2.037 × 10 mm 99 Eqns. 2.4.3.2(4) (11) Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections n := bf 1 S if < < S 2 3 t April 2005 n = 0.333 bf 1 if ≥ S 3 t ⎛ Is C2 := min⎜ ⎞ ,1 C2 = 0.081 ⎝ Ia ⎠ Bl ⎞ ⎤ ⎡⎛ ka := min⎢⎜ 5.25 − 5 ⋅ , 4⎥ bf ⎠ ⎦ ⎣⎝ Eqn. 2.4.3.2(5) ka = 4 ku = 0.43 kf := C2 ( ka − ku ) + ku n kf = 1.976 caseB := if( kf < 4 , 21 , 22) Eqn. 2.4.3.2(8) caseB = 21 CaseB=2-1: Flange is Not Fully Effective, kf <4 completely ignore intermediate stiffener and find effective areas according to CL 2.4.3 FLANGES (CL 2.4.3) (continued) bf := Bf − 2 ⋅ ( t + r) 1.052 ⋅ λ f := bf ⋅ t bf = 80.68 mm fy E0 kf λ f = 1.108 kf = 1.976 ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎥⎤ ⎜ λf ⎠ ⎥ ⎢ ⎝ ρ f := if λ f < 0.673 , 1 , ⎢ ⎥ λf ⎣ ⎦ Eqn. 2.2.1.2(4) ρ f = 0.723 Eqn. 2.2.1.2(3) bef := bf ⋅ ρ f bef = 58.345 mm Aefflats := t ⋅ bef Aefflats = 114.356 mm 2 LIP (CL 2.4.3) bl := Bl − ( t + r) bl = 10.04 mm kl := 0.43 1.052 ⋅ λ l := bl t ⋅ fy E0 λ l = 0.296 kl Department of Civil Engineering Research Report No R845 100 Eqn. 2.2.1.2(4) Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎤⎥ ⎜ λl ⎠ ⎥ ⎢ ⎝ ρ l := if λ l < 0.673 , 1 , ⎢ ⎥ λl ⎣ ⎦ April 2005 ρl = 1 Eqn. 2.2.1.2(3) bele := bl ⋅ ρ l bele = 10.04 mm bel := bele ⋅ C2 bel = 0.815 mm Aelflats := t ⋅ bel Aelflats = 1.597 mm 2 TOTAL EFFECTIVE AREAS (INTERMEDIATE STIFFENERS OF FLANGES IGNORED) From WEB From FLANGE 2 A ewflats = 192.882 mm 2 A ewcrns = 20.526 mm From LIP 2 2 Aefflats = 114.356 mm Aelflats = 1.597 mm 2 Aefcrns := 0mm 2 Aeflats := Aewflats + 2Aefflats + 2Aelflats A eflats = 424.79 mm Aecrns := Aewcrns + 2Aefcrns + 2πt ⋅ rmid A ecrns = 69.54 mm Aetotal := Aecrns + Aeflats A etotal = 494.328 mm 2 2 PREDICTED LOAD Without enhanced corner properties (kf<4) Pn := ( Aeflats + Aecrns ) ⋅ fy With enhanced corner properties (kf<4) Pn := Aeflats ⋅ fy + Aecrns ⋅ fycrn Department of Civil Engineering Research Report No R845 101 P n = 119.627 kN P n = 142.089 kN Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EFFECTIVE WIDTH CALCULATIONS FOR LIPPED CHANNELS WITH INTERMEDIATE STIFFENERS : AS/NZS 4673 (2001), ASCE (2002) (k f = 4; FLANGE IS NOT ADEQUATELY EDGE - STIFFENED ) Cross-Section and Material Properties Thickness Centerline Corner Radius Centerline Web Width Centerline Flange Width Centerline Lip Length Intermediate Stiffener height (width =2*di) 0.2% Yield Stress of flats 0.2% Yield Stress of corners Initial Modulus of Elasticity Total Corner Area t := 1mm rmid := 1mm Bw := 150mm Bf := 70mm Bl := 15mm di := 10mm fy := 195MPa fycrn := 457MPa E0 := 195000 MPa A crns := 2.5 ⋅ ⎡⎣2 ⋅ π ⋅ t ⋅ ( rmid)⎤⎦ 2 A crns = 15.7mm 2 A g := 341mm Gross Area WEB (CL 2.4.2) 4 Moment of Inertia of Intermediate stiffener Is := 267mm Total Area of Intermediate stiffener A s := 29mm Corner Area of Intermediate stiffener Ascrns := π t ⋅ rmid A scrns = 3.142 mm Flat Area of Intermediate stiffener Asflats := As − Ascrns A sflats = 25.858 mm S := 1.28 ⋅ 2 E0 fy S = 40.477 web element b w := Bw − 2 ⋅ ( rmid) b w = 148mm web sub element b w1 := bw 2 − di − π ⋅ rmid 8 Department of Civil Engineering Research Report No R845 b w1 = 63.607mm 102 Eqn. 2.4.1 (3) 2 2 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Determine effectiveness of Web Intermediate Stiffener bw t = 148 Ia := 0 if bw 4 ≤ S t Ia = 183.017mm Eqn. 2.4.2.2(3), (6) bw ⎛ ⎞ 1 bw ⋅ − 50 if S < < 3S S t t ⎝ ⎠ bw ⎞ 1 bw 4 ⎛ t ⋅ ⎜ 128 ⋅ − 285 if ≥ 3⋅S S t t ⎝ ⎠ t ⋅ ⎜ 50 ⋅ 4 n := bw 1 if S < < 3S 2 t 1 3 if bw ⎛ Is C2 := min⎜ ≥ 3S t ,1 n = 0.333 ⎞ C2 = 1 ⎝ Ia ⎠ ( n kw := min 3 ⋅ C2 + 1 , 4 ) kw = 4 Eqn. 2.4.2.2(7) 2 Aes := C2 ⋅ As A es = 29mm Aescrns := C2 Ascrns A escrns = 3.142 mm Aesflats := C2 ⋅ Asflats A esflats = 25.858 mm 2 2 Determine effectiveness of Web sub element CL 2.4.2 1.052 ⋅ λ w := bw1 t ⋅ fy E0 kw ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎥⎤ ⎜ λw ⎠ ⎥ ⎢ ⎝ ρ w := if λ w < 0.673 , 1 , ⎢ ⎥ λw ⎣ ⎦ λw = 1.058 Eqn. 2.2.1.2(4) ρ w = 0.749 Eqn. 2.2.1.2(3) bw1e := bw1 ⋅ ρ w b w1e = 47.618mm bw2e := bw1e b w2e = 47.618mm bew := bw1e + bw2e b ew = 95.237mm Aewflats := bew ⋅ t + Aesflats 2 A ewflats = 121.095mm 2 Aewcrns := Aescrns Department of Civil Engineering Research Report No R845 A ewcrns = 3.142mm 103 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections FLANGES (CL 2.4.3) b f := Bf − 2 ⋅ ( rmid ) bf t April 2005 b f = 68mm = 41.163 b f1 := bf 2 caseA := π ⋅ rmid − di − 1 if 2 if 3 if 8 bf t ≤ S 3 b f1 = 23.607mm caseA = 3 bf S < ≤ S 3 t bf t > S CaseA=2 or 3: Flange is Not Fully Effective, temporarily ignore intermediate stiffener and find kf according to CL 2.4.3 FLANGES (CL 2.4.3) (continued) b f := Bf − 2 ⋅ ( rmid ) b f = 68mm b l := Bl − ( rmid ) b l = 14mm 3 Is := bl ⋅ t 12 ku := 0.43 4 Is = 228.667mm 3 ⎡ ⎞ ⎤⎥ ⎛ bf ⎢ ⎜ t ku bf S 4 Ia := ⎢399 ⋅ ⎜ − ⋅ t ⎥ if < < S 4 ⎠ 3 t ⎣ ⎝ S ⎦ bf ⎞ ⎛ ⎜ bf t 4 t if ≥ S ⎜ 5 + 115 ⋅ S ⎠ t ⎝ n := bf 1 S if < < S t 2 3 n = 0.333 bf 1 if ≥ S t 3 Department of Civil Engineering Research Report No R845 4 Ia = 198.195mm 104 Eqns. 2.4.3.2(4) (11) Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections ⎛ Is C2 := min⎜ ,1 ⎞ April 2005 C2 = 1 ⎝ Ia ⎠ Bl ⎞ ⎤ ⎡⎛ ka := min⎢⎜ 5.25 − 5 ⋅ , 4⎥ bf ⎠ ⎦ ⎣⎝ Eqn. 2.4.3.2(5) ka = 4 ku = 0.43 kf := C2 ( ka − ku ) + ku n kf = 4 caseB := if( kf < 4 , 21 , 22) Eqn. 2.4.3.2(8) caseB = 22 CaseB=2-2: Flange kf =4; flange is adequately EDGE STIFFENED, include intermediate stiffener and find effective areas according to CL 2.5 FLANGES (CL 2.5) (continued) Moment of Inertia Flange and Intermediate Stiffener Isf := 717.2mm4 Moment of Inertia Intermediate Stiffener only Is := 267mm4 2 ⎤ ⎤ ⎡⎡ 0.119 ⋅ E0 4⎥ ⎢⎢ ⎛ b f1 ⎞ 4⎥ Imin := max⎢⎢( 3.66) ⋅ ⎜ − ⋅ t ⎥ , 18.4 ⋅ t ⎥ fy ⎝ t ⎠ ⎣⎣ ⎦ ⎦ 4 Imin = 76.625mm Eqns. 2.5(1) Determine effectiveness of Flange sub element CL 2.5 bf b f1 := 2 − di − π ⋅ rmid 8 b f1 = 23.607mm kf := 4 1.052 ⋅ λf := b f1 t ⋅ fy E0 kf λf = 0.393 ⎡⎢ ⎛ 1 − 0.22⎞ ⎥⎤ ⎜ λf ⎠ ⎥ ⎢ ⎝ ρ f := if λf < 0.673, 1 , ⎢ ⎥ λf ⎣ ⎦ Eqn. 2.4.3.2(5) ρf = 1 b ef1 := ρ f ⋅ b f1 b ef1 = 23.607mm b ef2 := b ef1 b ef2 = 23.607mm Flange sub element is fully effective, calculate equivalent thickness for flange/intermediate stiffener element CL 2.5(c) Department of Civil Engineering Research Report No R845 105 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections ts := t if Is < Imin ∧ ρ f < 1 3 12 Isf if Is ≥ Imin ∧ ρ f bf bf 1.052 ⋅ ts λf := April 2005 ts = 5.021mm Eqn. 2.5(2) 1 fy ⋅ E0 λf = 0.225 kf ⎡⎢ ⎛ 1 − 0.22⎞ ⎤⎥ ⎜ λf ⎠ ⎥ ⎢ ⎝ ρ f := if λf < 0.673, 1 , ⎢⎣ ⎥⎦ λf ρf = 1 b ef := ρ f ⋅ b f b ef = 68mm A efflats := ( b ef1 + b ef2 ) ⋅ t + A sflats A efflats = 73.073mm A efcrns := A scrns A efcrns = 3.142mm 2 2 LIP (CL 2.4.3) b l := Bl − ( rmid) kl := 0.5 1.052 ⋅ λ l := bl t ⋅ b l = 14mm fy E0 kl ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎤⎥ ⎜ λl ⎠ ⎥ ⎢ ⎝ ρ l := if λ l < 0.673 , 1 , ⎢ ⎥ λl ⎣ ⎦ λl = 0.659 Eqn. 2.2.1.2(4) ρl = 1 Eqn. 2.2.1.2(3) b ele := b l ⋅ ρ l C2 = 1 b ele = 14mm bel := bele ⋅ C2 bel = 14mm A elflats := t ⋅ b el A elflats = 14mm 2 TOTAL EFFECTIVE AREAS From WEB From FLANGE 2 A ewflats = 121.095mm 2 A ewcrns = 3.142mm A efflats = 73.073mm 2 A elflats = 14mm 2 A efcrns = 3.142mm 2 A eflats = 295.241mm A eflats := A ewflats + 2A efflats + 2A elflats Department of Civil Engineering Research Report No R845 From LIP 2 106 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 2 A ecrns = 15.708mm A ecrns := A ewcrns + 2A efcrns + 2πrmid ⋅ t PREDICTED LOAD Without enhanced corner properties (kf=4) Pn := ( Aeflats + Aecrns ) ⋅ fy With enhanced corner properties (kf=4) Pn := Aeflats ⋅ fy + Aecrns ⋅ fycrn Department of Civil Engineering Research Report No R845 107 Pn = 60.635kN Pn = 64.751kN Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections EFFECTIVE WIDTH April 2005 CALCULATIONS FOR CHANNELS WITH INTERMEDIATE STIFFENERS: LIPPED NAS (2001) (k f < 4; FLANGE IS NOT ADEQUATELY EDGE - STIFFENED ) Cross-section and Material Properties Thickness Inner Corner Radius Centerline Corner Radius t := 1.96mm r := 3mm t rmid := r + 2 rmid = 3.98 mm Web overall width Bw := 122.2mm Flange Overall width Bf := 90.6mm Lip Overall length Bl := 15mm Intermediate Stiffener height d i := 9.7 mm NOTE: according to the nominal geometric proportions, the stiffener width, di,w , di,w=2di but measured dimensions of the experimental test specimens show that better agreement is given if di,w=(2di + r). This adjustment is reflected in the calculations. For all FE analyses, di,w=2di 0.2% Yield Stress of flats 0.2% Yield Stress of corners Initial Modulus of Elasticity Total Corner Area fy := 242 ⋅MPa fycrns := 565MPa E0 := 187000 ⋅MPa Acrns := 2.5 ⋅ ⎡⎣2 ⋅ π ⋅ t ⋅ ( rmid)⎤⎦ 2 Acrns = 122.5 mm Measured Gross Area WEB 2 Ag := 634mm (CL B2.1) Moment of Inertia of Intermediate stiffener I s := 377 mm 4 Total Area of Intermediate stiffener A s := 57 mm 2 Corner Area of Intermediate stiffener Ascrns := π t ⋅ rmid A scrns = 24.507 mm Flat Area of Intermediate stiffener Asflats := As − Ascrns A sflats = 32.493 mm Department of Civil Engineering Research Report No R845 108 2 2 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 E0 S := 1.28 ⋅ fy S = 35.581 web element bw := Bw − 2 ⋅ ( t + r) bw = 112.28 mm web sub element b w1 := bw 2 π⋅r − (di + r ) − 8 b w1 = 42.262 mm Determine effectiveness of Web Intermediate Stiffener bw t = 57.286 Ia := bw 4 Ia = 450.108 mm Eqn. B4.1-7 B4.1-8 n = 0.449 Eqn. B4.1-4 R1 = 0.838 Eqn. B4.1-6 kw := 3 ⋅ R1 + 1 kw = 3.771 Eqn. B4.1-5 Aes := R1 ⋅ As A es = 47.742mm Aescrns := R1 Ascrns A escrns = 20.526mm Aesflats := R1 ⋅ Asflats A esflats = 27.215mm 0 if t ≤ S bw ⎞ ⎛ 1 bw ⋅ − 50 if S < < 3S S t t ⎝ ⎠ bw ⎞ 1 bw 4 ⎛ − 285 if ≥ 3⋅S t ⋅ ⎜ 128 ⋅ S t t ⎝ ⎠ t ⋅ ⎜ 50 ⋅ 4 ⎡⎛ ⎣⎝ n := max⎢⎜ 0.583 − ⎛ Is R1 := min⎜ ⎝ Ia ,1 bw ⎞ 1 ⎤ , ⎥ 12 ⋅ S t ⎠ 3 ⎦ 1 ⋅ ⎞ ⎠ n 2 2 2 Determine effectiveness of Web sub element (see figure B4-1) CL B2.1 1.052 ⋅ λ w := bw1 t ⋅ fy E0 λw = 0.42 Eqn. B2.1-4 B2.1-5 kw ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎥⎤ ⎜ λw ⎠ ⎥ ⎢ ⎝ ρ w := if λ w < 0.673 , 1 , ⎢ ⎥ λw ⎣ ⎦ Department of Civil Engineering Research Report No R845 ρw = 1 109 Eqn. B2.1-3 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 bw1e := bw1 ⋅ ρ w b w1e = 42.262 mm bw2e := bw1e b w2e = 42.262 mm bew := bw1e + bw2e b ew = 84.524 mm Aewflats := bew ⋅ t + Aesflats Eqn. B2.1-2 2 A ewflats = 192.882 mm 2 Aewcrns := Aescrns A ewcrns = 20.526 mm FLANGES (CL B5.2) bf := Bf − 2 ⋅ ( t + r) bf t bf = 80.68 mm = 41.163 b f1 := bf 2 π⋅r − (di + r ) − b f1 = 26.462mm 8 ⎛ bf ⎞ ≤ 0.328S , 1 , 2 t ⎝ ⎠ caseA := if⎜ caseA = 2 CaseA=2: Flange is Not Fully Effective, completely ignore intermediate stiffener and find kf according to B4.2 FLANGES (CL B4.2) (continued) bf := Bf − 2 ⋅ ( t + r) bf = 80.68 mm bl := Bl − ( t + r) bl = 10.04 mm 3 Is := bl ⋅ t 4 Is = 165.301 mm 12 ku := 0.43 3 ⎡⎡ bf ⎛ bf ⎞ ⎤⎥ ⎛ ⎢⎢ ⎜ t ⎜ t 4 4 Ia := min⎢ ⎢399 ⋅ ⎜ − 0.327 ⋅ t ⎥ , t ⎜ 5 + 115 ⋅ S ⎣⎣ ⎝ S ⎠ ⎦ ⎝ ⎡⎛ ⎣⎝ n := max⎢⎜ 0.582 − ⎛ Is R1 := min⎜ ,1 bf ⎞ 1 ⎤ , ⎥ 4 ⋅ S t ⎠ 3⎦ 1 ⋅ ⎞ ⎝ Ia ⎠ Department of Civil Engineering Research Report No R845 110 ⎞ ⎤⎥ ⎥ ⎠⎦ 3 4 Ia = 2.037 × 10 mm Eqn B4.2-10 n = 0.333 Eqn. B4.2-11 R1 = 0.081 Eqn. B4.2-9 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections kf := ( n min 3.57 ⋅ R1 + 0.43 , 4 ⎡⎡⎛ Bl ⎞ ⎣⎣⎝ bf ⎠ min⎢⎢⎜ 4.82 − 5 ) if n Bl bf April 2005 ≤ 0.25 kf = 1.976 ⎤ ⎤ Bl ⎦ ⎦ bf R1 + 0.43⎥ , 4⎥ if 0.25 < Table B4.2 ≤ 0.8 caseB := if( kf < 4 , 21 , 22) caseB = 21 CaseB=2-1: Flange is Not Fully Effective, kf <4 completely ignore intermediate stiffener and find effective areas according to CL B4.2 FLANGES (CL B4.2) (continued) bf := Bf − 2 ⋅ ( t + r) 1.052 ⋅ λ f := bf ⋅ t bf = 80.68 mm fy E0 kf λ f = 1.108 kf = 1.976 ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎥⎤ ⎜ λf ⎠ ⎥ ⎢ ⎝ ρ f := if λ f < 0.673 , 1 , ⎢ ⎥ λf ⎣ ⎦ ρ f = 0.723 bef := bf ⋅ ρ f bef = 58.345 mm Aefflats := t ⋅ bef Aefflats = 114.356 mm 2 LIP (CL B4.2) bl := Bl − ( t + r) bl = 10.04 mm kl := 0.43 1.052 ⋅ λ l := bl t ⋅ fy E0 kl ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎤⎥ ⎜ λl ⎠ ⎥ ⎢ ⎝ ρ l := if λ l < 0.673 , 1 , ⎢ ⎥ λl ⎣ ⎦ λ l = 0.296 Eqn. B2.1-4 B2.1-5 ρl = 1 Eqn. B2.1-3 bele := bl ⋅ ρ l bele = 10.04 mm Eqn. B2.1-2 bel := bele ⋅ R1 bel = 0.815 mm Aelflats := t ⋅ bel Aelflats = 1.597 mm Department of Civil Engineering Research Report No R845 2 111 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 TOTAL EFFECTIVE AREAS (INTERMEDIATE STIFFENERS OF FLANGES IGNORED) From WEB From FLANGES 2 A ewflats = 192.882 mm 2 A ewcrns = 20.526 mm From LIP 2 2 Aefflats = 114.356 mm Aelflats = 1.597 mm 2 Aefcrns := 0mm 2 Aeflats := Aewflats + 2Aefflats + 2Aelflats A eflats = 424.787 mm Aecrns := Aewcrns + 2π t ⋅ rmid A ecrns = 69.54 mm Aetotal := Aecrns + Aeflats A etotal = 494.328mm 2 2 PREDICTED LOAD without enhanced corner properties (kf<4) Pn := ( Aeflats + Aecrns ) ⋅ fy with enhanced corner properties (kf<4) Pn := Aeflats ⋅ fy + Aecrns ⋅ fycrn Department of Civil Engineering Research Report No R845 112 Pn = 119.627kN Pn = 142.089kN Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EFFECTIVE WIDTH CALCULATIONS FOR LIPPED CHANNELS WITH INTERMEDIATE STIFFNERS: NAS 2001 (k f = 4; FLANGE IS NOT ADEQUATELY EDGE - STIFFENED ) Cross-Section and Material Properties Thickness Centerline Corner Radius Centerline Web Width Centerline Flange Width Centerline Lip Length Intermediate Stiffener height (width =2*di) 0.2% Yield Stress of flats 0.2% Yield Stress of corners Initial Modulus of Elasticity Total Corner Area t := 1mm rmid := 1mm Bw := 150mm Bf := 70mm Bl := 15mm di := 10mm fy := 195MPa fycrn := 457MPa E0 := 195000 MPa A crns := 2.5 ⋅ ⎡⎣2 ⋅ π ⋅ t ⋅ ( rmid)⎤⎦ 2 A crns = 15.7mm 2 A g := 341mm Gross Area WEB (CL B4.1) 4 Moment of Inertia of Intermediate stiffener Is := 267mm Total Area of Intermediate stiffener A s := 29mm Corner Area of Intermediate stiffener Ascrns := π t ⋅ rmid A scrns = 3.142 mm Flat Area of Intermediate stiffener Asflats := As − Ascrns A sflats = 25.858 mm S := 1.28 ⋅ 2 E0 fy S = 40.477 web element b w := Bw − 2 ⋅ ( rmid) b w = 148mm web sub element b w1 := bw 2 − di − π ⋅ rmid 8 Department of Civil Engineering Research Report No R845 b w1 = 63.607mm 113 Eqn. B4-1 2 2 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 Determine effectiveness of Web Intermediate Stiffener bw t = 148 Ia := 0 if bw t 4 Ia = 183.017mm ≤ S Eqns. B4.1-1, B4.1-7, B4.1-8 bw ⎛ ⎞ 1 bw ⋅ − 50 if S < < 3S S t t ⎝ ⎠ bw ⎞ 1 bw 4 ⎛ − 285 if ≥ 3⋅S t ⋅ ⎜ 128 ⋅ S t t ⎝ ⎠ t ⋅ ⎜ 50 ⋅ 4 ⎡⎛ ⎣⎝ n := max⎢⎜ 0.583 − 1 12 ⋅ S ⋅ b w ⎞ 1⎤ , ⎥ t ⎠ 3⎦ n = 0.333 ⎛ Is ⎞ R1 := min⎜ ,1 R1 = 1 ⎝ Ia ⎠ n kw := 3 ⋅ R1 + 1 Eqns. B4.1-6 kw = 4 Eqns. B4.1-5 2 A es := R1 ⋅ A s A es = 29mm A escrns := R1 A scrns A escrns = 3.142 mm A esflats := R1 ⋅ A sflats A esflats = 25.858 mm 2 2 Determine effectiveness of Web sub element CL 2.4.2 1.052 ⋅ λ w := bw1 t ⋅ fy E0 kw ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎥⎤ ⎜ λw ⎠ ⎥ ⎢ ⎝ ρ w := if λ w < 0.673 , 1 , ⎢ ⎥ λw ⎣ ⎦ λw = 1.058 Eqns. B2.1-4, B2.1-5 ρ w = 0.749 Eqn. B2.1-3 bw1e := bw1 ⋅ ρ w b w1e = 47.618mm bw2e := bw1e b w2e = 47.618mm bew := bw1e + bw2e b ew = 95.237mm Aewflats := bew ⋅ t + Aesflats 2 A ewflats = 121.095mm 2 A ewcrns = 3.142mm Aewcrns := Aescrns Department of Civil Engineering Research Report No R845 114 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections FLANGES (CL 2.4.3) b f := Bf − 2 ⋅ ( rmid) bf t April 2005 b f = 68mm = 41.163 b f1 := bf 2 − di − π ⋅ rmid b f1 = 23.607mm 8 ⎛ bf ⎞ ≤ 0.328 ⋅ S , 1 , 2 ⎝ t ⎠ caseA := if ⎜ caseA = 2 CaseA=2 or 3: Flange is Not Fully Effective, temporarily ignore intermediate stiffener and find kf according to CL B4.2 FLANGES (CL B4.2) (continued) b f := Bf − 2 ⋅ ( rmid) b f = 68mm b l := Bl − ( rmid) b l = 14mm 3 Is := bl ⋅ t 4 Is = 228.667mm 12 ku := 0.43 3 ⎡⎢ ⎡⎢ ⎤ bf ⎞ ⎥ ⎛ bf ⎞ ⎥⎤ ⎛ ⎜ t ⎜ ⎢⎢ t ⎥ 4⎥ 4 Ia := min⎢ ⎢399 ⋅ ⎜ − 0.327 ⋅ t ⎥ , t ⎜ 5 + 115 ⋅ ⎥ S ⎠⎦ ⎣⎣ ⎝ S ⎠ ⎦ ⎝ b f ⎞ 1⎤ 1 ⎡⎛ ⋅ , ⎥ 4⋅ S t ⎠ 3⎦ ⎣⎝ ⎛ Is ⎞ R1 := min⎜ , 1 ⎝ Ia ⎠ Bl n kf := min⎛⎝ 3.57 ⋅ R1 + 0.43, 4⎞⎠ if ≤ 0.25 b n := max⎢⎜ 0.582 − 4 Ia = 198.195mm Eqn. B4.2-10 n = 0.333 Eqn. B4.2-11 R1 = 1 Eqn. B4.2-9 kf = 4 f ⎡⎡⎛ Bl ⎞ ⎣⎣⎝ bf min⎢⎢⎜ 4.82 − 5 ⎠ n ⎤ ⎤ Bl ⎦ ⎦ bf R1 + 0.43⎥ , 4⎥ if 0.25 < caseB := if( kf < 4 , 21 , 22) Table B4.2 ≤ 0.8 caseB = 22 CaseB=2-2: Flange kf =4; flange is adequately EDGE STIFFENED, include intermediate stiffener and find effective areas according to CL B5 Department of Civil Engineering Research Report No R845 115 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 FLANGES (CL B.5.1.1) Moment of Inertia Intermediate Stiffener only Isp := 267mm4 Number of intermediate stiffeners n s := 1 Determine effectiveness of Flange sub element CL B5.1.1 1 δ := As γ := bf ⋅ t bf ⋅ t kloc := 4 ⋅ ( n s + 1) kd := 10.92 ⋅ Isp 3 2 (1 + β 2)2 + γ ⋅ (1 + ns) β ⋅ ⎡⎣ 1 + δ ⋅ ( n s + 1) ⎤⎦ 2 bf ⎞ ⎤ ⎡⎛ ⎢ ⎜ 11 − b ⎥ l⎠ ⎝ ⎢ R := min , 1⎥ 5 ⎣ ⎦ kfa := min( kloc , R ⋅ kd) 1.052 ⋅ bf t λf := ⋅ β := ⎡⎣ 1 + γ ⋅ ( n s + 1)⎤⎦ Eqns. B5.1.1-1 kd = 11.133 Eqns. B5.1.1-2 R =1 Eqns. B5.1.1-8 and CL B5.2 kfa = 11.133 Eqns. B5.1-6 λf = 0.678 Eqns. B5.1-5, B5.1-4 fy E0 kfa A gsf t Eqns. B5.1.1-5, B5.1.1-3, B5.1.1-3 kloc = 16 ⎡⎢ ⎛ 1 − 0.22⎞ ⎤⎥ ⎜ λf ⎠ ⎥ ⎢ ⎝ ρ f := if λf < 0.673, 1 , ⎢⎣ ⎥⎦ λf b efp := 4 ⋅ ρf ρ f = 0.996 Eqn. B5.1-3 b efp = 75.936mm Eqn. B5.1-1 2 A efcrns := ρ f ⋅ A scrns A efcrns = 3.13mm A esflats := A sflats ⋅ ρ f A esflats = 25.764mm A efflats := A gsf ⋅ ρ f − A efcrns A efflats = 72.806mm 2 2 LIP (CL B3) Department of Civil Engineering Research Report No R845 116 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections b l := Bl − ( rmid) April 2005 b l = 14mm kl := 0.43 1.052 ⋅ λ l := bl t ⋅ fy E0 λl = 0.71 kl ⎡⎢ ⎛ 1 − 0.22 ⎞ ⎤⎥ ⎜ λl ⎠ ⎥ ⎢ ⎝ ρ l := if λ l < 0.673 , 1 , ⎢ ⎥ λl ⎣ ⎦ ρ l = 0.972 b ele := b l ⋅ ρ l b ele = 13.606mm R1 = 1 b el := b ele ⋅ R1 b el = 13.606mm A elflats := t ⋅ b el A elflats = 13.606mm 2 TOTAL EFFECTIVE AREAS From WEB From FLANGE 2 A ewflats = 121.095mm 2 A ewcrns = 3.142mm From LIP 2 2 A efflats = 72.806mm A elflats = 13.606mm 2 A efcrns = 3.13mm 2 A eflats := A ewflats + 2A efflats + 2A elflats A eflats = 293.919mm A ecrns := A ewcrns + 2A efcrns + 2πrmid ⋅ t A ecrns = 15.685mm 2 PREDICTED LOAD Without enhanced corner properties (kf=4) Pn := ( Aeflats + Aecrns ) ⋅ fy With enhanced corner properties (kf=4) Pn := Aeflats ⋅ fy + Aecrns ⋅ fycrn Department of Civil Engineering Research Report No R845 117 Pn = 60.373kN Pn = 64.482kN Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EFFECTIVE WIDTH CALCULATIONS FOR LIPPED CHANNELS WITH INTERMEDIATE STIFFNERS: EUROCODE 3 PART1-4/1-3 (2004) Cross-Section and Material Properties Thickness Centerline Corner Radius Centerline Web Width Centerline Flange Width Centerline Lip Length Intermediate Stiffener height (width =2*di) 0.2% Yield Stress of flats 0.2% Yield Stress of corners Initial Modulus of Elasticity Total Corner Area t := 1mm r mid := 1mm B w := 150 mm B f := 70 mm B l := 15 mm di := 10mm fy := 195MPa fycrn := 457MPa E0 := 195000 MPa A crns := 2.5 ⋅ ⎡⎣2 ⋅ π ⋅ t ⋅ ( rmid)⎤⎦ 2 A crns = 15.7mm 2 A g := 341mm Gross Area Notional Dimensions taking into account rounded corners CL 5.1 Part 1-3 ⎞ ⋅ 2⎤ b = 70 mm ⎥ f ⎦ b f := if ⎡⎢ r ≤ 5t ∧ r ≤ 0.1 ⋅ ( Bf ) , ( Bf ) , ( Bf ) − ( rmid) ⋅ ⎛⎜ 1 − 1 b w := if ⎡⎢ r ≤ 5t ∧ r ≤ 0.1 ⋅ ( Bw) , ( Bw) , Bw − ( rmid) ⋅ ⎛⎜ 1 − 1 ⎣ ⎝ ⎣ ⎝ b l := if ⎡⎢ r ≤ 5t ∧ r ≤ 0.1 ⋅ ( Bl) , ( Bl) , ( Bl) − ( rmid) ⋅ ⎛⎜ 1 − ⎣ ⎝ WEB (CL 5.5.3.3 Part 1-3) Sub Element 1 – reduction for local buckling ⎛ 235 ⋅ E0 ⎞ ε := ⎜ ⎝ fy ⋅ 210000⎠ b w1 := bw 2 2⎠ − di − .5 kw1 := 4 π ⋅ rmid 8 Department of Civil Engineering Research Report No R845 b w1 = 64.607 mm 118 ⎞ ⋅ 2⎤ b = 150 mm ⎥ w ⎦ 2⎠ ⎞⎤ ⎥ 2 ⎠⎦ 1 b l = 15 mm Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections b w1 λp.w1 := t ⋅ 1 28.4 ⋅ ε ⋅ kw1 April 2005 λp.w1 = 1.075 ⎡⎢ ⎛⎜ 0.772 − 0.125 ⎞⎤⎥ λp.w1 ⎟⎥ ⎢ ⎜ ρ w1 := if λp.w1 < 0.673, 1 , ⎢⎣ ⎜⎝ λp.w1 ⎠⎥⎦ ρ w1 = 0.61 b ew1 := ρ w1 ⋅ b w1 b ew1 = 39.401 mm b ew11 := 0.5 ⋅ b ew1 b ew12 := 0.5 ⋅ b ew1 b ew11 = 19.701 mm b ew12 = 19.701 mm Sub Element 2 (identical to sub element 1 ) – reduction for local buckling λp.w2 := λp.w1 ρ w2 := ρ w1 λp.w2 = 1.075 b w2 := b w1 b ew2 := ρ w2 ⋅ b w2 b ew21 := 0.5 ⋅ b ew2 b ew21 = 19.701mm b ew22 := 0.5 ⋅ b ew2 b ew22 = 19.701mm ρ w2 = 0.61 b ew2 = 39.401 mm Find distortional buckling reduction factor for web intermediate stiffener (critical elastic buckling stress for an independent web element with pinned ends – from ThinWall) σcr.sw = 182MPa fy λd1w := λd1w = 1.035 σcr.sw χ d1w := 1 if λd1w ≤ 0.65 (1.47 − 0.723 ⋅ λd1w) 0.66 λd1w χ d1w = 0.722 if 0.65 < λd1w < 1.38 if λd1w ≥ 1.38 FLANGE (CL 5.5.2 Part 1-3) Sub Element 1 –reduction for local buckling b f1 := bf − di − 2 π ⋅ rmid ⎛ 235 ⋅ E0 ⎞ ε := ⎜ ⎝ fy ⋅ 210000⎠ λp.f1 := b f1 t ⋅ b f1 = 24.607 mm 8 .5 kf1 := 4 1 28.4 ⋅ ε ⋅ Department of Civil Engineering Research Report No R845 kf1 λp.f1 = 0.41 119 CL 5.5.3.1 (7) Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections ⎡⎢ ⎛⎜ 0.772 − 0.125 ⎞⎥⎤ λp.f1 ⎟⎥ ⎢ ⎜ ρ f1 := if λp.f1 < 0.673, 1 , ⎢⎣ ⎜⎝ λp.f1 ⎠⎥⎦ April 2005 ρ f1 = 1 b ef1 := ρ f1 ⋅ b f1 b ef1 = 24.607 mm b ef11 := 0.5 ⋅ b ef1 b ef11 = 12.304 mm b ef12 := 0.5 ⋅ b ef1 b ef12 = 12.304 mm Sub Element 2 (identical to sub element 1) – reduction for local bucking λp.f2 := λp.f1 λp.f2 = 0.41 ρ f2 := ρ f1 b f2 := b f1 ρ f2 = 1 b ef21 := 0.5 ⋅ b ef2 b ef22 := 0.5 ⋅ b ef2 b ef21 = 12.304 mm b ef2 := ρ f2 ⋅ b f2 b ef2 = 24.607 mm b ef22 = 12.304 mm Find distortional buckling reduction factor for flange-lip stiffener (critical distortional buckling stress of the cross-section – from ABAQUS) σcr.sf = 111MPa χ d1f := λd1f := fy λd1f = 1.325 σcr.sf 1 if λd1f ≤ 0.65 ( 1.47 − 0.723 ⋅ λd1f 0.66 λd1f χ d1f = 0.512 ) if 0.65 < λd1f < 1.38 if λd1f ≥ 1.38 LIP (CL 5.5.2 Part 1-3) reduction for local buckling 2⎤ ⎡ ⎢ ⎥ 3 ⎢ bl ⎛ bl ⎞ ⎥ kl := if ⎢ < 0.35, 0.5, 0.5 + 0.83 ⋅ ⎜ − 0.35 ⎥ ⎣ bf ⎝ bf ⎠ ⎦ λp.l := bl t ⋅ 1 28.4 ⋅ ε ⋅ kl Department of Civil Engineering Research Report No R845 λp.l = 0.706 120 kl = 0.5 CL 5.5.3.1 (7) Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections ⎡⎢ ⎛⎜ 1.0 − 0.231 ⎞⎥⎤ λp.l ⎟⎥ ⎢ ⎜ ρ l := if λp.l < 0.673, 1 , ⎢⎣ ⎜⎝ λp.l ⎠⎥⎦ b el := ρ l ⋅ b l April 2005 ρ l = 0.953 b el = 14.294 mm TOTAL EFFECTIVE AREAS From WEB χ d1w = 0.722 A ewflats := ( b ew11 + b ew22 − 2 ⋅ rmid) ⋅ t + ( b ew12 + b ew21 ) ⋅ t ⋅ χ d1w + A sflats ⋅ χ d1w 2 A ewflats = 84.494mm 2 A ewcrns := A scrns ⋅ χ d1w A ewcrns = 2.267mm From FLANGE (one flange) A efflats := ( b ef11 + b ef12 − rmid ) ⋅ t + 0.5A sflats + ( b ef21 + b ef22 − rmid ) ⋅ t ⋅ χ d1f + 0.5A sflats ⋅ χ d1f 2 A efflats = 55.233mm A efcrns := 0.5 ⋅ A scrns ⋅ χ d1f + 0.5A scrns 2 A efcrns = 2.375mm From LIP (one lip) A elflats := ( b el − rmid) ⋅ t ⋅ χ d1f 2 A elflats = 6.803mm Outer corners of the cross-section not included above: A e_4crns := ⎡⎣π ⋅ t ⋅ ( rmid)⎤⎦ ⋅ χ d1f + π ⋅ t ⋅ ( rmid) (flange lip corners are reduced by χ d1f ) 2 A eflats := A ewflats + 2 ⋅ A efflats + 2 ⋅ A elflats A eflats = 208.565mm A ecrns := A ewcrns + 2 ⋅ A efcrns + A e_4crns A ecrns = 11.765mm A etotal := A eflats + A ecrns A etotal = 220.3mm 2 2 PREDICTED LOAD Without enhanced corner properties Pn := A etotal ⋅ fy Pn = 43.0kN With enhanced corner properties Pn := A eflats ⋅ fy + A ecrns ⋅ fycrn Department of Civil Engineering Research Report No R845 Pn = 46.0kN 121 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001) (AS/NZS 4600 (1996) NAS (2001)) Material Properties Test ID 304D1a 304D1b 304D2a 304D2b Geometry Effective Areas Without EC Prop. With EC Prop. f y,f f y,c Ag Ac A c /A g P u,t A e,f A e,c A e,t Pn P u,t /P n Pn MPa 242 242 242 242 MPa 565 565 565 565 mm2 565 565 565 565 mm2 61 61 61 61 % 11 11 11 11 kN 102 101 104 104 mm2 356 355 356 356 mm2 61 61 61 61 mm2 418 416 417 417 kN 101 1.01 101 1.00 101 1.03 101 1.03 mean 1.02 stdv 0.0143 cov 0.0140 kN 121 120 121 121 experimental P u,t /P n 0.84 0.84 0.86 0.86 0.85 0.0118 0.0139 ASCE (2002), AS/NZS 4673 (2001) (AS/NZS 4600 (1996) NAS (2001)) Material Properties f y,f Test ID 304_60_60_10_2 304_60_60_10_3 304_60_60_15_2 304_60_60_15_3 304_150_150_30_3 304_150_150_20_3 304_150_150_10_3 304_200_100_15_4 304_200_150_20_3 304_200_150_20_4 304_150_80_5_1 304_50_50_5_1 304_400_400_20_3 304_400_400_20_4 304_400_400_20_5 304_400_400_40_4 304_400_400_40_5 304_400_400_40_6 304_400_400_40_7 304_400_400_40_8 304_300_400_20_3 304_300_400_20_4 304_300_400_20_5 304_400_300_20_3 304_400_300_20_4 304_400_300_20_5 304_400_300_40_5 304_400_300_40_6 304_400_300_40_7 304_400_300_40_8 f y,c Geometry Ag Ac 2 MPa MPa mm 195 195 393 195 195 584 195 195 413 195 195 614 195 195 1514 195 195 1454 195 195 1394 195 195 1692 195 195 1604 195 195 2132 195 195 318 195 195 158 195 195 3704 195 195 4932 195 195 6156 195 195 5092 195 195 6356 195 195 7617 195 195 8874 195 195 10130 195 195 3404 195 195 4532 195 195 5656 195 195 3104 195 195 4132 195 195 5156 195 195 5356 195 195 6417 195 195 7474 195 195 8528 Effective Areas A c /A g 2 mm 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 P u,t kN 65 112 74 124 213 183 153 257 191 300 20 18 176 292 443 347 516 727 947 1180 171 293 447 177 294 457 551 766 984 1199 A e,f 2 A e,c 2 mm mm 345 25 528 57 388 25 558 57 1185 57 1034 57 883 57 1460 101 1072 57 1604 101 120 6 107 6 1141 57 1875 101 2742 157 2268 101 3249 157 4357 226 5566 308 6854 402 1123 57 1831 101 2654 157 1148 57 1876 101 2729 157 3225 157 4288 226 5437 308 6418 402 flats Department of Civil Engineering Research Report No R845 122 Without EC Prop. With EC Prop. A e,t 2 mm 370 585 413 615 1242 1090 940 1561 1129 1705 126 113 1198 1976 2899 2369 3406 4583 5874 7256 1179 1931 2811 1205 1976 2886 3382 4514 5745 6820 Pn P u,t /P n kN 72 0.90 114 0.98 81 0.91 120 1.03 242 0.88 213 0.86 183 0.84 304 0.84 220 0.87 332 0.90 25 0.82 22 0.84 234 0.76 385 0.76 565 0.78 462 0.75 664 0.78 894 0.81 1145 0.83 1415 0.83 230 0.74 377 0.78 548 0.81 235 0.75 385 0.76 563 0.81 659 0.84 880 0.87 1120 0.88 1330 0.90 mean 0.84 stdv 0.0687 cov 0.0821 Pn kN 72 114 81 120 242 213 183 304 220 332 25 22 234 385 565 462 664 894 1145 1415 230 377 548 235 385 563 659 880 1120 1330 P u,t /P n 0.90 0.98 0.91 1.03 0.88 0.86 0.84 0.84 0.87 0.90 0.82 0.84 0.76 0.76 0.78 0.75 0.78 0.81 0.83 0.83 0.74 0.78 0.81 0.75 0.76 0.81 0.84 0.87 0.88 0.90 0.84 0.0687 0.0821 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001) (AS/NZS 4600 (1996) NAS (2001)) Material Properties f y,f Test ID 304_60_60_10_2_1 304_60_60_10_3_1 304_60_60_15_2_1 304_60_60_15_3_1 304_150_150_30_3_1 304_150_150_20_3_1 304_150_150_10_3_1 304_200_100_15_4_1 304_200_150_20_3_1 304_200_150_20_4_1 304_150_80_5_1_1 304_50_50_5_1_1 304_400_400_20_3_1 304_400_400_20_4_1 304_400_400_20_5_1 304_400_400_40_4_1 304_400_400_40_5_1 304_400_400_40_6_1 304_400_400_40_7_1 304_400_400_40_8_1 304_300_400_20_3_1 304_300_400_20_4_1 304_300_400_20_5_1 304_400_300_20_3_1 304_400_300_20_4_1 304_400_300_20_5_1 304_400_300_40_5_1 304_400_300_40_6_1 304_400_300_40_7_1 304_400_300_40_8_1 f y,c Geometry Ag MPa MPa mm2 195 457 393 195 457 584 195 457 413 195 457 614 195 457 1514 195 457 1454 195 457 1394 195 457 1692 195 457 1604 195 457 2132 195 457 318 195 457 158 195 457 3704 195 457 4932 195 457 6156 195 457 5092 195 457 6356 195 457 7617 195 457 8874 195 457 10130 195 457 3404 195 457 4532 195 457 5656 195 457 3104 195 457 4132 195 457 5156 195 457 5356 195 457 6417 195 457 7474 195 457 8528 Effective Areas Ac A c /A g P u,t A e,f A e,c mm2 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 kN 67 120 77 135 217 187 160 266 195 308 21 19 175 296 454 347 525 746 977 1219 175 301 457 176 302 467 558 780 1007 1232 mm2 mm2 345 25 528 57 388 25 558 57 1185 57 1034 57 883 57 1460 101 1072 57 1604 101 120 6 107 6 1141 57 1875 101 2742 157 2268 101 3249 157 4357 226 5566 308 6854 402 1123 57 1831 101 2654 157 1148 57 1876 101 2729 157 3225 157 4288 226 5437 308 6418 402 r/t=1 Department of Civil Engineering Research Report No R845 123 A e,t mm2 370 585 413 615 1242 1090 940 1561 1129 1705 126 113 1198 1976 2899 2369 3406 4583 5874 7256 1179 1931 2811 1205 1976 2886 3382 4514 5745 6820 Without EC Prop. With EC Prop. Pn P u,t /P n kN 72 0.93 114 1.05 81 0.96 120 1.12 242 0.90 213 0.88 183 0.87 304 0.87 220 0.88 332 0.93 25 0.84 22 0.86 234 0.75 385 0.77 565 0.80 462 0.75 664 0.79 894 0.83 1145 0.85 1415 0.86 230 0.76 377 0.80 548 0.83 235 0.75 385 0.78 563 0.83 659 0.85 880 0.89 1120 0.90 1330 0.93 mean 0.86 stdv 0.0851 cov 0.0989 Pn kN 79 129 87 135 257 227 198 331 235 359 26 24 248 412 607 488 705 953 1226 1520 245 403 589 250 412 604 701 939 1201 1435 P u,t /P n 0.85 0.93 0.88 1.00 0.85 0.82 0.81 0.80 0.83 0.86 0.78 0.80 0.70 0.72 0.75 0.71 0.74 0.78 0.80 0.80 0.72 0.75 0.78 0.70 0.73 0.77 0.80 0.83 0.84 0.86 0.80 0.0682 0.0852 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001) (AS/NZS 4600 (1996) NAS (2001)) Material Properties f y,f Test ID 304_60_60_10_2_2.5 304_60_60_10_3_2.5 304_60_60_15_2_2.5 304_60_60_15_3_2.5 304_150_150_30_3_2.5 304_150_150_20_3_2.5 304_150_150_10_3_2.5 304_200_100_15_4_2.5 304_200_150_20_3_2.5 304_200_150_20_4_2.5 304_150_80_5_1_2.5 304_50_50_5_1_2.5 304_400_400_20_3_2.5 304_400_400_20_4_2.5 304_400_400_20_5_2.5 304_400_400_40_4_2.5 304_400_400_40_5_2.5 304_400_400_40_6_2.5 304_400_400_40_7_2.5 304_400_400_40_8_2.5 304_300_400_20_3_2.5 304_300_400_20_4_2.5 304_300_400_20_5_2.5 304_400_300_20_3_2.5 304_400_300_20_4_2.5 304_400_300_20_5_2.5 304_400_300_40_5_2.5 304_400_300_40_6_2.5 304_400_300_40_7_2.5 304_400_300_40_8_2.5 f y,c MPa MPa 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 Geometry Effective Areas Ag Ac A c /A g P u,t A e,f A e,c mm2 382 561 402 591 1491 1431 1371 1650 1581 2090 316 156 3681 4890 6090 5050 6290 7522 8745 9959 3381 4490 5590 3081 4090 5090 5290 6322 7345 8359 mm2 63 141 63 141 141 141 141 251 141 251 16 16 141 251 393 251 393 565 770 1005 141 251 393 141 251 393 393 565 770 1005 % 16 25 16 24 9 10 10 15 9 12 5 10 4 5 6 5 6 8 9 10 4 6 7 5 6 8 7 9 10 12 kN 68 123 78 139 218 188 164 268 196 315 21 19 179 305 458 346 531 755 990 1234 177 305 464 183 307 477 561 784 1014 1245 mm2 mm2 303 63 420 141 340 63 450 141 1094 141 956 141 775 141 1323 251 999 141 1463 251 111 16 98 16 1075 141 1736 251 2490 393 2146 251 3057 393 4065 565 5139 770 6250 1005 1055 141 1688 251 2394 393 1080 141 1735 251 2477 393 3028 393 3997 565 4694 770 5850 1005 A e,t mm2 366 561 403 591 1235 1098 917 1574 1141 1714 127 113 1216 1987 2883 2397 3450 4630 5908 7256 1197 1939 2786 1222 1986 2870 3421 4563 5464 6856 r/t=2.5 All Tests Without EC Prop. With EC Prop. Pn P u,t /P n kN 71 0.95 109 1.12 79 0.99 115 1.21 241 0.90 214 0.88 179 0.92 307 0.87 222 0.88 334 0.94 25 0.83 22 0.87 237 0.75 388 0.79 562 0.81 467 0.74 673 0.79 903 0.84 1152 0.86 1415 0.87 233 0.76 378 0.81 543 0.85 238 0.77 387 0.79 560 0.85 667 0.84 890 0.88 1065 0.95 1337 0.93 mean 0.88 stdv 0.1022 cov 0.1167 Pn kN 82 133 89 139 264 237 202 348 246 376 27 25 260 429 627 509 738 996 1279 1581 257 420 608 262 429 624 732 983 1192 1503 mean 0.86 stdv 0.0911 cov 0.1053 P u,t /P n 0.83 0.93 0.88 1.00 0.82 0.79 0.81 0.77 0.80 0.84 0.75 0.78 0.69 0.71 0.73 0.68 0.72 0.76 0.77 0.78 0.69 0.73 0.76 0.70 0.71 0.76 0.77 0.80 0.85 0.83 0.78 0.0723 0.0925 0.81 0.0718 0.0889 EC3 Part 1-4/1-3 (2004) Traditional Method Material Properties f y,f Test ID 304D1a 304D1b 304D2a 304D2b f y,c MPa MPa 242 565 242 565 242 565 242 565 Geometry Effective Areas Ag Ac A c /A g P u,t A e,f A e,c A e,t mm2 565 565 565 565 mm2 61 61 61 61 % 11 11 11 11 kN 102 101 104 104 mm2 mm2 mm2 310 44 354 310 44 354 310 44 354 310 44 354 experimental Department of Civil Engineering Research Report No R845 124 Without EC Prop. With EC Prop. Pn P u,t /P n kN 86 86 86 86 mean stdv cov 1.19 1.18 1.21 1.21 1.20 0.0175 0.0146 Pn kN 100 100 100 100 P u,t /P n 1.02 1.01 1.04 1.04 1.03 0.0150 0.0146 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Traditional Method Material Properties f y,f Test ID 304_60_60_10_2 304_60_60_10_3 304_60_60_15_2 304_60_60_15_3 304_150_150_30_3 304_150_150_20_3 304_150_150_10_3 304_200_100_15_4 304_200_150_20_3 304_200_150_20_4 304_150_80_5_1 304_50_50_5_1 304_400_400_20_3 304_400_400_20_4 304_400_400_20_5 304_400_400_40_4 304_400_400_40_5 304_400_400_40_6 304_400_400_40_7 304_400_400_40_8 304_300_400_20_3 304_300_400_20_4 304_300_400_20_5 304_400_300_20_3 304_400_300_20_4 304_400_300_20_5 304_400_300_40_5 304_400_300_40_6 304_400_300_40_7 304_400_300_40_8 f y,c Geometry Ag MPa MPa mm2 195 195 393 195 195 584 195 195 413 195 195 614 195 195 1514 195 195 1454 195 195 1394 195 195 1692 195 195 1604 195 195 2132 195 195 318 195 195 158 195 195 3704 195 195 4932 195 195 6156 195 195 5092 195 195 6356 195 195 7617 195 195 8874 195 195 10130 195 195 3404 195 195 4532 195 195 5656 195 195 3104 195 195 4132 195 195 5156 195 195 5356 195 195 6417 195 195 7474 195 195 8528 Effective Areas Ac A c /A g P u,t A e,f A e,c mm2 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 kN 65 112 74 124 213 183 153 257 191 300 20 18 176 292 443 347 516 727 947 1180 171 293 447 177 294 457 551 766 984 1199 mm2 mm2 356 23 541 55 390 25 573 57 1069 50 930 43 809 38 1328 90 926 42 1620 83 100 4 96 5 939 33 1622 60 2416 95 1792 67 2702 106 3755 155 4876 214 6171 288 935 34 1608 61 2392 96 946 35 1601 63 2384 101 2722 113 3703 168 4899 241 6481 334 flats Department of Civil Engineering Research Report No R845 125 A e,t mm2 379 596 415 630 1119 973 847 1418 968 1703 104 101 972 1682 2511 1859 2808 3910 5090 6459 969 1669 2488 981 1664 2485 2835 3871 5140 6815 Without EC Prop. With EC Prop. Pn kN 74 116 81 123 218 190 165 277 189 332 20 20 190 328 490 362 548 762 993 1260 189 325 485 191 324 485 553 755 1002 1329 mean stdv cov P u,t /P n 0.87 0.96 0.91 1.01 0.97 0.96 0.93 0.93 1.01 0.90 1.00 0.94 0.93 0.89 0.90 0.96 0.94 0.95 0.95 0.94 0.90 0.90 0.92 0.92 0.91 0.94 1.00 1.01 0.98 0.90 0.94 0.0385 0.0408 Pn kN 74 116 81 123 218 190 165 277 189 332 20 20 190 328 490 362 548 762 993 1260 189 325 485 191 324 485 553 755 1002 1329 P u,t /P n 0.87 0.96 0.91 1.01 0.97 0.96 0.93 0.93 1.01 0.90 1.00 0.94 0.93 0.89 0.90 0.96 0.94 0.95 0.95 0.94 0.90 0.90 0.92 0.92 0.91 0.94 1.00 1.01 0.98 0.90 0.94 0.0385 0.0408 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Traditional Method Material Properties f y,f Test ID 304_60_60_10_2_1 304_60_60_10_3_1 304_60_60_15_2_1 304_60_60_15_3_1 304_150_150_30_3_1 304_150_150_20_3_1 304_150_150_10_3_1 304_200_100_15_4_1 304_200_150_20_3_1 304_200_150_20_4_1 304_150_80_5_1_1 304_50_50_5_1_1 304_400_400_20_3_1 304_400_400_20_4_1 304_400_400_20_5_1 304_400_400_40_4_1 304_400_400_40_5_1 304_400_400_40_6_1 304_400_400_40_7_1 304_400_400_40_8_1 304_300_400_20_3_1 304_300_400_20_4_1 304_300_400_20_5_1 304_400_300_20_3_1 304_400_300_20_4_1 304_400_300_20_5_1 304_400_300_40_5_1 304_400_300_40_6_1 304_400_300_40_7_1 304_400_300_40_8_1 f y,c Geometry Ag MPa MPa mm2 195 457 393 195 457 584 195 457 413 195 457 614 195 457 1514 195 457 1454 195 457 1394 195 457 1692 195 457 1604 195 457 2132 195 457 318 195 457 158 195 457 3704 195 457 4932 195 457 6156 195 457 5092 195 457 6356 195 457 7617 195 457 8874 195 457 10130 195 457 3404 195 457 4532 195 457 5656 195 457 3104 195 457 4132 195 457 5156 195 457 5356 195 457 6417 195 457 7474 195 457 8528 Effective Areas Ac A c /A g P u,t A e,f A e,c mm2 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 kN 67 120 77 135 217 187 160 266 195 308 21 19 175 296 454 347 525 746 977 1219 175 301 457 176 302 467 558 780 1007 1232 mm2 mm2 356 23 541 55 390 25 573 57 1069 50 930 43 809 38 1328 90 926 42 1620 83 100 4 96 5 939 33 1622 60 2416 95 1792 67 2702 106 3755 155 4876 214 6171 288 935 34 1608 61 2392 96 946 35 1601 63 2384 101 2722 113 3703 168 4899 241 6481 334 r/t=1 Department of Civil Engineering Research Report No R845 126 A e,t mm2 379 596 415 630 1119 973 847 1418 968 1703 104 101 972 1682 2511 1859 2808 3910 5090 6459 969 1669 2488 981 1664 2485 2835 3871 5140 6815 Without EC Prop. With EC Prop. Pn kN 74 116 81 123 218 190 165 277 189 332 20 20 190 328 490 362 548 762 993 1260 189 325 485 191 324 485 553 755 1002 1329 mean stdv cov P u,t /P n 0.91 1.03 0.95 1.10 1.00 0.99 0.97 0.96 1.03 0.93 1.02 0.97 0.92 0.90 0.93 0.96 0.96 0.98 0.98 0.97 0.93 0.92 0.94 0.92 0.93 0.96 1.01 1.03 1.00 0.93 0.97 0.0451 0.0466 Pn kN 80 131 87 138 231 201 175 300 200 354 21 21 198 344 515 380 575 803 1049 1335 198 341 510 200 341 511 583 799 1065 1416 P u,t /P n 0.84 0.92 0.88 0.98 0.94 0.93 0.91 0.89 0.97 0.87 0.97 0.91 0.88 0.86 0.88 0.91 0.91 0.93 0.93 0.91 0.89 0.88 0.90 0.88 0.89 0.91 0.96 0.98 0.95 0.87 0.91 0.0366 0.0402 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Traditional Method Material Properties f y,f Test ID 304_60_60_10_2_2.5 304_60_60_10_3_2.5 304_60_60_15_2_2.5 304_60_60_15_3_2.5 304_150_150_30_3_2.5 304_150_150_20_3_2.5 304_150_150_10_3_2.5 304_200_100_15_4_2.5 304_200_150_20_3_2.5 304_200_150_20_4_2.5 304_150_80_5_1_2.5 304_50_50_5_1_2.5 304_400_400_20_3_2.5 304_400_400_20_4_2.5 304_400_400_20_5_2.5 304_400_400_40_4_2.5 304_400_400_40_5_2.5 304_400_400_40_6_2.5 304_400_400_40_7_2.5 304_400_400_40_8_2.5 304_300_400_20_3_2.5 304_300_400_20_4_2.5 304_300_400_20_5_2.5 304_400_300_20_3_2.5 304_400_300_20_4_2.5 304_400_300_20_5_2.5 304_400_300_40_5_2.5 304_400_300_40_6_2.5 304_400_300_40_7_2.5 304_400_300_40_8_2.5 f y,c MPa MPa 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 Geometry Effective Areas Ag Ac A c /A g P u,t A e,f A e,c mm2 382 561 402 591 1491 1431 1371 1650 1581 2090 316 156 3681 4890 6090 5050 6290 7522 8745 9959 3381 4490 5590 3081 4090 5090 5290 6322 7345 8359 mm2 63 141 63 141 141 141 141 251 141 251 16 16 141 251 393 251 393 565 770 1005 141 251 393 141 251 393 393 565 770 1005 % 16 25 16 24 9 10 10 15 9 12 5 10 4 5 6 5 6 8 9 10 4 6 7 5 6 8 7 9 10 12 kN 68 123 78 139 218 188 164 268 196 315 21 19 179 305 458 346 531 755 990 1234 177 305 464 183 307 477 561 784 1014 1245 mm2 mm2 313 57 443 136 350 62 484 141 989 123 853 106 739 93 1162 220 856 104 1457 203 93 9 88 11 885 83 1515 149 2240 236 1685 166 2535 263 3492 383 4515 532 5636 709 881 84 1501 150 2209 237 889 86 1484 156 2197 249 2529 282 3425 416 4472 592 5820 811 A e,t mm2 370 579 412 625 1112 959 832 1382 960 1660 102 99 968 1664 2476 1851 2798 3875 5047 6345 965 1651 2446 975 1640 2446 2811 3841 5064 6631 r/t=2.5 All Tests Department of Civil Engineering Research Report No R845 127 Without EC Prop. With EC Prop. Pn P u,t /P n kN 72 113 80 122 217 187 162 269 187 324 20 19 189 324 483 361 546 756 984 1237 188 322 477 190 320 477 548 749 987 1293 mean stdv cov 0.94 1.09 0.97 1.14 1.00 1.01 1.01 1.00 1.05 0.97 1.03 1.00 0.95 0.94 0.95 0.96 0.97 1.00 1.01 1.00 0.94 0.95 0.97 0.96 0.96 1.00 1.02 1.05 1.03 0.96 0.99 0.0461 0.0464 mean stdv cov 0.98 0.0663 0.0678 Pn kN 82 135 90 145 237 204 178 306 204 357 22 21 202 349 522 388 589 819 1072 1354 202 347 516 204 345 518 595 818 1085 1427 P u,t /P n 0.83 0.91 0.86 0.96 0.92 0.92 0.92 0.88 0.96 0.88 0.95 0.91 0.88 0.87 0.88 0.89 0.90 0.92 0.92 0.91 0.88 0.88 0.90 0.90 0.89 0.92 0.94 0.96 0.93 0.87 0.91 0.0316 0.0350 0.92 0.0440 0.0476 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties f y,f Test ID 304D1a 304D1b 304D2a 304D2b f y,c MPa MPa 242 565 242 565 242 565 242 565 Geometry Ag Ac 2 mm 565 565 565 565 A c /A g P u,t A e,f % 11 11 11 11 kN 102 101 104 104 mm 337 336 341 341 2 mm 61 61 61 61 Without EC Prop. Effective Areas 2 A e,c 2 mm 54 54 55 55 A e,t 2 mm 391 391 396 396 experimental Pn With EC Prop. P u,t /P n Pn kN 95 1.08 95 1.07 96 1.09 96 1.09 mean 1.08 stdv 0.0082 cov 0.0076 kN 112 112 114 114 P u,t /P n 0.91 0.90 0.92 0.91 0.91 0.0068 0.0075 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties f y,f Test ID 304_60_60_10_2 304_60_60_10_3 304_60_60_15_2 304_60_60_15_3 304_150_150_30_3 304_150_150_20_3 304_150_150_10_3 304_200_100_15_4 304_200_150_20_3 304_200_150_20_4 304_150_80_5_1 304_50_50_5_1 304_400_400_20_3 304_400_400_20_4 304_400_400_20_5 304_400_400_40_4 304_400_400_40_5 304_400_400_40_6 304_400_400_40_7 304_400_400_40_8 304_300_400_20_3 304_300_400_20_4 304_300_400_20_5 304_400_300_20_3 304_400_300_20_4 304_400_300_20_5 304_400_300_40_5 304_400_300_40_6 304_400_300_40_7 304_400_300_40_8 f y,c Geometry Ag MPa MPa mm2 195 195 393 195 195 584 195 195 413 195 195 614 195 195 1514 195 195 1454 195 195 1394 195 195 1692 195 195 1604 195 195 2132 195 195 318 195 195 158 195 195 3704 195 195 4932 195 195 6156 195 195 5092 195 195 6356 195 195 7617 195 195 8874 195 195 10130 195 195 3404 195 195 4532 195 195 5656 195 195 3104 195 195 4132 195 195 5156 195 195 5356 195 195 6417 195 195 7474 195 195 8528 Department of Civil Engineering Research Report No R845 Effective Areas Ac A c /A g P u,t A e,f mm2 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 kN 65 112 74 124 213 183 153 257 191 300 20 18 176 292 443 347 516 727 947 1180 171 293 447 177 294 457 551 766 984 1199 mm2 mm2 370 25 543 57 395 25 573 57 1051 52 952 49 820 42 1373 96 957 48 1722 91 94 4 99 5 852 35 1497 64 2311 103 1640 69 2528 112 3583 166 4875 238 6330 325 847 35 1482 64 2279 104 870 36 1526 68 2351 110 2665 124 3807 189 5094 268 6862 362 128 A e,c A e,t Without EC Prop. Pn P u,t /P n mm2 kN 395 77 0.84 600 117 0.96 420 82 0.90 630 123 1.01 1103 215 0.99 1000 195 0.94 861 168 0.91 1469 286 0.90 1005 196 0.97 1813 353 0.85 98 19 1.05 104 20 0.91 886 173 1.02 1561 304 0.96 2413 471 0.94 1709 333 1.04 2640 515 1.00 3749 731 0.99 5113 997 0.95 6656 1298 0.91 881 172 0.99 1546 301 0.97 2383 465 0.96 906 177 1.00 1594 311 0.95 2461 480 0.95 2789 544 1.01 3996 779 0.98 5362 1046 0.94 7224 1409 0.85 mean 0.96 flats stdv 0.0543 cov 0.0568 With EC Prop. Pn kN 77 117 82 123 215 195 168 286 196 353 19 20 173 304 471 333 515 731 997 1298 172 301 465 177 311 480 544 779 1046 1409 P u,t /P n 0.84 0.96 0.90 1.01 0.99 0.94 0.91 0.90 0.97 0.85 1.05 0.91 1.02 0.96 0.94 1.04 1.00 0.99 0.95 0.91 0.99 0.97 0.96 1.00 0.95 0.95 1.01 0.98 0.94 0.85 0.96 0.0543 0.0568 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties f y,f Test ID 304_60_60_10_2_1 304_60_60_10_3_1 304_60_60_15_2_1 304_60_60_15_3_1 304_150_150_30_3_1 304_150_150_20_3_1 304_150_150_10_3_1 304_200_100_15_4_1 304_200_150_20_3_1 304_200_150_20_4_1 304_150_80_5_1_1 304_50_50_5_1_1 304_400_400_20_3_1 304_400_400_20_4_1 304_400_400_20_5_1 304_400_400_40_4_1 304_400_400_40_5_1 304_400_400_40_6_1 304_400_400_40_7_1 304_400_400_40_8_1 304_300_400_20_3_1 304_300_400_20_4_1 304_300_400_20_5_1 304_400_300_20_3_1 304_400_300_20_4_1 304_400_300_20_5_1 304_400_300_40_5_1 304_400_300_40_6_1 304_400_300_40_7_1 304_400_300_40_8_1 f y,c Geometry Ag MPa MPa mm2 195 457 393 195 457 584 195 457 413 195 457 614 195 457 1514 195 457 1454 195 457 1394 195 457 1692 195 457 1604 195 457 2132 195 457 318 195 457 158 195 457 3704 195 457 4932 195 457 6156 195 457 5092 195 457 6356 195 457 7617 195 457 8874 195 457 10130 195 457 3404 195 457 4532 195 457 5656 195 457 3104 195 457 4132 195 457 5156 195 457 5356 195 457 6417 195 457 7474 195 457 8528 Department of Civil Engineering Research Report No R845 Effective Areas Ac A c /A g P u,t A e,f mm2 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 kN 67 120 77 135 217 187 160 266 195 308 21 19 175 296 454 347 525 746 977 1219 175 301 457 176 302 467 558 780 1007 1232 mm2 mm2 370 25 543 57 395 25 573 57 1051 52 952 49 820 42 1373 96 957 48 1722 91 94 4 99 5 852 35 1497 64 2311 103 1640 69 2528 112 3583 166 4875 238 6330 325 847 35 1482 64 2279 104 870 36 1526 68 2351 110 2665 124 3807 189 5094 268 6862 362 129 A e,c A e,t Without EC Prop. Pn P u,t /P n mm2 kN 395 77 0.87 600 117 1.03 420 82 0.94 630 123 1.10 1103 215 1.01 1000 195 0.96 861 168 0.95 1469 286 0.93 1005 196 0.99 1813 353 0.87 98 19 1.07 104 20 0.94 886 173 1.01 1561 304 0.97 2413 471 0.97 1709 333 1.04 2640 515 1.02 3749 731 1.02 5113 997 0.98 6656 1298 0.94 881 172 1.02 1546 301 1.00 2383 465 0.98 906 177 1.00 1594 311 0.97 2461 480 0.97 2789 544 1.03 3996 779 1.00 5362 1046 0.96 7224 1409 0.87 mean 0.98 r/t=1 stdv 0.0530 cov 0.0541 With EC Prop. Pn kN 83 132 88 138 229 208 179 311 208 377 20 22 182 321 498 351 544 775 1059 1383 181 318 492 186 328 509 576 829 1116 1504 P u,t /P n 0.81 0.91 0.87 0.98 0.95 0.90 0.89 0.85 0.93 0.82 1.02 0.88 0.96 0.92 0.91 0.99 0.97 0.96 0.92 0.88 0.97 0.95 0.93 0.94 0.92 0.92 0.97 0.94 0.90 0.82 0.92 0.0510 0.0555 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties f y,f Test ID 304_60_60_10_2_2.5 304_60_60_10_3_2.5 304_60_60_15_2_2.5 304_60_60_15_3_2.5 304_150_150_30_3_2.5 304_150_150_20_3_2.5 304_150_150_10_3_2.5 304_200_100_15_4_2.5 304_200_150_20_3_2.5 304_200_150_20_4_2.5 304_150_80_5_1_2.5 304_50_50_5_1_2.5 304_400_400_20_3_2.5 304_400_400_20_4_2.5 304_400_400_20_5_2.5 304_400_400_40_4_2.5 304_400_400_40_5_2.5 304_400_400_40_6_2.5 304_400_400_40_7_2.5 304_400_400_40_8_2.5 304_300_400_20_3_2.5 304_300_400_20_4_2.5 304_300_400_20_5_2.5 304_400_300_20_3_2.5 304_400_300_20_4_2.5 304_400_300_20_5_2.5 304_400_300_40_5_2.5 304_400_300_40_6_2.5 304_400_300_40_7_2.5 304_400_300_40_8_2.5 f y,c MPa MPa 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 195 360 Geometry Effective Areas Ag Ac A c /A g P u,t A e,f A e,c mm2 382 561 402 591 1491 1431 1371 1650 1581 2090 316 156 3681 4890 6090 5050 6290 7522 8745 9959 3381 4490 5590 3081 4090 5090 5290 6322 7345 8359 mm2 63 141 63 141 141 141 141 251 141 251 16 16 141 251 393 251 393 565 770 1005 141 251 393 141 251 393 393 565 770 1005 % 16 25 16 24 9 10 10 15 9 12 5 10 4 5 6 5 6 8 9 10 4 6 7 5 6 8 7 9 10 12 kN 68 123 78 139 218 188 164 268 196 315 21 19 179 305 458 346 531 755 990 1234 177 305 464 183 307 477 561 784 1014 1245 mm2 mm2 334 62 459 141 357 63 489 141 976 130 882 122 760 105 1232 240 889 120 1590 228 89 10 91 13 801 86 1403 159 2159 257 1538 173 2365 280 3366 421 4537 599 5870 819 795 87 1387 161 2127 260 816 91 1427 169 2190 276 2486 312 3536 475 4708 674 6339 909 A e,t mm2 396 600 420 630 1106 1004 865 1472 1008 1818 99 104 887 1563 2416 1711 2645 3787 5136 6688 882 1548 2387 908 1596 2466 2798 4011 5381 7248 r/t=2.5 All Tests Without EC Prop. Pn P u,t /P n kN 77 0.88 117 1.05 82 0.95 123 1.13 216 1.01 196 0.96 169 0.97 287 0.93 197 1.00 355 0.89 19 1.07 20 0.95 173 1.03 305 1.00 471 0.97 334 1.04 516 1.03 738 1.02 1002 0.99 1304 0.95 172 1.03 302 1.01 466 1.00 177 1.03 311 0.98 481 0.99 546 1.03 782 1.00 1049 0.97 1413 0.88 mean 0.99 stdv 0.0548 cov 0.0553 With EC Prop. Pn kN 87 140 92 146 237 216 186 327 216 392 21 22 187 331 514 362 562 808 1100 1439 186 328 508 192 339 526 597 861 1160 1563 mean 0.98 stdv 0.0583 cov 0.0595 P u,t /P n 0.78 0.88 0.85 0.95 0.92 0.87 0.88 0.82 0.91 0.80 0.98 0.86 0.96 0.92 0.89 0.96 0.95 0.93 0.90 0.86 0.95 0.93 0.91 0.95 0.90 0.91 0.94 0.91 0.87 0.80 0.90 0.0517 0.0576 0.92 0.0559 0.0605 ASCE (2002), AS/NZS 4673 (2001), (AS/NZS 4600 (1996) NAS (2001)) Material Properties ` Test ID 430D1a 430D1b 430D2 430D3a 430D3b f y,f f y,c MPa MPa 271 452 271 452 271 452 271 452 271 452 Geometry Effective Areas Ag Ac A c /A g P u,t A e,f A e,c A e,t Pn P u,t /P n Pn mm2 211 211 215 188 188 mm2 21 22 22 22 22 % 10 10 10 12 12 kN 39 39 45 40 39 mm2 121 123 129 119 119 mm2 21 22 22 22 22 mm2 142 145 151 141 141 kN 39 1.00 39 0.99 41 1.10 38 1.04 38 1.01 mean 1.03 stdv 0.0437 cov 0.0425 kN 42 43 45 42 42 experimental Department of Civil Engineering Research Report No R845 Without EC Prop. With EC Prop. 130 P u,t /P n 0.91 0.90 1.00 0.94 0.92 0.93 0.0412 0.0441 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001), (AS/NZS 4600 (1996) NAS (2001)) Material Properties ` Test ID 430_60_60_10_2 430_60_60_10_3 430_60_60_15_2 430_60_60_15_3 430_150_150_30_3 430_150_150_20_3 430_150_150_10_3 430_200_100_15_4 430_200_150_20_3 430_200_150_20_4 430_150_80_5_1 430_50_50_5_1 430_400_400_20_3 430_400_400_20_4 430_400_400_20_5 430_400_400_40_4 430_400_400_40_5 430_400_400_40_6 430_400_400_40_7 430_400_400_40_8 430_300_400_20_3 430_300_400_20_4 430_300_400_20_5 430_400_300_20_3 430_400_300_20_4 430_400_300_20_5 430_400_300_40_5 430_400_300_40_6 430_400_300_40_7 430_400_300_40_8 f y,f f y,c Geometry Ag MPa MPa mm2 275 275 393 275 275 584 275 275 413 275 275 614 275 275 1514 275 275 1454 275 275 1394 275 275 1692 275 275 1604 275 275 2132 275 275 318 275 275 158 275 275 3704 275 275 4932 275 275 6156 275 275 5092 275 275 6356 275 275 7617 275 275 8874 275 275 10130 275 275 3404 275 275 4532 275 275 5656 275 275 3104 275 275 4132 275 275 5156 275 275 5356 275 275 6417 275 275 7474 275 275 8528 Effective Areas Ac A c /A g P u,t A e,f A e,c A e,t mm2 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 kN 85 146 96 163 280 240 200 338 244 390 26 24 231 356 579 424 647 950 1226 1531 225 383 579 231 397 594 699 980 1283 1563 mm2 301 497 353 558 1016 882 752 1305 908 1434 99 91 939 1553 2286 1877 2707 3656 4706 5839 926 1523 2227 947 1559 2285 2708 3632 4647 5736 mm2 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 mm2 326 554 378 615 1072 939 808 1406 965 1535 106 98 995 1653 2443 1977 2864 3882 5013 6241 983 1623 2384 1004 1659 2442 2865 3858 4955 6138 flats Department of Civil Engineering Research Report No R845 131 Without EC Prop. With EC Prop. Pn P u,t /P n kN 90 0.95 152 0.96 104 0.92 169 0.97 295 0.95 258 0.93 222 0.90 387 0.87 265 0.92 422 0.92 29 0.90 27 0.89 274 0.84 455 0.78 672 0.86 544 0.78 788 0.82 1068 0.89 1379 0.89 1716 0.89 270 0.83 446 0.86 656 0.88 276 0.84 456 0.87 672 0.88 788 0.89 1061 0.92 1363 0.94 1688 0.93 mean 0.89 stdv 0.0480 cov 0.0539 Pn kN 90 152 104 169 295 258 222 387 265 422 29 27 274 455 672 544 788 1068 1379 1716 270 446 656 276 456 672 788 1061 1363 1688 P u,t /P n 0.95 0.96 0.92 0.97 0.95 0.93 0.90 0.87 0.92 0.92 0.90 0.89 0.84 0.78 0.86 0.78 0.82 0.89 0.89 0.89 0.83 0.86 0.88 0.84 0.87 0.88 0.89 0.92 0.94 0.93 0.89 0.0480 0.0539 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001), (AS/NZS 4600 (1996) NAS (2001)) Material Properties ` Test ID 430_60_60_10_2_1 430_60_60_10_3_1 430_60_60_15_2_1 430_60_60_15_3_1 430_150_150_30_3_1 430_150_150_20_3_1 430_150_150_10_3_1 430_200_100_15_4_1 430_200_150_20_3_1 430_200_150_20_4_1 430_150_80_5_1_1 430_50_50_5_1_1 430_400_400_20_3_1 430_400_400_20_4_1 430_400_400_20_5_1 430_400_400_40_4_1 430_400_400_40_5_1 430_400_400_40_6_1 430_400_400_40_7_1 430_400_400_40_8_1 430_300_400_20_3_1 430_300_400_20_4_1 430_300_400_20_5_1 430_400_300_20_3_1 430_400_300_20_4_1 430_400_300_20_5_1 430_400_300_40_5_1 430_400_300_40_6_1 430_400_300_40_7_1 430_400_300_40_8_1 f y,f f y,c Geometry Ag MPa MPa mm2 275 479 393 275 479 584 275 479 413 275 479 614 275 479 1514 275 479 1454 275 479 1394 275 479 1692 275 479 1604 275 479 2132 275 479 318 275 479 158 275 479 3704 275 479 4932 275 479 6156 275 479 5092 275 479 6356 275 479 7617 275 479 8874 275 479 10130 275 479 3404 275 479 4532 275 479 5656 275 479 3104 275 479 4132 275 479 5156 275 479 5356 275 479 6417 275 479 7474 275 479 8528 Effective Areas Ac A c /A g P u,t A e,f A e,c mm2 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 kN 87 153 98 171 284 243 203 345 246 397 27 24 230 357 586 430 650 953 1234 1547 228 388 586 234 402 601 704 988 1300 1589 mm2 mm2 301 25 497 57 353 25 558 57 1016 57 882 57 752 57 1305 101 908 57 1434 101 99 6 91 6 939 57 1553 101 2286 157 1877 101 2707 157 3656 226 4706 308 5839 402 926 57 1523 101 2227 157 947 57 1559 101 2285 157 2708 157 3632 226 4647 308 5736 402 r/t=1 Department of Civil Engineering Research Report No R845 132 A e,t mm2 326 554 378 615 1072 939 808 1406 965 1535 106 98 995 1653 2443 1977 2864 3882 5013 6241 983 1623 2384 1004 1659 2442 2865 3858 4955 6138 Without EC Prop. With EC Prop. Pn P u,t /P n kN 90 0.97 152 1.00 104 0.95 169 1.01 295 0.96 258 0.94 222 0.91 387 0.89 265 0.93 422 0.94 29 0.91 27 0.90 274 0.84 455 0.78 672 0.87 544 0.79 788 0.83 1068 0.89 1379 0.89 1716 0.90 270 0.84 446 0.87 656 0.89 276 0.85 456 0.88 672 0.89 788 0.89 1061 0.93 1363 0.95 1688 0.94 mean 0.90 stdv 0.0543 cov 0.0602 Pn kN 95 164 109 181 306 270 234 407 277 443 30 28 285 475 704 564 820 1114 1441 1798 282 467 688 288 477 704 820 1107 1426 1770 P u,t /P n 0.92 0.93 0.90 0.94 0.93 0.90 0.87 0.85 0.89 0.90 0.88 0.86 0.81 0.75 0.83 0.76 0.79 0.86 0.86 0.86 0.81 0.83 0.85 0.81 0.84 0.85 0.86 0.89 0.91 0.90 0.86 0.0479 0.0556 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001), (AS/NZS 4600 (1996) NAS (2001)) Material Properties ` Test ID 430_60_60_10_2_2.5 430_60_60_10_3_2.5 430_60_60_15_2_2.5 430_60_60_15_3_2.5 430_150_150_30_3_2.5 430_150_150_20_3_2.5 430_150_150_10_3_2.5 430_200_100_15_4_2.5 430_200_150_20_3_2.5 430_200_150_20_4_2.5 430_150_80_5_1_2.5 430_50_50_5_1_2.5 430_400_400_20_3_2.5 430_400_400_20_4_2.5 430_400_400_20_5_2.5 430_400_400_40_4_2.5 430_400_400_40_5_2.5 430_400_400_40_6_2.5 430_400_400_40_7_2.5 430_400_400_40_8_2.5 430_300_400_20_3_2.5 430_300_400_20_4_2.5 430_300_400_20_5_2.5 430_400_300_20_3_2.5 430_400_300_20_4_2.5 430_400_300_20_5_2.5 430_400_300_40_5_2.5 430_400_300_40_6_2.5 430_400_300_40_7_2.5 430_400_300_40_8_2.5 f y,f f y,c MPa MPa 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 Geometry Effective Areas A e,c Without EC Prop. With EC Prop. Ag Ac A c /A g P u,t A e,f A e,t Pn mm2 382 561 402 591 1491 1431 1371 1650 1581 2090 316 156 3681 4890 6090 5050 6290 7522 8745 9959 3381 4490 5590 3081 4090 5090 5290 6322 7345 8359 mm2 63 141 63 141 141 141 141 251 141 251 16 16 141 251 393 251 393 565 770 1005 141 251 393 141 251 393 393 565 770 1005 % 16 25 16 24 9 10 10 15 9 12 5 10 4 5 6 5 6 8 9 10 4 6 7 5 6 8 7 9 10 12 kN 87 154 99 173 286 244 205 346 247 399 26 24 236 343 586 437 650 953 1236 1556 229 390 590 235 404 605 704 992 1306 1598 mm2 mm2 mm2 264 63 327 406 141 547 314 63 376 450 141 591 941 141 1083 819 141 960 664 141 806 1162 251 1413 847 141 989 1206 251 1457 92 16 108 83 16 99 885 141 1027 1441 251 1692 2083 393 2476 1777 251 2028 2550 393 2943 3417 565 3982 4354 770 5124 5342 1005 6347 872 141 1013 1408 251 1660 2018 393 2411 892 141 1033 1444 251 1696 2079 393 2472 2545 393 2938 3390 565 3955 4298 770 5068 4822 1005 5828 r/t=2.5 P u,t /P n kN 90 0.97 151 1.02 104 0.95 163 1.06 298 0.96 264 0.92 222 0.93 389 0.89 272 0.91 401 1.00 30 0.89 27 0.89 282 0.83 465 0.74 681 0.86 558 0.78 809 0.80 1095 0.87 1409 0.88 1746 0.89 279 0.82 456 0.85 663 0.89 284 0.83 466 0.87 680 0.89 808 0.87 1088 0.91 1394 0.94 1603 1.00 mean 0.90 stdv 0.0715 cov 0.0797 Pn kN 99 172 113 184 319 285 243 426 293 438 32 30 303 503 739 595 868 1179 1524 1895 300 494 721 305 504 738 866 1172 1508 1752 mean 0.90 stdv 0.0647 cov 0.0716 All Tests P u,t /P n 0.88 0.90 0.87 0.94 0.90 0.86 0.85 0.81 0.84 0.91 0.82 0.82 0.78 0.68 0.79 0.73 0.75 0.81 0.81 0.82 0.76 0.79 0.82 0.77 0.80 0.82 0.81 0.85 0.87 0.91 0.83 0.0575 0.0696 0.86 0.0588 0.0681 EC3 Part 1-4/1-3 (2004) Traditional Method Material Properties ` Test ID 430D1a 430D1b 430D2 430D3a 430D3b f y,f f y,c MPa MPa 271 452 271 452 271 452 271 452 271 452 Geometry Ag Ac 2 mm 211 211 215 188 188 Effective Areas A c /A g 2 mm 21 22 22 22 22 % 10 10 10 12 12 P u,t kN 39 39 45 40 39 A e,f 2 mm 103 103 109 102 102 A e,c 2 mm 15 15 16 16 16 A e,t 133 2 mm 118 118 125 118 118 experimental Department of Civil Engineering Research Report No R845 Without EC Prop. With EC Prop. Pn P u,t /P n Pn kN 32 1.20 32 1.22 34 1.33 32 1.24 32 1.21 mean 1.24 stdv 0.0506 cov 0.0408 kN 35 35 37 35 35 P u,t /P n 1.11 1.12 1.22 1.14 1.11 1.14 0.0469 0.0411 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Traditional Method Material Properties ` Test ID 430_60_60_10_2 430_60_60_10_3 430_60_60_15_2 430_60_60_15_3 430_150_150_30_3 430_150_150_20_3 430_150_150_10_3 430_200_100_15_4 430_200_150_20_3 430_200_150_20_4 430_150_80_5_1 430_50_50_5_1 430_400_400_20_3 430_400_400_20_4 430_400_400_20_5 430_400_400_40_4 430_400_400_40_5 430_400_400_40_6 430_400_400_40_7 430_400_400_40_8 430_300_400_20_3 430_300_400_20_4 430_300_400_20_5 430_400_300_20_3 430_400_300_20_4 430_400_300_20_5 430_400_300_40_5 430_400_300_40_6 430_400_300_40_7 430_400_300_40_8 f y,f f y,c Geometry Ag MPa MPa mm2 275 275 393 275 275 584 275 275 413 275 275 614 275 275 1514 275 275 1454 275 275 1394 275 275 1692 275 275 1604 275 275 2132 275 275 318 275 275 158 275 275 3704 275 275 4932 275 275 6156 275 275 5092 275 275 6356 275 275 7617 275 275 8874 275 275 10130 275 275 3404 275 275 4532 275 275 5656 275 275 3104 275 275 4132 275 275 5156 275 275 5356 275 275 6417 275 275 7474 275 275 8528 Effective Areas Ac A c /A g P u,t A e,f A e,c A e,t mm2 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 kN 85 146 96 163 280 240 200 338 244 390 26 24 231 356 579 424 647 950 1226 1531 225 383 579 231 397 594 699 980 1283 1563 mm2 336 517 372 566 876 770 680 1172 772 1276 84 81 768 1331 2025 1466 2222 3111 4080 5173 766 1323 2006 774 1336 1984 2248 3089 4030 5102 mm2 22 52 23 55 45 40 36 83 39 74 4 4 33 59 96 64 101 148 203 271 33 59 93 34 61 97 107 157 219 295 mm2 358 569 395 621 921 810 716 1255 811 1350 88 85 801 1390 2121 1530 2323 3259 4283 5444 799 1382 2099 808 1397 2081 2355 3246 4249 5397 flats Department of Civil Engineering Research Report No R845 134 Without EC Prop. With EC Prop. Pn P u,t /P n kN 98 0.86 156 0.93 109 0.88 171 0.96 253 1.11 223 1.08 197 1.01 345 0.98 223 1.09 371 1.05 24 1.09 23 1.02 220 1.05 382 0.93 583 0.99 421 1.01 639 1.01 896 1.06 1178 1.04 1497 1.02 220 1.02 380 1.01 577 1.00 222 1.04 384 1.03 572 1.04 648 1.08 893 1.10 1168 1.10 1484 1.05 mean 1.02 stdv 0.0612 cov 0.0599 Pn kN 98 156 109 171 253 223 197 345 223 371 24 23 220 382 583 421 639 896 1178 1497 220 380 577 222 384 572 648 893 1168 1484 P u,t /P n 0.86 0.93 0.88 0.96 1.11 1.08 1.01 0.98 1.09 1.05 1.09 1.02 1.05 0.93 0.99 1.01 1.01 1.06 1.04 1.02 1.02 1.01 1.00 1.04 1.03 1.04 1.08 1.10 1.10 1.05 1.02 0.0612 0.0599 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Traditional Method Material Properties ` Test ID 430_60_60_10_2_1 430_60_60_10_3_1 430_60_60_15_2_1 430_60_60_15_3_1 430_150_150_30_3_1 430_150_150_20_3_1 430_150_150_10_3_1 430_200_100_15_4_1 430_200_150_20_3_1 430_200_150_20_4_1 430_150_80_5_1_1 430_50_50_5_1_1 430_400_400_20_3_1 430_400_400_20_4_1 430_400_400_20_5_1 430_400_400_40_4_1 430_400_400_40_5_1 430_400_400_40_6_1 430_400_400_40_7_1 430_400_400_40_8_1 430_300_400_20_3_1 430_300_400_20_4_1 430_300_400_20_5_1 430_400_300_20_3_1 430_400_300_20_4_1 430_400_300_20_5_1 430_400_300_40_5_1 430_400_300_40_6_1 430_400_300_40_7_1 430_400_300_40_8_1 f y,f f y,c Geometry Ag MPa MPa mm2 275 479 393 275 479 584 275 479 413 275 479 614 275 479 1514 275 479 1454 275 479 1394 275 479 1692 275 479 1604 275 479 2132 275 479 318 275 479 158 275 479 3704 275 479 4932 275 479 6156 275 479 5092 275 479 6356 275 479 7617 275 479 8874 275 479 10130 275 479 3404 275 479 4532 275 479 5656 275 479 3104 275 479 4132 275 479 5156 275 479 5356 275 479 6417 275 479 7474 275 479 8528 Effective Areas Ac A c /A g P u,t A e,f A e,c A e,t mm2 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 kN 87 153 98 171 284 243 203 345 246 397 27 24 230 357 586 430 650 953 1234 1547 228 388 586 234 402 601 704 988 1300 1589 mm2 336 517 372 566 876 770 680 1172 772 1276 84 81 768 1331 2025 1466 2222 3111 4080 5173 766 1323 2006 774 1336 1984 2248 3089 4030 5102 mm2 22 52 23 55 45 40 36 83 39 74 4 4 33 59 96 64 101 148 203 271 33 59 93 34 61 97 107 157 219 295 mm2 358 569 395 621 921 810 716 1255 811 1350 88 85 801 1390 2121 1530 2323 3259 4283 5444 799 1382 2099 808 1397 2081 2355 3246 4249 5397 r/t=1 Department of Civil Engineering Research Report No R845 135 Without EC Prop. With EC Prop. Pn P u,t /P n kN 98 0.88 156 0.97 109 0.90 171 1.00 253 1.12 223 1.09 197 1.03 345 1.00 223 1.10 371 1.07 24 1.10 23 1.03 220 1.04 382 0.93 583 1.00 421 1.02 639 1.02 896 1.06 1178 1.05 1497 1.03 220 1.04 380 1.02 577 1.01 222 1.05 384 1.05 572 1.05 648 1.09 893 1.11 1168 1.11 1484 1.07 mean 1.04 stdv 0.0574 cov 0.0554 Pn kN 103 167 114 182 262 231 204 362 231 386 25 24 227 394 603 434 659 926 1219 1552 226 392 596 229 397 592 670 925 1213 1544 P u,t /P n 0.85 0.91 0.87 0.94 1.08 1.05 0.99 0.95 1.06 1.03 1.07 0.99 1.01 0.91 0.97 0.99 0.99 1.03 1.01 1.00 1.01 0.99 0.98 1.02 1.01 1.01 1.05 1.07 1.07 1.03 1.00 0.0587 0.0588 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Traditional Method Material Properties ` Test ID 430_60_60_10_2_2.5 430_60_60_10_3_2.5 430_60_60_15_2_2.5 430_60_60_15_3_2.5 430_150_150_30_3_2.5 430_150_150_20_3_2.5 430_150_150_10_3_2.5 430_200_100_15_4_2.5 430_200_150_20_3_2.5 430_200_150_20_4_2.5 430_150_80_5_1_2.5 430_50_50_5_1_2.5 430_400_400_20_3_2.5 430_400_400_20_4_2.5 430_400_400_20_5_2.5 430_400_400_40_4_2.5 430_400_400_40_5_2.5 430_400_400_40_6_2.5 430_400_400_40_7_2.5 430_400_400_40_8_2.5 430_300_400_20_3_2.5 430_300_400_20_4_2.5 430_300_400_20_5_2.5 430_400_300_20_3_2.5 430_400_300_20_4_2.5 430_400_300_20_5_2.5 430_400_300_40_5_2.5 430_400_300_40_6_2.5 430_400_300_40_7_2.5 430_400_300_40_8_2.5 f y,f f y,c MPa MPa 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 Geometry Effective Areas Ag Ac A c /A g P u,t A e,f A e,c A e,t mm2 382 561 402 591 1491 1431 1371 1650 1581 2090 316 156 3681 4890 6090 5050 6290 7522 8745 9959 3381 4490 5590 3081 4090 5090 5290 6322 7345 8359 mm2 63 141 63 141 141 141 141 251 141 251 16 16 141 251 393 251 393 565 770 1005 141 251 393 141 251 393 393 565 770 1005 % 16 25 16 24 9 10 10 15 9 12 5 10 4 5 6 5 6 8 9 10 4 6 7 5 6 8 7 9 10 12 kN 87 154 99 173 286 244 205 346 247 399 26 24 236 343 586 437 650 953 1236 1556 229 390 590 235 404 605 704 992 1306 1598 mm2 296 423 334 476 802 703 615 1015 707 1143 77 73 716 1230 1847 1364 2059 2872 3740 4683 713 1221 1844 720 1231 1810 2075 2829 3667 4571 mm2 53 128 58 138 112 99 89 200 98 181 9 10 81 145 229 159 252 367 504 688 81 146 230 84 151 239 267 391 544 725 mm2 349 551 392 614 914 802 704 1215 805 1324 86 83 797 1375 2076 1523 2311 3239 4244 5371 794 1367 2074 804 1382 2049 2342 3220 4211 5296 r/t=2.5 All Tests Department of Civil Engineering Research Report No R845 136 Without EC Prop. With EC Prop. Pn P u,t /P n kN 96 0.91 152 1.02 108 0.92 169 1.02 251 1.14 221 1.11 194 1.06 334 1.03 221 1.11 364 1.10 24 1.11 23 1.06 219 1.08 378 0.91 571 1.03 419 1.04 636 1.02 891 1.07 1167 1.06 1477 1.05 218 1.05 376 1.04 570 1.03 221 1.06 380 1.06 563 1.07 644 1.09 885 1.12 1158 1.13 1456 1.10 mean 1.05 stdv 0.0587 cov 0.0557 mean 1.05 stdv 0.0746 cov 0.0712 Pn kN 104 171 116 189 268 235 207 364 236 391 25 24 231 400 605 443 673 945 1242 1580 230 398 605 234 403 599 684 944 1239 1564 P u,t /P n 0.84 0.90 0.85 0.91 1.07 1.04 0.99 0.95 1.05 1.02 1.05 0.99 1.02 0.86 0.97 0.99 0.97 1.01 1.00 0.99 0.99 0.98 0.98 1.01 1.00 1.01 1.03 1.05 1.05 1.02 0.99 0.0600 0.0608 1.01 0.0678 0.0672 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties ` Test ID 430D1a 430D1b 430D2 430D3a 430D3b f y,f f y,c MPa MPa 271 452 271 452 271 452 271 452 271 452 Geometry Effective Areas Without EC Prop. With EC Prop. Ag Ac A c /A g P u,t A e,f A e,c A e,t Pn P u,t /P n Pn mm2 211 211 215 188 188 mm2 21 22 22 22 22 % 10 10 10 12 12 kN 39 39 45 40 39 mm2 106 108 112 108 118 mm2 18 18 18 18 18 mm2 124 126 130 126 136 kN 34 1.15 34 1.14 35 1.28 34 1.16 37 1.05 mean 1.16 stdv 0.0825 cov 0.0714 kN 37 37 38 37 40 experimental P u,t /P n 1.04 1.04 1.17 1.06 0.96 1.06 0.0750 0.0711 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties ` Test ID 430_60_60_10_2 430_60_60_10_3 430_60_60_15_2 430_60_60_15_3 430_150_150_30_3 430_150_150_20_3 430_150_150_10_3 430_200_100_15_4 430_200_150_20_3 430_200_150_20_4 430_150_80_5_1 430_50_50_5_1 430_400_400_20_3 430_400_400_20_4 430_400_400_20_5 430_400_400_40_4 430_400_400_40_5 430_400_400_40_6 430_400_400_40_7 430_400_400_40_8 430_300_400_20_3 430_300_400_20_4 430_300_400_20_5 430_400_300_20_3 430_400_300_20_4 430_400_300_20_5 430_400_300_40_5 430_400_300_40_6 430_400_300_40_7 430_400_300_40_8 f y,f f y,c Geometry Ag MPa MPa mm2 275 275 393 275 275 584 275 275 413 275 275 614 275 275 1514 275 275 1454 275 275 1394 275 275 1692 275 275 1604 275 275 2132 275 275 318 275 275 158 275 275 3704 275 275 4932 275 275 6156 275 275 5092 275 275 6356 275 275 7617 275 275 8874 275 275 10130 275 275 3404 275 275 4532 275 275 5656 275 275 3104 275 275 4132 275 275 5156 275 275 5356 275 275 6417 275 275 7474 275 275 8528 Effective Areas Ac A c /A g P u,t A e,f A e,c A e,t mm2 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 kN 85 146 96 163 280 240 200 338 244 390 26 24 231 356 579 424 647 950 1226 1531 225 383 579 231 397 594 699 980 1283 1563 mm2 354 542 384 573 853 757 672 1229 755 1332 77 79 691 1216 1882 1324 2045 2905 3907 5034 687 1206 1861 704 1239 1914 2108 2997 4087 5753 mm2 23 56 24 57 48 44 39 90 43 84 4 5 33 61 98 66 106 157 219 293 34 62 99 35 64 104 113 169 244 332 mm2 377 598 409 630 901 801 712 1318 797 1415 81 83 724 1278 1980 1389 2151 3062 4127 5327 721 1268 1960 739 1303 2018 2221 3166 4331 6085 flats Department of Civil Engineering Research Report No R845 137 Without EC Prop. With EC Prop. Pn P u,t /P n kN 104 0.82 164 0.89 112 0.85 173 0.94 248 1.13 220 1.09 196 1.02 363 0.93 219 1.11 389 1.00 22 1.18 23 1.05 199 1.16 351 1.01 545 1.06 382 1.11 591 1.09 842 1.13 1135 1.08 1465 1.04 198 1.13 349 1.10 539 1.07 203 1.14 358 1.11 555 1.07 611 1.14 871 1.13 1191 1.08 1673 0.93 mean 1.05 stdv 0.0933 cov 0.0885 Pn kN 104 164 112 173 248 220 196 363 219 389 22 23 199 351 545 382 591 842 1135 1465 198 349 539 203 358 555 611 871 1191 1673 P u,t /P n 0.82 0.89 0.85 0.94 1.13 1.09 1.02 0.93 1.11 1.00 1.18 1.05 1.16 1.01 1.06 1.11 1.09 1.13 1.08 1.04 1.13 1.10 1.07 1.14 1.11 1.07 1.14 1.13 1.08 0.93 1.05 0.0933 0.0885 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties ` Test ID 430_60_60_10_2_1 430_60_60_10_3_1 430_60_60_15_2_1 430_60_60_15_3_1 430_150_150_30_3_1 430_150_150_20_3_1 430_150_150_10_3_1 430_200_100_15_4_1 430_200_150_20_3_1 430_200_150_20_4_1 430_150_80_5_1_1 430_50_50_5_1_1 430_400_400_20_3_1 430_400_400_20_4_1 430_400_400_20_5_1 430_400_400_40_4_1 430_400_400_40_5_1 430_400_400_40_6_1 430_400_400_40_7_1 430_400_400_40_8_1 430_300_400_20_3_1 430_300_400_20_4_1 430_300_400_20_5_1 430_400_300_20_3_1 430_400_300_20_4_1 430_400_300_20_5_1 430_400_300_40_5_1 430_400_300_40_6_1 430_400_300_40_7_1 430_400_300_40_8_1 f y,f f y,c Geometry Ag MPa MPa mm2 275 479 393 275 479 584 275 479 413 275 479 614 275 479 1514 275 479 1454 275 479 1394 275 479 1692 275 479 1604 275 479 2132 275 479 318 275 479 158 275 479 3704 275 479 4932 275 479 6156 275 479 5092 275 479 6356 275 479 7617 275 479 8874 275 479 10130 275 479 3404 275 479 4532 275 479 5656 275 479 3104 275 479 4132 275 479 5156 275 479 5356 275 479 6417 275 479 7474 275 479 8528 Effective Areas Ac A c /A g P u,t A e,f A e,c A e,t mm2 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 kN 87 153 98 171 284 243 203 345 246 397 27 24 230 357 586 430 650 953 1234 1547 228 388 586 234 402 601 704 988 1300 1589 mm2 354 542 384 573 853 757 672 1229 755 1332 77 79 691 1216 1882 1324 2045 2905 3907 5034 687 1206 1861 704 1239 1914 2108 2997 4087 5753 mm2 23 56 24 57 48 44 39 90 43 84 4 5 33 61 98 66 106 157 219 293 34 62 99 35 64 104 113 169 244 332 mm2 377 598 409 630 901 801 712 1318 797 1415 81 83 724 1278 1980 1389 2151 3062 4127 5327 721 1268 1960 739 1303 2018 2221 3166 4331 6085 r/t=1 Department of Civil Engineering Research Report No R845 138 Without EC Prop. With EC Prop. Pn P u,t /P n kN 104 0.84 164 0.93 112 0.88 173 0.98 248 1.15 220 1.10 196 1.04 363 0.95 219 1.12 389 1.02 22 1.20 23 1.05 199 0.87 351 1.02 545 1.08 382 1.13 591 1.10 842 1.13 1135 1.09 1465 1.06 198 1.15 349 1.11 539 1.09 203 1.15 358 1.12 555 1.08 611 1.15 871 1.13 1191 1.09 1673 0.95 mean 1.06 stdv 0.0938 cov 0.0886 Pn kN 108 176 117 185 257 229 204 381 228 406 23 24 206 364 565 395 613 874 1180 1525 205 361 559 210 372 576 634 905 1241 1741 P u,t /P n 0.80 0.87 0.84 0.92 1.10 1.06 0.99 0.91 1.08 0.98 1.16 1.01 1.12 0.98 1.04 1.09 1.06 1.09 1.05 1.01 1.11 1.07 1.05 1.11 1.08 1.04 1.11 1.09 1.05 0.91 1.03 0.0894 0.0871 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties ` Test ID 430_60_60_10_2_2.5 430_60_60_10_3_2.5 430_60_60_15_2_2.5 430_60_60_15_3_2.5 430_150_150_30_3_2.5 430_150_150_20_3_2.5 430_150_150_10_3_2.5 430_200_100_15_4_2.5 430_200_150_20_3_2.5 430_200_150_20_4_2.5 430_150_80_5_1_2.5 430_50_50_5_1_2.5 430_400_400_20_3_2.5 430_400_400_20_4_2.5 430_400_400_20_5_2.5 430_400_400_40_4_2.5 430_400_400_40_5_2.5 430_400_400_40_6_2.5 430_400_400_40_7_2.5 430_400_400_40_8_2.5 430_300_400_20_3_2.5 430_300_400_20_4_2.5 430_300_400_20_5_2.5 430_400_300_20_3_2.5 430_400_300_20_4_2.5 430_400_300_20_5_2.5 430_400_300_40_5_2.5 430_400_300_40_6_2.5 430_400_300_40_7_2.5 430_400_300_40_8_2.5 f y,f f y,c MPa MPa 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 275 424 Geometry Effective Areas Without EC Prop. With EC Prop. Ag Ac A c /A g P u,t A e,f A e,c A e,t Pn mm2 382 561 402 591 1491 1431 1371 1650 1581 2090 316 156 3681 4890 6090 5050 6290 7522 8745 9959 3381 4490 5590 3081 4090 5090 5290 6322 7345 8359 mm2 63 141 63 141 141 141 141 251 141 251 16 16 141 251 393 251 393 565 770 1005 141 251 393 141 251 393 393 565 770 1005 % 16 25 16 24 9 10 10 15 9 12 5 10 4 5 6 5 6 8 9 10 4 6 7 5 6 8 7 9 10 12 kN 87 154 99 173 286 244 205 346 247 399 26 24 236 343 586 437 650 953 1236 1556 229 390 590 235 404 605 704 992 1306 1598 mm2 320 459 348 489 783 695 615 1097 694 1211 71 72 641 1125 1735 1227 1889 2688 3586 4606 637 1115 1714 653 1143 1760 1941 2757 3739 5276 mm2 59 141 61 141 120 110 99 225 107 210 10 11 84 153 246 164 265 396 550 737 84 155 249 87 162 262 284 426 613 836 mm2 378 600 409 630 904 805 714 1322 802 1421 81 83 725 1279 1982 1391 2154 3084 4136 5343 722 1270 1963 740 1305 2022 2225 3182 4352 6112 r/t=2.5 P u,t /P n kN 104 0.84 165 0.93 113 0.88 173 1.00 249 1.15 221 1.10 196 1.05 364 0.95 220 1.12 391 1.02 22 1.19 23 1.06 199 1.18 352 0.97 545 1.07 382 1.14 592 1.10 848 1.12 1137 1.09 1469 1.06 198 1.15 349 1.12 540 1.09 204 1.16 359 1.12 556 1.09 612 1.15 875 1.13 1197 1.09 1681 0.95 mean 1.07 stdv 0.0893 cov 0.0835 Pn kN 113 186 122 194 266 238 211 397 236 422 24 25 212 375 582 407 632 907 1219 1579 211 372 577 217 383 595 654 939 1288 1805 mean 1.07 stdv 0.0930 cov 0.0873 All Tests P u,t /P n 0.77 0.83 0.81 0.89 1.07 1.03 0.97 0.87 1.04 0.95 1.11 0.99 1.11 0.92 1.01 1.07 1.03 1.05 1.01 0.99 1.09 1.05 1.02 1.09 1.05 1.02 1.08 1.06 1.01 0.89 1.00 0.0912 0.0916 1.03 0.0925 0.0900 ASCE (2002), AS/NZS 4673 (2001), (AS/NZS 4600 (1996) NAS (2001)) Material Properties f y,f Test ID 3Cr12D1a 3Cr12D1b f y,c MPa MPa 339 606 339 606 Geometry Ag Ac 2 mm 555 555 Effective Areas A c /A g 2 mm 62 62 % 11 11 P u,t kN 138 139 A e,f 2 mm 345 346 A e,c 2 mm 62 62 A e,t 139 2 mm 407 408 experimental Department of Civil Engineering Research Report No R845 Without EC Prop. With EC Prop. Pn P u,t /P n Pn kN 138 1.00 138 1.01 mean 1.00 stdv 0.0045 cov 0.0045 kN 155 155 P u,t /P n 0.89 0.90 0.89 0.0041 0.0046 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001), (AS/NZS 4600 (1996) NAS (2001)) Material Properties f y,f Test ID 3Cr12_60_60_10_2 3Cr12_60_60_10_3 3Cr12_60_60_15_2 3Cr12_60_60_15_3 3Cr12_150_150_30_3 3Cr12_150_150_20_3 3Cr12_150_150_10_3 3Cr12_200_100_15_4 3Cr12_200_150_20_3 3Cr12_200_150_20_4 3Cr12_150_80_5_1 3Cr12_50_50_5_1 3Cr12_400_400_20_3 3Cr12_400_400_20_4 3Cr12_400_400_20_5 3Cr12_400_400_40_4 3Cr12_400_400_40_5 3Cr12_400_400_40_6 3Cr12_400_400_40_7 3Cr12_400_400_40_8 3Cr12_300_400_20_3 3Cr12_300_400_20_4 3Cr12_300_400_20_5 3Cr12_400_300_20_3 3Cr12_400_300_20_4 3Cr12_400_300_20_5 3Cr12_400_300_40_5 3Cr12_400_300_40_6 3Cr12_400_300_40_7 3Cr12_400_300_40_8 f y,c Geometry Ag Ac 2 MPa MPa mm 260 260 393 260 260 584 260 260 413 260 260 614 260 260 1514 260 260 1454 260 260 1394 260 260 1692 260 260 1604 260 260 2132 260 260 318 260 260 158 260 260 3704 260 260 4932 260 260 6156 260 260 5092 260 260 6356 260 260 7617 260 260 8874 260 260 10130 260 260 3404 260 260 4532 260 260 5656 260 260 3104 260 260 4132 260 260 5156 260 260 5356 260 260 6417 260 260 7474 260 260 8528 Effective Areas A c /A g 2 mm 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 P u,t kN 83 142 93 157 278 243 201 335 254 389 27 24 237 382 602 444 709 1005 1267 1563 231 395 597 237 409 618 738 1022 1292 1556 A e,f 2 mm 326 510 371 558 1093 951 811 1400 982 1435 108 98 1028 1695 2488 2050 2948 3969 5091 6297 1013 1659 2417 1036 1699 2483 2939 3927 5005 5741 A e,c 2 mm 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 flats Department of Civil Engineering Research Report No R845 140 Without EC Prop. With EC Prop. A e,t 2 mm 351 567 396 615 1149 1007 867 1500 1038 1536 115 105 1084 1795 2645 2150 3105 4195 5399 6699 1069 1759 2574 1092 1799 2640 3096 4153 5313 6143 Pn P u,t /P n kN 91 0.91 147 0.96 103 0.91 160 0.98 299 0.93 262 0.93 226 0.89 390 0.86 270 0.94 399 0.97 30 0.91 27 0.90 282 0.84 467 0.82 688 0.88 559 0.79 807 0.88 1091 0.92 1404 0.90 1742 0.90 278 0.83 457 0.86 669 0.89 284 0.83 468 0.87 686 0.90 805 0.92 1080 0.95 1381 0.94 1597 0.97 mean 0.90 stdv 0.0473 cov 0.0526 Pn kN 91 147 103 160 299 262 226 390 270 399 30 27 282 467 688 559 807 1091 1404 1742 278 457 669 284 468 686 805 1080 1381 1597 P u,t /P n 0.91 0.96 0.91 0.98 0.93 0.93 0.89 0.86 0.94 0.97 0.91 0.90 0.84 0.82 0.88 0.79 0.88 0.92 0.90 0.90 0.83 0.86 0.89 0.83 0.87 0.90 0.92 0.95 0.94 0.97 0.90 0.0473 0.0526 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001), (AS/NZS 4600 (1996) NAS (2001)) Material Properties f y,f Test ID 3Cr12_60_60_10_2_1 3Cr12_60_60_10_3_1 3Cr12_60_60_15_2_1 3Cr12_60_60_15_3_1 3Cr12_150_150_30_3_1 3Cr12_150_150_20_3_1 3Cr12_150_150_10_3_1 3Cr12_200_100_15_4_1 3Cr12_200_150_20_3_1 3Cr12_200_150_20_4_1 3Cr12_150_80_5_1_1 3Cr12_50_50_5_1_1 3Cr12_400_400_20_3_1 3Cr12_400_400_20_4_1 3Cr12_400_400_20_5_1 3Cr12_400_400_40_4_1 3Cr12_400_400_40_5_1 3Cr12_400_400_40_6_1 3Cr12_400_400_40_7_1 3Cr12_400_400_40_8_1 3Cr12_300_400_20_3_1 3Cr12_300_400_20_4_1 3Cr12_300_400_20_5_1 3Cr12_400_300_20_3_1 3Cr12_400_300_20_4_1 3Cr12_400_300_20_5_1 3Cr12_400_300_40_5_1 3Cr12_400_300_40_6_1 3Cr12_400_300_40_7_1 3Cr12_400_300_40_8_1 f y,c Geometry Ag Ac 2 MPa MPa mm 260 460 393 260 460 584 260 460 413 260 460 614 260 460 1514 260 460 1454 260 460 1394 260 460 1692 260 460 1604 260 460 2132 260 460 318 260 460 158 260 460 3704 260 460 4932 260 460 6156 260 460 5092 260 460 6356 260 460 7617 260 460 8874 260 460 10130 260 460 3404 260 460 4532 260 460 5656 260 460 3104 260 460 4132 260 460 5156 260 460 5356 260 460 6417 260 460 7474 260 460 8528 Effective Areas A c /A g 2 mm 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 P u,t kN 85 148 96 165 283 246 205 343 256 396 27 25 237 383 607 447 710 1009 1277 1581 234 399 603 240 413 621 741 1032 1311 1584 A e,f 2 mm 326 510 371 558 1093 951 811 1400 982 1435 108 98 1028 1695 2488 2050 2948 3969 5091 6297 1013 1659 2417 1036 1699 2483 2939 3927 5005 5741 A e,c 2 mm 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 r/t=1 Department of Civil Engineering Research Report No R845 141 Without EC Prop. With EC Prop. A e,t 2 mm 351 567 396 615 1149 1007 867 1500 1038 1536 115 105 1084 1795 2645 2150 3105 4195 5399 6699 1069 1759 2574 1092 1799 2640 3096 4153 5313 6143 Pn P u,t /P n kN 91 0.93 147 1.00 103 0.94 160 1.03 299 0.95 262 0.94 226 0.91 390 0.88 270 0.95 399 0.99 30 0.92 27 0.91 282 0.84 467 0.82 688 0.88 559 0.80 807 0.88 1091 0.92 1404 0.91 1742 0.91 278 0.84 457 0.87 669 0.90 284 0.84 468 0.88 686 0.90 805 0.92 1080 0.96 1381 0.95 1597 0.99 mean 0.91 stdv 0.0542 cov 0.0594 Pn kN 96 159 108 171 310 273 237 410 281 419 31 28 293 487 719 579 839 1136 1465 1822 289 478 701 295 488 718 836 1125 1443 1678 P u,t /P n 0.89 0.93 0.89 0.96 0.91 0.90 0.86 0.84 0.91 0.94 0.88 0.87 0.81 0.79 0.84 0.77 0.85 0.89 0.87 0.87 0.81 0.84 0.86 0.81 0.85 0.87 0.89 0.92 0.91 0.94 0.87 0.0474 0.0543 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections f y,f Test ID 3Cr12_60_60_10_2_2.5 3Cr12_60_60_10_3_2.5 3Cr12_60_60_15_2_2.5 3Cr12_60_60_15_3_2.5 3Cr12_150_150_30_3_2.5 3Cr12_150_150_20_3_2.5 3Cr12_150_150_10_3_2.5 3Cr12_200_100_15_4_2.5 3Cr12_200_150_20_3_2.5 3Cr12_200_150_20_4_2.5 3Cr12_150_80_5_1_2.5 3Cr12_50_50_5_1_2.5 3Cr12_400_400_20_3_2.5 3Cr12_400_400_20_4_2.5 3Cr12_400_400_20_5_2.5 3Cr12_400_400_40_4_2.5 3Cr12_400_400_40_5_2.5 3Cr12_400_400_40_6_2.5 3Cr12_400_400_40_7_2.5 3Cr12_400_400_40_8_2.5 3Cr12_300_400_20_3_2.5 3Cr12_300_400_20_4_2.5 3Cr12_300_400_20_5_2.5 3Cr12_400_300_20_3_2.5 3Cr12_400_300_20_4_2.5 3Cr12_400_300_20_5_2.5 3Cr12_400_300_40_5_2.5 3Cr12_400_300_40_6_2.5 3Cr12_400_300_40_7_2.5 3Cr12_400_300_40_8_2.5 f y,c MPa MPa 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 Ag Ac 2 mm 382 561 402 591 1491 1431 1371 1650 1581 2090 316 156 3681 4890 6090 5050 6290 7522 8745 9959 3381 4490 5590 3081 4090 5090 5290 6322 7345 8359 A c /A g 2 mm 63 141 63 141 141 141 141 251 141 251 16 16 141 251 393 251 393 565 770 1005 141 251 393 141 251 393 393 565 770 1005 % 16 25 16 24 9 10 10 15 9 12 5 10 4 5 6 5 6 8 9 10 4 6 7 5 6 8 7 9 10 12 P u,t kN 86 150 97 168 284 248 207 346 257 397 27 25 241 403 608 457 712 1008 1281 1592 235 401 606 240 415 631 739 1036 1316 1592 April 2005 A e,f 2 mm 285 413 329 477 1018 882 714 1267 917 1319 101 90 969 1571 2263 1945 2779 3709 4709 5754 953 1532 2185 975 1573 2256 2767 3667 4629 5276 A e,c 2 mm 63 141 63 141 141 141 141 251 141 251 16 16 141 251 393 251 393 565 770 1005 141 251 393 141 251 393 393 565 770 1005 r/t=2.5 All Tests Department of Civil Engineering Research Report No R845 142 A e,t 2 mm 348 555 392 618 1159 1023 856 1518 1058 1570 116 106 1110 1822 2656 2196 3172 4274 5478 6760 1094 1784 2578 1117 1824 2649 3159 4233 5399 6282 Pn P u,t /P n kN 90 0.95 144 1.04 102 0.95 161 1.05 301 0.94 266 0.93 223 0.93 395 0.88 275 0.94 408 0.97 30 0.90 27 0.90 289 0.84 474 0.85 691 0.88 571 0.80 825 0.86 1111 0.91 1424 0.90 1758 0.91 285 0.83 464 0.87 670 0.90 290 0.83 474 0.87 689 0.92 821 0.90 1101 0.94 1404 0.94 1633 0.97 mean 0.91 stdv 0.0568 cov 0.0625 mean 0.91 stdv 0.0539 cov 0.0592 Pn kN 100 165 111 181 322 287 243 431 296 445 33 30 309 511 748 608 882 1194 1537 1904 305 500 728 311 511 746 879 1183 1516 1780 P u,t /P n 0.86 0.91 0.87 0.93 0.88 0.86 0.85 0.80 0.87 0.89 0.83 0.83 0.78 0.79 0.81 0.75 0.81 0.84 0.83 0.84 0.77 0.80 0.83 0.77 0.81 0.85 0.84 0.88 0.87 0.89 0.84 0.0431 0.0514 0.87 0.0514 0.0591 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Traditional Method Material Properties f y,f Test ID 3Cr12D1a 3Cr12D1b f y,c MPa MPa 339 606 339 606 Geometry Effective Areas A e,c Without EC Prop. With EC Prop. Ag Ac A c /A g P u,t A e,f A e,t mm2 555 555 mm2 62 62 % 11 11 kN 138 139 mm2 mm2 mm2 293 45 338 293 45 338 experimental Pn P u,t /P n Pn kN 115 1.20 115 1.21 mean 1.21 stdv 0.0062 cov 0.0051 kN 127 127 P u,t /P n 1.09 1.10 1.09 0.0056 0.0051 EC3 Part 1-4/1-3 (2004) Traditional Method Material Properties f y,f Test ID 3Cr12_60_60_10_2 3Cr12_60_60_10_3 3Cr12_60_60_15_2 3Cr12_60_60_15_3 3Cr12_150_150_30_3 3Cr12_150_150_20_3 3Cr12_150_150_10_3 3Cr12_200_100_15_4 3Cr12_200_150_20_3 3Cr12_200_150_20_4 3Cr12_150_80_5_1 3Cr12_50_50_5_1 3Cr12_400_400_20_3 3Cr12_400_400_20_4 3Cr12_400_400_20_5 3Cr12_400_400_40_4 3Cr12_400_400_40_5 3Cr12_400_400_40_6 3Cr12_400_400_40_7 3Cr12_400_400_40_8 3Cr12_300_400_20_3 3Cr12_300_400_20_4 3Cr12_300_400_20_5 3Cr12_400_300_20_3 3Cr12_400_300_20_4 3Cr12_400_300_20_5 3Cr12_400_300_40_5 3Cr12_400_300_40_6 3Cr12_400_300_40_7 3Cr12_400_300_40_8 f y,c Geometry Ag Ac 2 MPa MPa mm 260 260 393 260 260 584 260 260 413 260 260 614 260 260 1514 260 260 1454 260 260 1394 260 260 1692 260 260 1604 260 260 2132 260 260 318 260 260 158 260 260 3704 260 260 4932 260 260 6156 260 260 5092 260 260 6356 260 260 7617 260 260 8874 260 260 10130 260 260 3404 260 260 4532 260 260 5656 260 260 3104 260 260 4132 260 260 5156 260 260 5356 260 260 6417 260 260 7474 260 260 8528 Effective Areas A c /A g 2 mm 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 P u,t kN 83 142 93 157 278 243 201 335 254 389 27 24 237 382 602 444 709 1005 1267 1563 231 395 597 237 409 618 738 1022 1292 1556 A e,f 2 A e,c 2 mm mm 345 23 528 54 381 24 573 57 964 47 835 41 738 37 1245 87 840 40 1403 78 91 4 88 4 843 33 1458 59 2193 94 1609 65 2435 103 3404 151 4427 208 5617 279 840 33 1448 60 2176 95 849 34 1452 62 2161 99 2463 110 3362 162 4376 226 5612 311 flats Department of Civil Engineering Research Report No R845 143 Without EC Prop. With EC Prop. A e,t 2 mm 368 582 405 630 1011 876 775 1332 880 1481 95 92 876 1517 2287 1674 2538 3555 4635 5896 873 1508 2271 883 1514 2260 2573 3524 4602 5923 Pn P u,t /P n kN 96 0.89 151 0.97 105 0.91 164 1.00 263 1.07 228 1.06 202 0.99 346 0.98 229 1.07 385 1.01 25 1.07 24 1.00 228 1.01 395 0.90 595 0.97 435 0.97 660 0.98 924 1.03 1205 1.02 1533 1.00 227 0.99 392 0.98 590 0.98 230 1.01 394 1.01 588 1.01 669 1.04 916 1.07 1197 1.07 1540 1.02 mean 1.00 stdv 0.0472 cov 0.0471 Pn kN 96 151 105 164 263 228 202 346 229 385 25 24 228 395 595 435 660 924 1205 1533 227 392 590 230 394 588 669 916 1197 1540 P u,t /P n 0.89 0.97 0.91 1.00 1.07 1.06 0.99 0.98 1.07 1.01 1.07 1.00 1.01 0.90 0.97 0.97 0.98 1.03 1.02 1.00 0.99 0.98 0.98 1.01 1.01 1.01 1.04 1.07 1.07 1.02 1.00 0.0472 0.0471 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Traditional Method Material Properties f y,f Test ID 3Cr12_60_60_10_2_1 3Cr12_60_60_10_3_1 3Cr12_60_60_15_2_1 3Cr12_60_60_15_3_1 3Cr12_150_150_30_3_1 3Cr12_150_150_20_3_1 3Cr12_150_150_10_3_1 3Cr12_200_100_15_4_1 3Cr12_200_150_20_3_1 3Cr12_200_150_20_4_1 3Cr12_150_80_5_1_1 3Cr12_50_50_5_1_1 3Cr12_400_400_20_3_1 3Cr12_400_400_20_4_1 3Cr12_400_400_20_5_1 3Cr12_400_400_40_4_1 3Cr12_400_400_40_5_1 3Cr12_400_400_40_6_1 3Cr12_400_400_40_7_1 3Cr12_400_400_40_8_1 3Cr12_300_400_20_3_1 3Cr12_300_400_20_4_1 3Cr12_300_400_20_5_1 3Cr12_400_300_20_3_1 3Cr12_400_300_20_4_1 3Cr12_400_300_20_5_1 3Cr12_400_300_40_5_1 3Cr12_400_300_40_6_1 3Cr12_400_300_40_7_1 3Cr12_400_300_40_8_1 f y,c Geometry Ag MPa MPa mm2 260 460 393 260 460 584 260 460 413 260 460 614 260 460 1514 260 460 1454 260 460 1394 260 460 1692 260 460 1604 260 460 2132 260 460 318 260 460 158 260 460 3704 260 460 4932 260 460 6156 260 460 5092 260 460 6356 260 460 7617 260 460 8874 260 460 10130 260 460 3404 260 460 4532 260 460 5656 260 460 3104 260 460 4132 260 460 5156 260 460 5356 260 460 6417 260 460 7474 260 460 8528 Effective Areas Ac A c /A g P u,t A e,f A e,c mm2 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 kN 85 148 96 165 283 246 205 343 256 396 27 25 237 383 607 447 710 1009 1277 1581 234 399 603 240 413 621 741 1032 1311 1584 mm2 mm2 345 23 528 54 381 24 573 57 964 47 835 41 738 37 1245 87 840 40 1403 78 91 4 88 4 843 33 1458 59 2193 94 1609 65 2435 103 3404 151 4427 208 5617 279 840 33 1448 60 2176 95 849 34 1452 62 2161 99 2463 110 3362 162 4376 226 5612 311 r/t=1 Department of Civil Engineering Research Report No R845 144 A e,t mm2 368 582 405 630 1011 876 775 1332 880 1481 95 92 876 1517 2287 1674 2538 3555 4635 5896 873 1508 2271 883 1514 2260 2573 3524 4602 5923 Without EC Prop. With EC Prop. Pn P u,t /P n kN 96 0.91 151 1.01 105 0.93 164 1.04 263 1.08 228 1.07 202 1.01 346 1.00 229 1.07 385 1.03 25 1.08 24 1.00 228 0.94 395 0.90 595 0.99 435 0.99 660 0.99 924 1.03 1205 1.02 1533 1.01 227 1.00 392 0.99 590 0.99 230 1.02 394 1.02 588 1.02 669 1.05 916 1.08 1197 1.09 1540 1.03 mean 1.01 stdv 0.0477 cov 0.0471 Pn kN 100 162 110 175 272 236 209 364 237 401 25 25 234 406 613 448 681 955 1247 1589 234 404 609 236 406 607 691 949 1242 1602 P u,t /P n 0.87 0.94 0.89 0.97 1.04 1.03 0.97 0.95 1.04 0.99 1.04 0.97 0.91 0.88 0.96 0.96 0.96 1.00 0.99 0.97 0.98 0.96 0.96 0.99 0.99 0.99 1.02 1.04 1.05 0.99 0.98 0.0471 0.0482 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Traditional Method Material Properties f y,f Test ID 3Cr12_60_60_10_2_2.5 3Cr12_60_60_10_3_2.5 3Cr12_60_60_15_2_2.5 3Cr12_60_60_15_3_2.5 3Cr12_150_150_30_3_2.5 3Cr12_150_150_20_3_2.5 3Cr12_150_150_10_3_2.5 3Cr12_200_100_15_4_2.5 3Cr12_200_150_20_3_2.5 3Cr12_200_150_20_4_2.5 3Cr12_150_80_5_1_2.5 3Cr12_50_50_5_1_2.5 3Cr12_400_400_20_3_2.5 3Cr12_400_400_20_4_2.5 3Cr12_400_400_20_5_2.5 3Cr12_400_400_40_4_2.5 3Cr12_400_400_40_5_2.5 3Cr12_400_400_40_6_2.5 3Cr12_400_400_40_7_2.5 3Cr12_400_400_40_8_2.5 3Cr12_300_400_20_3_2.5 3Cr12_300_400_20_4_2.5 3Cr12_300_400_20_5_2.5 3Cr12_400_300_20_3_2.5 3Cr12_400_300_20_4_2.5 3Cr12_400_300_20_5_2.5 3Cr12_400_300_40_5_2.5 3Cr12_400_300_40_6_2.5 3Cr12_400_300_40_7_2.5 3Cr12_400_300_40_8_2.5 f y,c MPa MPa 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 Geometry Effective Areas Ag Ac A c /A g P u,t A e,f A e,c mm2 382 561 402 591 1491 1431 1371 1650 1581 2090 316 156 3681 4890 6090 5050 6290 7522 8745 9959 3381 4490 5590 3081 4090 5090 5290 6322 7345 8359 mm2 63 141 63 141 141 141 141 251 141 251 16 16 141 251 393 251 393 565 770 1005 141 251 393 141 251 393 393 565 770 1005 % 16 25 16 24 9 10 10 15 9 12 5 10 4 5 6 5 6 8 9 10 4 6 7 5 6 8 7 9 10 12 kN 86 150 97 168 284 248 207 346 257 397 27 25 241 403 608 457 712 1008 1281 1592 235 401 606 240 415 631 739 1036 1316 1592 mm2 mm2 304 55 433 132 342 60 484 141 887 117 767 102 670 91 1084 210 773 100 1246 188 84 9 80 11 790 82 1355 147 2019 232 1505 162 2268 257 3159 374 4080 516 5107 686 787 83 1344 148 1999 233 794 85 1338 153 1982 243 2284 273 3093 402 3999 560 4985 751 Without EC Prop. With EC Prop. A e,t mm2 359 565 402 625 1004 869 761 1294 873 1434 93 91 872 1502 2251 1667 2525 3533 4596 5793 870 1492 2232 879 1491 2225 2557 3495 4559 5736 r/t=2.5 Pn P u,t /P n kN 93 0.92 147 1.02 105 0.93 163 1.03 261 1.09 226 1.10 198 1.05 336 1.03 227 1.13 373 1.06 24 1.12 24 1.05 227 1.06 391 1.03 585 1.04 433 1.05 657 1.08 919 1.10 1195 1.07 1506 1.06 226 1.04 388 1.03 580 1.04 229 1.05 388 1.07 579 1.09 665 1.11 909 1.14 1185 1.11 1491 1.07 mean 1.06 stdv 0.0489 cov 0.0462 Pn kN 101 166 113 183 278 241 211 367 242 400 26 25 239 412 619 457 694 973 1270 1606 238 410 614 241 410 614 705 967 1267 1601 mean 1.03 stdv 0.0595 cov 0.0578 All Tests P u,t /P n 0.85 0.90 0.86 0.92 1.02 1.03 0.98 0.94 1.06 0.99 1.06 0.99 1.01 0.98 0.98 1.00 1.03 1.04 1.01 0.99 0.99 0.98 0.99 1.00 1.01 1.03 1.05 1.07 1.04 0.99 0.99 0.0542 0.0547 0.99 0.0519 0.0523 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties f y,f Test ID 3Cr12D1a 3Cr12D1b f y,c MPa MPa 339 606 339 606 Effective Areas Geometry Ag Ac 2 mm 555 555 A c /A g 2 mm 62 62 % 11 11 P u,t kN 138 139 A e,f 2 mm 309 309 A e,c 2 mm 54 54 A e,t 145 2 mm 363 363 experimental Department of Civil Engineering Research Report No R845 Without EC Prop. With EC Prop. Pn P u,t /P n Pn kN 123 1.12 123 1.13 mean 1.13 stdv 0.0055 cov 0.0049 kN 137 137 P u,t /P n 1.00 1.01 1.01 0.0050 0.0049 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties f y,f Test ID 3Cr12_60_60_10_2 3Cr12_60_60_10_3 3Cr12_60_60_15_2 3Cr12_60_60_15_3 3Cr12_150_150_30_3 3Cr12_150_150_20_3 3Cr12_150_150_10_3 3Cr12_200_100_15_4 3Cr12_200_150_20_3 3Cr12_200_150_20_4 3Cr12_150_80_5_1 3Cr12_50_50_5_1 3Cr12_400_400_20_3 3Cr12_400_400_20_4 3Cr12_400_400_20_5 3Cr12_400_400_40_4 3Cr12_400_400_40_5 3Cr12_400_400_40_6 3Cr12_400_400_40_7 3Cr12_400_400_40_8 3Cr12_300_400_20_3 3Cr12_300_400_20_4 3Cr12_300_400_20_5 3Cr12_400_300_20_3 3Cr12_400_300_20_4 3Cr12_400_300_20_5 3Cr12_400_300_40_5 3Cr12_400_300_40_6 3Cr12_400_300_40_7 3Cr12_400_300_40_8 f y,c Effective Areas Geometry Ag MPa MPa mm2 260 260 393 260 260 584 260 260 413 260 260 614 260 260 1514 260 260 1454 260 260 1394 260 260 1692 260 260 1604 260 260 2132 260 260 318 260 260 158 260 260 3704 260 260 4932 260 260 6156 260 260 5092 260 260 6356 260 260 7617 260 260 8874 260 260 10130 260 260 3404 260 260 4532 260 260 5656 260 260 3104 260 260 4132 260 260 5156 260 260 5356 260 260 6417 260 260 7474 260 260 8528 Ac A c /A g P u,t A e,f A e,c mm2 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 kN 83 142 93 157 278 243 201 335 254 389 27 24 237 382 602 444 709 1005 1267 1563 231 395 597 237 409 618 738 1022 1292 1556 mm2 mm2 362 24 543 57 392 25 573 57 943 50 845 46 737 40 1296 93 846 45 1468 87 84 4 87 5 761 34 1339 62 2069 100 1461 67 2256 109 3201 161 4300 226 5581 306 757 34 1327 63 2044 101 777 36 1364 66 2105 107 2324 116 3362 179 4543 256 5847 347 flats Department of Civil Engineering Research Report No R845 146 A e,t mm2 386 600 417 630 993 891 777 1388 891 1555 88 92 795 1401 2170 1528 2364 3362 4526 5887 791 1390 2145 812 1430 2212 2441 3541 4799 6194 Without EC Prop. With EC Prop. Pn P u,t /P n kN 100 0.85 156 0.94 108 0.88 164 1.00 258 1.09 232 1.04 202 0.99 361 0.94 232 1.05 404 0.96 23 1.14 24 1.00 207 1.12 364 0.98 564 1.03 397 1.07 615 1.05 874 1.09 1177 1.04 1531 1.00 206 1.09 361 1.06 558 1.04 211 1.09 372 1.07 575 1.03 635 1.10 921 1.06 1248 1.03 1611 0.97 mean 1.03 stdv 0.0677 cov 0.0659 Pn kN 100 156 108 164 258 232 202 361 232 404 23 24 207 364 564 397 615 874 1177 1531 206 361 558 211 372 575 635 921 1248 1611 P u,t /P n 0.85 0.94 0.88 1.00 1.09 1.04 0.99 0.94 1.05 0.96 1.14 1.00 1.12 0.98 1.03 1.07 1.05 1.09 1.04 1.00 1.09 1.06 1.04 1.09 1.07 1.03 1.10 1.06 1.03 0.97 1.03 0.0677 0.0659 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties f y,f Test ID 3Cr12_60_60_10_2_1 3Cr12_60_60_10_3_1 3Cr12_60_60_15_2_1 3Cr12_60_60_15_3_1 3Cr12_150_150_30_3_1 3Cr12_150_150_20_3_1 3Cr12_150_150_10_3_1 3Cr12_200_100_15_4_1 3Cr12_200_150_20_3_1 3Cr12_200_150_20_4_1 3Cr12_150_80_5_1_1 3Cr12_50_50_5_1_1 3Cr12_400_400_20_3_1 3Cr12_400_400_20_4_1 3Cr12_400_400_20_5_1 3Cr12_400_400_40_4_1 3Cr12_400_400_40_5_1 3Cr12_400_400_40_6_1 3Cr12_400_400_40_7_1 3Cr12_400_400_40_8_1 3Cr12_300_400_20_3_1 3Cr12_300_400_20_4_1 3Cr12_300_400_20_5_1 3Cr12_400_300_20_3_1 3Cr12_400_300_20_4_1 3Cr12_400_300_20_5_1 3Cr12_400_300_40_5_1 3Cr12_400_300_40_6_1 3Cr12_400_300_40_7_1 3Cr12_400_300_40_8_1 f y,c Effective Areas Geometry Ag MPa MPa mm2 260 460 393 260 460 584 260 460 413 260 460 614 260 460 1514 260 460 1454 260 460 1394 260 460 1692 260 460 1604 260 460 2132 260 460 318 260 460 158 260 460 3704 260 460 4932 260 460 6156 260 460 5092 260 460 6356 260 460 7617 260 460 8874 260 460 10130 260 460 3404 260 460 4532 260 460 5656 260 460 3104 260 460 4132 260 460 5156 260 460 5356 260 460 6417 260 460 7474 260 460 8528 Ac A c /A g P u,t A e,f A e,c mm2 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6 10 6 9 4 4 4 6 4 5 2 4 2 2 3 2 2 3 3 4 2 2 3 2 2 3 3 4 4 5 kN 85 148 96 165 283 246 205 343 256 396 27 25 237 383 607 447 710 1009 1277 1581 234 399 603 240 413 621 741 1032 1311 1584 mm2 mm2 362 24 543 57 392 25 573 57 943 50 845 46 737 40 1296 93 846 45 1468 87 84 4 87 5 761 34 1339 62 2069 100 1461 67 2256 109 3201 161 4300 226 5581 306 757 34 1327 63 2044 101 777 36 1364 66 2105 107 2324 116 3362 179 4543 256 5847 347 r/t=1 Department of Civil Engineering Research Report No R845 147 A e,t mm2 386 600 417 630 993 891 777 1388 891 1555 88 92 795 1401 2170 1528 2364 3362 4526 5887 791 1390 2145 812 1430 2212 2441 3541 4799 6194 Without EC Prop. With EC Prop. Pn P u,t /P n kN 100 0.87 156 0.98 108 0.91 164 1.04 258 1.10 232 1.05 202 1.00 361 0.96 232 1.06 404 0.98 23 1.15 24 1.01 207 1.04 364 0.98 564 1.04 397 1.08 615 1.06 874 1.09 1177 1.05 1531 1.01 206 1.11 361 1.07 558 1.05 211 1.11 372 1.08 575 1.04 635 1.11 921 1.07 1248 1.04 1611 0.99 mean 1.04 stdv 0.0620 cov 0.0597 Pn kN 105 167 113 175 268 241 210 379 241 422 24 25 213 377 584 411 636 906 1222 1592 212 374 578 218 385 596 658 956 1299 1680 P u,t /P n 0.83 0.91 0.87 0.97 1.06 1.01 0.96 0.91 1.02 0.94 1.12 0.97 1.00 0.95 1.00 1.05 1.02 1.05 1.01 0.97 1.07 1.04 1.01 1.07 1.05 1.01 1.07 1.03 1.00 0.95 1.00 0.0641 0.0642 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties f y,f Test ID 3Cr12_60_60_10_2_2.5 3Cr12_60_60_10_3_2.5 3Cr12_60_60_15_2_2.5 3Cr12_60_60_15_3_2.5 3Cr12_150_150_30_3_2.5 3Cr12_150_150_20_3_2.5 3Cr12_150_150_10_3_2.5 3Cr12_200_100_15_4_2.5 3Cr12_200_150_20_3_2.5 3Cr12_200_150_20_4_2.5 3Cr12_150_80_5_1_2.5 3Cr12_50_50_5_1_2.5 3Cr12_400_400_20_3_2.5 3Cr12_400_400_20_4_2.5 3Cr12_400_400_20_5_2.5 3Cr12_400_400_40_4_2.5 3Cr12_400_400_40_5_2.5 3Cr12_400_400_40_6_2.5 3Cr12_400_400_40_7_2.5 3Cr12_400_400_40_8_2.5 3Cr12_300_400_20_3_2.5 3Cr12_300_400_20_4_2.5 3Cr12_300_400_20_5_2.5 3Cr12_400_300_20_3_2.5 3Cr12_400_300_20_4_2.5 3Cr12_400_300_20_5_2.5 3Cr12_400_300_40_5_2.5 3Cr12_400_300_40_6_2.5 3Cr12_400_300_40_7_2.5 3Cr12_400_300_40_8_2.5 f y,c MPa MPa 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 260 406 Effective Areas Geometry Ag Ac A c /A g P u,t A e,f A e,c mm2 382 561 402 591 1491 1431 1371 1650 1581 2090 316 156 3681 4890 6090 5050 6290 7522 8745 9959 3381 4490 5590 3081 4090 5090 5290 6322 7345 8359 mm2 63 141 63 141 141 141 141 251 141 251 16 16 141 251 393 251 393 565 770 1005 141 251 393 141 251 393 393 565 770 1005 % 16 25 16 24 9 10 10 15 9 12 5 10 4 5 6 5 6 8 9 10 4 6 7 5 6 8 7 9 10 12 kN 86 150 97 168 284 248 207 346 257 397 27 25 241 403 608 457 712 1008 1281 1592 235 401 606 240 415 631 739 1036 1316 1592 mm2 mm2 326 60 459 141 355 62 489 141 870 125 779 116 679 101 1160 232 782 113 1342 219 79 10 80 12 711 85 1247 156 1921 251 1362 168 2096 272 2982 406 3971 566 5149 771 706 86 1234 157 1895 254 724 89 1267 165 1948 268 2158 293 3107 450 4176 642 5347 871 A e,t mm2 387 600 418 630 995 895 780 1392 895 1561 89 92 795 1403 2172 1530 2368 3388 4537 5920 792 1391 2149 813 1432 2216 2451 3557 4819 6218 r/t=2.5 All Tests Department of Civil Engineering Research Report No R845 148 Without EC Prop. With EC Prop. Pn P u,t /P n kN 101 0.85 156 0.96 109 0.89 164 1.03 259 1.10 233 1.06 203 1.02 362 0.96 233 1.11 406 0.98 23 1.18 24 1.03 207 1.17 365 1.11 565 1.08 398 1.15 616 1.16 881 1.14 1180 1.09 1539 1.03 206 1.14 362 1.11 559 1.08 211 1.14 372 1.11 576 1.10 637 1.16 925 1.12 1253 1.05 1617 0.98 mean 1.07 stdv 0.0818 cov 0.0765 mean 1.05 stdv 0.0727 cov 0.0695 Pn kN 109 177 118 184 277 250 218 396 249 438 24 26 219 387 601 422 655 940 1262 1652 218 385 596 224 396 615 680 990 1347 1744 P u,t /P n 0.78 0.85 0.82 0.91 1.02 0.99 0.95 0.88 1.03 0.91 1.11 0.96 1.10 1.04 1.01 1.08 1.09 1.07 1.01 0.96 1.08 1.04 1.02 1.07 1.05 1.03 1.09 1.05 0.98 0.91 1.00 0.0862 0.0865 1.01 0.0730 0.0725 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001) Material Properties f y,f Test ID 304DS1a 304DS2b f y,c MPa MPa 242 565 242 565 Geometry Ag Ac 2 mm 634 634 Effective Areas A c /A g 2 % 19 19 mm 122 123 P u,t kN 132 134 A e,f 2 mm 423 425 A e,c 2 mm 69 70 Without EC Prop. With EC Prop. A e,t 2 mm 493 494 experimental Pn P u,t /P n Pn kN 119 1.11 120 1.12 mean 1.11 stdv 0.0098 cov 0.0088 kN 142 142 P u,t /P n 0.93 0.94 0.94 0.0083 0.0089 ASCE (2002), AS/NZS 4673 (2001) Material Properties Test ID 304_200_160_25_10_2 304_200_160_25_10_3 304_200_160_25_10_4 304_400_160_25_10_2 304_400_160_25_10_3 304_400_160_25_10_4 304_400_160_25_20_2 304_400_160_25_20_3 304_400_160_25_20_4 304_800_400_40_15_3 304_800_400_40_15_4 304_800_400_40_15_5 304_800_400_40_15_6 304_800_400_40_30_4 304_800_400_40_30_5 304_800_400_40_30_6 304_150_100_10_10_1 304_150_70_15_10_1 304_150_70_15_10_2 304_200_80_15_10_1 304_200_80_15_10_2 304_150_110_15_10_2 304_300_200_20_15_2 304_300_200_20_15_3 304_100_70_20_10_1 304_250_95_20_10_2 304_250_95_20_10_3 304_100_60_10_10_1 304_200_150_15_15_2 304_90_60_10_5_1 304_150_70_15_10_4 304_150_70_15_10_5 304_200_160_35_20_6 304_200_160_35_20_7 Geometry Effective Areas f y,f f y,c Ag Ac A c /A g P u,t A e,f A e,c MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 mm2 1177 1755 2327 1577 2355 3127 1626 2430 3227 5123 6769 8505 10186 6966 8691 10410 392 341 681 412 817 837 1542 2303 302 997 1485 262 1122 239 1327 1643 3721 4318 mm2 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 116 215 328 116 211 328 128 232 355 252 408 577 792 484 683 902 36 32 90 32 90 101 129 235 36 98 182 31 123 27 250 330 669 817 mm2 mm2 760 32 1257 68 1713 130 763 26 1418 59 2053 104 903 35 1616 75 2340 126 1709 58 2694 103 3887 160 5269 231 3014 118 4289 180 5777 258 210 9 294 16 580 37 313 15 614 32 595 37 775 33 1415 71 229 9 703 30 1217 63 192 9 710 38 173 8 1127 151 1250 393 3221 339 3677 462 flats Department of Civil Engineering Research Report No R845 149 A e,t mm2 792 1325 1844 789 1477 2157 938 1691 2466 1768 2797 4047 5500 3131 4468 6035 220 310 617 328 646 631 808 1486 239 732 1281 202 748 181 1278 1643 3561 4139 Without EC Prop. With EC Prop. Pn P u,t /P n kN 154 0.75 258 0.83 360 0.91 154 0.75 288 0.73 421 0.78 183 0.70 330 0.70 481 0.74 345 0.73 545 0.75 789 0.73 1073 0.74 611 0.79 871 0.78 1177 0.77 43 0.83 60 0.53 120 0.75 64 0.50 126 0.72 123 0.82 158 0.82 290 0.81 47 0.76 143 0.68 250 0.73 39 0.79 146 0.84 35 0.76 249 1.00 320 1.03 694 0.96 807 1.01 mean 0.78 stdv 0.1116 cov 0.1430 Pn kN 154 258 360 154 288 421 183 330 481 345 545 789 1073 611 871 1177 43 60 120 64 126 123 158 290 47 143 250 39 146 35 249 320 694 807 P u,t /P n 0.75 0.83 0.91 0.75 0.73 0.78 0.70 0.70 0.74 0.73 0.75 0.73 0.74 0.79 0.78 0.77 0.83 0.53 0.75 0.50 0.72 0.82 0.82 0.81 0.76 0.68 0.73 0.79 0.84 0.76 1.00 1.03 0.96 1.01 0.78 0.1116 0.1430 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001) Material Properties Test ID 304_200_160_25_10_2_1 304_200_160_25_10_3_1 304_200_160_25_10_4_1 304_400_160_25_10_2_1 304_400_160_25_10_3_1 304_400_160_25_10_4_1 304_400_160_25_20_2_1 304_400_160_25_20_3_1 304_400_160_25_20_4_1 304_800_400_40_15_3_1 304_800_400_40_15_4_1 304_800_400_40_15_5_1 304_800_400_40_15_6_1 304_800_400_40_30_4_1 304_800_400_40_30_5_1 304_800_400_40_30_6_1 304_150_100_10_10_1_1 304_150_70_15_10_1_1 304_150_70_15_10_2_1 304_200_80_15_10_1_1 304_200_80_15_10_2_1 304_150_110_15_10_2_1 304_300_200_20_15_2_1 304_300_200_20_15_3_1 304_100_70_20_10_1_1 304_250_95_20_10_2_1 304_250_95_20_10_3_1 304_100_60_10_10_1_1 304_200_150_15_15_2_1 304_90_60_10_5_1_1 304_150_70_15_10_4_1 304_150_70_15_10_5_1 304_200_160_35_20_6_1 304_200_160_35_20_7_1 Geometry Effective Areas f y,f f y,c Ag Ac A c /A g P u,t A e,f A e,c MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 MPa 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 mm2 1177 1755 2327 1577 2355 3127 1626 2430 3227 5123 6769 8505 10186 6966 8691 10410 392 341 681 412 817 837 1542 2303 302 997 1485 262 1122 239 1327 1643 3721 4318 mm2 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 121 227 352 119 221 347 133 244 379 258 423 603 829 503 715 952 37 33 96 33 95 107 133 247 37 102 193 32 128 28 291 408 757 950 mm2 mm2 760 32 1257 68 1713 130 763 26 1418 59 2053 104 903 35 1616 75 2340 126 1709 58 2694 103 3887 160 5269 231 3014 118 4289 180 5777 258 210 9 294 16 580 37 313 15 614 32 595 37 775 33 1415 71 229 9 703 30 1217 63 192 9 710 38 173 8 1127 151 1250 393 3221 339 3677 462 r/t=1 Department of Civil Engineering Research Report No R845 150 A e,t mm2 792 1325 1844 789 1477 2157 938 1691 2466 1768 2797 4047 5500 3131 4468 6035 220 310 617 328 646 631 808 1486 239 732 1281 202 748 181 1278 1643 3561 4139 Without EC Prop. With EC Prop. Pn P u,t /P n kN 154 0.78 258 0.88 360 0.98 154 0.78 288 0.77 421 0.83 183 0.73 330 0.74 481 0.79 345 0.75 545 0.77 789 0.76 1073 0.77 611 0.82 871 0.82 1177 0.81 43 0.85 60 0.55 120 0.80 64 0.52 126 0.76 123 0.87 158 0.84 290 0.85 47 0.79 143 0.72 250 0.77 39 0.82 146 0.88 35 0.80 249 1.17 320 1.28 694 1.09 807 1.18 mean 0.83 stdv 0.1539 cov 0.1847 Pn kN 163 276 394 161 304 448 192 349 514 360 572 831 1133 641 918 1245 45 65 130 68 134 133 166 309 49 151 266 42 156 37 289 423 783 928 P u,t /P n 0.74 0.82 0.89 0.74 0.73 0.77 0.69 0.70 0.74 0.72 0.74 0.72 0.73 0.78 0.78 0.76 0.81 0.51 0.74 0.49 0.71 0.80 0.80 0.80 0.75 0.68 0.73 0.77 0.83 0.76 1.01 0.97 0.97 1.02 0.77 0.1113 0.1443 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001) Material Properties Test ID 304_200_160_25_10_2_2.5 304_200_160_25_10_3_2.5 304_200_160_25_10_4_2.5 304_400_160_25_10_2_2.5 304_400_160_25_10_3_2.5 304_400_160_25_10_4_2.5 304_400_160_25_20_2_2.5 304_400_160_25_20_3_2.5 304_400_160_25_20_4_2.5 304_800_400_40_15_3_2.5 304_800_400_40_15_4_2.5 304_800_400_40_15_5_2.5 304_800_400_40_15_6_2.5 304_800_400_40_30_4_2.5 304_800_400_40_30_5_2.5 304_800_400_40_30_6_2.5 304_150_100_10_10_1_2.5 304_150_70_15_10_1_2.5 304_150_70_15_10_2_2.5 304_200_80_15_10_1_2.5 304_200_80_15_10_2_2.5 304_150_110_15_10_2_2.5 304_300_200_20_15_2_2.5 304_300_200_20_15_3_2.5 304_100_70_20_10_1_2.5 304_250_95_20_10_2_2.5 304_250_95_20_10_3_2.5 304_100_60_10_10_1_2.5 304_200_150_15_15_2_2.5 304_90_60_10_5_1_2.5 304_150_70_15_10_4_2.5 304_150_70_15_10_5_2.5 304_200_160_35_20_6_2.5 304_200_160_35_20_7_2.5 Geometry Effective Areas f y,f f y,c Ag Ac A c /A g P u,t A e,f A e,c MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 MPa 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 mm2 1157 1711 2262 1557 2311 3062 1607 2386 3148 5078 6739 8382 10069 6888 8569 10234 387 337 657 407 797 817 1522 2258 297 977 1441 257 1102 234 1268 1586 3545 4078 mm2 157 353 565 157 353 565 157 353 628 353 628 982 1131 628 982 1414 39 39 157 39 157 157 157 353 39 157 353 39 157 39 534 668 1414 1924 % 14 21 25 10 15 18 10 15 20 7 9 12 11 9 11 14 10 12 24 10 20 19 10 16 13 16 25 15 14 17 42 42 40 47 kN 122 228 356 121 227 360 135 248 384 255 391 590 832 509 721 958 37 34 100 34 98 109 134 249 37 104 196 33 131 29 302 413 793 1009 mm2 mm2 720 85 1138 182 1529 339 729 67 1357 150 1966 237 874 94 1556 201 2232 339 1646 148 2593 259 3720 403 5131 465 2917 305 4137 466 5539 674 198 24 231 24 515 94 237 23 588 85 535 94 750 88 1348 191 218 24 658 78 1130 164 175 24 649 94 160 22 734 534 918 668 2562 848 2823 1155 A e,t Without EC Prop. With EC Prop. Pn Pn P u,t /P n mm2 kN 805 157 0.78 1321 258 0.89 1868 364 0.98 796 155 0.78 1508 294 0.77 2203 429 0.84 967 189 0.71 1758 343 0.72 2571 501 0.77 1794 350 0.73 2853 556 0.70 4123 804 0.73 5596 1091 0.76 3222 628 0.81 4604 898 0.80 6214 1212 0.79 222 43 0.86 255 50 0.68 609 119 0.84 260 51 0.66 672 131 0.74 629 123 0.89 838 163 0.82 1539 300 0.83 242 47 0.79 736 143 0.72 1294 252 0.78 199 39 0.85 744 145 0.90 183 36 0.81 1268 247 1.22 1586 309 1.34 3410 665 1.19 3978 776 1.30 mean 0.85 r/t=2.5 stdv 0.1689 cov 0.1994 kN 171 288 420 166 319 469 204 376 557 374 599 870 1168 679 975 1323 47 54 134 55 145 138 178 332 51 156 279 43 161 39 335 419 805 966 P u,t /P n 0.71 0.79 0.85 0.73 0.71 0.77 0.66 0.66 0.69 0.68 0.65 0.68 0.71 0.75 0.74 0.72 0.79 0.63 0.75 0.62 0.67 0.79 0.75 0.75 0.73 0.66 0.70 0.78 0.81 0.73 0.90 0.98 0.99 1.04 0.75 0.1004 0.1334 mean 0.83 mean 0.77 stdv 0.1522 stdv 0.1089 cov 0.1843 cov 0.1412 All Tests NAS (2001) Material Properties f y,f Test ID 304DS1a 304DS2b f y,c MPa MPa 242 565 242 565 Department of Civil Engineering Research Report No R845 Effective Areas Geometry Without EC Prop. Ag Ac A c /A g P u,t A e,f A e,c A e,t Pn mm2 634 634 mm2 122 123 % 19 19 kN 132 134 mm2 424 425 mm2 69 70 mm2 493 494 kN 119 120 151 P u,t /P n 1.11 1.12 1.11 0.0098 0.0088 With EC Prop. Pn kN 142 142 P u,t /P n 0.93 0.94 0.94 0.0083 0.0089 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 NAS (2001) Material Properties Test ID 304_200_160_25_10_2 304_200_160_25_10_3 304_200_160_25_10_4 304_400_160_25_10_2 304_400_160_25_10_3 304_400_160_25_10_4 304_400_160_25_20_2 304_400_160_25_20_3 304_400_160_25_20_4 304_800_400_40_15_3 304_800_400_40_15_4 304_800_400_40_15_5 304_800_400_40_15_6 304_800_400_40_30_4 304_800_400_40_30_5 304_800_400_40_30_6 304_150_100_10_10_1 304_150_70_15_10_1 304_150_70_15_10_2 304_200_80_15_10_1 304_200_80_15_10_2 304_150_110_15_10_2 304_300_200_20_15_2 304_300_200_20_15_3 304_100_70_20_10_1 304_250_95_20_10_2 304_250_95_20_10_3 304_100_60_10_10_1 304_200_150_15_15_2 304_90_60_10_5_1 304_150_70_15_10_4 304_150_70_15_10_5 304_200_160_35_20_6 304_200_160_35_20_7 Geometry Effective Areas f y,f f y,c Ag Ac A c /A g P u,t A e,f A e,c MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 mm2 1177 1755 2327 1577 2355 3127 1626 2430 3227 5123 6769 8505 10186 6966 8691 10410 392 341 681 412 817 837 1542 2303 302 997 1485 262 1122 239 1327 1643 3721 4318 mm2 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 116 215 328 116 211 328 128 232 355 252 408 577 792 484 683 902 36 32 90 32 90 101 129 235 36 98 182 31 123 27 250 330 669 817 mm2 765 1257 1796 763 1418 2196 903 1616 2443 1709 2694 3887 5269 3014 4289 5777 210 294 580 300 634 595 775 1427 228 703 1231 192 710 173 1127 1250 3221 3677 mm2 32 68 130 26 59 104 35 75 126 58 103 160 231 118 180 258 9 16 37 15 32 37 33 71 9 30 63 9 38 8 151 393 339 462 Department of Civil Engineering Research Report No R845 152 A e,t Without EC Prop. Pn P u,t /P n mm2 kN 797 155 0.75 1325 258 0.83 1926 376 0.87 789 154 0.75 1477 288 0.73 2300 449 0.73 938 183 0.70 1691 330 0.70 2570 501 0.71 1768 345 0.73 2797 545 0.75 4047 789 0.73 5500 1073 0.74 3131 611 0.79 4468 871 0.78 6035 1177 0.77 220 43 0.83 309 60 0.53 617 120 0.75 315 61 0.53 666 130 0.69 631 123 0.82 808 158 0.82 1498 292 0.80 237 46 0.77 732 143 0.68 1294 252 0.72 202 39 0.79 748 146 0.84 181 35 0.76 1278 249 1.00 1643 320 1.03 3561 694 0.96 4139 807 1.01 mean 0.78 flats stdv 0.1100 cov 0.1417 With EC Prop. Pn kN 155 258 376 154 288 449 183 330 501 345 545 789 1073 611 871 1177 43 60 120 61 130 123 158 292 46 143 252 39 146 35 249 320 694 807 P u,t /P n 0.75 0.83 0.87 0.75 0.73 0.73 0.70 0.70 0.71 0.73 0.75 0.73 0.74 0.79 0.78 0.77 0.83 0.53 0.75 0.53 0.69 0.82 0.82 0.80 0.77 0.68 0.72 0.79 0.84 0.76 1.00 1.03 0.96 1.01 0.78 0.1100 0.1417 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 NAS (2001) Material Properties Test ID 304_200_160_25_10_2_1 304_200_160_25_10_3_1 304_200_160_25_10_4_1 304_400_160_25_10_2_1 304_400_160_25_10_3_1 304_400_160_25_10_4_1 304_400_160_25_20_2_1 304_400_160_25_20_3_1 304_400_160_25_20_4_1 304_800_400_40_15_3_1 304_800_400_40_15_4_1 304_800_400_40_15_5_1 304_800_400_40_15_6_1 304_800_400_40_30_4_1 304_800_400_40_30_5_1 304_800_400_40_30_6_1 304_150_100_10_10_1_1 304_150_70_15_10_1_1 304_150_70_15_10_2_1 304_200_80_15_10_1_1 304_200_80_15_10_2_1 304_150_110_15_10_2_1 304_300_200_20_15_2_1 304_300_200_20_15_3_1 304_100_70_20_10_1_1 304_250_95_20_10_2_1 304_250_95_20_10_3_1 304_100_60_10_10_1_1 304_200_150_15_15_2_1 304_90_60_10_5_1_1 304_150_70_15_10_4_1 304_150_70_15_10_5_1 304_200_160_35_20_6_1 304_200_160_35_20_7_1 Geometry Effective Areas f y,f f y,c Ag Ac A c /A g P u,t A e,f A e,c MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 MPa 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 mm2 1177 1755 2327 1577 2355 3127 1626 2430 3227 5123 6769 8505 10186 6966 8691 10410 392 341 681 412 817 837 1542 2303 302 997 1485 262 1122 239 1327 1643 3721 4318 mm2 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 121 227 352 119 221 347 133 244 379 258 423 603 829 503 715 952 37 33 96 33 95 107 133 247 37 102 193 32 128 28 291 408 757 950 mm2 765 1257 1796 763 1418 2196 903 1616 2443 1709 2694 3887 5269 3014 4289 5777 210 294 580 300 634 595 775 1427 228 703 1231 192 710 173 1127 1250 3221 3677 mm2 32 68 130 26 59 104 35 75 126 58 103 160 231 118 180 258 9 16 37 15 32 37 33 71 9 30 63 9 38 8 151 393 339 462 Department of Civil Engineering Research Report No R845 153 A e,t Without EC Prop. Pn P u,t /P n mm2 kN 797 155 0.78 1325 258 0.88 1926 376 0.94 789 154 0.78 1477 288 0.77 2300 449 0.77 938 183 0.73 1691 330 0.74 2570 501 0.76 1768 345 0.75 2797 545 0.77 4047 789 0.76 5500 1073 0.77 3131 611 0.82 4468 871 0.82 6035 1177 0.81 220 43 0.85 309 60 0.55 617 120 0.80 315 61 0.54 666 130 0.73 631 123 0.87 808 158 0.84 1498 292 0.84 237 46 0.79 732 143 0.72 1294 252 0.77 202 39 0.82 748 146 0.88 181 35 0.80 1278 249 1.17 1643 320 1.28 3561 694 1.09 4139 807 1.18 mean 0.83 r/t=1 stdv 0.1526 cov 0.1841 With EC Prop. Pn kN 164 276 410 161 304 476 192 349 534 360 572 831 1133 641 918 1245 45 64 130 65 138 133 166 311 49 151 269 42 156 38 289 423 783 928 P u,t /P n 0.74 0.82 0.86 0.74 0.73 0.73 0.69 0.70 0.71 0.72 0.74 0.72 0.73 0.78 0.78 0.76 0.81 0.51 0.74 0.51 0.69 0.80 0.80 0.79 0.75 0.68 0.72 0.77 0.83 0.76 1.01 0.97 0.97 1.02 0.77 0.1097 0.1429 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 NAS (2001) Material Properties Test ID 304_200_160_25_10_2_2.5 304_200_160_25_10_3_2.5 304_200_160_25_10_4_2.5 304_400_160_25_10_2_2.5 304_400_160_25_10_3_2.5 304_400_160_25_10_4_2.5 304_400_160_25_20_2_2.5 304_400_160_25_20_3_2.5 304_400_160_25_20_4_2.5 304_800_400_40_15_3_2.5 304_800_400_40_15_4_2.5 304_800_400_40_15_5_2.5 304_800_400_40_15_6_2.5 304_800_400_40_30_4_2.5 304_800_400_40_30_5_2.5 304_800_400_40_30_6_2.5 304_150_100_10_10_1_2.5 304_150_70_15_10_1_2.5 304_150_70_15_10_2_2.5 304_200_80_15_10_1_2.5 304_200_80_15_10_2_2.5 304_150_110_15_10_2_2.5 304_300_200_20_15_2_2.5 304_300_200_20_15_3_2.5 304_100_70_20_10_1_2.5 304_250_95_20_10_2_2.5 304_250_95_20_10_3_2.5 304_100_60_10_10_1_2.5 304_200_150_15_15_2_2.5 304_90_60_10_5_1_2.5 304_150_70_15_10_4_2.5 304_150_70_15_10_5_2.5 304_200_160_35_20_6_2.5 304_200_160_35_20_7_2.5 Geometry Effective Areas f y,f f y,c Ag Ac A c /A g P u,t A e,f A e,c MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 MPa 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 mm2 1157 1711 2262 1557 2311 3062 1607 2386 3148 5078 6739 8382 10069 6888 8569 10234 387 337 657 407 797 817 1522 2258 297 977 1441 257 1102 234 1268 1586 3545 4078 mm2 157 353 565 157 353 565 157 353 628 353 628 982 1131 628 982 1414 39 39 157 39 157 157 157 353 39 157 353 39 157 39 534 668 1414 1924 % 14 21 25 10 15 18 10 15 20 7 9 12 11 9 11 14 10 12 24 10 20 19 10 16 13 16 25 15 14 17 42 42 40 47 kN 122 228 356 121 227 360 135 248 384 255 391 590 832 509 721 958 37 34 100 34 98 109 134 249 37 104 196 33 131 29 302 413 793 1009 mm2 mm2 723 85 1138 182 1610 339 729 67 1357 150 2102 237 874 94 1556 201 2323 339 1646 148 2593 259 3720 403 5131 465 2917 305 4137 466 5539 674 198 24 231 24 515 94 237 23 605 85 535 94 750 88 1353 191 217 24 668 78 1139 164 175 24 649 94 160 22 734 534 918 668 2560 848 2823 1155 A e,t Without EC Prop. Pn P u,t /P n mm2 kN 808 158 0.77 1321 258 0.89 1949 380 0.94 796 155 0.78 1508 294 0.77 2338 456 0.79 967 189 0.71 1758 343 0.72 2663 519 0.74 1794 350 0.73 2853 556 0.70 4123 804 0.73 5596 1091 0.76 3222 628 0.81 4604 898 0.80 6214 1212 0.79 222 43 0.86 255 50 0.68 609 119 0.84 260 51 0.66 690 135 0.72 629 123 0.89 838 163 0.82 1545 301 0.83 240 47 0.80 746 145 0.71 1304 254 0.77 199 39 0.85 744 145 0.90 183 36 0.81 1268 247 1.22 1586 309 1.34 3408 665 1.19 3978 776 1.30 mean 0.84 r/t=2.5 stdv 0.1695 cov 0.2011 With EC Prop. Pn kN 172 288 436 166 319 495 204 376 575 374 599 870 1168 679 975 1323 47 54 134 55 149 138 178 333 51 158 281 43 161 39 335 419 804 966 mean 0.82 stdv 0.1517 cov 0.1846 All Tests P u,t /P n 0.71 0.79 0.82 0.73 0.71 0.73 0.66 0.66 0.67 0.68 0.65 0.68 0.71 0.75 0.74 0.72 0.79 0.63 0.75 0.62 0.66 0.79 0.75 0.75 0.74 0.65 0.70 0.78 0.81 0.73 0.90 0.98 0.99 1.04 0.75 0.1009 0.1347 0.77 0.1081 0.1409 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties f y,f Test ID 304DS1a 304DS2b f y,c MPa MPa 242 565 242 565 Department of Civil Engineering Research Report No R845 Geometry Ag Ac 2 mm 634 634 Effective Areas A c /A g 2 mm 122 123 % 19 19 154 P u,t kN 132 134 A e,f 2 mm 478 478 A e,c 2 mm 115 115 Without EC Prop. With EC Prop. A e,t 2 mm 592 593 Pn P u,t /P n Pn kN 143 0.92 144 0.93 mean 0.93 stdv 0.0089 cov 0.0096 kN 180 181 P u,t /P n 0.73 0.74 0.74 0.0069 0.0093 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties Test ID 304_200_160_25_10_2 304_200_160_25_10_3 304_200_160_25_10_4 304_400_160_25_10_2 304_400_160_25_10_3 304_400_160_25_10_4 304_400_160_25_20_2 304_400_160_25_20_3 304_400_160_25_20_4 304_800_400_40_15_3 304_800_400_40_15_4 304_800_400_40_15_5 304_800_400_40_15_6 304_800_400_40_30_4 304_800_400_40_30_5 304_800_400_40_30_6 304_150_100_10_10_1 304_150_70_15_10_1 304_150_70_15_10_2 304_200_80_15_10_1 304_200_80_15_10_2 304_150_110_15_10_2 304_300_200_20_15_2 304_300_200_20_15_3 304_100_70_20_10_1 304_250_95_20_10_2 304_250_95_20_10_3 304_100_60_10_10_1 304_200_150_15_15_2 304_90_60_10_5_1 304_150_70_15_10_4 304_150_70_15_10_5 304_200_160_35_20_6 304_200_160_35_20_7 Geometry f y,f f y,c Ag Ac MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 mm 1177 1755 2327 1577 2355 3127 1626 2430 3227 5123 6769 8505 10186 6966 8691 10410 392 341 681 412 817 837 1542 2303 302 997 1485 262 1122 239 1327 1643 3721 4318 2 2 mm 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 Effective Areas A c /A g P u,t A e,f % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 116 215 328 116 211 328 128 232 355 252 408 577 792 484 683 902 36 32 90 32 90 101 129 235 36 98 182 31 123 27 250 330 669 817 mm mm 796 47 1410 122 1939 233 684 38 1224 94 1927 187 780 41 1449 105 2284 208 1512 77 2568 144 4017 235 5201 353 2933 151 4372 248 5679 373 232 11 207 12 577 58 196 10 578 52 665 53 783 41 1529 103 250 14 591 47 1173 122 220 14 793 48 196 14 1078 251 1253 393 3160 565 3555 770 2 A e,c 2 flats Department of Civil Engineering Research Report No R845 155 Without EC Prop. With EC Prop. A e,t 2 mm 843 1532 2172 722 1318 2114 821 1554 2492 1589 2712 4252 5555 3085 4620 6052 243 219 635 206 629 718 824 1632 264 638 1296 234 841 209 1329 1643 3725 4324 Pn P u,t /P n kN 164 0.71 299 0.72 423 0.77 141 0.82 257 0.82 412 0.80 160 0.80 303 0.77 486 0.73 310 0.81 529 0.77 829 0.70 1083 0.73 602 0.81 901 0.76 1180 0.76 47 0.75 43 0.75 124 0.73 40 0.80 123 0.73 140 0.72 161 0.80 318 0.74 52 0.69 124 0.79 253 0.72 46 0.68 164 0.75 41 0.66 259 0.96 321 1.03 726 0.92 843 0.97 mean 0.78 stdv 0.0834 cov 0.1071 Pn kN 164 299 423 141 257 412 160 303 486 310 529 829 1083 602 901 1180 47 43 124 40 123 140 161 318 52 124 253 46 164 41 259 321 726 843 P u,t /P n 0.71 0.72 0.77 0.82 0.82 0.80 0.80 0.77 0.73 0.81 0.77 0.70 0.73 0.81 0.76 0.76 0.75 0.75 0.73 0.80 0.73 0.72 0.80 0.74 0.69 0.79 0.72 0.68 0.75 0.66 0.96 1.03 0.92 0.97 0.78 0.0834 0.1071 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties Test ID 304_200_160_25_10_2_1 304_200_160_25_10_3_1 304_200_160_25_10_4_1 304_400_160_25_10_2_1 304_400_160_25_10_3_1 304_400_160_25_10_4_1 304_400_160_25_20_2_1 304_400_160_25_20_3_1 304_400_160_25_20_4_1 304_800_400_40_15_3_1 304_800_400_40_15_4_1 304_800_400_40_15_5_1 304_800_400_40_15_6_1 304_800_400_40_30_4_1 304_800_400_40_30_5_1 304_800_400_40_30_6_1 304_150_100_10_10_1_1 304_150_70_15_10_1_1 304_150_70_15_10_2_1 304_200_80_15_10_1_1 304_200_80_15_10_2_1 304_150_110_15_10_2_1 304_300_200_20_15_2_1 304_300_200_20_15_3_1 304_100_70_20_10_1_1 304_250_95_20_10_2_1 304_250_95_20_10_3_1 304_100_60_10_10_1_1 304_200_150_15_15_2_1 304_90_60_10_5_1_1 304_150_70_15_10_4_1 304_150_70_15_10_5_1 304_200_160_35_20_6_1 304_200_160_35_20_7_1 Effective Areas Geometry f y,f f y,c Ag Ac MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 MPa 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 457 mm 1177 1755 2327 1577 2355 3127 1626 2430 3227 5123 6769 8505 10186 6966 8691 10410 392 341 681 412 817 837 1542 2303 302 997 1485 262 1122 239 1327 1643 3721 4318 2 2 mm 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 A c /A g P u,t A e,f % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 121 227 352 119 221 347 133 244 379 258 423 603 829 503 715 952 37 33 96 33 95 107 133 247 37 102 193 32 128 28 291 408 757 950 mm mm 796 47 1410 122 1939 233 684 38 1224 94 1927 187 780 41 1449 105 2284 208 1512 77 2568 144 4017 235 5201 353 2933 151 4372 248 5679 373 232 11 207 12 577 58 196 10 578 52 665 53 783 41 1529 103 250 14 591 47 1173 122 220 14 793 48 196 14 1078 251 1253 393 3160 565 3555 770 2 A e,c 2 r/t=1 Department of Civil Engineering Research Report No R845 156 Without EC Prop. With EC Prop. A e,t 2 mm 843 1532 2172 722 1318 2114 821 1554 2492 1589 2712 4252 5555 3085 4620 6052 243 219 635 206 629 718 824 1632 264 638 1296 234 841 209 1329 1643 3725 4324 Pn P u,t /P n kN 164 0.74 299 0.76 423 0.83 141 0.85 257 0.86 412 0.84 160 0.83 303 0.80 486 0.78 310 0.83 529 0.80 829 0.73 1083 0.77 602 0.84 901 0.79 1180 0.81 47 0.77 43 0.77 124 0.78 40 0.83 123 0.78 140 0.76 161 0.83 318 0.78 52 0.71 124 0.82 253 0.77 46 0.71 164 0.78 41 0.70 259 1.12 321 1.27 726 1.04 843 1.13 mean 0.83 stdv 0.1259 cov 0.1518 Pn kN 177 331 484 151 282 461 171 330 540 330 567 891 1176 641 966 1278 50 46 139 43 136 154 171 345 55 137 285 49 176 44 325 424 875 1045 P u,t /P n 0.69 0.69 0.73 0.79 0.79 0.75 0.78 0.74 0.70 0.78 0.75 0.68 0.71 0.79 0.74 0.74 0.73 0.72 0.69 0.77 0.70 0.69 0.78 0.71 0.66 0.75 0.68 0.66 0.73 0.64 0.89 0.96 0.87 0.91 0.75 0.0731 0.0980 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties Test ID 304_200_160_25_10_2_2.5 304_200_160_25_10_3_2.5 304_200_160_25_10_4_2.5 304_400_160_25_10_2_2.5 304_400_160_25_10_3_2.5 304_400_160_25_10_4_2.5 304_400_160_25_20_2_2.5 304_400_160_25_20_3_2.5 304_400_160_25_20_4_2.5 304_800_400_40_15_3_2.5 304_800_400_40_15_4_2.5 304_800_400_40_15_5_2.5 304_800_400_40_15_6_2.5 304_800_400_40_30_4_2.5 304_800_400_40_30_5_2.5 304_800_400_40_30_6_2.5 304_150_100_10_10_1_2.5 304_150_70_15_10_1_2.5 304_150_70_15_10_2_2.5 304_200_80_15_10_1_2.5 304_200_80_15_10_2_2.5 304_150_110_15_10_2_2.5 304_300_200_20_15_2_2.5 304_300_200_20_15_3_2.5 304_100_70_20_10_1_2.5 304_250_95_20_10_2_2.5 304_250_95_20_10_3_2.5 304_100_60_10_10_1_2.5 304_200_150_15_15_2_2.5 304_90_60_10_5_1_2.5 304_150_70_15_10_4_2.5 304_150_70_15_10_5_2.5 304_200_160_35_20_6_2.5 304_200_160_35_20_7_2.5 Effective Areas Geometry f y,f f y,c Ag Ac MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 MPa 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 360 mm 1157 1711 2262 1557 2311 3062 1607 2386 3148 5078 6739 8382 10069 6888 8569 10234 387 337 657 407 797 817 1522 2258 297 977 1441 257 1102 234 1268 1586 3545 4078 2 2 mm 157 353 565 157 353 565 157 353 628 353 628 982 1131 628 982 1414 39 39 157 39 157 157 157 353 39 157 353 39 157 39 534 668 1414 1924 A c /A g P u,t A e,f % 14 21 25 10 15 18 10 15 20 7 9 12 11 9 11 14 10 12 24 10 20 19 10 16 13 16 25 15 14 17 42 42 40 47 kN 122 228 356 121 227 360 135 248 384 255 391 590 832 509 721 958 37 34 100 34 98 109 134 249 37 104 196 33 131 29 302 413 793 1009 mm mm 718 118 1197 306 1596 526 611 94 1049 232 1633 414 708 102 1267 261 1918 518 1382 191 2325 358 3595 587 4794 708 2686 379 3938 620 5027 933 213 27 189 30 475 146 179 26 489 131 577 133 717 103 1349 258 226 35 510 118 951 306 196 34 713 120 173 34 739 534 924 668 2143 1414 2170 1924 2 A e,c 2 r/t=2.5 All Tests Department of Civil Engineering Research Report No R845 157 Without EC Prop. With EC Prop. A e,t 2 mm 837 1503 2122 706 1281 2047 810 1528 2436 1574 2683 4182 5502 3065 4558 5960 240 218 621 204 620 710 820 1607 261 628 1257 231 833 207 1273 1591 3556 4094 Pn P u,t /P n kN 163 0.75 293 0.78 414 0.86 138 0.88 250 0.91 399 0.90 158 0.85 298 0.83 475 0.81 307 0.83 523 0.75 815 0.72 1073 0.78 598 0.85 889 0.81 1162 0.82 47 0.79 43 0.79 121 0.83 40 0.85 121 0.81 138 0.79 160 0.84 313 0.79 51 0.73 122 0.85 245 0.80 45 0.74 162 0.81 40 0.71 248 1.22 310 1.33 693 1.14 798 1.26 mean 0.86 stdv 0.1503 cov 0.1749 mean 0.82 stdv 0.1259 cov 0.1527 Pn kN 183 344 501 153 288 467 175 341 560 338 582 912 1190 660 991 1316 51 47 145 44 142 160 177 356 57 142 295 51 182 46 336 420 927 1116 P u,t /P n 0.67 0.66 0.71 0.79 0.79 0.77 0.77 0.73 0.69 0.75 0.67 0.65 0.70 0.77 0.73 0.73 0.72 0.71 0.69 0.77 0.68 0.68 0.76 0.70 0.66 0.73 0.66 0.65 0.72 0.62 0.90 0.98 0.86 0.90 0.73 0.0793 0.1080 0.75 0.0794 0.1055 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001) Material Properties f y,f Test ID 430DS1 430DS2 430DS3 430DS4 f y,c MPa MPa 271 452 271 452 271 452 271 452 Geometry Effective Areas Without EC Prop With EC Prop Ag Ac A c /A g P u,t A e,f A e,c A e,t Pn P u,t /P n Pn mm2 269 269 278 278 mm2 53 55 54 54 % 20 20 20 20 kN 60 62 64 72 mm2 157 158 177 176 mm2 32 33 33 33 mm2 189 191 209 209 kN 51 1.17 52 1.20 57 1.12 57 1.27 mean 1.19 stdv 0.0623 cov 0.0525 kN 57 58 63 62 experimental P u,t /P n 1.05 1.07 1.01 1.15 1.07 0.0570 0.0532 ASCE (2002), AS/NZS 4673 (2001) Material Properties f y,f Test ID 430_200_160_25_10_2 430_200_160_25_10_3 430_200_160_25_10_4 430_400_160_25_10_2 430_400_160_25_10_3 430_400_160_25_10_4 430_400_160_25_20_2 430_400_160_25_20_3 430_400_160_25_20_4 430_800_400_40_15_3 430_800_400_40_15_4 430_800_400_40_15_5 430_800_400_40_15_6 430_800_400_40_30_4 430_800_400_40_30_5 430_800_400_40_30_6 430_150_100_10_10_1 430_150_70_15_10_1 430_150_70_15_10_2 430_200_80_15_10_1 430_200_80_15_10_2 430_150_110_15_10_2 430_300_200_20_15_2 430_300_200_20_15_3 430_100_70_20_10_1 430_250_95_20_10_2 430_250_95_20_10_3 430_100_60_10_10_1 430_200_150_15_15_2 430_90_60_10_5_1 430_150_70_15_10_4 430_150_70_15_10_5 430_200_160_35_20_6 430_200_160_35_20_7 f y,c Geometry Ag Ac 2 MPa MPa mm 275 275 1177 275 275 1755 275 275 2327 275 275 1577 275 275 2355 275 275 3127 275 275 1626 275 275 2430 275 275 3227 275 275 5123 275 275 6769 275 275 8505 275 275 10186 275 275 6966 275 275 8691 275 275 10410 275 275 392 275 275 341 275 275 681 275 275 412 275 275 817 275 275 837 275 275 1542 275 275 2303 275 275 302 275 275 997 275 275 1485 275 275 262 275 275 1122 275 275 239 275 275 1327 275 275 1643 275 275 3721 275 275 4318 Effective Areas A c /A g 2 mm 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 P u,t kN 155 284 431 154 282 439 167 312 476 316 527 762 1049 625 907 1198 44 43 118 42 121 134 170 310 48 131 241 41 162 36 322 434 873 1068 A e,f 2 mm 631 1110 1601 626 1172 1786 733 1317 2027 1388 2200 3184 4325 2449 3497 4714 178 211 498 200 527 528 626 1175 205 581 1018 171 619 145 1078 1351 2988 3478 A e,c 2 mm 30 64 113 26 58 103 32 67 119 58 102 159 229 113 172 245 9 9 33 8 30 33 30 67 9 28 61 9 38 8 151 236 339 462 flats Department of Civil Engineering Research Report No R845 158 Without EC Prop With EC Prop A e,t 2 mm 661 1174 1714 652 1230 1889 765 1384 2147 1446 2302 3343 4554 2562 3669 4960 188 221 531 208 557 561 656 1242 214 609 1080 181 657 152 1228 1587 3327 3940 Pn P u,t /P n kN 182 0.85 323 0.88 471 0.91 179 0.86 338 0.83 520 0.85 210 0.79 381 0.82 590 0.81 398 0.80 633 0.83 919 0.83 1252 0.84 705 0.89 1009 0.90 1364 0.88 52 0.85 61 0.71 146 0.81 57 0.73 153 0.79 154 0.87 180 0.94 342 0.91 59 0.81 167 0.78 297 0.81 50 0.83 181 0.90 42 0.85 338 0.95 436 1.00 915 0.95 1084 0.99 mean 0.85 stdv 0.0658 cov 0.0771 Pn kN 182 323 471 179 338 520 210 381 590 398 633 919 1252 705 1009 1364 52 61 146 57 153 154 180 342 59 167 297 50 181 42 338 436 915 1084 P u,t /P n 0.85 0.88 0.91 0.86 0.83 0.85 0.79 0.82 0.81 0.80 0.83 0.83 0.84 0.89 0.90 0.88 0.85 0.71 0.81 0.73 0.79 0.87 0.94 0.91 0.81 0.78 0.81 0.83 0.90 0.85 0.95 1.00 0.95 0.99 0.85 0.0658 0.0771 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001) Material Properties f y,f Test ID 430_200_160_25_10_2_1 430_200_160_25_10_3_1 430_200_160_25_10_4_1 430_400_160_25_10_2_1 430_400_160_25_10_3_1 430_400_160_25_10_4_1 430_400_160_25_20_2_1 430_400_160_25_20_3_1 430_400_160_25_20_4_1 430_800_400_40_15_3_1 430_800_400_40_15_4_1 430_800_400_40_15_5_1 430_800_400_40_15_6_1 430_800_400_40_30_4_1 430_800_400_40_30_5_1 430_800_400_40_30_6_1 430_150_100_10_10_1_1 430_150_70_15_10_1_1 430_150_70_15_10_2_1 430_200_80_15_10_1_1 430_200_80_15_10_2_1 430_150_110_15_10_2_1 430_300_200_20_15_2_1 430_300_200_20_15_3_1 430_100_70_20_10_1_1 430_250_95_20_10_2_1 430_250_95_20_10_3_1 430_100_60_10_10_1_1 430_200_150_15_15_2_1 430_90_60_10_5_1_1 430_150_70_15_10_4_1 430_150_70_15_10_5_1 430_200_160_35_20_6_1 430_200_160_35_20_7_1 f y,c Geometry Ag MPa MPa mm2 275 479 1177 275 479 1755 275 479 2327 275 479 1577 275 479 2355 275 479 3127 275 479 1626 275 479 2430 275 479 3227 275 479 5123 275 479 6769 275 479 8505 275 479 10186 275 479 6966 275 479 8691 275 479 10410 275 479 392 275 479 341 275 479 681 275 479 412 275 479 817 275 479 837 275 479 1542 275 479 2303 275 479 302 275 479 997 275 479 1485 275 479 262 275 479 1122 275 479 239 275 479 1327 275 479 1643 275 479 3721 275 479 4318 Effective Areas Ac A c /A g P u,t A e,f A e,c A e,t mm2 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 157 292 448 155 288 452 170 319 491 323 538 780 1075 635 930 1233 48 43 123 42 124 134 144 319 48 134 248 42 167 37 353 491 937 1165 mm2 631 1110 1601 626 1172 1786 733 1317 2027 1388 2200 3184 4325 2449 3497 4714 178 211 498 200 527 528 626 1175 205 581 1018 171 619 145 1078 1351 2988 3478 mm2 30 64 113 26 58 103 32 67 119 58 102 159 229 113 172 245 9 9 33 8 30 33 30 67 9 28 61 9 38 8 151 236 339 462 mm2 661 1174 1714 652 1230 1889 765 1384 2147 1446 2302 3343 4554 2562 3669 4960 188 221 531 208 557 561 656 1242 214 609 1080 181 657 152 1228 1587 3327 3940 r/t=1 Department of Civil Engineering Research Report No R845 159 Without EC Prop With EC Prop Pn P u,t /P n kN 182 0.86 323 0.90 471 0.95 179 0.87 338 0.85 520 0.87 210 0.81 381 0.84 590 0.83 398 0.81 633 0.85 919 0.85 1252 0.86 705 0.90 1009 0.92 1364 0.90 52 0.93 61 0.72 146 0.84 57 0.74 153 0.81 154 0.87 180 0.80 342 0.93 59 0.82 167 0.80 297 0.84 50 0.85 181 0.92 42 0.87 338 1.04 436 1.13 915 1.02 1084 1.08 mean 0.88 stdv 0.0870 cov 0.0990 Pn kN 188 336 494 185 350 541 217 394 615 409 654 952 1299 728 1044 1414 53 63 153 59 159 161 187 355 61 173 309 52 188 43 369 484 984 1178 P u,t /P n 0.84 0.87 0.91 0.84 0.82 0.84 0.78 0.81 0.80 0.79 0.82 0.82 0.83 0.87 0.89 0.87 0.89 0.69 0.80 0.72 0.78 0.83 0.77 0.90 0.79 0.77 0.80 0.82 0.88 0.84 0.96 1.01 0.95 0.99 0.84 0.0698 0.0829 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001) Material Properties Test ID 430_200_160_25_10_2_2.5 430_200_160_25_10_3_2.5 430_200_160_25_10_4_2.5 430_400_160_25_10_2_2.5 430_400_160_25_10_3_2.5 430_400_160_25_10_4_2.5 430_400_160_25_20_2_2.5 430_400_160_25_20_3_2.5 430_400_160_25_20_4_2.5 430_800_400_40_15_3_2.5 430_800_400_40_15_4_2.5 430_800_400_40_15_5_2.5 430_800_400_40_15_6_2.5 430_800_400_40_30_4_2.5 430_800_400_40_30_5_2.5 430_800_400_40_30_6_2.5 430_150_100_10_10_1_2.5 430_150_70_15_10_1_2.5 430_150_70_15_10_2_2.5 430_200_80_15_10_1_2.5 430_200_80_15_10_2_2.5 430_150_110_15_10_2_2.5 430_300_200_20_15_2_2.5 430_300_200_20_15_3_2.5 430_100_70_20_10_1_2.5 430_250_95_20_10_2_2.5 430_250_95_20_10_3_2.5 430_100_60_10_10_1_2.5 430_200_150_15_15_2_2.5 430_90_60_10_5_1_2.5 430_150_70_15_10_4_2.5 430_150_70_15_10_5_2.5 430_200_160_35_20_6_2.5 430_200_160_35_20_7_2.5 Geometry f y,f f y,c Ag Ac MPa 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 MPa mm2 mm2 424 1157 157 424 1711 353 424 2262 565 424 1557 157 424 2311 353 424 3062 565 424 1607 157 424 2386 353 424 3148 628 424 5078 353 424 6739 628 424 8382 982 424 10069 1131 424 6888 628 424 8569 982 424 10234 1414 424 387 39 424 337 39 424 657 157 424 407 39 424 797 157 424 817 157 424 1522 157 424 2258 353 424 297 39 424 977 157 424 1441 353 424 257 39 424 1102 157 424 234 39 424 1268 534 424 1586 668 424 3545 1414 424 4078 1924 Effective Areas A c /A g P u,t A e,f A e,c A e,t % 14 21 25 10 15 18 10 15 20 7 9 12 11 9 11 14 10 12 24 10 20 19 10 16 13 16 25 15 14 17 42 42 40 47 kN 157 294 452 157 288 465 169 321 492 322 523 753 1071 640 932 1229 45 44 128 43 126 139 170 319 49 134 249 43 168 37 363 497 964 1207 mm2 601 1030 1447 598 1121 1705 709 1267 1937 1338 2117 3047 4209 2371 3374 4522 170 198 459 192 503 485 606 1125 197 554 966 158 573 138 783 918 2408 2665 mm2 79 166 265 66 146 234 85 176 315 146 257 399 460 289 441 628 24 24 90 21 79 90 79 177 24 71 157 24 94 20 320 668 848 1155 mm2 679 1196 1712 664 1268 1939 793 1443 2252 1484 2374 3446 4668 2660 3815 5150 193 222 549 213 582 575 685 1303 221 625 1123 182 667 158 1103 1586 3257 3819 r/t=2.5 All Tests Department of Civil Engineering Research Report No R845 160 Without EC Prop With EC Prop Pn P u,t /P n kN 187 0.84 329 0.89 471 0.96 183 0.86 349 0.83 533 0.87 218 0.78 397 0.81 619 0.79 408 0.79 653 0.80 948 0.79 1284 0.83 732 0.87 1049 0.89 1416 0.87 53 0.84 61 0.72 151 0.85 59 0.73 160 0.78 158 0.88 188 0.90 358 0.89 61 0.80 172 0.78 309 0.81 50 0.86 183 0.92 44 0.85 303 1.20 436 1.14 896 1.08 1050 1.15 mean 0.87 stdv 0.1128 cov 0.1294 mean 0.88 stdv 0.1082 cov 0.1229 Pn kN 199 354 510 192 370 568 231 423 666 430 691 1007 1352 775 1115 1510 57 65 164 62 172 171 200 385 64 183 332 54 197 47 351 536 1022 1222 P u,t /P n 0.79 0.83 0.89 0.82 0.78 0.82 0.73 0.76 0.74 0.75 0.76 0.75 0.79 0.83 0.84 0.81 0.79 0.68 0.78 0.70 0.73 0.81 0.85 0.83 0.76 0.73 0.75 0.80 0.85 0.79 1.03 0.93 0.94 0.99 0.81 0.0778 0.0964 0.84 0.0857 0.1016 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 NAS (2001) Material Properties f y,f Test ID 430DS1 430DS2 430DS3 430DS4 f y,c MPa MPa 271 452 271 452 271 452 271 452 Geometry Effective Areas Without EC Prop With EC Prop Ag Ac A c /A g P u,t A e,f A e,c A e,t Pn P u,t /P n Pn mm2 269 269 278 278 mm2 53 55 54 54 % 20 20 20 20 kN 60 62 64 72 mm2 157 158 177 176 mm2 32 33 33 33 mm2 189 191 209 209 kN 51 1.17 52 1.20 57 1.12 57 1.27 mean 1.19 stdv 0.0623 cov 0.0525 kN 57 58 63 62 experimental P u,t /P n 1.05 1.07 1.01 1.15 1.07 0.0570 0.0532 NAS (2001) Material Properties f y,f Test ID 430_200_160_25_10_2 430_200_160_25_10_3 430_200_160_25_10_4 430_400_160_25_10_2 430_400_160_25_10_3 430_400_160_25_10_4 430_400_160_25_20_2 430_400_160_25_20_3 430_400_160_25_20_4 430_800_400_40_15_3 430_800_400_40_15_4 430_800_400_40_15_5 430_800_400_40_15_6 430_800_400_40_30_4 430_800_400_40_30_5 430_800_400_40_30_6 430_150_100_10_10_1 430_150_70_15_10_1 430_150_70_15_10_2 430_200_80_15_10_1 430_200_80_15_10_2 430_150_110_15_10_2 430_300_200_20_15_2 430_300_200_20_15_3 430_100_70_20_10_1 430_250_95_20_10_2 430_250_95_20_10_3 430_100_60_10_10_1 430_200_150_15_15_2 430_90_60_10_5_1 430_150_70_15_10_4 430_150_70_15_10_5 430_200_160_35_20_6 430_200_160_35_20_7 Department of Civil Engineering Research Report No R845 f y,c Geometry Ag MPa MPa mm2 275 275 1177 275 275 1755 275 275 2327 275 275 1577 275 275 2355 275 275 3127 275 275 1626 275 275 2430 275 275 3227 275 275 5123 275 275 6769 275 275 8505 275 275 10186 275 275 6966 275 275 8691 275 275 10410 275 275 392 275 275 341 275 275 681 275 275 412 275 275 817 275 275 837 275 275 1542 275 275 2303 275 275 302 275 275 997 275 275 1485 275 275 262 275 275 1122 275 275 239 275 275 1327 275 275 1643 275 275 3721 275 275 4318 Effective Areas Without EC Prop Ac A c /A g P u,t A e,f A e,c A e,t Pn mm2 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 155 284 431 154 282 439 167 312 476 316 527 762 1049 625 907 1198 44 43 118 42 121 134 170 310 48 131 241 41 162 36 322 434 873 1068 mm2 640 1119 1601 625 1172 1868 732 1317 2069 1385 2200 3184 4325 2449 3497 4714 178 210 517 199 537 530 626 1198 203 581 1068 171 619 146 1078 1351 2987 3477 mm2 30 64 113 26 58 103 32 67 119 58 102 159 229 113 172 245 9 9 33 8 30 33 30 67 9 28 61 9 38 8 151 236 339 462 mm2 670 1183 1714 651 1230 1971 764 1384 2188 1443 2302 3343 4554 2562 3669 4960 188 220 550 207 567 563 656 1265 213 609 1130 181 657 154 1228 1587 3327 3938 kN 184 325 471 179 338 542 210 381 602 397 633 919 1252 705 1009 1364 52 60 151 57 156 155 180 348 59 167 311 50 181 42 338 436 915 1083 161 P u,t /P n 0.84 0.87 0.91 0.86 0.83 0.81 0.80 0.82 0.79 0.80 0.83 0.83 0.84 0.89 0.90 0.88 0.85 0.71 0.78 0.74 0.77 0.86 0.94 0.89 0.81 0.78 0.77 0.83 0.90 0.84 0.95 1.00 0.95 0.99 0.85 0.0677 0.0797 With EC Prop Pn kN 184 325 471 179 338 542 210 381 602 397 633 919 1252 705 1009 1364 52 60 151 57 156 155 180 348 59 167 311 50 181 42 338 436 915 1083 P u,t /P n 0.84 0.87 0.91 0.86 0.83 0.81 0.80 0.82 0.79 0.80 0.83 0.83 0.84 0.89 0.90 0.88 0.85 0.71 0.78 0.74 0.77 0.86 0.94 0.89 0.81 0.78 0.77 0.83 0.90 0.84 0.95 1.00 0.95 0.99 0.85 0.0677 0.0797 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 NAS (2001) Material Properties f y,f Test ID 430_200_160_25_10_2_1 430_200_160_25_10_3_1 430_200_160_25_10_4_1 430_400_160_25_10_2_1 430_400_160_25_10_3_1 430_400_160_25_10_4_1 430_400_160_25_20_2_1 430_400_160_25_20_3_1 430_400_160_25_20_4_1 430_800_400_40_15_3_1 430_800_400_40_15_4_1 430_800_400_40_15_5_1 430_800_400_40_15_6_1 430_800_400_40_30_4_1 430_800_400_40_30_5_1 430_800_400_40_30_6_1 430_150_100_10_10_1_1 430_150_70_15_10_1_1 430_150_70_15_10_2_1 430_200_80_15_10_1_1 430_200_80_15_10_2_1 430_150_110_15_10_2_1 430_300_200_20_15_2_1 430_300_200_20_15_3_1 430_100_70_20_10_1_1 430_250_95_20_10_2_1 430_250_95_20_10_3_1 430_100_60_10_10_1_1 430_200_150_15_15_2_1 430_90_60_10_5_1_1 430_150_70_15_10_4_1 430_150_70_15_10_5_1 430_200_160_35_20_6_1 430_200_160_35_20_7_1 f y,c Geometry Ag MPa MPa mm2 275 479 1177 275 479 1755 275 479 2327 275 479 1577 275 479 2355 275 479 3127 275 479 1626 275 479 2430 275 479 3227 275 479 5123 275 479 6769 275 479 8505 275 479 10186 275 479 6966 275 479 8691 275 479 10410 275 479 392 275 479 341 275 479 681 275 479 412 275 479 817 275 479 837 275 479 1542 275 479 2303 275 479 302 275 479 997 275 479 1485 275 479 262 275 479 1122 275 479 239 275 479 1327 275 479 1643 275 479 3721 275 479 4318 Effective Areas Ac A c /A g P u,t A e,f A e,c A e,t Pn mm2 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 157 292 448 155 288 452 170 319 491 323 538 780 1075 635 930 1233 48 43 123 42 124 134 144 319 48 134 248 42 167 37 353 491 937 1165 mm2 640 1119 1601 625 1172 1868 732 1317 2069 1385 2200 3184 4325 2449 3497 4714 178 210 517 199 537 530 626 1198 203 581 1068 171 619 146 1078 1351 2987 3477 mm2 30 64 113 26 58 103 32 67 119 58 102 159 229 113 172 245 9 9 33 8 30 33 30 67 9 28 61 9 38 8 151 236 339 462 mm2 670 1183 1714 651 1230 1971 764 1384 2188 1443 2302 3343 4554 2562 3669 4960 188 220 550 207 567 563 656 1265 213 609 1130 181 657 154 1228 1587 3327 3938 kN 184 325 471 179 338 542 210 381 602 397 633 919 1252 705 1009 1364 52 60 151 57 156 155 180 348 59 167 311 50 181 42 338 436 915 1083 r/t=1 Department of Civil Engineering Research Report No R845 Without EC Prop 162 P u,t /P n 0.85 0.90 0.95 0.87 0.85 0.83 0.81 0.84 0.82 0.81 0.85 0.85 0.86 0.90 0.92 0.90 0.93 0.72 0.81 0.75 0.80 0.86 0.80 0.92 0.83 0.80 0.80 0.85 0.92 0.86 1.04 1.13 1.02 1.08 0.87 0.0885 0.1013 With EC Prop Pn kN 190 338 494 184 350 563 217 394 626 409 654 952 1299 728 1044 1414 53 62 158 58 162 162 187 362 60 173 323 52 188 44 369 484 984 1177 P u,t /P n 0.83 0.86 0.91 0.84 0.82 0.80 0.79 0.81 0.78 0.79 0.82 0.82 0.83 0.87 0.89 0.87 0.89 0.70 0.78 0.73 0.77 0.83 0.77 0.88 0.80 0.77 0.77 0.82 0.88 0.83 0.96 1.01 0.95 0.99 0.84 0.0713 0.0851 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 NAS (2001) Material Properties Test ID 430_200_160_25_10_2_2.5 430_200_160_25_10_3_2.5 430_200_160_25_10_4_2.5 430_400_160_25_10_2_2.5 430_400_160_25_10_3_2.5 430_400_160_25_10_4_2.5 430_400_160_25_20_2_2.5 430_400_160_25_20_3_2.5 430_400_160_25_20_4_2.5 430_800_400_40_15_3_2.5 430_800_400_40_15_4_2.5 430_800_400_40_15_5_2.5 430_800_400_40_15_6_2.5 430_800_400_40_30_4_2.5 430_800_400_40_30_5_2.5 430_800_400_40_30_6_2.5 430_150_100_10_10_1_2.5 430_150_70_15_10_1_2.5 430_150_70_15_10_2_2.5 430_200_80_15_10_1_2.5 430_200_80_15_10_2_2.5 430_150_110_15_10_2_2.5 430_300_200_20_15_2_2.5 430_300_200_20_15_3_2.5 430_100_70_20_10_1_2.5 430_250_95_20_10_2_2.5 430_250_95_20_10_3_2.5 430_100_60_10_10_1_2.5 430_200_150_15_15_2_2.5 430_90_60_10_5_1_2.5 430_150_70_15_10_4_2.5 430_150_70_15_10_5_2.5 430_200_160_35_20_6_2.5 430_200_160_35_20_7_2.5 Geometry f y,f f y,c Ag Ac MPa 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 MPa mm2 mm2 424 1157 157 424 1711 353 424 2262 565 424 1557 157 424 2311 353 424 3062 565 424 1607 157 424 2386 353 424 3148 628 424 5078 353 424 6739 628 424 8382 982 424 10069 1131 424 6888 628 424 8569 982 424 10234 1414 424 387 39 424 337 39 424 657 157 424 407 39 424 797 157 424 817 157 424 1522 157 424 2258 353 424 297 39 424 977 157 424 1441 353 424 257 39 424 1102 157 424 234 39 424 1268 534 424 1586 668 424 3545 1414 424 4078 1924 Effective Areas A c /A g P u,t A e,f A e,c % 14 21 25 10 15 18 10 15 20 7 9 12 11 9 11 14 10 12 24 10 20 19 10 16 13 16 25 15 14 17 42 42 40 47 kN 157 294 452 157 288 465 169 321 492 322 523 753 1071 640 932 1229 45 44 128 43 126 139 170 319 49 134 249 43 168 37 363 497 964 1207 mm2 mm2 608 79 1030 166 1447 265 598 66 1121 146 1780 234 709 85 1267 176 1964 315 1338 146 2117 257 3047 399 4209 460 2371 289 3374 441 4522 628 170 24 198 24 474 90 191 21 510 79 485 90 606 79 1141 177 196 24 554 71 1008 157 158 24 573 94 139 20 783 320 918 668 2408 848 2664 1155 r/t=2.5 All Tests Department of Civil Engineering Research Report No R845 163 Without EC Prop With EC Prop A e,t Pn mm2 686 1196 1712 664 1268 2014 793 1443 2279 1484 2374 3446 4668 2660 3815 5150 193 221 564 213 589 575 685 1318 219 625 1165 182 667 159 1103 1586 3256 3818 kN 189 329 471 183 349 554 218 397 627 408 653 948 1284 732 1049 1416 53 61 155 58 162 158 188 362 60 172 320 50 183 44 303 436 895 1050 P u,t /P n 0.83 0.89 0.96 0.86 0.83 0.84 0.78 0.81 0.79 0.79 0.80 0.79 0.83 0.87 0.89 0.87 0.84 0.72 0.82 0.74 0.78 0.88 0.90 0.88 0.81 0.78 0.78 0.86 0.92 0.84 1.20 1.14 1.08 1.15 0.87 0.1140 0.1313 0.88 0.1098 0.1253 Pn kN 200 354 510 192 370 589 231 423 674 430 691 1007 1352 775 1115 1510 57 64 168 62 174 171 200 389 64 183 344 54 197 47 351 536 1022 1222 P u,t /P n 0.78 0.83 0.89 0.82 0.78 0.79 0.73 0.76 0.73 0.75 0.76 0.75 0.79 0.83 0.84 0.81 0.79 0.69 0.76 0.70 0.72 0.81 0.85 0.82 0.77 0.73 0.72 0.80 0.85 0.79 1.03 0.93 0.94 0.99 0.80 0.0789 0.0982 0.84 0.0871 0.1038 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 Alternative Method Material Properties f y,f Test ID 430DS1 430DS2 430DS3 430DS4 f y,c MPa MPa 271 452 271 452 271 452 271 452 Geometry Effective Areas Without EC Prop With EC Prop Ag Ac A c /A g P u,t A e,f A e,c A e,t Pn P u,t /P n Pn mm2 269 269 278 278 mm2 53 55 54 54 % 20 20 20 20 kN 60 62 64 72 mm2 191 197 202 212 mm2 47 51 50 53 mm2 239 247 252 265 kN 65 0.92 67 0.92 68 0.93 72 1.00 mean 0.94 stdv 0.0378 cov 0.0401 kN 73 76 77 81 experimental P u,t /P n 0.81 0.81 0.82 0.88 0.83 0.0340 0.0408 EC3 Part 1-4/1-3 Alternative Method Material Properties f y,f Test ID 430_200_160_25_10_2 430_200_160_25_10_3 430_200_160_25_10_4 430_400_160_25_10_2 430_400_160_25_10_3 430_400_160_25_10_4 430_400_160_25_20_2 430_400_160_25_20_3 430_400_160_25_20_4 430_800_400_40_15_3 430_800_400_40_15_4 430_800_400_40_15_5 430_800_400_40_15_6 430_800_400_40_30_4 430_800_400_40_30_5 430_800_400_40_30_6 430_150_100_10_10_1 430_150_70_15_10_1 430_150_70_15_10_2 430_200_80_15_10_1 430_200_80_15_10_2 430_150_110_15_10_2 430_300_200_20_15_2 430_300_200_20_15_3 430_100_70_20_10_1 430_250_95_20_10_2 430_250_95_20_10_3 430_100_60_10_10_1 430_200_150_15_15_2 430_90_60_10_5_1 430_150_70_15_10_4 430_150_70_15_10_5 430_200_160_35_20_6 430_200_160_35_20_7 Department of Civil Engineering Research Report No R845 f y,c Geometry Ag Ac 2 MPa MPa mm 275 275 1177 275 275 1755 275 275 2327 275 275 1577 275 275 2355 275 275 3127 275 275 1626 275 275 2430 275 275 3227 275 275 5123 275 275 6769 275 275 8505 275 275 10186 275 275 6966 275 275 8691 275 275 10410 275 275 392 275 275 341 275 275 681 275 275 412 275 275 817 275 275 837 275 275 1542 275 275 2303 275 275 302 275 275 997 275 275 1485 275 275 262 275 275 1122 275 275 239 275 275 1327 275 275 1643 275 275 3721 275 275 4318 Effective Areas A c /A g 2 mm 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 164 % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 P u,t kN 155 284 431 154 282 439 167 312 476 316 527 762 1049 625 907 1198 44 43 118 42 121 134 170 310 48 131 241 41 162 36 322 434 873 1068 A e,f 2 mm 636 1272 1800 555 1074 1632 689 1220 1903 1239 2084 3176 4637 2437 3604 5022 180 176 532 173 481 605 639 1335 207 496 944 182 704 151 1070 1253 3080 3531 A e,c 2 mm 43 109 215 36 87 167 38 93 183 73 134 221 330 142 232 347 10 11 53 10 46 47 38 94 13 42 110 12 44 11 249 393 550 764 Without EC Prop With EC Prop A e,t 2 mm 679 1381 2015 591 1161 1799 727 1313 2086 1313 2219 3397 4967 2579 3835 5369 190 187 586 182 526 652 677 1429 220 538 1054 194 748 162 1319 1643 3630 4296 Pn kN 187 380 554 162 319 495 200 361 574 361 610 934 1366 709 1055 1476 52 51 161 50 145 179 186 393 61 148 290 53 206 45 363 453 998 1181 P u,t /P n 0.83 0.75 0.78 0.95 0.88 0.89 0.84 0.86 0.83 0.88 0.86 0.82 0.77 0.88 0.86 0.81 0.84 0.83 0.73 0.83 0.83 0.75 0.91 0.79 0.79 0.88 0.83 0.77 0.79 0.80 0.89 0.96 0.87 0.90 0.84 0.0557 0.0665 Pn kN 187 380 554 162 319 495 200 361 574 361 610 934 1366 709 1055 1476 52 51 161 50 145 179 186 393 61 148 290 53 206 45 363 453 998 1181 P u,t /P n 0.83 0.75 0.78 0.95 0.88 0.89 0.84 0.86 0.83 0.88 0.86 0.82 0.77 0.88 0.86 0.81 0.84 0.83 0.73 0.83 0.83 0.75 0.91 0.79 0.79 0.88 0.83 0.77 0.79 0.80 0.89 0.96 0.87 0.90 0.84 0.0557 0.0665 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 Alternative Method Material Properties f y,f Test ID 430_200_160_25_10_2_2.5 430_200_160_25_10_3_2.5 430_200_160_25_10_4_2.5 430_400_160_25_10_2_2.5 430_400_160_25_10_3_2.5 430_400_160_25_10_4_2.5 430_400_160_25_20_2_2.5 430_400_160_25_20_3_2.5 430_400_160_25_20_4_2.5 430_800_400_40_15_3_2.5 430_800_400_40_15_4_2.5 430_800_400_40_15_5_2.5 430_800_400_40_15_6_2.5 430_800_400_40_30_4_2.5 430_800_400_40_30_5_2.5 430_800_400_40_30_6_2.5 430_150_100_10_10_1_2.5 430_150_70_15_10_1_2.5 430_150_70_15_10_2_2.5 430_200_80_15_10_1_2.5 430_200_80_15_10_2_2.5 430_150_110_15_10_2_2.5 430_300_200_20_15_2_2.5 430_300_200_20_15_3_2.5 430_100_70_20_10_1_2.5 430_250_95_20_10_2_2.5 430_250_95_20_10_3_2.5 430_100_60_10_10_1_2.5 430_200_150_15_15_2_2.5 430_90_60_10_5_1_2.5 430_150_70_15_10_4_2.5 430_150_70_15_10_5_2.5 430_200_160_35_20_6_2.5 430_200_160_35_20_7_2.5 f y,c Effective Areas Geometry Ag Ac A c /A g P u,t A e,f % 14 21 25 10 15 18 10 15 20 7 9 12 11 9 11 14 10 12 24 10 20 19 10 16 13 16 25 15 14 17 42 42 40 47 kN 157 294 452 157 288 465 169 321 492 322 523 753 1071 640 932 1229 45 44 128 43 126 139 170 319 49 134 249 43 168 37 363 497 964 1207 mm2 mm2 mm2 568 108 675 1083 275 1358 1485 486 1971 493 89 581 912 216 1128 1377 372 1748 622 95 717 1056 234 1289 1579 455 2034 1117 183 1300 1860 334 2194 2808 552 3360 4253 662 4916 2206 356 2562 3495 579 4074 4413 867 5281 164 25 189 158 27 185 439 135 573 156 24 180 404 115 519 523 119 642 579 95 673 1170 236 1406 187 32 218 423 104 528 750 274 1024 162 31 193 629 111 740 132 29 160 736 531 1267 924 668 1591 2097 1382 3479 2164 1919 4083 MPa MPa mm2 mm2 275 424 1157 157 275 424 1711 353 275 424 2262 565 275 424 1557 157 275 424 2311 353 275 424 3062 565 275 424 1607 157 275 424 2386 353 275 424 3148 628 275 424 5078 353 275 424 6739 628 275 424 8382 982 275 424 10069 1131 275 424 6888 628 275 424 8569 982 275 424 10234 1414 275 424 387 39 275 424 337 39 275 424 657 157 275 424 407 39 275 424 797 157 275 424 817 157 275 424 1522 157 275 424 2258 353 275 424 297 39 275 424 977 157 275 424 1441 353 275 424 257 39 275 424 1102 157 275 424 234 39 275 424 1268 534 275 424 1586 668 275 424 3545 1414 275 424 4078 1924 A e,c r/t=2.5 All Tests Department of Civil Engineering Research Report No R845 165 A e,t Without EC Prop With EC Prop Pn kN 186 373 542 160 310 481 197 355 559 357 603 924 1352 705 1120 1452 52 51 158 50 143 177 185 387 60 145 281 53 204 44 348 438 957 1123 P u,t /P n 0.84 0.79 0.83 0.98 0.93 0.97 0.86 0.90 0.88 0.90 0.87 0.82 0.79 0.91 0.83 0.85 0.86 0.87 0.81 0.87 0.88 0.79 0.92 0.83 0.81 0.92 0.89 0.81 0.83 0.84 1.04 1.14 1.01 1.08 0.89 0.0837 0.0945 0.86 0.0739 0.0855 Pn kN 202 414 614 173 342 536 211 389 627 385 653 1006 1450 758 1207 1581 56 55 178 53 160 194 199 422 65 161 322 58 220 48 428 537 1163 1409 P u,t /P n 0.78 0.71 0.74 0.91 0.84 0.87 0.80 0.82 0.78 0.84 0.80 0.75 0.74 0.84 0.77 0.78 0.81 0.80 0.72 0.81 0.79 0.71 0.85 0.76 0.75 0.83 0.77 0.74 0.76 0.76 0.85 0.93 0.83 0.86 0.80 0.0534 0.0669 0.82 0.0558 0.0684 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 Alternative Method Material Properties f y,f f y,c Geometry Ag MPa MPa mm2 275 479 1177 275 479 1755 275 479 2327 275 479 1577 275 479 2355 275 479 3127 275 479 1626 275 479 2430 275 479 3227 275 479 5123 275 479 6769 275 479 8505 275 479 10186 275 479 6966 275 479 8691 275 479 10410 275 479 392 275 479 341 275 479 681 275 479 412 275 479 817 275 479 837 275 479 1542 275 479 2303 275 479 302 275 479 997 275 479 1485 275 479 262 275 479 1122 275 479 239 275 479 1327 275 479 1643 275 479 3721 275 479 4318 Test ID 430_200_160_25_10_2_1 430_200_160_25_10_3_1 430_200_160_25_10_4_1 430_400_160_25_10_2_1 430_400_160_25_10_3_1 430_400_160_25_10_4_1 430_400_160_25_20_2_1 430_400_160_25_20_3_1 430_400_160_25_20_4_1 430_800_400_40_15_3_1 430_800_400_40_15_4_1 430_800_400_40_15_5_1 430_800_400_40_15_6_1 430_800_400_40_30_4_1 430_800_400_40_30_5_1 430_800_400_40_30_6_1 430_150_100_10_10_1_1 430_150_70_15_10_1_1 430_150_70_15_10_2_1 430_200_80_15_10_1_1 430_200_80_15_10_2_1 430_150_110_15_10_2_1 430_300_200_20_15_2_1 430_300_200_20_15_3_1 430_100_70_20_10_1_1 430_250_95_20_10_2_1 430_250_95_20_10_3_1 430_100_60_10_10_1_1 430_200_150_15_15_2_1 430_90_60_10_5_1_1 430_150_70_15_10_4_1 430_150_70_15_10_5_1 430_200_160_35_20_6_1 430_200_160_35_20_7_1 Effective Areas Without EC Prop With EC Prop Ac A c /A g P u,t A e,f A e,c A e,t Pn mm2 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 157 292 448 155 288 452 170 319 491 323 538 780 1075 635 930 1233 48 43 123 42 124 134 144 319 48 134 248 42 167 37 353 491 937 1165 mm2 636 1272 1800 555 1074 1632 689 1220 1903 1239 2084 3176 4637 2437 3604 5022 180 176 532 173 481 605 639 1335 207 496 944 182 704 151 1070 1253 3080 3531 mm2 43 109 215 36 87 167 38 93 183 73 134 221 330 142 232 347 10 11 53 10 46 47 38 94 13 42 110 12 44 11 249 393 550 764 mm2 679 1381 2015 591 1161 1799 727 1313 2086 1313 2219 3397 4967 2579 3835 5369 190 187 586 182 526 652 677 1429 220 538 1054 194 748 162 1319 1643 3630 4296 kN 187 380 554 162 319 495 200 361 574 361 610 934 1366 709 1055 1476 52 51 161 50 145 179 186 393 61 148 290 53 206 45 363 453 998 1181 r/t=1 P u,t /P n 0.84 0.77 0.81 0.96 0.90 0.91 0.85 0.88 0.86 0.89 0.88 0.84 0.79 0.90 0.88 0.84 0.92 0.85 0.76 0.85 0.86 0.75 0.77 0.81 0.80 0.90 0.86 0.79 0.81 0.82 0.97 1.09 0.94 0.99 0.86 0.0721 0.0837 Pn kN 196 402 598 170 337 529 208 380 611 376 637 979 1433 738 1102 1547 54 54 172 52 154 189 194 412 63 156 312 56 215 47 413 533 1111 1337 P u,t /P n 0.80 0.73 0.75 0.91 0.85 0.85 0.82 0.84 0.80 0.86 0.84 0.80 0.75 0.86 0.84 0.80 0.88 0.81 0.71 0.82 0.81 0.71 0.74 0.77 0.77 0.85 0.80 0.75 0.78 0.78 0.85 0.92 0.84 0.87 0.81 0.0542 0.0668 ASCE (2002), AS/NZS 4673 (2001) Material Properties f y,f Test ID 3Cr12DS1a 3Cr12DS2b f y,c MPa MPa 339 606 339 606 Department of Civil Engineering Research Report No R845 Geometry Ag Ac 2 mm 565 565 Effective Areas A c /A g 2 mm 124 124 % 22 22 166 P u,t kN 163 161 A e,f 2 mm 379 379 A e,c 2 mm 70 70 Without EC Prop With EC Prop A e,t 2 mm 448 449 Pn P u,t /P n Pn kN 152 1.07 152 1.06 mean 1.07 stdv 0.0099 cov 0.0093 kN 171 171 P u,t /P n 0.95 0.94 0.95 0.0085 0.0090 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001) Material Properties Test ID 3Cr12_200_160_25_10_2 3Cr12_200_160_25_10_3 3Cr12_200_160_25_10_4 3Cr12_400_160_25_10_2 3Cr12_400_160_25_10_3 3Cr12_400_160_25_10_4 3Cr12_400_160_25_20_2 3Cr12_400_160_25_20_3 3Cr12_400_160_25_20_4 3Cr12_800_400_40_15_3 3Cr12_800_400_40_15_4 3Cr12_800_400_40_15_5 3Cr12_800_400_40_15_6 3Cr12_800_400_40_30_4 3Cr12_800_400_40_30_5 3Cr12_800_400_40_30_6 3Cr12_150_100_10_10_1 3Cr12_150_70_15_10_1 3Cr12_150_70_15_10_2 3Cr12_200_80_15_10_1 3Cr12_200_80_15_10_2 3Cr12_150_110_15_10_2 3Cr12_300_200_20_15_2 3Cr12_300_200_20_15_3 3Cr12_100_70_20_10_1 3Cr12_250_95_20_10_2 3Cr12_250_95_20_10_3 3Cr12_100_60_10_10_1 3Cr12_200_150_15_15_2 3Cr12_90_60_10_5_1 3Cr12_150_70_15_10_4 3Cr12_150_70_15_10_5 3Cr12_200_160_35_20_6 3Cr12_200_160_35_20_7 Geometry f y,f f y,c Ag MPa 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 MPa mm2 260 1177 260 1755 260 2327 260 1577 260 2355 260 3127 260 1626 260 2430 260 3227 260 5123 260 6769 260 8505 260 10186 260 6966 260 8691 260 10410 260 392 260 341 260 681 260 412 260 817 260 837 260 1542 260 2303 260 302 260 997 260 1485 260 262 260 1122 260 239 260 1327 260 1643 260 3721 260 4318 Effective Areas Ac A c /A g P u,t A e,f A e,c A e,t mm2 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 160 287 428 159 290 449 175 316 481 334 551 789 1008 658 929 1224 48 44 120 44 122 133 175 312 49 134 247 41 162 36 312 419 848 1032 mm2 689 1188 1678 686 1280 1936 807 1446 2198 1530 2417 3492 4738 2696 3843 5176 194 285 538 221 570 559 690 1282 217 634 1128 182 660 157 1127 1250 3064 3639 mm2 31 65 118 26 58 104 33 70 122 58 103 160 230 115 175 250 9 16 34 8 31 34 31 69 9 28 62 9 38 8 151 393 339 462 mm2 719 1253 1796 712 1339 2040 840 1516 2321 1588 2519 3652 4968 2811 4018 5426 203 301 572 229 601 593 722 1351 226 663 1190 191 698 165 1278 1643 3404 4101 flats Department of Civil Engineering Research Report No R845 167 Without EC Prop With EC Prop Pn P u,t /P n kN 187 0.86 326 0.88 467 0.92 185 0.86 348 0.83 530 0.85 218 0.80 394 0.80 603 0.80 413 0.81 655 0.84 949 0.83 1292 0.78 731 0.90 1045 0.89 1411 0.87 53 0.91 78 0.56 149 0.80 60 0.74 156 0.78 154 0.87 188 0.93 351 0.89 59 0.83 172 0.78 310 0.80 50 0.83 182 0.89 43 0.84 332 0.94 427 0.98 885 0.96 1066 0.97 mean 0.85 stdv 0.0778 cov 0.0918 Pn kN 187 326 467 185 348 530 218 394 603 413 655 949 1292 731 1045 1411 53 78 149 60 156 154 188 351 59 172 310 50 182 43 332 427 885 1066 P u,t /P n 0.86 0.88 0.92 0.86 0.83 0.85 0.80 0.80 0.80 0.81 0.84 0.83 0.78 0.90 0.89 0.87 0.91 0.56 0.80 0.74 0.78 0.87 0.93 0.89 0.83 0.78 0.80 0.83 0.89 0.84 0.94 0.98 0.96 0.97 0.85 0.0778 0.0918 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001) Material Properties f y,f Test ID 3Cr12_200_160_25_10_2_1 3Cr12_200_160_25_10_3_1 3Cr12_200_160_25_10_4_1 3Cr12_400_160_25_10_2_1 3Cr12_400_160_25_10_3_1 3Cr12_400_160_25_10_4_1 3Cr12_400_160_25_20_2_1 3Cr12_400_160_25_20_3_1 3Cr12_400_160_25_20_4_1 3Cr12_800_400_40_15_3_1 3Cr12_800_400_40_15_4_1 3Cr12_800_400_40_15_5_1 3Cr12_800_400_40_15_6_1 3Cr12_800_400_40_30_4_1 3Cr12_800_400_40_30_5_1 3Cr12_800_400_40_30_6_1 3Cr12_150_100_10_10_1_1 3Cr12_150_70_15_10_1_1 3Cr12_150_70_15_10_2_1 3Cr12_200_80_15_10_1_1 3Cr12_200_80_15_10_2_1 3Cr12_150_110_15_10_2_1 3Cr12_300_200_20_15_2_1 3Cr12_300_200_20_15_3_1 3Cr12_100_70_20_10_1_1 3Cr12_250_95_20_10_2_1 3Cr12_250_95_20_10_3_1 3Cr12_100_60_10_10_1_1 3Cr12_200_150_15_15_2_1 3Cr12_90_60_10_5_1_1 3Cr12_150_70_15_10_4_1 3Cr12_150_70_15_10_5_1 3Cr12_200_160_35_20_6_1 3Cr12_200_160_35_20_7_1 MPa 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 f y,c Geometry Ag MPa mm2 460 1177 460 1755 460 2327 460 1577 460 2355 460 3127 460 1626 460 2430 460 3227 460 5123 460 6769 460 8505 460 10186 460 6966 460 8691 460 10410 460 392 460 341 460 681 460 412 460 817 460 837 460 1542 460 2303 460 302 460 997 460 1485 460 262 460 1122 460 239 460 1327 460 1643 460 3721 460 4318 Effective Areas Ac A c /A g P u,t A e,f A e,c A e,t mm2 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 163 296 448 161 296 462 178 324 495 340 562 806 1106 670 952 1257 49 44 125 45 126 137 178 321 50 137 255 42 167 37 347 479 918 1136 mm2 689 1188 1678 686 1280 1936 807 1446 2198 1530 2417 3492 4738 2696 3843 5176 194 285 538 221 570 559 690 1282 217 634 1128 182 660 157 1127 1250 3064 3639 mm2 31 65 118 26 58 104 33 70 122 58 103 160 230 115 175 250 9 16 34 8 31 34 31 69 9 28 62 9 38 8 151 393 339 462 mm2 719 1253 1796 712 1339 2040 840 1516 2321 1588 2519 3652 4968 2811 4018 5426 203 301 572 229 601 593 722 1351 226 663 1190 191 698 165 1278 1643 3404 4101 r/t=1 Department of Civil Engineering Research Report No R845 168 Without EC Prop With EC Prop Pn P u,t /P n kN 187 0.87 326 0.91 467 0.96 185 0.87 348 0.85 530 0.87 218 0.81 394 0.82 603 0.82 413 0.82 655 0.86 949 0.85 1292 0.86 731 0.92 1045 0.91 1411 0.89 53 0.92 78 0.57 149 0.84 60 0.75 156 0.81 154 0.89 188 0.95 351 0.91 59 0.84 172 0.80 310 0.82 50 0.85 182 0.92 43 0.86 332 1.04 427 1.12 885 1.04 1066 1.07 mean 0.88 stdv 0.0974 cov 0.1108 Pn kN 193 339 491 190 360 551 225 408 628 424 675 981 1338 754 1080 1461 55 81 156 61 162 161 194 365 61 178 322 52 189 45 362 506 953 1159 P u,t /P n 0.84 0.87 0.91 0.85 0.82 0.84 0.79 0.79 0.79 0.80 0.83 0.82 0.83 0.89 0.88 0.86 0.89 0.55 0.80 0.73 0.78 0.85 0.92 0.88 0.82 0.77 0.79 0.82 0.88 0.83 0.96 0.95 0.96 0.98 0.84 0.0789 0.0939 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 ASCE (2002), AS/NZS 4673 (2001) Material Properties Test ID 3Cr12_200_160_25_10_2_2.5 3Cr12_200_160_25_10_3_2.5 3Cr12_200_160_25_10_4_2.5 3Cr12_400_160_25_10_2_2.5 3Cr12_400_160_25_10_3_2.5 3Cr12_400_160_25_10_4_2.5 3Cr12_400_160_25_20_2_2.5 3Cr12_400_160_25_20_3_2.5 3Cr12_400_160_25_20_4_2.5 3Cr12_800_400_40_15_3_2.5 3Cr12_800_400_40_15_4_2.5 3Cr12_800_400_40_15_5_2.5 3Cr12_800_400_40_15_6_2.5 3Cr12_800_400_40_30_4_2.5 3Cr12_800_400_40_30_5_2.5 3Cr12_800_400_40_30_6_2.5 3Cr12_150_100_10_10_1_2.5 3Cr12_150_70_15_10_1_2.5 3Cr12_150_70_15_10_2_2.5 3Cr12_200_80_15_10_1_2.5 3Cr12_200_80_15_10_2_2.5 3Cr12_150_110_15_10_2_2.5 3Cr12_300_200_20_15_2_2.5 3Cr12_300_200_20_15_3_2.5 3Cr12_100_70_20_10_1_2.5 3Cr12_250_95_20_10_2_2.5 3Cr12_250_95_20_10_3_2.5 3Cr12_100_60_10_10_1_2.5 3Cr12_200_150_15_15_2_2.5 3Cr12_90_60_10_5_1_2.5 3Cr12_150_70_15_10_4_2.5 3Cr12_150_70_15_10_5_2.5 3Cr12_200_160_35_20_6_2.5 3Cr12_200_160_35_20_7_2.5 Geometry f y,f f y,c Ag Ac MPa 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 MPa mm2 mm2 406 1157 157 406 1711 353 406 2262 565 406 1557 157 406 2311 353 406 3062 565 406 1607 157 406 2386 353 406 3148 628 406 5078 353 406 6739 628 406 8382 982 406 10069 1131 406 6888 628 406 8569 982 406 10234 1414 406 387 39 406 337 39 406 657 157 406 407 39 406 797 157 406 817 157 406 1522 157 406 2258 353 406 297 39 406 977 157 406 1441 353 406 257 39 406 1102 157 406 234 39 406 1268 534 406 1586 668 406 3545 1414 406 4078 1924 Effective Areas A c /A g P u,t A e,f A e,c % 14 21 25 10 15 18 10 15 20 7 9 12 11 9 11 14 10 12 24 10 20 19 10 16 13 16 25 15 14 17 42 42 40 47 kN 163 300 454 161 298 478 179 325 497 339 541 776 1110 674 953 1255 49 45 130 45 129 139 179 323 50 138 256 43 168 38 358 485 949 1184 mm2 mm2 654 81 1078 172 1410 284 656 67 1225 148 1745 235 781 88 1392 185 1997 325 1473 147 2326 258 3342 401 4612 462 2609 296 3707 450 4964 644 182 24 213 24 490 94 212 22 524 81 510 94 668 83 1225 183 209 24 605 74 1063 160 168 24 610 94 149 21 918 320 918 668 2451 848 2763 1155 A e,t mm2 735 1250 1694 722 1373 1980 869 1577 2321 1619 2583 3742 5073 2905 4158 5608 206 237 584 234 605 604 750 1408 232 678 1223 192 704 170 1239 1586 3299 3917 r/t=2.5 Without EC Prop With EC Prop Pn P u,t /P n kN 191 0.85 325 0.92 440 1.03 188 0.86 357 0.84 515 0.93 226 0.79 410 0.79 604 0.82 421 0.80 672 0.80 973 0.80 1319 0.84 755 0.89 1081 0.88 1458 0.86 54 0.92 62 0.74 152 0.86 61 0.74 157 0.82 157 0.88 195 0.92 366 0.88 60 0.83 176 0.78 318 0.81 50 0.87 183 0.92 44 0.85 322 1.11 412 1.18 858 1.11 1019 1.16 mean 0.88 stdv 0.1112 cov 0.1256 Pn kN 203 350 482 197 379 549 239 437 651 442 709 1031 1387 798 1147 1552 57 65 166 64 169 171 207 393 64 187 341 53 197 47 369 510 982 1187 mean 0.87 stdv 0.0996 cov 0.1140 All Tests P u,t /P n 0.80 0.86 0.94 0.81 0.79 0.87 0.75 0.74 0.76 0.77 0.76 0.75 0.80 0.84 0.83 0.81 0.86 0.70 0.78 0.71 0.76 0.81 0.86 0.82 0.79 0.74 0.75 0.81 0.86 0.79 0.97 0.95 0.97 1.00 0.82 0.0760 0.0929 0.84 0.0786 0.0939 NAS (2001) Material Properties f y,f Test ID 3Cr12DS1a 3Cr12DS2b f y,c MPa MPa 339 606 339 606 Geometry Effective Areas Ag Ac A c /A g P u,t A e,f A e,c A e,t mm2 565 565 mm2 124 124 % 22 22 kN 163 161 mm2 379 379 mm2 70 70 mm2 448 449 experimental Department of Civil Engineering Research Report No R845 169 Without EC Prop Pn With EC Prop P u,t /P n Pn kN 152 1.07 152 1.06 mean 1.07 stdv 0.0099 cov 0.0093 kN 171 171 P u,t /P n 0.95 0.94 0.95 0.0085 0.0090 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 NAS (2001) Material Properties f y,f Test ID 3Cr12_200_160_25_10_2 3Cr12_200_160_25_10_3 3Cr12_200_160_25_10_4 3Cr12_400_160_25_10_2 3Cr12_400_160_25_10_3 3Cr12_400_160_25_10_4 3Cr12_400_160_25_20_2 3Cr12_400_160_25_20_3 3Cr12_400_160_25_20_4 3Cr12_800_400_40_15_3 3Cr12_800_400_40_15_4 3Cr12_800_400_40_15_5 3Cr12_800_400_40_15_6 3Cr12_800_400_40_30_4 3Cr12_800_400_40_30_5 3Cr12_800_400_40_30_6 3Cr12_150_100_10_10_1 3Cr12_150_70_15_10_1 3Cr12_150_70_15_10_2 3Cr12_200_80_15_10_1 3Cr12_200_80_15_10_2 3Cr12_150_110_15_10_2 3Cr12_300_200_20_15_2 3Cr12_300_200_20_15_3 3Cr12_100_70_20_10_1 3Cr12_250_95_20_10_2 3Cr12_250_95_20_10_3 3Cr12_100_60_10_10_1 3Cr12_200_150_15_15_2 3Cr12_90_60_10_5_1 3Cr12_150_70_15_10_4 3Cr12_150_70_15_10_5 3Cr12_200_160_35_20_6 3Cr12_200_160_35_20_7 MPa 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 f y,c Geometry Ag MPa mm2 260 1177 260 1755 260 2327 260 1577 260 2355 260 3127 260 1626 260 2430 260 3227 260 5123 260 6769 260 8505 260 10186 260 6966 260 8691 260 10410 260 392 260 341 260 681 260 412 260 817 260 837 260 1542 260 2303 260 302 260 997 260 1485 260 262 260 1122 260 239 260 1327 260 1643 260 3721 260 4318 Ac A c /A g P u,t A e,f % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 160 287 428 159 290 449 175 316 481 334 551 789 1008 658 929 1224 48 44 120 44 122 133 175 312 49 134 247 41 162 36 312 419 848 1032 mm 696 1188 1678 686 1280 2008 807 1446 2230 1528 2417 3492 4738 2696 3843 5176 194 276 549 220 578 559 690 1300 215 634 1157 182 660 158 1127 1250 3063 3635 2 mm 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 2 A e,c 2 mm 31 65 118 26 58 104 33 70 122 58 103 160 230 115 175 250 9 15 34 8 31 34 31 69 9 28 62 9 38 8 151 393 339 462 flats Department of Civil Engineering Research Report No R845 170 Without EC Prop Effective Areas A e,t 2 mm 727 1253 1796 712 1339 2111 840 1516 2352 1586 2519 3652 4968 2811 4018 5426 203 291 583 228 609 593 722 1369 225 663 1219 191 698 166 1278 1643 3402 4097 Pn P u,t /P n kN 189 0.85 326 0.88 467 0.92 185 0.86 348 0.83 549 0.82 218 0.80 394 0.80 612 0.79 412 0.81 655 0.84 949 0.83 1292 0.78 731 0.90 1045 0.89 1411 0.87 53 0.91 76 0.58 152 0.79 59 0.75 158 0.77 154 0.87 188 0.93 356 0.88 58 0.84 172 0.78 317 0.78 50 0.83 182 0.89 43 0.84 332 0.94 427 0.98 885 0.96 1065 0.97 mean 0.85 stdv 0.0768 cov 0.0909 With EC Prop Pn kN 189 326 467 185 348 549 218 394 612 412 655 949 1292 731 1045 1411 53 76 152 59 158 154 188 356 58 172 317 50 182 43 332 427 885 1065 P u,t /P n 0.85 0.88 0.92 0.86 0.83 0.82 0.80 0.80 0.79 0.81 0.84 0.83 0.78 0.90 0.89 0.87 0.91 0.58 0.79 0.75 0.77 0.87 0.93 0.88 0.84 0.78 0.78 0.83 0.89 0.84 0.94 0.98 0.96 0.97 0.85 0.0768 0.0909 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 NAS (2001) Material Properties f y,f Test ID 3Cr12_200_160_25_10_2_1 3Cr12_200_160_25_10_3_1 3Cr12_200_160_25_10_4_1 3Cr12_400_160_25_10_2_1 3Cr12_400_160_25_10_3_1 3Cr12_400_160_25_10_4_1 3Cr12_400_160_25_20_2_1 3Cr12_400_160_25_20_3_1 3Cr12_400_160_25_20_4_1 3Cr12_800_400_40_15_3_1 3Cr12_800_400_40_15_4_1 3Cr12_800_400_40_15_5_1 3Cr12_800_400_40_15_6_1 3Cr12_800_400_40_30_4_1 3Cr12_800_400_40_30_5_1 3Cr12_800_400_40_30_6_1 3Cr12_150_100_10_10_1_1 3Cr12_150_70_15_10_1_1 3Cr12_150_70_15_10_2_1 3Cr12_200_80_15_10_1_1 3Cr12_200_80_15_10_2_1 3Cr12_150_110_15_10_2_1 3Cr12_300_200_20_15_2_1 3Cr12_300_200_20_15_3_1 3Cr12_100_70_20_10_1_1 3Cr12_250_95_20_10_2_1 3Cr12_250_95_20_10_3_1 3Cr12_100_60_10_10_1_1 3Cr12_200_150_15_15_2_1 3Cr12_90_60_10_5_1_1 3Cr12_150_70_15_10_4_1 3Cr12_150_70_15_10_5_1 3Cr12_200_160_35_20_6_1 3Cr12_200_160_35_20_7_1 MPa 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 f y,c Ag MPa mm2 460 1177 460 1755 460 2327 460 1577 460 2355 460 3127 460 1626 460 2430 460 3227 460 5123 460 6769 460 8505 460 10186 460 6966 460 8691 460 10410 460 392 460 341 460 681 460 412 460 817 460 837 460 1542 460 2303 460 302 460 997 460 1485 460 262 460 1122 460 239 460 1327 460 1643 460 3721 460 4318 Ac A c /A g P u,t A e,f % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 163 296 448 161 296 462 178 324 495 340 562 806 1106 670 952 1257 49 44 125 45 126 137 178 321 50 137 255 42 167 37 347 479 918 1136 mm mm 696 31 1188 65 1678 118 686 26 1280 58 2008 104 807 33 1446 70 2230 122 1528 58 2417 103 3492 160 4738 230 2696 115 3843 175 5176 250 194 9 276 15 549 34 220 8 578 31 559 34 690 31 1300 69 215 9 634 28 1157 62 182 9 660 38 158 8 1127 151 1250 393 3063 339 3635 462 2 mm 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 2 A e,c 2 r/t-1 Department of Civil Engineering Research Report No R845 171 Without EC Prop Effective Areas Geometry A e,t 2 mm 727 1253 1796 712 1339 2111 840 1516 2352 1586 2519 3652 4968 2811 4018 5426 203 291 583 228 609 593 722 1369 225 663 1219 191 698 166 1278 1643 3402 4097 Pn kN 189 326 467 185 348 549 218 394 612 412 655 949 1292 731 1045 1411 53 76 152 59 158 154 188 356 58 172 317 50 182 43 332 427 885 1065 P u,t /P n 0.86 0.91 0.96 0.87 0.85 0.84 0.81 0.82 0.81 0.83 0.86 0.85 0.86 0.92 0.91 0.89 0.92 0.59 0.82 0.76 0.80 0.89 0.95 0.90 0.85 0.80 0.80 0.85 0.92 0.85 1.04 1.12 1.04 1.07 0.88 0.0969 0.1105 With EC Prop Pn kN 195 339 491 190 360 570 225 408 636 424 675 981 1338 754 1080 1461 55 79 158 61 164 161 194 370 60 178 329 52 189 45 362 506 952 1158 P u,t /P n 0.83 0.87 0.91 0.85 0.82 0.81 0.79 0.79 0.78 0.80 0.83 0.82 0.83 0.89 0.88 0.86 0.89 0.56 0.79 0.74 0.77 0.85 0.92 0.87 0.82 0.77 0.77 0.82 0.88 0.82 0.96 0.95 0.96 0.98 0.84 0.0779 0.0929 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 NAS (2001) Material Properties f y,f Test ID 3Cr12_200_160_25_10_2_2.5 3Cr12_200_160_25_10_3_2.5 3Cr12_200_160_25_10_4_2.5 3Cr12_400_160_25_10_2_2.5 3Cr12_400_160_25_10_3_2.5 3Cr12_400_160_25_10_4_2.5 3Cr12_400_160_25_20_2_2.5 3Cr12_400_160_25_20_3_2.5 3Cr12_400_160_25_20_4_2.5 3Cr12_800_400_40_15_3_2.5 3Cr12_800_400_40_15_4_2.5 3Cr12_800_400_40_15_5_2.5 3Cr12_800_400_40_15_6_2.5 3Cr12_800_400_40_30_4_2.5 3Cr12_800_400_40_30_5_2.5 3Cr12_800_400_40_30_6_2.5 3Cr12_150_100_10_10_1_2.5 3Cr12_150_70_15_10_1_2.5 3Cr12_150_70_15_10_2_2.5 3Cr12_200_80_15_10_1_2.5 3Cr12_200_80_15_10_2_2.5 3Cr12_150_110_15_10_2_2.5 3Cr12_300_200_20_15_2_2.5 3Cr12_300_200_20_15_3_2.5 3Cr12_100_70_20_10_1_2.5 3Cr12_250_95_20_10_2_2.5 3Cr12_250_95_20_10_3_2.5 3Cr12_100_60_10_10_1_2.5 3Cr12_200_150_15_15_2_2.5 3Cr12_90_60_10_5_1_2.5 3Cr12_150_70_15_10_4_2.5 3Cr12_150_70_15_10_5_2.5 3Cr12_200_160_35_20_6_2.5 3Cr12_200_160_35_20_7_2.5 MPa 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 f y,c Geometry Ag Ac Effective Areas A c /A g P u,t A e,f % 14 21 25 10 15 18 10 15 20 7 9 12 11 9 11 14 10 12 24 10 20 19 10 16 13 16 25 15 14 17 42 42 40 47 kN 163 300 454 161 298 478 179 325 497 339 541 776 1110 674 953 1255 49 45 130 45 129 139 179 323 50 138 256 43 168 38 358 485 949 1184 mm2 mm2 659 81 1078 172 1516 284 656 67 1225 148 1917 235 781 88 1392 185 2120 325 1473 147 2326 258 3342 401 4612 462 2609 296 3707 450 4964 644 182 24 213 24 500 94 211 22 551 81 510 94 668 83 1236 183 207 24 605 74 1081 160 168 24 610 94 150 21 901 214 918 668 2450 848 2760 1155 MPa mm2 mm2 406 1157 157 406 1711 353 406 2262 565 406 1557 157 406 2311 353 406 3062 565 406 1607 157 406 2386 353 406 3148 628 406 5078 353 406 6739 628 406 8382 982 406 10069 1131 406 6888 628 406 8569 982 406 10234 1414 406 387 39 406 337 39 406 657 157 406 407 39 406 797 157 406 817 157 406 1522 157 406 2258 353 406 297 39 406 977 157 406 1441 353 406 257 39 406 1102 157 406 234 39 406 1268 534 406 1586 668 406 3545 1414 406 4078 1924 A e,c r/t=2.5 All Tests Department of Civil Engineering Research Report No R845 172 A e,t mm2 740 1250 1800 722 1373 2152 869 1577 2445 1619 2583 3742 5073 2905 4158 5608 206 237 595 233 632 604 750 1419 231 678 1240 192 704 171 1115 1586 3298 3914 Without EC Prop Pn P u,t /P n kN 192 0.85 325 0.92 468 0.97 188 0.86 357 0.84 559 0.85 226 0.79 410 0.79 636 0.78 421 0.80 672 0.80 973 0.80 1319 0.84 755 0.89 1081 0.88 1458 0.86 54 0.92 61 0.74 155 0.84 61 0.75 164 0.78 157 0.88 195 0.92 369 0.88 60 0.84 176 0.78 323 0.80 50 0.87 183 0.92 44 0.84 290 1.24 412 1.18 858 1.11 1018 1.16 mean 0.88 stdv 0.1205 cov 0.1367 mean 0.87 stdv 0.1027 cov 0.1179 With EC Prop Pn kN 204 350 509 197 379 594 239 437 683 442 709 1031 1387 798 1147 1552 57 65 168 64 176 171 207 396 63 187 346 53 197 48 321 510 981 1186 P u,t /P n 0.80 0.86 0.89 0.81 0.79 0.80 0.75 0.74 0.73 0.77 0.76 0.75 0.80 0.84 0.83 0.81 0.86 0.70 0.77 0.71 0.73 0.81 0.86 0.82 0.79 0.74 0.74 0.81 0.86 0.79 1.12 0.95 0.97 1.00 0.82 0.0879 0.1076 0.84 0.0819 0.0980 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties f y,f Test ID 3Cr12DS1a 3Cr12DS2b f y,c MPa MPa 339 606 339 606 Geometry Without EC Prop Effective Areas Ag Ac A c /A g P u,t A e,f A e,c A e,t mm2 565 565 mm2 124 124 % 22 22 kN 163 161 mm2 401 402 mm2 113 113 mm2 514 516 experimental Pn With EC Prop P u,t /P n Pn kN 174 0.93 175 0.92 mean 0.93 stdv 0.0097 cov 0.0104 kN 205 205 P u,t /P n 0.80 0.79 0.79 0.0081 0.0102 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties f y,f Test ID 3Cr12_200_160_25_10_2 3Cr12_200_160_25_10_3 3Cr12_200_160_25_10_4 3Cr12_400_160_25_10_2 3Cr12_400_160_25_10_3 3Cr12_400_160_25_10_4 3Cr12_400_160_25_20_2 3Cr12_400_160_25_20_3 3Cr12_400_160_25_20_4 3Cr12_800_400_40_15_3 3Cr12_800_400_40_15_4 3Cr12_800_400_40_15_5 3Cr12_800_400_40_15_6 3Cr12_800_400_40_30_4 3Cr12_800_400_40_30_5 3Cr12_800_400_40_30_6 3Cr12_150_100_10_10_1 3Cr12_150_70_15_10_1 3Cr12_150_70_15_10_2 3Cr12_200_80_15_10_1 3Cr12_200_80_15_10_2 3Cr12_150_110_15_10_2 3Cr12_300_200_20_15_2 3Cr12_300_200_20_15_3 3Cr12_100_70_20_10_1 3Cr12_250_95_20_10_2 3Cr12_250_95_20_10_3 3Cr12_100_60_10_10_1 3Cr12_200_150_15_15_2 3Cr12_90_60_10_5_1 3Cr12_150_70_15_10_4 3Cr12_150_70_15_10_5 3Cr12_200_160_35_20_6 3Cr12_200_160_35_20_7 MPa 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 f y,c Geometry Ag MPa mm2 260 1177 260 1755 260 2327 260 1577 260 2355 260 3127 260 1626 260 2430 260 3227 260 5123 260 6769 260 8505 260 10186 260 6966 260 8691 260 10410 260 392 260 341 260 681 260 412 260 817 260 837 260 1542 260 2303 260 302 260 997 260 1485 260 262 260 1122 260 239 260 1327 260 1643 260 3721 260 4318 Ac A c /A g P u,t A e,f % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 160 287 428 159 290 449 175 316 481 334 551 789 1008 658 929 1224 48 44 120 44 122 133 175 312 49 134 247 41 162 36 312 419 848 1032 mm 740 1338 1870 643 1138 1750 729 1311 2077 1358 2308 3467 4878 2652 4103 5301 197 190 553 183 525 629 697 1421 223 529 1023 196 743 161 1078 1253 3136 3555 2 mm 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 2 A e,c 2 mm 45 115 224 37 90 174 39 98 195 75 139 227 340 146 239 358 10 11 56 10 49 49 39 98 13 43 116 13 46 12 251 393 561 770 flats Department of Civil Engineering Research Report No R845 173 Without EC Prop Effective Areas A e,t 2 mm 785 1453 2093 679 1228 1924 768 1409 2271 1433 2447 3694 5218 2798 4342 5658 208 201 609 192 573 679 737 1520 237 572 1138 209 789 172 1329 1643 3697 4324 Pn P u,t /P n kN 204 0.79 378 0.76 544 0.79 177 0.90 319 0.91 500 0.90 200 0.87 366 0.86 591 0.82 373 0.90 636 0.87 960 0.82 1357 0.74 728 0.90 1129 0.82 1471 0.83 54 0.89 52 0.84 158 0.76 50 0.88 149 0.82 176 0.76 191 0.92 395 0.79 62 0.79 149 0.90 296 0.83 54 0.76 205 0.79 45 0.81 346 0.90 428 0.98 961 0.88 1124 0.92 mean 0.84 stdv 0.0596 cov 0.0706 With EC Prop Pn kN 204 378 544 177 319 500 200 366 591 373 636 960 1357 728 1129 1471 54 52 158 50 149 176 191 395 62 149 296 54 205 45 346 428 961 1124 P u,t /P n 0.79 0.76 0.79 0.90 0.91 0.90 0.87 0.86 0.82 0.90 0.87 0.82 0.74 0.90 0.82 0.83 0.89 0.84 0.76 0.88 0.82 0.76 0.92 0.79 0.79 0.90 0.83 0.76 0.79 0.81 0.90 0.98 0.88 0.92 0.84 0.0596 0.0706 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties f y,f Test ID 3Cr12_200_160_25_10_2_1 3Cr12_200_160_25_10_3_1 3Cr12_200_160_25_10_4_1 3Cr12_400_160_25_10_2_1 3Cr12_400_160_25_10_3_1 3Cr12_400_160_25_10_4_1 3Cr12_400_160_25_20_2_1 3Cr12_400_160_25_20_3_1 3Cr12_400_160_25_20_4_1 3Cr12_800_400_40_15_3_1 3Cr12_800_400_40_15_4_1 3Cr12_800_400_40_15_5_1 3Cr12_800_400_40_15_6_1 3Cr12_800_400_40_30_4_1 3Cr12_800_400_40_30_5_1 3Cr12_800_400_40_30_6_1 3Cr12_150_100_10_10_1_1 3Cr12_150_70_15_10_1_1 3Cr12_150_70_15_10_2_1 3Cr12_200_80_15_10_1_1 3Cr12_200_80_15_10_2_1 3Cr12_150_110_15_10_2_1 3Cr12_300_200_20_15_2_1 3Cr12_300_200_20_15_3_1 3Cr12_100_70_20_10_1_1 3Cr12_250_95_20_10_2_1 3Cr12_250_95_20_10_3_1 3Cr12_100_60_10_10_1_1 3Cr12_200_150_15_15_2_1 3Cr12_90_60_10_5_1_1 3Cr12_150_70_15_10_4_1 3Cr12_150_70_15_10_5_1 3Cr12_200_160_35_20_6_1 3Cr12_200_160_35_20_7_1 MPa 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 f y,c Geometry Ag MPa mm2 460 1177 460 1755 460 2327 460 1577 460 2355 460 3127 460 1626 460 2430 460 3227 460 5123 460 6769 460 8505 460 10186 460 6966 460 8691 460 10410 460 392 460 341 460 681 460 412 460 817 460 837 460 1542 460 2303 460 302 460 997 460 1485 460 262 460 1122 460 239 460 1327 460 1643 460 3721 460 4318 Ac A c /A g P u,t A e,f % 5 8 11 4 6 8 4 6 8 3 4 5 6 4 5 5 4 5 9 4 8 8 4 6 5 6 10 6 6 7 19 24 15 18 kN 163 296 448 161 296 462 178 324 495 340 562 806 1106 670 952 1257 49 44 125 45 126 137 178 321 50 137 255 42 167 37 347 479 918 1136 mm 740 1338 1870 643 1138 1750 729 1311 2077 1358 2308 3467 4878 2652 4103 5301 197 190 553 183 525 629 697 1421 223 529 1023 196 743 161 1078 1253 3136 3555 2 mm 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 2 A e,c 2 mm 45 115 224 37 90 174 39 98 195 75 139 227 340 146 239 358 10 11 56 10 49 49 39 98 13 43 116 13 46 12 251 393 561 770 r/t=1 Department of Civil Engineering Research Report No R845 174 Without EC Prop Effective Areas A e,t 2 mm 785 1453 2093 679 1228 1924 768 1409 2271 1433 2447 3694 5218 2798 4342 5658 208 201 609 192 573 679 737 1520 237 572 1138 209 789 172 1329 1643 3697 4324 Pn P u,t /P n kN 204 0.80 378 0.78 544 0.82 177 0.91 319 0.93 500 0.92 200 0.89 366 0.88 591 0.84 373 0.91 636 0.88 960 0.84 1357 0.81 728 0.92 1129 0.84 1471 0.85 54 0.90 52 0.85 158 0.79 50 0.90 149 0.85 176 0.78 191 0.93 395 0.81 62 0.81 149 0.92 296 0.86 54 0.78 205 0.81 45 0.82 346 1.00 428 1.12 961 0.96 1124 1.01 mean 0.88 stdv 0.0748 cov 0.0855 With EC Prop Pn kN 213 401 589 184 337 535 208 386 629 387 664 1006 1425 757 1177 1543 56 54 169 52 159 186 199 415 64 157 319 57 214 47 396 506 1074 1278 P u,t /P n 0.76 0.74 0.76 0.88 0.88 0.86 0.86 0.84 0.79 0.88 0.85 0.80 0.78 0.89 0.81 0.81 0.87 0.82 0.74 0.86 0.79 0.74 0.89 0.77 0.77 0.87 0.80 0.75 0.78 0.78 0.88 0.95 0.86 0.89 0.82 0.0551 0.0670 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections April 2005 EC3 Part 1-4/1-3 (2004) Alternative Method Material Properties f y,f Test ID 3Cr12_200_160_25_10_2_2.5 3Cr12_200_160_25_10_3_2.5 3Cr12_200_160_25_10_4_2.5 3Cr12_400_160_25_10_2_2.5 3Cr12_400_160_25_10_3_2.5 3Cr12_400_160_25_10_4_2.5 3Cr12_400_160_25_20_2_2.5 3Cr12_400_160_25_20_3_2.5 3Cr12_400_160_25_20_4_2.5 3Cr12_800_400_40_15_3_2.5 3Cr12_800_400_40_15_4_2.5 3Cr12_800_400_40_15_5_2.5 3Cr12_800_400_40_15_6_2.5 3Cr12_800_400_40_30_4_2.5 3Cr12_800_400_40_30_5_2.5 3Cr12_800_400_40_30_6_2.5 3Cr12_150_100_10_10_1_2.5 3Cr12_150_70_15_10_1_2.5 3Cr12_150_70_15_10_2_2.5 3Cr12_200_80_15_10_1_2.5 3Cr12_200_80_15_10_2_2.5 3Cr12_150_110_15_10_2_2.5 3Cr12_300_200_20_15_2_2.5 3Cr12_300_200_20_15_3_2.5 3Cr12_100_70_20_10_1_2.5 3Cr12_250_95_20_10_2_2.5 3Cr12_250_95_20_10_3_2.5 3Cr12_100_60_10_10_1_2.5 3Cr12_200_150_15_15_2_2.5 3Cr12_90_60_10_5_1_2.5 3Cr12_150_70_15_10_4_2.5 3Cr12_150_70_15_10_5_2.5 3Cr12_200_160_35_20_6_2.5 3Cr12_200_160_35_20_7_2.5 MPa 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 f y,c Ag Ac A c /A g P u,t A e,f % 14 21 25 10 15 18 10 15 20 7 9 12 11 9 11 14 10 12 24 10 20 19 10 16 13 16 25 15 14 17 42 42 40 47 kN 163 300 454 161 298 478 179 325 497 339 541 776 1110 674 953 1255 49 45 130 45 129 139 179 323 50 138 256 43 168 38 358 485 949 1184 mm mm mm 664 112 776 1137 290 1426 1541 506 2047 573 91 664 970 223 1193 1472 385 1856 659 98 758 1140 244 1384 1732 485 2217 1232 186 1419 2074 347 2421 3378 566 3944 4484 682 5166 2415 366 2781 3685 597 4282 4673 895 5568 181 26 207 171 28 199 456 140 596 166 25 190 442 122 565 547 126 672 635 98 733 1249 246 1496 201 34 235 454 109 563 818 289 1107 174 33 207 666 115 781 142 30 172 739 534 1273 924 668 1591 2134 1408 3542 2170 1924 4094 MPa mm2 mm2 406 1157 157 406 1711 353 406 2262 565 406 1557 157 406 2311 353 406 3062 565 406 1607 157 406 2386 353 406 3148 628 406 5078 353 406 6739 628 406 8382 982 406 10069 1131 406 6888 628 406 8569 982 406 10234 1414 406 387 39 406 337 39 406 657 157 406 407 39 406 797 157 406 817 157 406 1522 157 406 2258 353 406 297 39 406 977 157 406 1441 353 406 257 39 406 1102 157 406 234 39 406 1268 534 406 1586 668 406 3545 1414 406 4078 1924 2 A e,c 2 r/t=2.5 All Tests Department of Civil Engineering Research Report No R845 Without EC Prop Effective Areas Geometry 175 A e,t 2 Pn P u,t /P n kN 202 0.81 371 0.81 532 0.85 173 0.93 310 0.96 483 0.99 197 0.91 360 0.90 577 0.86 369 0.92 629 0.86 1026 0.76 1343 0.83 723 0.93 1113 0.86 1448 0.87 54 0.91 52 0.88 155 0.84 50 0.91 147 0.88 175 0.79 190 0.94 389 0.83 61 0.82 146 0.94 288 0.89 54 0.80 203 0.83 45 0.84 331 1.08 414 1.17 921 1.03 1064 1.11 mean 0.90 stdv 0.0927 cov 0.1031 mean 0.87 stdv 0.0790 cov 0.0904 With EC Prop Pn kN 218 413 606 186 343 539 211 396 647 396 680 1108 1443 776 1200 1578 58 56 175 53 165 193 205 425 66 162 330 59 220 49 409 511 1126 1345 P u,t /P n 0.75 0.73 0.75 0.86 0.87 0.89 0.84 0.82 0.77 0.86 0.79 0.70 0.77 0.87 0.79 0.80 0.85 0.81 0.74 0.85 0.78 0.72 0.87 0.76 0.76 0.85 0.78 0.74 0.77 0.76 0.88 0.95 0.84 0.88 0.81 0.0598 0.0740 0.82 0.0591 0.0718 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections fy Test ID 304D1a 304D1b 304D2a 304D2b Geometric Properties A g A c A c /A g f cr 2 2 MPa mm mm 242 565 61 242 565 61 242 565 61 242 565 61 % 11 11 11 11 MPa 264 264 283 283 Test Results AS 4600 (1996) λd P u,t 0.96 0.96 0.92 0.92 kN MPa 102 181 0.75 101 179 0.74 104 184 0.76 104 184 0.76 fu April 2005 f u /f y f n,4600 /f y f u /f n,4600 0.77 0.77 0.79 0.79 mean COV fy Test ID 304_60_60_10_2 304_60_60_10_3 304_60_60_15_2 304_60_60_15_3 304_150_150_30_3 304_150_150_20_3 304_150_150_10_3 304_200_100_15_4 304_200_150_20_3 304_200_150_20_4 304_150_80_5_1 304_50_50_5_1 304_400_400_20_3 304_400_400_20_4 304_400_400_20_5 304_400_400_40_4 304_400_400_40_5 304_400_400_40_6 304_400_400_40_7 304_400_400_40_8 304_300_400_20_3 304_300_400_20_4 304_300_400_20_5 304_400_300_20_3 304_400_300_20_4 304_400_300_20_5 304_400_300_40_5 304_400_300_40_6 304_400_300_40_7 304_400_300_40_8 2 2 MPa mm mm 195 393 25 195 584 57 195 413 25 195 614 57 195 1514 57 195 1454 57 195 1394 57 195 1692 101 195 1604 57 195 2132 101 6 195 318 6 195 158 195 3704 57 195 4932 101 195 6156 157 195 5092 101 195 6356 157 195 7617 226 195 8874 308 195 10130 402 195 3404 57 195 4532 101 195 5656 157 195 3104 57 195 4132 101 195 5156 157 195 5356 157 195 6417 226 195 7474 308 195 8528 402 % 6.4 9.7 6.1 9.2 3.7 3.9 4.1 5.9 3.5 4.7 2.0 4.0 1.5 2.0 2.6 2.0 2.5 3.0 3.5 4.0 1.7 2.2 2.8 1.8 2.4 3.0 2.9 3.5 4.1 4.7 MPa 402 660 532 844 252 180 102 320 165 233 36 140 22 32 43 62 81 99 120 140 24 34 46 37 53 72 129 160 192 227 Test Results λd P u,t fu 0.70 0.54 0.61 0.48 0.88 1.04 1.38 0.78 1.09 0.91 2.33 1.18 2.98 2.48 2.14 1.77 1.55 1.40 1.27 1.18 2.85 2.38 2.05 2.30 1.92 1.64 1.23 1.10 1.01 0.93 kN 65 112 74 124 213 183 153 257 191 300 20 18 176 292 443 347 516 727 947 1180 171 293 447 177 294 457 551 766 984 1199 MPa 164 192 178 202 140 126 110 152 119 141 63 117 48 59 72 68 81 95 107 116 50 65 79 57 71 89 103 119 132 141 flats 176 0.005 AS 4600 (1996) f u /f y f n,4600 /f y f u /f n,4600 0.84 0.98 0.91 1.03 0.72 0.64 0.56 0.78 0.61 0.72 0.33 0.60 0.24 0.30 0.37 0.35 0.42 0.49 0.55 0.60 0.26 0.33 0.40 0.29 0.37 0.45 0.53 0.61 0.68 0.72 0.88 0.93 0.91 na 0.81 0.73 0.52 0.85 0.70 0.79 0.33 0.65 0.26 0.31 0.35 0.42 0.47 0.51 0.59 0.65 0.27 0.32 0.37 0.33 0.39 0.45 0.62 0.69 0.75 0.79 0.96 1.06 1.01 na 0.89 0.88 1.08 0.92 0.87 0.91 1.00 0.92 0.95 0.99 1.04 0.83 0.89 0.96 0.92 0.91 0.96 1.04 1.10 0.88 0.93 1.02 0.85 0.88 0.90 0.92 mean 0.95 0.96 0.95 0.95 0.95 0.96 0.67 0.67 0.69 0.69 1.11 1.10 1.10 1.10 1.10 0.0040 0.0052 0.004 0.005 NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. 0.95 1.00 0.99 na 0.83 0.73 0.56 0.89 0.70 0.80 0.33 0.65 0.25 0.31 0.36 0.44 0.50 0.56 0.61 0.65 0.26 0.32 0.38 0.33 0.41 0.47 0.63 0.69 0.75 0.80 0.89 0.98 0.92 na 0.87 0.89 1.00 0.87 0.87 0.90 0.99 0.92 0.97 0.98 1.02 0.79 0.83 0.88 0.90 0.92 0.97 1.03 1.07 0.87 0.90 0.96 0.84 0.89 0.91 0.91 0.86 0.99 0.94 na 0.72 0.63 0.49 0.79 0.60 0.70 0.29 0.56 0.23 0.27 0.32 0.38 0.44 0.48 0.52 0.56 0.24 0.29 0.33 0.30 0.36 0.41 0.54 0.60 0.65 0.69 0.98 0.99 0.97 na 1.00 1.03 1.16 0.98 1.01 1.03 1.11 1.06 1.08 1.11 1.16 0.91 0.96 1.02 1.04 1.06 1.08 1.16 1.22 0.99 1.03 1.10 0.97 1.03 1.05 1.04 0.92 1.05 st dev 0.0710 0.0649 0.0708 0.075 0.070 0.068 COV Department of Civil Engineering Research Report No R845 0.78 0.78 0.80 0.80 st dev 0.0046 experimental tests Geometric Properties A g A c A c /A g f cr 0.97 0.96 0.97 0.97 0.97 NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections fy Geometric Properties A g A c A c /A g f cr 2 2 Test ID MPa mm mm 304_60_60_10_2_1 195 393 25 304_60_60_10_3_1 195 584 57 304_60_60_15_2_1 195 413 25 304_60_60_15_3_1 195 614 57 304_150_150_30_3_1 195 1514 57 304_150_150_20_3_1 195 1454 57 304_150_150_10_3_1 195 1394 57 304_200_100_15_4_1 195 1692 101 304_200_150_20_3_1 195 1604 57 304_200_150_20_4_1 195 2132 101 6 304_150_80_5_1_1 195 318 6 304_50_50_5_1_1 195 158 304_400_400_20_3_1 195 3704 57 304_400_400_20_4_1 195 4932 101 304_400_400_20_5_1 195 6156 157 304_400_400_40_4_1 195 5092 101 304_400_400_40_5_1 195 6356 157 304_400_400_40_6_1 195 7617 226 304_400_400_40_7_1 195 8874 308 304_400_400_40_8_1 195 10130 402 304_300_400_20_3_1 195 3404 57 304_300_400_20_4_1 195 4532 101 304_300_400_20_5_1 195 5656 157 304_400_300_20_3_1 195 3104 57 304_400_300_20_4_1 195 4132 101 304_400_300_20_5_1 195 5156 157 304_400_300_40_5_1 195 5356 157 304_400_300_40_6_1 195 6417 226 304_400_300_40_7_1 195 7474 308 304_400_300_40_8_1 195 8528 402 % 6.4 9.7 6.1 9.2 3.7 3.9 4.1 5.9 3.5 4.7 2.0 4.0 1.5 2.0 2.6 2.0 2.5 3.0 3.5 4.0 1.7 2.2 2.8 1.8 2.4 3.0 2.9 3.5 4.1 4.7 MPa 402 660 532 844 252 180 102 320 165 233 36 140 22 32 43 62 81 99 120 140 24 34 46 37 53 72 129 160 192 227 Test Results λd P u,t fu 0.70 0.54 0.61 0.48 0.88 1.04 1.38 0.78 1.09 0.91 2.33 1.18 2.98 2.48 2.14 1.77 1.55 1.40 1.27 1.18 2.85 2.38 2.05 2.30 1.92 1.64 1.23 1.10 1.01 0.93 kN 67 120 77 135 217 187 160 266 195 308 21 19 175 296 454 347 525 746 977 1219 175 301 457 176 302 467 558 780 1007 1232 MPa 171 205 187 219 143 129 115 157 121 145 65 120 47 60 74 68 83 98 110 120 51 66 81 57 73 91 104 122 135 144 r/t=1 April 2005 AS 4600 (1996) f u /f y f n,4600 /f y f u /f n,4600 0.88 1.05 0.96 1.12 0.74 0.66 0.59 0.81 0.62 0.74 0.33 0.62 0.24 0.31 0.38 0.35 0.42 0.50 0.56 0.62 0.26 0.34 0.41 0.29 0.37 0.46 0.53 0.62 0.69 0.74 0.88 na 0.91 na 0.81 0.73 0.52 0.85 0.70 0.79 0.33 0.65 0.26 0.31 0.35 0.42 0.47 0.51 0.59 0.65 0.27 0.32 0.37 0.33 0.39 0.45 0.62 0.69 0.75 0.79 1.00 na 1.05 na 0.91 0.90 1.13 0.95 0.88 0.94 1.02 0.95 0.94 1.01 1.07 0.83 0.91 0.99 0.95 0.94 0.98 1.07 1.12 0.88 0.95 1.04 0.86 0.90 0.93 0.94 mean 0.97 177 0.95 na 0.99 na 0.83 0.73 0.56 0.89 0.70 0.80 0.33 0.65 0.25 0.31 0.36 0.44 0.50 0.56 0.61 0.65 0.26 0.32 0.38 0.33 0.41 0.47 0.63 0.69 0.75 0.80 0.93 na 0.96 na 0.89 0.91 1.04 0.90 0.89 0.92 1.01 0.95 0.97 1.00 1.05 0.79 0.84 0.90 0.93 0.95 1.00 1.06 1.10 0.87 0.92 0.98 0.85 0.90 0.93 0.93 0.86 na 0.94 na 0.72 0.63 0.49 0.79 0.60 0.70 0.29 0.56 0.23 0.27 0.32 0.38 0.44 0.48 0.52 0.56 0.24 0.29 0.33 0.30 0.36 0.41 0.54 0.60 0.65 0.69 1.02 na 1.02 na 1.02 1.05 1.21 1.02 1.03 1.06 1.14 1.10 1.07 1.12 1.19 0.91 0.97 1.05 1.08 1.10 1.11 1.19 1.25 0.98 1.05 1.13 0.98 1.04 1.07 1.07 0.94 1.07 st dev 0.0758 0.0693 0.0760 0.078 0.074 0.071 COV Department of Civil Engineering Research Report No R845 NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections fy Test ID 304_60_60_10_2_2.5 304_60_60_10_3_2.5 304_60_60_15_2_2.5 304_60_60_15_3_2.5 304_150_150_30_3_2.5 304_150_150_20_3_2.5 304_150_150_10_3_2.5 304_200_100_15_4_2.5 304_200_150_20_3_2.5 304_200_150_20_4_2.5 304_150_80_5_1_2.5 304_50_50_5_1_2.5 304_400_400_20_3_2.5 304_400_400_20_4_2.5 304_400_400_20_5_2.5 304_400_400_40_4_2.5 304_400_400_40_5_2.5 304_400_400_40_6_2.5 304_400_400_40_7_2.5 304_400_400_40_8_2.5 304_300_400_20_3_2.5 304_300_400_20_4_2.5 304_300_400_20_5_2.5 304_400_300_20_3_2.5 304_400_300_20_4_2.5 304_400_300_20_5_2.5 304_400_300_40_5_2.5 304_400_300_40_6_2.5 304_400_300_40_7_2.5 304_400_300_40_8_2.5 MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 Geometric Properties A g A c A c /A g f cr 2 mm AS 4600 (1996) Test Results λd P u,t 2 mm fu % MPa kN 382 63 16.4 411 0.69 68 561 141 25.2 689 0.53 123 402 63 15.6 542 0.60 78 591 141 23.9 868 0.47 139 1491 141 9.5 257 0.87 218 1431 141 9.9 184 1.03 188 1371 141 10.3 105 1.36 164 1650 251 15.2 328 0.77 268 1581 141 8.9 168 1.08 196 2090 251 12.0 239 0.90 315 316 16 5.0 38 2.28 21 156 16 10.1 142 1.17 19 3681 141 3.8 22 2.96 179 4890 251 5.1 32 2.46 305 6090 393 6.4 43 2.12 458 5050 251 5.0 63 1.76 346 6290 393 6.2 82 1.54 531 7522 565 7.5 106 1.36 755 8745 770 8.8 122 1.26 990 9959 1005 10.1 144 1.16 1234 3381 141 4.2 24 2.82 177 4490 251 5.6 35 2.36 305 5590 393 7.0 48 2.03 464 3081 141 4.6 37 2.28 183 4090 251 6.1 54 1.90 307 5090 393 7.7 74 1.63 477 5290 393 7.4 131 1.22 561 6322 565 8.9 163 1.09 784 7345 770 10.5 197 1.00 1014 8359 1005 12.0 233 0.92 1245 April 2005 f u /f y f n,4600 /f y f u /f n,4600 MPa 177 219 194 236 146 131 120 163 124 151 65 124 49 62 75 68 84 100 113 124 52 68 83 59 75 94 106 124 138 149 0.91 1.13 1.00 1.21 0.75 0.67 0.61 0.83 0.64 0.77 0.33 0.63 0.25 0.32 0.39 0.35 0.43 0.51 0.58 0.64 0.27 0.35 0.43 0.30 0.38 0.48 0.54 0.64 0.71 0.76 r/t=2.5 all tests 0.88 na 0.91 na 0.81 0.74 0.54 0.85 0.71 0.80 0.33 0.66 0.26 0.31 0.36 0.42 0.47 0.54 0.60 0.66 0.27 0.32 0.37 0.33 0.40 0.45 0.63 0.70 0.75 0.79 1.03 na 1.09 na 0.92 0.92 1.14 0.98 0.90 0.97 1.00 0.97 0.96 1.04 1.08 0.83 0.92 0.95 0.96 0.96 0.99 1.08 1.14 0.92 0.97 1.06 0.86 0.91 0.94 0.97 mean 0.98 fy Test ID 430D1a 430D1b 430D2 430D3a 430D3b Ag 2 MPa mm 271 211 271 211 271 215 271 188 271 188 Ac mm2 21 22 22 22 22 Test Results A c /A g f cr % 10 10 10 12 12 MPa 224 224 245 254 254 λ d P u,t 1.10 1.10 1.05 1.03 1.03 fu experimental tests Department of Civil Engineering Research Report No R845 178 0.96 na 1.00 na 0.90 0.92 1.07 0.93 0.90 0.95 0.99 0.97 0.98 1.03 1.06 0.79 0.85 0.90 0.95 0.96 1.01 1.07 1.11 0.90 0.94 1.00 0.86 0.91 0.94 0.95 0.87 na 0.94 na 0.73 0.63 0.49 0.80 0.61 0.71 0.30 0.57 0.23 0.28 0.32 0.39 0.44 0.50 0.53 0.57 0.24 0.29 0.34 0.30 0.36 0.42 0.55 0.60 0.65 0.70 1.05 na 1.06 na 1.03 1.06 1.24 1.04 1.04 1.09 1.12 1.12 1.09 1.16 1.20 0.91 0.99 1.04 1.10 1.12 1.12 1.21 1.27 1.02 1.07 1.15 0.99 1.06 1.08 1.09 1.09 st dev 0.0783 0.0717 0.0779 COV 0.080 0.075 0.071 mean 0.96 0.94 1.07 st dev 0.0737 0.0679 0.0748 0.076 0.072 0.070 AS 4600 (1996) f u /f y f n,4600 /f y f u /f n,4600 kN MPa 39 182 0.67 39 185 0.68 45 209 0.77 40 211 0.78 39 206 0.76 0.95 na 0.99 na 0.83 0.73 0.57 0.90 0.71 0.81 0.34 0.66 0.25 0.31 0.36 0.44 0.51 0.57 0.61 0.66 0.27 0.33 0.38 0.34 0.41 0.48 0.63 0.70 0.75 0.80 0.96 COV Geometric Properties NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. 0.69 0.69 0.72 0.73 0.73 0.97 0.98 1.07 1.06 1.04 1.03 0.65 0.65 0.67 0.68 0.68 1.04 1.05 1.15 1.14 1.11 1.10 0.70 0.70 0.72 0.73 0.73 mean 0.97 0.98 1.07 1.06 1.04 1.02 st dev 0.0469 0.0460 0.0501 COV 0.046 0.045 0.046 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Geometric Properties fy Test ID 430_60_60_10_2 430_60_60_10_3 430_60_60_15_2 430_60_60_15_3 430_150_150_30_3 430_150_150_20_3 430_150_150_10_3 430_200_100_15_4 430_200_150_20_3 430_200_150_20_4 430_150_80_5_1 430_50_50_5_1 430_400_400_20_3 430_400_400_20_4 430_400_400_20_5 430_400_400_40_4 430_400_400_40_5 430_400_400_40_6 430_400_400_40_7 430_400_400_40_8 430_300_400_20_3 430_300_400_20_4 430_300_400_20_5 430_400_300_20_3 430_400_300_20_4 430_400_300_20_5 430_400_300_40_5 430_400_300_40_6 430_400_300_40_7 430_400_300_40_8 MPa 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 Ag Ac 2 mm 393 584 413 614 1514 1454 1394 1692 1604 2132 318 158 3704 4932 6156 5092 6356 7617 8874 10130 3404 4532 5656 3104 4132 5156 5356 6417 7474 8528 Test Results A c /A g f cr 2 mm 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6.4 9.7 6.1 9.2 3.7 3.9 4.1 5.9 3.5 4.7 2.0 4.0 1.5 2.0 2.6 2.0 2.5 3.0 3.5 4.0 1.7 2.2 2.8 1.8 2.4 3.0 2.9 3.5 4.1 4.7 MPa 381 627 505 801 239 171 97 304 156 221 34 133 21 30 40 59 77 94 114 133 23 33 44 35 50 68 123 152 182 216 λd P u,t fu 0.85 0.66 0.74 0.59 1.07 1.27 1.69 0.95 1.33 1.11 2.84 1.44 3.64 3.02 2.61 2.16 1.89 1.71 1.55 1.44 3.47 2.90 2.50 2.80 2.33 2.00 1.50 1.35 1.23 1.13 kN 85 146 96 163 280 240 200 338 244 390 26 24 231 356 579 424 647 950 1226 1531 225 383 579 231 397 594 699 980 1283 1563 MPa 216 250 232 266 185 165 143 200 152 183 83 151 62 72 94 83 102 125 138 151 66 85 102 74 96 115 130 153 172 183 flats Department of Civil Engineering Research Report No R845 179 April 2005 AS 4600 (1996) f u /f y f n,4600 /f y f u /f n,4600 0.79 0.91 0.84 0.97 0.67 0.60 0.52 0.73 0.55 0.67 0.30 0.55 0.23 0.26 0.34 0.30 0.37 0.45 0.50 0.55 0.24 0.31 0.37 0.27 0.35 0.42 0.47 0.56 0.62 0.67 0.82 0.89 0.86 0.91 0.71 0.60 0.44 0.77 0.56 0.69 0.27 0.49 0.24 0.26 0.29 0.35 0.40 0.43 0.47 0.49 0.24 0.26 0.30 0.27 0.33 0.38 0.48 0.55 0.62 0.68 0.96 1.02 0.98 1.06 0.94 1.00 1.19 0.94 0.99 0.97 1.12 1.12 0.96 1.03 1.17 0.86 0.93 1.05 1.08 1.11 1.01 1.17 1.23 0.99 1.07 1.11 0.99 1.02 1.00 0.98 NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. 0.85 0.97 0.92 1.00 0.71 0.61 0.46 0.78 0.59 0.69 0.27 0.54 0.20 0.25 0.29 0.36 0.41 0.46 0.50 0.54 0.21 0.26 0.31 0.27 0.33 0.39 0.52 0.58 0.63 0.68 0.93 0.94 0.91 0.97 0.95 0.98 1.13 0.93 0.95 0.97 1.13 1.02 1.13 1.06 1.17 0.85 0.90 0.99 1.00 1.01 1.13 1.19 1.22 1.01 1.06 1.08 0.91 0.96 0.99 0.98 0.79 0.92 0.87 0.97 0.66 0.57 0.44 0.73 0.55 0.64 0.27 0.51 0.21 0.25 0.29 0.35 0.40 0.44 0.48 0.51 0.22 0.26 0.30 0.27 0.32 0.38 0.50 0.54 0.59 0.63 1.00 0.99 0.97 0.99 1.02 1.05 1.18 1.00 1.00 1.04 1.13 1.07 1.10 1.05 1.18 0.87 0.93 1.04 1.05 1.07 1.11 1.18 1.23 1.01 1.08 1.11 0.96 1.02 1.06 1.05 mean 1.03 1.02 1.05 st dev 0.0861 0.0944 0.0797 COV 0.083 0.093 0.076 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Geometric Properties fy Test ID 430_60_60_10_2_1 430_60_60_10_3_1 430_60_60_15_2_1 430_60_60_15_3_1 430_150_150_30_3_1 430_150_150_20_3_1 430_150_150_10_3_1 430_200_100_15_4_1 430_200_150_20_3_1 430_200_150_20_4_1 430_150_80_5_1_1 430_50_50_5_1_1 430_400_400_20_3_1 430_400_400_20_4_1 430_400_400_20_5_1 430_400_400_40_4_1 430_400_400_40_5_1 430_400_400_40_6_1 430_400_400_40_7_1 430_400_400_40_8_1 430_300_400_20_3_1 430_300_400_20_4_1 430_300_400_20_5_1 430_400_300_20_3_1 430_400_300_20_4_1 430_400_300_20_5_1 430_400_300_40_5_1 430_400_300_40_6_1 430_400_300_40_7_1 430_400_300_40_8_1 MPa 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 Ag Ac 2 mm 393 584 413 614 1514 1454 1394 1692 1604 2132 318 158 3704 4932 6156 5092 6356 7617 8874 10130 3404 4532 5656 3104 4132 5156 5356 6417 7474 8528 Test Results A c /A g f cr 2 mm 25 57 25 57 57 57 57 101 57 101 6 6 57 101 157 101 157 226 308 402 57 101 157 57 101 157 157 226 308 402 % 6.4 9.7 6.1 9.2 3.7 3.9 4.1 5.9 3.5 4.7 2.0 4.0 1.5 2.0 2.6 2.0 2.5 3.0 3.5 4.0 1.7 2.2 2.8 1.8 2.4 3.0 2.9 3.5 4.1 4.7 MPa 381 627 505 801 239 171 97 304 156 221 34 133 21 30 40 59 77 94 114 133 23 33 44 35 50 68 123 152 182 216 λd P u,t fu 0.85 0.66 0.74 0.59 1.07 1.27 1.69 0.95 1.33 1.11 2.84 1.44 3.64 3.02 2.61 2.16 1.89 1.71 1.55 1.44 3.47 2.90 2.50 2.80 2.33 2.00 1.50 1.35 1.23 1.13 kN 87 153 98 171 284 243 203 345 246 397 27 24 231 357 586 430 650 953 1234 1547 228 388 586 234 402 601 704 988 1300 1589 MPa 222 261 238 278 188 167 145 204 153 186 83 153 62 72 95 84 102 125 139 153 67 86 104 75 97 116 131 154 174 186 r/t=1.0 Department of Civil Engineering Research Report No R845 180 April 2005 AS 4600 (1996) f u /f y f n,4600 /f y f u /f n,4600 0.81 0.95 0.87 1.01 0.68 0.61 0.53 0.74 0.56 0.68 0.30 0.55 0.23 0.26 0.35 0.31 0.37 0.46 0.51 0.56 0.24 0.31 0.38 0.27 0.35 0.42 0.48 0.56 0.63 0.68 0.82 0.89 0.86 na 0.71 0.60 0.44 0.77 0.56 0.69 0.27 0.49 0.24 0.26 0.29 0.35 0.40 0.43 0.47 0.49 0.24 0.26 0.30 0.27 0.33 0.38 0.48 0.55 0.62 0.68 0.98 1.07 1.00 na 0.96 1.02 1.21 0.96 0.99 0.98 1.13 1.12 0.96 1.03 1.19 0.88 0.94 1.05 1.08 1.12 1.02 1.18 1.24 1.01 1.09 1.12 0.99 1.02 1.01 0.99 NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. 0.85 0.97 0.92 na 0.71 0.61 0.46 0.78 0.59 0.69 0.27 0.54 0.20 0.25 0.29 0.36 0.41 0.46 0.50 0.54 0.21 0.26 0.31 0.27 0.33 0.39 0.52 0.58 0.63 0.68 0.95 0.98 0.94 na 0.96 1.00 1.14 0.95 0.95 0.99 1.14 1.02 1.13 1.06 1.19 0.86 0.91 1.00 1.01 1.02 1.15 1.20 1.23 1.02 1.08 1.09 0.92 0.97 1.01 1.00 0.79 0.92 0.87 na 0.66 0.57 0.44 0.73 0.55 0.64 0.27 0.51 0.21 0.25 0.29 0.35 0.40 0.44 0.48 0.51 0.22 0.26 0.30 0.27 0.32 0.38 0.50 0.54 0.59 0.63 1.02 1.03 1.00 na 1.03 1.06 1.19 1.02 1.01 1.05 1.14 1.08 1.10 1.06 1.20 0.88 0.94 1.04 1.06 1.08 1.13 1.20 1.25 1.02 1.10 1.13 0.97 1.03 1.07 1.07 mean 1.05 1.03 1.07 st dev 0.0880 0.0951 0.0803 COV 0.084 0.092 0.075 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Geometric Properties fy Ag Ac 2 Test Results λd A c /A g f cr P u,t 2 AS 4600 (1996) fu Test ID MPa mm mm % MPa kN 63 16.4 390 0.84 87 430_60_60_10_2_2.5 275 382 430_60_60_10_3_2.5 275 561 141 25.2 654 0.65 154 63 15.6 514 0.73 99 430_60_60_15_2_2.5 275 402 430_60_60_15_3_2.5 275 591 141 23.9 823 0.58 173 430_150_150_30_3_2.5 275 1491 141 9.5 243 1.06 286 430_150_150_20_3_2.5 275 1431 141 9.9 175 1.25 244 430_150_150_10_3_2.5 275 1371 141 10.3 100 1.66 205 430_200_100_15_4_2.5 275 1650 251 15.2 311 0.94 346 430_200_150_20_3_2.5 275 1581 141 8.9 160 1.31 247 430_200_150_20_4_2.5 275 2090 251 12.0 226 1.10 399 16 5.0 430_150_80_5_1_2.5 275 316 36 2.78 26 16 10.1 135 1.43 24 430_50_50_5_1_2.5 275 156 430_400_400_20_3_2.5 275 3681 141 3.8 21 3.61 236 430_400_400_20_4_2.5 275 4890 251 5.1 31 3.00 343 430_400_400_20_5_2.5 275 6090 393 6.4 41 2.59 586 430_400_400_40_4_2.5 275 5050 251 5.0 60 2.15 437 430_400_400_40_5_2.5 275 6290 393 6.2 78 1.88 650 430_400_400_40_6_2.5 275 7522 565 7.5 100 1.65 953 430_400_400_40_7_2.5 275 8745 770 8.8 116 1.54 1236 430_400_400_40_8_2.5 275 9959 1005 10.1 137 1.42 1556 430_300_400_20_3_2.5 275 3381 141 4.2 23 3.44 229 430_300_400_20_4_2.5 275 4490 251 5.6 33 2.87 390 430_300_400_20_5_2.5 275 5590 393 7.0 45 2.47 590 430_400_300_20_3_2.5 275 3081 141 4.6 36 2.78 235 430_400_300_20_4_2.5 275 4090 251 6.1 51 2.31 404 430_400_300_20_5_2.5 275 5090 393 7.7 70 1.98 605 430_400_300_40_5_2.5 275 5290 393 7.4 125 1.49 704 430_400_300_40_6_2.5 275 6322 565 8.9 155 1.33 992 430_400_300_40_7_2.5 275 7345 770 10.5 187 1.21 1306 430_400_300_40_8_2.5 275 8359 1005 12.0 221 1.12 1598 f u /f y f n,4600 /f y f u /f n,4600 MPa 228 275 245 293 192 171 150 209 156 191 83 156 64 70 96 87 103 127 141 156 68 87 106 76 99 119 133 157 178 191 0.83 1.00 0.89 1.07 0.70 0.62 0.54 0.76 0.57 0.69 0.30 0.57 0.23 0.25 0.35 0.31 0.38 0.46 0.51 0.57 0.25 0.32 0.38 0.28 0.36 0.43 0.48 0.57 0.65 0.70 r/t=2.5 all tests Geometric Properties Test ID 3Cr12D1a 3Cr12D1b fy Ag Ac A c /A g MPa 339 339 mm2 mm2 555 555 62 62 % 11 11 Test Results f cr λd P u,t April 2005 fu 0.82 na 0.87 na 0.72 0.61 0.44 0.78 0.57 0.70 0.27 0.50 0.24 0.26 0.29 0.35 0.40 0.45 0.47 0.50 0.24 0.27 0.31 0.27 0.33 0.38 0.48 0.56 0.63 0.69 1.01 na 1.03 na 0.97 1.02 1.23 0.98 1.00 1.00 1.11 1.14 0.98 0.99 1.19 0.89 0.94 1.03 1.09 1.14 1.03 1.19 1.25 1.01 1.09 1.13 1.00 1.03 1.02 1.01 0.80 na 0.87 na 0.67 0.58 0.45 0.73 0.56 0.65 0.27 0.52 0.21 0.25 0.29 0.35 0.40 0.45 0.48 0.52 0.22 0.26 0.31 0.27 0.33 0.38 0.50 0.55 0.60 0.64 1.04 na 1.02 na 1.05 1.07 1.21 1.04 1.02 1.07 1.12 1.10 1.12 1.02 1.20 0.90 0.94 1.02 1.06 1.09 1.13 1.20 1.26 1.02 1.10 1.14 0.97 1.04 1.08 1.09 1.05 1.04 1.08 0.0886 0.0937 0.0810 COV 0.084 0.090 0.075 mean 1.04 1.03 1.07 st dev 0.0852 0.0917 0.0789 COV 0.082 0.089 0.074 0.74 0.74 1.00 1.00 mean 1.00 NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. 0.73 0.73 1.00 1.01 0.69 0.69 1.07 1.08 1.00 1.08 st dev 0.0051 0.0051 0.0055 0.005 0.005 0.005 COV 181 0.97 na 0.96 na 0.98 1.01 1.16 0.97 0.96 1.00 1.12 1.04 1.15 1.02 1.19 0.88 0.91 0.98 1.01 1.03 1.15 1.21 1.24 1.02 1.08 1.10 0.92 0.98 1.02 1.02 mean f u /f y f n,4600 /f y f u /f n,4600 MPa kN MPa 321 1.03 138 249 0.73 321 1.03 139 251 0.74 0.85 na 0.93 na 0.71 0.62 0.47 0.79 0.59 0.69 0.27 0.55 0.20 0.25 0.29 0.36 0.41 0.47 0.51 0.55 0.21 0.26 0.31 0.27 0.33 0.39 0.53 0.58 0.64 0.68 st dev AS 4600 (1996) experimental Department of Civil Engineering Research Report No R845 NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Geometric Properties fy Test ID 3Cr12_60_60_10_2 3Cr12_60_60_10_3 3Cr12_60_60_15_2 3Cr12_60_60_15_3 3Cr12_150_150_30_3 3Cr12_150_150_20_3 3Cr12_150_150_10_3 3Cr12_200_100_15_4 3Cr12_200_150_20_3 3Cr12_200_150_20_4 3Cr12_150_80_5_1 3Cr12_50_50_5_1 3Cr12_400_400_20_3 3Cr12_400_400_20_4 3Cr12_400_400_20_5 3Cr12_400_400_40_4 3Cr12_400_400_40_5 3Cr12_400_400_40_6 3Cr12_400_400_40_7 3Cr12_400_400_40_8 3Cr12_300_400_20_3 3Cr12_300_400_20_4 3Cr12_300_400_20_5 3Cr12_400_300_20_3 3Cr12_400_300_20_4 3Cr12_400_300_20_5 3Cr12_400_300_40_5 3Cr12_400_300_40_6 3Cr12_400_300_40_7 3Cr12_400_300_40_8 Test Results Ag Ac A c /A g f cr λd P u,t fu mm2 mm2 % 6.4 9.7 6.1 9.2 3.7 3.9 4.1 5.9 3.5 4.7 2.0 4.0 1.5 2.0 2.6 2.0 2.5 3.0 3.5 4.0 1.7 2.2 2.8 1.8 2.4 3.0 2.9 3.5 4.1 4.7 MPa 432 711 573 909 272 194 110 345 177 251 39 151 24 34 46 67 87 107 129 151 26 37 50 40 57 78 139 172 207 245 0.78 0.60 0.67 0.53 0.98 1.16 1.54 0.87 1.21 1.02 2.59 1.31 3.32 2.76 2.38 1.97 1.73 1.56 1.42 1.31 3.17 2.65 2.28 2.56 2.13 1.83 1.37 1.23 1.12 1.03 kN 83 142 93 157 278 243 201 335 254 389 27 24 237 382 602 444 709 1005 1267 1563 231 395 597 237 409 618 738 1022 1292 1556 MPa 211 243 226 256 184 167 144 198 158 182 85 155 64 77 98 87 112 132 143 154 68 87 106 76 99 120 138 159 173 182 MPa 25 260 393 57 260 584 25 260 413 57 260 614 260 1514 57 260 1454 57 260 1394 57 260 1692 101 260 1604 57 260 2132 101 6 260 318 6 260 158 260 3704 57 260 4932 101 260 6156 157 260 5092 101 260 6356 157 260 7617 226 260 8874 308 260 10130 402 260 3404 57 260 4532 101 260 5656 157 260 3104 57 260 4132 101 260 5156 157 260 5356 157 260 6417 226 260 7474 308 260 8528 402 flats April 2005 AS 4600 (1996) f u /f y f n,4600 /f y f u /f n,4600 0.81 0.93 0.87 0.98 0.71 0.64 0.56 0.76 0.61 0.70 0.33 0.59 0.25 0.30 0.38 0.34 0.43 0.51 0.55 0.59 0.26 0.34 0.41 0.29 0.38 0.46 0.53 0.61 0.67 0.70 0.85 0.91 0.89 0.93 0.76 0.67 0.47 0.81 0.63 0.74 0.29 0.57 0.24 0.28 0.32 0.38 0.43 0.47 0.50 0.57 0.25 0.29 0.33 0.30 0.36 0.41 0.53 0.62 0.69 0.73 0.96 1.03 0.98 1.06 0.93 0.97 1.18 0.94 0.96 0.95 1.12 1.05 1.02 1.08 1.18 0.88 1.00 1.09 1.10 1.04 1.06 1.17 1.22 0.99 1.07 1.13 0.99 0.98 0.97 0.96 mean 1.03 182 0.90 0.99 0.96 1.00 0.76 0.66 0.51 0.83 0.64 0.74 0.29 0.59 0.22 0.27 0.32 0.39 0.45 0.50 0.55 0.59 0.23 0.29 0.34 0.30 0.36 0.43 0.57 0.63 0.68 0.73 0.91 0.94 0.90 0.98 0.93 0.97 1.10 0.91 0.95 0.95 1.12 1.01 1.10 1.09 1.17 0.85 0.95 1.01 1.00 1.00 1.11 1.17 1.20 0.99 1.05 1.08 0.93 0.98 0.97 0.96 0.84 0.96 0.91 1.00 0.71 0.62 0.48 0.78 0.60 0.69 0.29 0.56 0.23 0.27 0.32 0.38 0.43 0.48 0.52 0.56 0.24 0.28 0.33 0.29 0.35 0.41 0.54 0.59 0.64 0.68 0.97 0.97 0.95 0.98 0.99 1.03 1.15 0.98 1.02 1.02 1.13 1.07 1.09 1.09 1.19 0.88 0.99 1.07 1.06 1.06 1.10 1.18 1.23 1.00 1.08 1.12 0.99 1.04 1.04 1.03 1.01 1.05 st dev 0.0858 0.0894 0.0773 0.083 0.089 0.074 COV Department of Civil Engineering Research Report No R845 NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Geometric Properties fy Test ID 3Cr12_60_60_10_2_1 3Cr12_60_60_10_3_1 3Cr12_60_60_15_2_1 3Cr12_60_60_15_3_1 3Cr12_150_150_30_3_1 3Cr12_150_150_20_3_1 3Cr12_150_150_10_3_1 3Cr12_200_100_15_4_1 3Cr12_200_150_20_3_1 3Cr12_200_150_20_4_1 3Cr12_150_80_5_1_1 3Cr12_50_50_5_1_1 3Cr12_400_400_20_3_1 3Cr12_400_400_20_4_1 3Cr12_400_400_20_5_1 3Cr12_400_400_40_4_1 3Cr12_400_400_40_5_1 3Cr12_400_400_40_6_1 3Cr12_400_400_40_7_1 3Cr12_400_400_40_8_1 3Cr12_300_400_20_3_1 3Cr12_300_400_20_4_1 3Cr12_300_400_20_5_1 3Cr12_400_300_20_3_1 3Cr12_400_300_20_4_1 3Cr12_400_300_20_5_1 3Cr12_400_300_40_5_1 3Cr12_400_300_40_6_1 3Cr12_400_300_40_7_1 3Cr12_400_300_40_8_1 Test Results Ag Ac A c /A g f cr λd P u,t fu mm2 mm2 % 6.4 9.7 6.1 9.2 3.7 3.9 4.1 5.9 3.5 4.7 2.0 4.0 1.5 2.0 2.6 2.0 2.5 3.0 3.5 4.0 1.7 2.2 2.8 1.8 2.4 3.0 2.9 3.5 4.1 4.7 MPa 432 711 573 909 272 194 110 345 177 251 39 151 24 34 46 67 87 107 129 151 26 37 50 40 57 78 139 172 207 245 0.78 0.60 0.67 0.53 0.98 1.16 1.54 0.87 1.21 1.02 2.59 1.31 3.32 2.76 2.38 1.97 1.73 1.56 1.42 1.31 3.17 2.65 2.28 2.56 2.13 1.83 1.37 1.23 1.12 1.03 kN 85 148 96 165 283 246 205 343 256 396 27 25 237 383 607 447 710 1009 1277 1581 234 399 603 240 413 621 741 1032 1311 1584 MPa 217 253 233 269 187 169 147 203 160 186 86 156 64 78 99 88 112 132 144 156 69 88 107 77 100 120 138 161 175 186 MPa 25 260 393 57 260 584 25 260 413 57 260 614 260 1514 57 260 1454 57 260 1394 57 260 1692 101 260 1604 57 260 2132 101 6 260 318 6 260 158 260 3704 57 260 4932 101 260 6156 157 260 5092 101 260 6356 157 260 7617 226 260 8874 308 260 10130 402 260 3404 57 260 4532 101 260 5656 157 260 3104 57 260 4132 101 260 5156 157 260 5356 157 260 6417 226 260 7474 308 260 8528 402 r/t=1 April 2005 AS 4600 (1996) f u /f y f n,4600 /f y f u /f n,4600 0.83 0.97 0.90 1.03 0.72 0.65 0.56 0.78 0.61 0.71 0.33 0.60 0.25 0.30 0.38 0.34 0.43 0.51 0.55 0.60 0.26 0.34 0.41 0.30 0.38 0.46 0.53 0.62 0.67 0.71 0.85 0.91 0.89 na 0.76 0.67 0.47 0.81 0.63 0.74 0.29 0.57 0.24 0.28 0.32 0.38 0.43 0.47 0.50 0.57 0.25 0.29 0.33 0.30 0.36 0.41 0.53 0.62 0.69 0.73 0.98 1.07 1.01 na 0.94 0.98 1.20 0.96 0.97 0.96 1.13 1.06 1.02 1.08 1.19 0.88 1.00 1.09 1.11 1.05 1.07 1.18 1.23 1.00 1.08 1.13 1.00 0.99 0.98 0.97 mean 1.05 183 0.90 0.99 0.96 na 0.76 0.66 0.51 0.83 0.64 0.74 0.29 0.59 0.22 0.27 0.32 0.39 0.45 0.50 0.55 0.59 0.23 0.29 0.34 0.30 0.36 0.43 0.57 0.63 0.68 0.73 0.93 0.98 0.93 na 0.94 0.98 1.11 0.93 0.96 0.96 1.13 1.02 1.10 1.09 1.18 0.86 0.95 1.02 1.01 1.01 1.12 1.18 1.22 1.00 1.06 1.09 0.93 0.98 0.99 0.98 0.84 0.96 0.91 na 0.71 0.62 0.48 0.78 0.60 0.69 0.29 0.56 0.23 0.27 0.32 0.38 0.43 0.48 0.52 0.56 0.24 0.28 0.33 0.29 0.35 0.41 0.54 0.59 0.64 0.68 0.99 1.01 0.98 na 1.01 1.05 1.17 1.00 1.03 1.03 1.14 1.08 1.09 1.09 1.19 0.89 0.99 1.07 1.06 1.08 1.11 1.19 1.24 1.01 1.09 1.13 0.99 1.05 1.06 1.04 1.02 1.06 st dev 0.0861 0.0885 0.0755 0.082 0.087 0.071 COV Department of Civil Engineering Research Report No R845 NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Geometric Properties fy Ag Ac 2 mm Test ID MPa 3Cr12_60_60_10_2_2.5 260 3Cr12_60_60_10_3_2.5 260 3Cr12_60_60_15_2_2.5 260 3Cr12_60_60_15_3_2.5 260 3Cr12_150_150_30_3_2.5 260 3Cr12_150_150_20_3_2.5 260 3Cr12_150_150_10_3_2.5 260 3Cr12_200_100_15_4_2.5 260 3Cr12_200_150_20_3_2.5 260 3Cr12_200_150_20_4_2.5 260 3Cr12_150_80_5_1_2.5 260 3Cr12_50_50_5_1_2.5 260 3Cr12_400_400_20_3_2.5 260 3Cr12_400_400_20_4_2.5 260 3Cr12_400_400_20_5_2.5 260 3Cr12_400_400_40_4_2.5 260 3Cr12_400_400_40_5_2.5 260 3Cr12_400_400_40_6_2.5 260 3Cr12_400_400_40_7_2.5 260 3Cr12_400_400_40_8_2.5 260 3Cr12_300_400_20_3_2.5 260 3Cr12_300_400_20_4_2.5 260 3Cr12_300_400_20_5_2.5 260 3Cr12_400_300_20_3_2.5 260 3Cr12_400_300_20_4_2.5 260 3Cr12_400_300_20_5_2.5 260 3Cr12_400_300_40_5_2.5 260 3Cr12_400_300_40_6_2.5 260 3Cr12_400_300_40_7_2.5 260 3Cr12_400_300_40_8_2.5 260 2 mm 63 382 561 141 63 402 591 141 1491 141 1431 141 1371 141 1650 251 1581 141 2090 251 16 316 16 156 3681 141 4890 251 6090 393 5050 251 6290 393 7522 565 8745 770 9959 1005 3381 141 4490 251 5590 393 3081 141 4090 251 5090 393 5290 393 6322 565 7345 770 8359 1005 Test Results A c /A g f cr λd P u,t fu % 16.4 25.2 15.6 23.9 9.5 9.9 10.3 15.2 8.9 12.0 5.0 10.1 3.8 5.1 6.4 5.0 6.2 7.5 8.8 10.1 4.2 5.6 7.0 4.6 6.1 7.7 7.4 8.9 10.5 12.0 MPa 443 742 583 935 276 198 113 353 181 257 40 153 24 35 47 68 88 114 132 155 26 38 51 40 58 79 141 176 212 251 0.77 0.59 0.67 0.53 0.97 1.15 1.51 0.86 1.20 1.01 2.54 1.30 3.29 2.74 2.36 1.96 1.71 1.51 1.40 1.29 3.14 2.62 2.25 2.54 2.11 1.81 1.36 1.22 1.11 1.02 kN 86 150 97 168 284 248 207 346 257 397 27 25 241 403 608 457 712 1008 1281 1592 235 401 606 240 415 631 739 1036 1316 1592 MPa 224 268 241 285 190 173 151 210 163 190 86 159 66 82 100 91 113 134 146 160 69 89 108 78 101 124 140 164 179 190 April 2005 AS 4600 (1996) f u /f y f n,4600 /f y f u /f n,4600 0.86 1.03 0.93 1.09 0.73 0.67 0.58 0.81 0.63 0.73 0.33 0.61 0.25 0.32 0.38 0.35 0.44 0.52 0.56 0.61 0.27 0.34 0.42 0.30 0.39 0.48 0.54 0.63 0.69 0.73 r/t=2.5 all tests 0.85 na 0.89 na 0.76 0.67 0.48 0.82 0.64 0.75 0.30 0.57 0.24 0.28 0.32 0.38 0.43 0.48 0.51 0.58 0.25 0.29 0.34 0.30 0.36 0.41 0.54 0.63 0.69 0.74 mean f yf Test ID 304DS1a 304DS2b Ag 2 MPa mm 242 634 242 634 Ac A c /A g mm2 % 19 19 122 123 Test Results f cr λd MPa 333 0.85 333 0.85 P u,t fu kN 132 134 MPa 208 211 experimental tests Department of Civil Engineering Research Report No R845 184 0.95 na 0.96 na 0.95 0.99 1.13 0.96 0.97 0.98 1.10 1.03 1.12 1.15 1.18 0.88 0.96 1.00 1.02 1.03 1.13 1.19 1.22 1.00 1.07 1.11 0.94 0.99 1.00 0.99 1.04 0.85 na 0.92 na 0.72 0.63 0.49 0.78 0.60 0.70 0.30 0.56 0.23 0.28 0.32 0.38 0.44 0.49 0.52 0.56 0.24 0.29 0.33 0.30 0.36 0.41 0.54 0.60 0.64 0.69 1.02 na 1.01 na 1.02 1.06 1.19 1.03 1.04 1.05 1.11 1.09 1.11 1.15 1.20 0.91 1.00 1.05 1.07 1.09 1.12 1.20 1.25 1.01 1.09 1.15 0.99 1.06 1.07 1.06 1.08 0.0878 0.0745 COV 0.081 0.085 0.069 mean 1.04 1.02 1.06 st dev 0.0846 0.0872 0.0750 0.081 0.085 0.071 AS 4600 (1996) f u /f y f n,4600 /f y f u /f n,4600 0.86 0.87 0.90 na 0.96 na 0.77 0.67 0.52 0.84 0.64 0.75 0.30 0.60 0.22 0.28 0.32 0.40 0.46 0.52 0.55 0.60 0.24 0.29 0.34 0.30 0.37 0.43 0.57 0.63 0.69 0.74 st dev 0.0857 COV Geometric Properties 1.01 na 1.04 na 0.96 0.99 1.22 0.99 0.98 0.98 1.11 1.07 1.04 1.14 1.19 0.90 1.01 1.08 1.11 1.06 1.08 1.19 1.24 1.00 1.09 1.15 0.99 1.00 0.99 0.99 1.06 NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. 0.84 0.84 1.02 1.03 1.03 0.74 0.74 1.16 1.18 1.17 0.82 0.82 mean 1.05 1.07 1.06 st dev 0.0113 0.0109 0.0124 COV 0.011 0.011 0.011 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Geometric Properties Test ID 304_200_160_25_10_2 304_200_160_25_10_3 304_200_160_25_10_4 304_400_160_25_10_2 304_400_160_25_10_3 304_400_160_25_10_4 304_400_160_25_20_2 304_400_160_25_20_3 304_400_160_25_20_4 304_800_400_40_15_3 304_800_400_40_15_4 304_800_400_40_15_5 304_800_400_40_15_6 304_800_400_40_30_4 304_800_400_40_30_5 304_800_400_40_30_6 304_150_100_10_10_1 304_150_70_15_10_1 304_150_70_15_10_2 304_200_80_15_10_1 304_200_80_15_10_2 304_150_110_15_10_2 304_300_200_20_15_2 304_300_200_20_15_3 304_100_70_20_10_1 304_250_95_20_10_2 304_250_95_20_10_3 304_100_60_10_10_1 304_200_150_15_15_2 304_90_60_10_5_1 304_150_70_15_10_4 304_150_70_15_10_5 304_200_160_35_20_6 304_200_160_35_20_7 Test Results f yf Ag Ac A c /A g f cr MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 mm2 mm2 1177 1755 2327 1577 2355 3127 1626 2430 3227 5123 6769 8505 10186 6966 8691 10410 392 341 681 412 817 837 1542 2303 302 997 1485 262 1122 239 1327 1643 3721 4318 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5.3 8.1 10.8 4.0 6.0 8.0 3.9 5.8 7.8 2.8 3.7 4.6 5.6 3.6 4.5 5.4 4.0 4.6 9.2 3.8 7.7 7.5 4.1 6.1 5.2 6.3 9.5 6.0 5.6 6.6 18.9 23.9 15.2 17.8 MPa 106 169 238 58 95 138 73 115 165 28 40 52 65 45 58 74 62 111 251 72 164 139 55 88 186 131 214 162 89 189 619 837 527 638 λd P u,t fu 1.35 1.08 0.91 1.83 1.43 1.19 1.64 1.30 1.09 2.63 2.22 1.94 1.73 2.09 1.83 1.63 1.77 1.33 0.88 1.65 1.09 1.19 1.89 1.49 1.02 1.22 0.95 1.10 1.48 1.02 0.56 0.48 0.61 0.55 kN 116 215 328 116 211 328 128 232 355 252 408 577 792 484 683 902 36 32 90 32 90 101 129 235 36 98 182 31 123 27 250 330 669 817 MPa 99 123 141 73 90 105 79 96 110 49 60 68 78 70 79 87 91 94 132 78 110 120 84 102 118 98 123 118 109 113 188 201 180 189 flats Department of Civil Engineering Research Report No R845 185 April 2005 AS 4600 (1996) f u /f y f n,4600 /f y f u /f n,4600 0.51 0.63 0.72 0.38 0.46 0.54 0.40 0.49 0.56 0.25 0.31 0.35 0.40 0.36 0.40 0.44 0.47 0.48 0.68 0.40 0.57 0.62 0.43 0.52 0.60 0.50 0.63 0.61 0.56 0.58 0.97 1.03 0.92 0.97 0.54 0.71 0.79 0.41 0.49 0.65 0.45 0.58 0.71 0.29 0.34 0.39 0.43 0.36 0.41 0.45 0.42 0.56 0.81 0.45 0.70 0.65 0.40 0.48 0.74 0.63 0.77 0.70 0.48 0.74 0.92 na 0.91 0.92 0.94 0.88 0.91 0.92 0.93 0.83 0.90 0.85 0.80 0.87 0.90 0.90 0.93 0.98 0.98 0.99 1.10 0.86 0.84 0.90 0.81 0.95 1.08 1.08 0.82 0.80 0.82 0.87 1.16 0.78 1.05 na 1.02 1.05 NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. 0.57 0.71 0.81 0.43 0.54 0.65 0.48 0.60 0.70 0.29 0.35 0.40 0.45 0.37 0.43 0.48 0.44 0.58 0.83 0.47 0.70 0.65 0.41 0.52 0.74 0.63 0.78 0.69 0.53 0.74 1.00 na 0.99 1.00 0.88 0.89 0.89 0.88 0.84 0.83 0.85 0.82 0.81 0.87 0.89 0.87 0.88 0.96 0.95 0.93 1.06 0.82 0.82 0.85 0.81 0.95 1.04 1.00 0.82 0.80 0.81 0.87 1.07 0.78 0.97 na 0.93 0.97 0.50 0.61 0.71 0.37 0.47 0.56 0.41 0.52 0.61 0.26 0.31 0.35 0.39 0.33 0.37 0.42 0.38 0.51 0.72 0.41 0.60 0.56 0.36 0.45 0.64 0.55 0.68 0.60 0.46 0.64 0.98 na 0.93 0.98 1.02 1.03 1.02 1.01 0.98 0.96 0.98 0.95 0.93 0.98 1.01 0.99 1.02 1.09 1.08 1.07 1.21 0.95 0.94 0.98 0.94 1.10 1.19 1.15 0.95 0.92 0.93 1.01 1.23 0.90 0.99 na 0.99 0.99 mean 0.92 0.89 1.01 st dev 0.0989 0.0771 0.0842 COV 0.107 0.086 0.083 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Geometric Properties Test ID 304_200_160_25_10_2_1 304_200_160_25_10_3_1 304_200_160_25_10_4_1 304_400_160_25_10_2_1 304_400_160_25_10_3_1 304_400_160_25_10_4_1 304_400_160_25_20_2_1 304_400_160_25_20_3_1 304_400_160_25_20_4_1 304_800_400_40_15_3_1 304_800_400_40_15_4_1 304_800_400_40_15_5_1 304_800_400_40_15_6_1 304_800_400_40_30_4_1 304_800_400_40_30_5_1 304_800_400_40_30_6_1 304_150_100_10_10_1_1 304_150_70_15_10_1_1 304_150_70_15_10_2_1 304_200_80_15_10_1_1 304_200_80_15_10_2_1 304_150_110_15_10_2_1 304_300_200_20_15_2_1 304_300_200_20_15_3_1 304_100_70_20_10_1_1 304_250_95_20_10_2_1 304_250_95_20_10_3_1 304_100_60_10_10_1_1 304_200_150_15_15_2_1 304_90_60_10_5_1_1 304_150_70_15_10_4_1 304_150_70_15_10_5_1 304_200_160_35_20_6_1 304_200_160_35_20_7_1 Test Results fy Ag Ac A c /A g f cr MPa 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 mm2 mm2 1177 1755 2327 1577 2355 3127 1626 2430 3227 5123 6769 8505 10186 6966 8691 10410 392 341 681 412 817 837 1542 2303 302 997 1485 262 1122 239 1327 1643 3721 4318 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 % 5.3 8.1 10.8 4.0 6.0 8.0 3.9 5.8 7.8 2.8 3.7 4.6 5.6 3.6 4.5 5.4 4.0 4.6 9.2 3.8 7.7 7.5 4.1 6.1 5.2 6.3 9.5 6.0 5.6 6.6 18.9 23.9 15.2 17.8 MPa 106 169 238 58 95 138 73 115 165 28 40 52 65 45 58 74 62 111 251 72 164 139 55 88 186 131 214 162 89 189 619 837 527 638 λd P u,t fu 1.35 1.08 0.91 1.83 1.43 1.19 1.64 1.30 1.09 2.63 2.22 1.94 1.73 2.09 1.83 1.63 1.77 1.33 0.88 1.65 1.09 1.19 1.89 1.49 1.02 1.22 0.95 1.10 1.48 1.02 0.56 0.48 0.61 0.55 kN 121 227 352 119 221 347 133 244 379 258 423 603 829 503 715 952 37 33 96 33 95 107 133 247 37 102 193 32 128 28 291 408 757 950 MPa 103 129 151 76 94 111 82 100 117 50 62 71 81 72 82 91 94 97 141 81 117 127 86 107 122 103 130 123 114 119 219 249 203 220 r/t=1 Department of Civil Engineering Research Report No R845 186 April 2005 AS 4600 (1996) f u /f y f n,4600 /f y f u /f n,4600 0.53 0.66 0.78 0.39 0.48 0.57 0.42 0.51 0.60 0.26 0.32 0.36 0.42 0.37 0.42 0.47 0.48 0.50 0.73 0.41 0.60 0.65 0.44 0.55 0.62 0.53 0.67 0.63 0.59 0.61 1.12 1.28 1.04 1.13 0.54 0.71 0.79 0.41 0.49 0.65 0.45 0.58 0.71 0.29 0.34 0.39 0.43 0.36 0.41 0.45 0.42 0.56 0.81 0.45 0.70 0.65 0.40 0.48 0.74 0.63 0.77 0.70 0.48 0.74 na na na na 0.98 0.93 0.98 0.95 0.97 0.88 0.93 0.89 0.85 0.90 0.94 0.94 0.97 1.02 1.03 1.04 1.14 0.89 0.90 0.93 0.85 1.01 1.11 1.14 0.84 0.84 0.86 0.91 1.22 0.82 na na na na NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. 0.57 0.71 0.81 0.43 0.54 0.65 0.48 0.60 0.70 0.29 0.35 0.40 0.45 0.37 0.43 0.48 0.44 0.58 0.83 0.47 0.70 0.65 0.41 0.52 0.74 0.63 0.78 0.69 0.53 0.74 na na na na 0.92 0.94 0.96 0.91 0.89 0.88 0.88 0.86 0.86 0.90 0.92 0.91 0.93 1.00 0.99 0.98 1.09 0.85 0.88 0.87 0.86 1.01 1.07 1.05 0.85 0.83 0.86 0.91 1.12 0.82 na na na na 0.50 0.61 0.71 0.37 0.47 0.56 0.41 0.52 0.61 0.26 0.31 0.35 0.39 0.33 0.37 0.42 0.38 0.51 0.72 0.41 0.60 0.56 0.36 0.45 0.64 0.55 0.68 0.60 0.46 0.64 na na na na 1.06 1.09 1.10 1.04 1.03 1.02 1.01 1.00 0.99 1.00 1.04 1.04 1.06 1.14 1.13 1.12 1.25 0.98 1.01 1.00 0.99 1.17 1.23 1.21 0.98 0.97 0.99 1.06 1.29 0.95 na na na na mean 0.95 0.93 1.06 st dev 0.0982 0.0792 0.0900 COV 0.103 0.086 0.085 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Geometric Properties fy Test ID 304_200_160_25_10_2_2.5 304_200_160_25_10_3_2.5 304_200_160_25_10_4_2.5 304_400_160_25_10_2_2.5 304_400_160_25_10_3_2.5 304_400_160_25_10_4_2.5 304_400_160_25_20_2_2.5 304_400_160_25_20_3_2.5 304_400_160_25_20_4_2.5 304_800_400_40_15_3_2.5 304_800_400_40_15_4_2.5 304_800_400_40_15_5_2.5 304_800_400_40_15_6_2.5 304_800_400_40_30_4_2.5 304_800_400_40_30_5_2.5 304_800_400_40_30_6_2.5 304_150_100_10_10_1_2.5 304_150_70_15_10_1_2.5 304_150_70_15_10_2_2.5 304_200_80_15_10_1_2.5 304_200_80_15_10_2_2.5 304_150_110_15_10_2_2.5 304_300_200_20_15_2_2.5 304_300_200_20_15_3_2.5 304_100_70_20_10_1_2.5 304_250_95_20_10_2_2.5 304_250_95_20_10_3_2.5 304_100_60_10_10_1_2.5 304_200_150_15_15_2_2.5 304_90_60_10_5_1_2.5 304_150_70_15_10_4_2.5 304_150_70_15_10_5_2.5 304_200_160_35_20_6_2.5 304_200_160_35_20_7_2.5 Ag 2 MPa mm AS 4600 (1996) Test Results λd fu kN MPa f u /f y f n,4600 /f y f u /f n,4600 Ac A c /A g f cr % MPa 13.6 20.7 25.0 10.1 15.3 18.5 9.8 14.8 20.0 7.0 9.3 11.7 11.2 9.1 11.5 13.8 10.2 11.7 23.9 9.7 19.7 19.2 10.3 15.6 13.2 16.1 24.5 15.3 14.3 16.8 42.1 42.1 39.9 47.2 109 1.34 122 105 0.54 0.55 0.98 0.58 174 245 54 87 129 73 115 163 27 38 51 67 45 59 74 63 115 264 74 170 148 56 88 191 133 213 167 92 202 645 866 546 666 1.06 228 0.89 356 1.90 121 1.50 227 1.23 360 1.64 135 1.30 248 1.09 384 2.69 255 2.26 391 1.95 590 1.71 832 2.08 509 1.82 721 1.62 958 1.76 37 1.30 34 0.86 100 1.62 34 1.07 98 1.15 109 1.87 134 1.49 249 1.01 37 1.21 104 0.96 196 1.08 33 1.46 131 0.98 29 0.55 302 0.47 413 0.60 793 0.54 1009 133 158 78 98 118 84 104 122 50 58 70 83 74 84 94 96 100 152 83 122 133 88 110 126 106 136 129 119 123 238 260 224 247 0.68 0.81 0.40 0.50 0.60 0.43 0.53 0.63 0.26 0.30 0.36 0.42 0.38 0.43 0.48 0.49 0.51 0.78 0.43 0.63 0.68 0.45 0.57 0.65 0.54 0.70 0.66 0.61 0.63 1.22 1.34 1.15 1.27 0.72 0.80 0.40 0.48 0.62 0.45 0.58 0.70 0.28 0.34 0.39 0.43 0.36 0.41 0.45 0.42 0.58 0.82 0.45 0.71 0.67 0.40 0.48 0.74 0.63 0.77 0.71 0.49 0.76 na na na na 0.95 1.01 1.00 1.05 0.97 0.96 0.92 0.89 0.91 0.89 0.93 0.98 1.04 1.05 1.06 1.16 0.89 0.96 0.94 0.88 1.02 1.13 1.17 0.87 0.86 0.90 0.93 1.24 0.83 na na na na 0.72 0.82 0.41 0.52 0.63 0.48 0.60 0.70 0.28 0.34 0.40 0.46 0.37 0.43 0.48 0.44 0.60 0.84 0.48 0.71 0.67 0.42 0.52 0.74 0.64 0.78 0.70 0.53 0.76 na na na na r/t=2.5 all tests Geometric Properties Test ID 430DS1 430DS2 430DS3 430DS4 fy Ag MPa 271 271 271 271 mm 269 269 278 278 Ac 2 2 mm 53 55 54 54 Test Results A c /A g f cr % 20 20 20 20 MPa 269 335 327 468 λd P u,t fu 1.00 0.90 0.91 0.76 kN 60 62 64 72 MPa 222 230 228 258 experimental tests Department of Civil Engineering Research Report No R845 NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. mm2 195 1157 157 195 1711 353 195 2262 565 195 1557 157 195 2311 353 195 3062 565 195 1607 157 195 2386 353 195 3148 628 195 5078 353 195 6739 628 195 8382 982 195 10069 1131 195 6888 628 195 8569 982 195 10234 1414 39 195 387 39 195 337 157 195 657 39 195 407 157 195 797 157 195 817 195 1522 157 195 2258 353 39 195 297 157 195 977 195 1441 353 39 195 257 195 1102 157 39 195 234 195 1268 534 195 1586 668 195 3545 1414 195 4078 1924 P u,t April 2005 187 0.93 0.96 0.99 0.97 0.97 0.96 0.90 0.89 0.90 0.91 0.87 0.91 0.93 1.02 1.01 1.00 1.11 0.86 0.93 0.88 0.88 1.02 1.09 1.08 0.87 0.85 0.90 0.94 1.14 0.83 na na na na 0.50 0.62 0.71 0.36 0.45 0.54 0.41 0.52 0.60 0.25 0.30 0.35 0.40 0.33 0.37 0.42 0.39 0.51 0.74 0.42 0.61 0.58 0.36 0.45 0.64 0.55 0.67 0.61 0.46 0.66 na na na na 1.08 1.10 1.13 1.11 1.11 1.11 1.04 1.03 1.04 1.02 0.99 1.03 1.07 1.16 1.16 1.15 1.28 1.00 1.06 1.02 1.02 1.19 1.25 1.25 1.00 0.99 1.03 1.09 1.31 0.95 na na na na mean 0.98 0.95 1.09 st dev 0.1003 0.0798 0.0918 COV 0.102 0.084 0.084 mean 0.95 0.92 1.06 st dev 0.1009 0.0821 0.0940 COV 0.106 0.089 0.089 AS 4600 (1996) NAS Appendix 1 (2004) PROPOSED f u /f y f n,4600 /f y f u /f n,4600 f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. 0.82 0.85 0.84 0.95 0.75 0.81 0.81 0.91 1.09 1.04 1.05 1.05 1.06 0.70 0.76 0.75 0.85 1.17 1.12 1.12 1.12 1.13 0.75 0.80 0.79 0.86 mean 1.09 1.06 1.06 1.11 1.08 st dev 0.0245 0.0241 0.0266 COV 0.023 0.023 0.023 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Geometric Properties fy Test ID 430_200_160_25_10_2 430_200_160_25_10_3 430_200_160_25_10_4 430_400_160_25_10_2 430_400_160_25_10_3 430_400_160_25_10_4 430_400_160_25_20_2 430_400_160_25_20_3 430_400_160_25_20_4 430_800_400_40_15_3 430_800_400_40_15_4 430_800_400_40_15_5 430_800_400_40_15_6 430_800_400_40_30_4 430_800_400_40_30_5 430_800_400_40_30_6 430_150_100_10_10_1 430_150_70_15_10_1 430_150_70_15_10_2 430_200_80_15_10_1 430_200_80_15_10_2 430_150_110_15_10_2 430_300_200_20_15_2 430_300_200_20_15_3 430_100_70_20_10_1 430_250_95_20_10_2 430_250_95_20_10_3 430_100_60_10_10_1 430_200_150_15_15_2 430_90_60_10_5_1 430_150_70_15_10_4 430_150_70_15_10_5 430_200_160_35_20_6 430_200_160_35_20_7 Ag Ac 2 2 MPa mm mm 275 1177 63 275 1755 141 275 2327 251 275 1577 63 275 2355 141 275 3127 251 275 1626 63 275 2430 141 275 3227 251 275 5123 141 275 6769 251 275 8505 393 275 10186 565 275 6966 251 275 8691 393 275 10410 565 16 275 392 16 275 341 63 275 681 16 275 412 63 275 817 63 275 837 275 1542 63 275 2303 141 16 275 302 63 275 997 275 1485 141 16 275 262 275 1122 63 16 275 239 275 1327 251 275 1643 393 275 3721 565 275 4318 770 Test Results A c /A g f cr % 5.3 8.1 10.8 4.0 6.0 8.0 3.9 5.8 7.8 2.8 3.7 4.6 5.6 3.6 4.5 5.4 4.0 4.6 9.2 3.8 7.7 7.5 4.1 6.1 5.2 6.3 9.5 6.0 5.6 6.6 18.9 23.9 15.2 17.8 MPa 101 160 226 55 90 131 69 109 157 27 38 49 62 42 55 70 59 105 238 68 156 132 52 84 177 124 203 153 84 125 587 794 500 605 P u,t 1.65 1.31 1.10 2.23 1.75 1.45 2.00 1.59 1.32 3.21 2.71 2.37 2.11 2.55 2.23 1.98 2.16 1.62 1.07 2.01 1.33 1.45 2.30 1.81 1.25 1.49 1.16 1.34 1.81 1.48 0.68 0.59 0.74 0.67 kN MPa 155 131 0.48 284 162 0.59 431 185 0.67 154 97 0.35 282 120 0.44 439 140 0.51 167 103 0.37 312 128 0.47 476 147 0.54 316 62 0.22 527 78 0.28 762 90 0.33 1049 103 0.37 625 90 0.33 907 104 0.38 1198 115 0.42 44 112 0.41 43 125 0.46 118 173 0.63 42 102 0.37 121 148 0.54 134 160 0.58 170 110 0.40 310 135 0.49 48 158 0.57 131 131 0.48 241 162 0.59 41 158 0.57 162 145 0.53 36 150 0.54 322 243 0.88 434 264 0.96 873 234 0.85 1068 247 0.90 flats Department of Civil Engineering Research Report No R845 AS 4600 (1996) λd fu 188 April 2005 NAS Appendix 1 (2004) PROPOSED f u /f y f n,4600 /f y f u /f n,4600 f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. 0.45 0.57 0.70 0.34 0.43 0.49 0.38 0.46 0.56 0.25 0.28 0.32 0.36 0.30 0.34 0.38 0.35 0.45 0.71 0.38 0.56 0.49 0.33 0.41 0.61 0.48 0.66 0.55 0.41 0.48 0.88 0.91 0.86 0.89 1.07 1.03 0.97 1.04 1.02 1.04 0.99 1.01 0.95 0.92 1.01 1.02 1.04 1.10 1.12 1.10 1.16 1.01 0.89 0.98 0.96 1.18 1.21 1.19 0.94 0.99 0.89 1.04 1.27 1.12 1.00 1.05 0.99 1.01 0.47 0.59 0.69 0.35 0.45 0.54 0.39 0.49 0.59 0.23 0.28 0.32 0.37 0.30 0.35 0.39 0.36 0.48 0.71 0.39 0.58 0.54 0.33 0.43 0.62 0.52 0.66 0.58 0.43 0.53 0.96 1.00 0.92 0.96 1.01 0.99 0.97 1.02 0.98 0.95 0.96 0.95 0.91 0.97 1.01 1.01 1.02 1.09 1.10 1.07 1.14 0.95 0.89 0.96 0.92 1.08 1.20 1.14 0.93 0.91 0.89 0.99 1.22 1.03 0.92 0.96 0.93 0.94 0.45 0.56 0.65 0.34 0.43 0.51 0.38 0.47 0.55 0.23 0.28 0.32 0.36 0.30 0.34 0.38 0.35 0.46 0.66 0.37 0.55 0.51 0.33 0.41 0.58 0.50 0.62 0.55 0.41 0.50 0.91 0.97 0.86 0.91 1.06 1.05 1.04 1.05 1.02 1.00 0.99 0.99 0.97 0.96 1.02 1.02 1.05 1.10 1.12 1.10 1.17 0.99 0.95 0.99 0.98 1.14 1.22 1.18 0.99 0.96 0.95 1.05 1.27 1.09 0.97 0.99 0.99 0.99 mean 1.04 1.00 1.04 st dev 0.0902 0.0853 0.0807 COV 0.087 0.085 0.078 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Geometric Properties fy Test ID 430_200_160_25_10_2_1 430_200_160_25_10_3_1 430_200_160_25_10_4_1 430_400_160_25_10_2_1 430_400_160_25_10_3_1 430_400_160_25_10_4_1 430_400_160_25_20_2_1 430_400_160_25_20_3_1 430_400_160_25_20_4_1 430_800_400_40_15_3_1 430_800_400_40_15_4_1 430_800_400_40_15_5_1 430_800_400_40_15_6_1 430_800_400_40_30_4_1 430_800_400_40_30_5_1 430_800_400_40_30_6_1 430_150_100_10_10_1_1 430_150_70_15_10_1_1 430_150_70_15_10_2_1 430_200_80_15_10_1_1 430_200_80_15_10_2_1 430_150_110_15_10_2_1 430_300_200_20_15_2_1 430_300_200_20_15_3_1 430_100_70_20_10_1_1 430_250_95_20_10_2_1 430_250_95_20_10_3_1 430_100_60_10_10_1_1 430_200_150_15_15_2_1 430_90_60_10_5_1_1 430_150_70_15_10_4_1 430_150_70_15_10_5_1 430_200_160_35_20_6_1 430_200_160_35_20_7_1 Ag Ac 2 2 MPa mm mm 275 1177 63 275 1755 141 275 2327 251 275 1577 63 275 2355 141 275 3127 251 275 1626 63 275 2430 141 275 3227 251 275 5123 141 275 6769 251 275 8505 393 275 10186 565 275 6966 251 275 8691 393 275 10410 565 16 275 392 16 275 341 63 275 681 16 275 412 63 275 817 63 275 837 275 1542 63 275 2303 141 16 275 302 63 275 997 275 1485 141 16 275 262 275 1122 63 16 275 239 275 1327 251 275 1643 393 275 3721 565 275 4318 770 Test Results A c /A g f cr % 5.3 8.1 10.8 4.0 6.0 8.0 3.9 5.8 7.8 2.8 3.7 4.6 5.6 3.6 4.5 5.4 4.0 4.6 9.2 3.8 7.7 7.5 4.1 6.1 5.2 6.3 9.5 6.0 5.6 6.6 18.9 23.9 15.2 17.8 MPa 101 160 226 55 90 131 69 109 157 27 38 49 62 42 55 70 59 105 238 68 156 132 52 84 177 124 203 153 84 125 587 794 500 605 P u,t 1.65 1.31 1.10 2.23 1.75 1.45 2.00 1.59 1.32 3.21 2.71 2.37 2.11 2.55 2.23 1.98 2.16 1.62 1.07 2.01 1.33 1.45 2.30 1.81 1.25 1.49 1.16 1.34 1.81 1.48 0.68 0.59 0.74 0.67 kN MPa 157 133 0.49 292 166 0.60 448 193 0.70 155 98 0.36 288 122 0.45 452 145 0.53 170 105 0.38 319 131 0.48 491 152 0.55 323 63 0.23 538 79 0.29 780 92 0.33 1075 106 0.38 635 91 0.33 930 107 0.39 1233 118 0.43 48 122 0.44 43 127 0.46 123 180 0.66 42 103 0.38 124 152 0.55 134 160 0.58 144 93 0.34 319 139 0.50 48 160 0.58 134 134 0.49 248 167 0.61 42 161 0.59 167 149 0.54 37 153 0.56 353 266 0.97 491 299 1.09 937 252 0.92 1165 270 0.98 r/t=1.0 Department of Civil Engineering Research Report No R845 AS 4600 (1996) λd fu 189 April 2005 NAS Appendix 1 (2004) PROPOSED f u /f y f n,4600 /f y f u /f n,4600 f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. 0.45 0.57 0.70 0.34 0.43 0.49 0.38 0.46 0.56 0.25 0.28 0.32 0.36 0.30 0.34 0.38 0.35 0.45 0.71 0.38 0.56 0.49 0.33 0.41 0.61 0.48 0.66 0.55 0.41 0.48 0.88 na 0.86 0.89 1.09 1.06 1.01 1.05 1.05 1.07 1.01 1.04 0.99 0.93 1.03 1.04 1.07 1.11 1.14 1.13 1.27 1.02 0.92 1.00 0.99 1.18 1.03 1.22 0.95 1.01 0.92 1.06 1.31 1.15 1.09 na 1.06 1.11 0.47 0.59 0.69 0.35 0.45 0.54 0.39 0.49 0.59 0.23 0.28 0.32 0.37 0.30 0.35 0.39 0.36 0.48 0.71 0.39 0.58 0.54 0.33 0.43 0.62 0.52 0.66 0.58 0.43 0.53 0.96 na 0.92 0.96 1.03 1.02 1.01 1.03 1.00 0.98 0.98 0.97 0.94 0.99 1.03 1.03 1.05 1.11 1.13 1.10 1.24 0.96 0.93 0.97 0.95 1.08 1.02 1.17 0.94 0.93 0.92 1.01 1.26 1.06 1.01 na 1.00 1.02 0.45 0.56 0.65 0.34 0.43 0.51 0.38 0.47 0.55 0.23 0.28 0.32 0.36 0.30 0.34 0.38 0.35 0.46 0.66 0.37 0.55 0.51 0.33 0.41 0.58 0.50 0.62 0.55 0.41 0.50 0.91 na 0.86 0.91 1.07 1.08 1.08 1.06 1.04 1.03 1.01 1.02 1.00 0.98 1.04 1.05 1.07 1.12 1.15 1.14 1.27 1.01 0.99 1.00 1.00 1.14 1.03 1.22 1.00 0.98 0.98 1.07 1.30 1.11 1.07 na 1.06 1.08 mean 1.06 1.03 1.07 st dev 0.0908 0.0823 0.0797 COV 0.085 0.080 0.075 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Geometric Properties Test Results λd fy Ag Ac A c /A g f cr Test ID MPa mm2 mm2 % MPa 430_200_160_25_10_2_2.5 275 1157 157 13.6 103 1.63 430_200_160_25_10_3_2.5 430_200_160_25_10_4_2.5 430_400_160_25_10_2_2.5 430_400_160_25_10_3_2.5 430_400_160_25_10_4_2.5 430_400_160_25_20_2_2.5 430_400_160_25_20_3_2.5 430_400_160_25_20_4_2.5 430_800_400_40_15_3_2.5 430_800_400_40_15_4_2.5 430_800_400_40_15_5_2.5 430_800_400_40_15_6_2.5 430_800_400_40_30_4_2.5 430_800_400_40_30_5_2.5 430_800_400_40_30_6_2.5 430_150_100_10_10_1_2.5 430_150_70_15_10_1_2.5 430_150_70_15_10_2_2.5 430_200_80_15_10_1_2.5 430_200_80_15_10_2_2.5 430_150_110_15_10_2_2.5 430_300_200_20_15_2_2.5 430_300_200_20_15_3_2.5 430_100_70_20_10_1_2.5 430_250_95_20_10_2_2.5 430_250_95_20_10_3_2.5 430_100_60_10_10_1_2.5 430_200_150_15_15_2_2.5 430_90_60_10_5_1_2.5 430_150_70_15_10_4_2.5 430_150_70_15_10_5_2.5 430_200_160_35_20_6_2.5 430_200_160_35_20_7_2.5 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 275 1711 2262 1557 2311 3062 1607 2386 3148 5078 6739 8382 10069 6888 8569 10234 387 337 657 407 797 817 1522 2258 297 977 1441 257 1102 234 1268 1586 3545 4078 353 565 157 353 565 157 353 628 353 628 982 1131 628 982 1414 39 39 157 39 157 157 157 353 39 157 353 39 157 39 534 668 1414 1924 20.7 25.0 10.1 15.3 18.5 9.8 14.8 20.0 7.0 9.3 11.7 11.2 9.1 11.5 13.8 10.2 11.7 23.9 9.7 19.7 19.2 10.3 15.6 13.2 16.1 24.5 15.3 14.3 16.8 42.1 42.1 39.9 47.2 165 233 51 83 122 69 110 155 26 36 49 63 43 56 70 60 109 251 70 161 140 53 84 181 126 202 159 87 134 612 821 518 632 AS 4600 (1996) Test ID 3Cr12DS1a 3Cr12DS1b MPa 339 339 mm2 mm2 565 565 124 124 % 22 22 f cr f u /f y f n,4600 /f y f u /f n,4600 f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. kN MPa 157 136 0.49 0.45 1.10 0.48 1.03 0.46 1.08 1.29 294 1.09 452 2.31 157 1.82 288 1.50 465 2.00 169 1.58 321 1.33 492 3.27 322 2.75 523 2.38 753 2.09 1071 2.54 640 2.22 932 1.98 1229 2.15 45 1.59 44 1.05 128 1.98 43 1.31 126 1.40 139 2.28 170 1.81 319 1.23 49 1.48 134 1.17 249 1.32 43 1.78 168 1.43 37 0.67 363 0.58 497 0.73 964 0.66 1207 172 200 101 125 152 105 134 156 63 78 90 106 93 109 120 116 131 194 106 157 170 112 141 165 137 173 167 153 158 286 314 272 296 0.62 0.73 0.37 0.45 0.55 0.38 0.49 0.57 0.23 0.28 0.33 0.39 0.34 0.40 0.44 0.42 0.48 0.71 0.38 0.57 0.62 0.41 0.51 0.60 0.50 0.63 0.61 0.55 0.57 1.04 1.14 0.99 1.08 0.58 0.70 0.33 0.41 0.48 0.38 0.46 0.56 0.24 0.28 0.32 0.36 0.30 0.34 0.38 0.35 0.46 0.73 0.38 0.57 0.51 0.33 0.41 0.62 0.48 0.66 0.57 0.42 0.50 na na 0.87 na 1.07 1.03 1.12 1.10 1.15 1.01 1.06 1.02 0.95 1.02 1.03 1.07 1.13 1.16 1.14 1.19 1.04 0.97 1.01 1.00 1.21 1.22 1.25 0.96 1.03 0.95 1.07 1.32 1.16 na na 1.14 na 0.60 0.70 0.33 0.43 0.52 0.39 0.49 0.58 0.23 0.27 0.32 0.37 0.30 0.35 0.39 0.36 0.49 0.72 0.39 0.59 0.56 0.34 0.43 0.63 0.53 0.66 0.59 0.44 0.54 na na 0.93 na 1.04 1.04 1.10 1.06 1.06 0.99 0.99 0.98 1.02 1.03 1.01 1.04 1.12 1.14 1.11 1.17 0.97 0.98 0.98 0.96 1.11 1.21 1.20 0.95 0.94 0.96 1.03 1.27 1.05 na na 1.07 na 0.57 0.65 0.33 0.41 0.49 0.38 0.47 0.55 0.23 0.27 0.32 0.36 0.30 0.34 0.38 0.35 0.47 0.67 0.38 0.56 0.53 0.33 0.41 0.59 0.50 0.62 0.56 0.42 0.52 na na 0.87 na 1.10 1.11 1.12 1.10 1.12 1.02 1.04 1.03 1.00 1.03 1.03 1.07 1.14 1.17 1.15 1.20 1.02 1.05 1.01 1.02 1.17 1.23 1.24 1.02 0.99 1.02 1.09 1.32 1.11 na na 1.13 na Test Results P u,t f u λd MPa 387 0.94 387 0.94 190 mean 1.09 1.05 1.09 st dev 0.0926 0.0821 0.0800 COV 0.085 0.078 0.073 mean 1.06 1.03 1.07 st dev 0.0907 0.0837 0.0818 COV 0.085 0.082 0.076 AS 4600 (1996) NAS Appendix 1 PROPOSED f u /f y f n,4600 /f y f u /f n,4600 f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. kN MPa 163 288 0.85 161 285 0.84 experimental Department of Civil Engineering Research Report No R845 PROPOSED fu all tests Geometric Propertie Ag A c A c /A g NAS Appendix 1 (2004) P u,t r/t=2.5 fy April 2005 0.78 0.78 1.09 1.08 0.79 0.79 1.08 1.06 0.74 0.74 1.16 1.14 mean 1.08 1.07 1.15 st dev 0.0095 0.0094 0.0100 COV 0.009 0.009 0.009 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Geometric Propertie fy Test ID 3Cr12_200_160_25_10_2 3Cr12_200_160_25_10_3 3Cr12_200_160_25_10_4 3Cr12_400_160_25_10_2 3Cr12_400_160_25_10_3 3Cr12_400_160_25_10_4 3Cr12_400_160_25_20_2 3Cr12_400_160_25_20_3 3Cr12_400_160_25_20_4 3Cr12_800_400_40_15_3 3Cr12_800_400_40_15_4 3Cr12_800_400_40_15_5 3Cr12_800_400_40_15_6 3Cr12_800_400_40_30_4 3Cr12_800_400_40_30_5 3Cr12_800_400_40_30_6 3Cr12_150_100_10_10_1 3Cr12_150_70_15_10_1 3Cr12_150_70_15_10_2 3Cr12_200_80_15_10_1 3Cr12_200_80_15_10_2 3Cr12_150_110_15_10_2 3Cr12_300_200_20_15_2 3Cr12_300_200_20_15_3 3Cr12_100_70_20_10_1 3Cr12_250_95_20_10_2 3Cr12_250_95_20_10_3 3Cr12_100_60_10_10_1 3Cr12_200_150_15_15_2 3Cr12_90_60_10_5_1 3Cr12_150_70_15_10_4 3Cr12_150_70_15_10_5 3Cr12_200_160_35_20_6 3Cr12_200_160_35_20_7 Ag 2 MPa mm 260 1177 260 1755 260 2327 260 1577 260 2355 260 3127 260 1626 260 2430 260 3227 260 5123 260 6769 260 8505 260 10186 260 6966 260 8691 260 10410 260 392 260 341 260 681 260 412 260 817 260 837 260 1542 260 2303 260 302 260 997 260 1485 260 262 260 1122 260 239 260 1327 260 1643 260 3721 260 4318 Test Results Ac A c /A g f cr mm2 % 5.3 8.1 10.8 4.0 6.0 8.0 3.9 5.8 7.8 2.8 3.7 4.6 5.6 3.6 4.5 5.4 4.0 4.6 9.2 3.8 7.7 7.5 4.1 6.1 5.2 6.3 9.5 6.0 5.6 6.6 18.9 23.9 15.2 17.8 MPa 114 182 256 63 102 149 78 124 178 30 43 56 70 48 63 79 67 119 270 77 177 149 59 95 201 141 231 174 95 142 666 901 567 687 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 λd P u,t fu 1.51 1.20 1.01 2.03 1.60 1.32 1.82 1.45 1.21 2.93 2.47 2.16 1.92 2.33 2.03 1.81 1.97 1.48 0.98 1.83 1.21 1.32 2.10 1.65 1.14 1.36 1.06 1.22 1.65 1.35 0.62 0.54 0.68 0.62 kN 160 287 428 159 290 449 175 316 481 334 551 789 1008 658 929 1224 48 44 120 44 122 133 175 312 49 134 247 41 162 36 312 419 848 1032 MPa 136 164 184 101 123 144 107 130 149 65 81 93 99 94 107 118 122 128 176 107 150 160 114 136 162 135 166 158 145 151 235 255 228 239 flats Department of Civil Engineering Research Report No R845 191 April 2005 AS 4600 (1996) f u /f y f n,4600 /f y f u /f n,4600 0.52 0.63 0.71 0.39 0.47 0.55 0.41 0.50 0.57 0.25 0.31 0.36 0.38 0.36 0.41 0.45 0.47 0.49 0.68 0.41 0.58 0.61 0.44 0.52 0.62 0.52 0.64 0.61 0.56 0.58 0.90 0.98 0.88 0.92 NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. 0.52 0.64 0.75 0.38 0.49 0.59 0.43 0.54 0.64 0.26 0.31 0.36 0.40 0.33 0.38 0.43 0.39 0.53 0.76 0.42 0.64 0.59 0.37 0.47 0.67 0.57 0.71 0.63 0.47 0.57 0.99 1.00 0.96 0.99 1.01 0.98 0.95 1.02 0.97 0.94 0.97 0.93 0.90 0.98 1.01 1.00 0.94 1.10 1.08 1.05 1.19 0.93 0.89 0.97 0.91 1.04 1.19 1.10 0.93 0.91 0.90 0.96 1.18 1.01 0.92 0.98 0.91 0.93 0.99 0.49 0.60 0.70 0.37 0.47 0.55 0.41 0.51 0.60 0.26 0.31 0.35 0.39 0.32 0.37 0.41 0.38 0.50 0.71 0.41 0.60 0.55 0.36 0.45 0.63 0.54 0.67 0.59 0.45 0.54 0.95 1.00 0.91 0.95 1.06 1.04 1.02 1.05 1.02 1.00 1.00 0.98 0.96 0.97 1.02 1.02 0.97 1.12 1.11 1.09 1.23 0.98 0.95 1.01 0.96 1.11 1.22 1.16 0.99 0.96 0.96 1.02 1.23 1.07 0.95 0.98 0.96 0.96 1.03 0.48 0.64 0.75 0.37 0.46 0.56 0.41 0.49 0.63 0.26 0.31 0.35 0.39 0.33 0.37 0.41 0.38 0.48 0.76 0.41 0.63 0.57 0.36 0.45 0.68 0.54 0.72 0.63 0.45 0.54 0.90 0.93 0.89 0.91 mean 1.10 0.98 0.95 1.04 1.03 0.98 1.01 1.02 0.90 0.96 1.02 1.02 0.97 1.11 1.11 1.09 1.23 1.02 0.89 1.01 0.91 1.09 1.21 1.17 0.92 0.97 0.89 0.97 1.25 1.07 1.00 1.06 0.99 1.02 1.03 st dev 0.0919 0.0840 0.0809 COV 0.089 0.085 0.078 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Geometric Propertie fy Test ID 3Cr12_200_160_25_10_2_1 3Cr12_200_160_25_10_3_1 3Cr12_200_160_25_10_4_1 3Cr12_400_160_25_10_2_1 3Cr12_400_160_25_10_3_1 3Cr12_400_160_25_10_4_1 3Cr12_400_160_25_20_2_1 3Cr12_400_160_25_20_3_1 3Cr12_400_160_25_20_4_1 3Cr12_800_400_40_15_3_1 3Cr12_800_400_40_15_4_1 3Cr12_800_400_40_15_5_1 3Cr12_800_400_40_15_6_1 3Cr12_800_400_40_30_4_1 3Cr12_800_400_40_30_5_1 3Cr12_800_400_40_30_6_1 3Cr12_150_100_10_10_1_1 3Cr12_150_70_15_10_1_1 3Cr12_150_70_15_10_2_1 3Cr12_200_80_15_10_1_1 3Cr12_200_80_15_10_2_1 3Cr12_150_110_15_10_2_1 3Cr12_300_200_20_15_2_1 3Cr12_300_200_20_15_3_1 3Cr12_100_70_20_10_1_1 3Cr12_250_95_20_10_2_1 3Cr12_250_95_20_10_3_1 3Cr12_100_60_10_10_1_1 3Cr12_200_150_15_15_2_1 3Cr12_90_60_10_5_1_1 3Cr12_150_70_15_10_4_1 3Cr12_150_70_15_10_5_1 3Cr12_200_160_35_20_6_1 3Cr12_200_160_35_20_7_1 Ag 2 MPa mm 260 1177 260 1755 260 2327 260 1577 260 2355 260 3127 260 1626 260 2430 260 3227 260 5123 260 6769 260 8505 260 10186 260 6966 260 8691 260 10410 260 392 260 341 260 681 260 412 260 817 260 837 260 1542 260 2303 260 302 260 997 260 1485 260 262 260 1122 260 239 260 1327 260 1643 260 3721 260 4318 Test Results Ac A c /A g f cr mm2 % 5.3 8.1 10.8 4.0 6.0 8.0 3.9 5.8 7.8 2.8 3.7 4.6 5.6 3.6 4.5 5.4 4.0 4.6 9.2 3.8 7.7 7.5 4.1 6.1 5.2 6.3 9.5 6.0 5.6 6.6 18.9 23.9 15.2 17.8 MPa 114 182 256 63 102 149 78 124 178 30 43 56 70 48 63 79 67 119 270 77 177 149 59 95 201 141 231 174 95 142 666 901 567 687 63 141 251 63 141 251 63 141 251 141 251 393 565 251 393 565 16 16 63 16 63 63 63 141 16 63 141 16 63 16 251 393 565 770 λd P u,t fu 1.51 1.20 1.01 2.03 1.60 1.32 1.82 1.45 1.21 2.93 2.47 2.16 1.92 2.33 2.03 1.81 1.97 1.48 0.98 1.83 1.21 1.32 2.10 1.65 1.14 1.36 1.06 1.22 1.65 1.35 0.62 0.54 0.68 0.62 kN 163 296 448 161 296 462 178 324 495 340 562 806 1106 670 952 1257 49 44 125 45 126 137 178 321 50 137 255 42 167 37 347 479 918 1136 MPa 138 169 193 102 126 148 109 133 153 66 83 95 109 96 110 121 125 130 183 109 154 164 116 139 165 137 172 162 149 154 261 292 247 263 r/t=1 Department of Civil Engineering Research Report No R845 192 April 2005 AS 4600 (1996) f u /f y f n,4600 /f y f u /f n,4600 0.53 0.65 0.74 0.39 0.48 0.57 0.42 0.51 0.59 0.26 0.32 0.36 0.42 0.37 0.42 0.46 0.48 0.50 0.70 0.42 0.59 0.63 0.44 0.54 0.63 0.53 0.66 0.62 0.57 0.59 1.01 1.12 0.95 1.01 NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. 0.52 0.64 0.75 0.38 0.49 0.59 0.43 0.54 0.64 0.26 0.31 0.36 0.40 0.33 0.38 0.43 0.39 0.53 0.76 0.42 0.64 0.59 0.37 0.47 0.67 0.57 0.71 0.63 0.47 0.57 na na 0.96 na 1.03 1.01 0.99 1.03 0.99 0.97 0.98 0.95 0.92 1.00 1.03 1.02 1.03 1.12 1.11 1.08 1.22 0.95 0.93 0.99 0.93 1.07 1.21 1.14 0.94 0.92 0.92 0.99 1.21 1.03 na na 0.99 na 1.02 0.49 0.60 0.70 0.37 0.47 0.55 0.41 0.51 0.60 0.26 0.31 0.35 0.39 0.32 0.37 0.41 0.38 0.50 0.71 0.41 0.60 0.55 0.36 0.45 0.63 0.54 0.67 0.59 0.45 0.54 na na 0.91 na 1.08 1.07 1.06 1.06 1.03 1.03 1.02 1.00 0.98 0.99 1.04 1.04 1.07 1.14 1.14 1.12 1.25 1.00 0.99 1.03 0.99 1.14 1.24 1.19 1.00 0.98 0.99 1.05 1.26 1.10 na na 1.04 na 1.07 0.48 0.64 0.75 0.37 0.46 0.56 0.41 0.49 0.63 0.26 0.31 0.35 0.39 0.33 0.37 0.41 0.38 0.48 0.76 0.41 0.63 0.57 0.36 0.45 0.68 0.54 0.72 0.63 0.45 0.54 na na 0.89 na mean 1.11 1.01 0.99 1.06 1.05 1.01 1.02 1.04 0.93 0.98 1.04 1.04 1.07 1.13 1.13 1.12 1.25 1.03 0.93 1.03 0.94 1.12 1.23 1.20 0.94 0.98 0.92 0.99 1.28 1.10 na na 1.07 na 1.06 st dev 0.0956 0.0850 0.0808 COV 0.091 0.083 0.076 Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections Geometric Propertie fy Test ID 3Cr12_200_160_25_10_2_2.5 3Cr12_200_160_25_10_3_2.5 3Cr12_200_160_25_10_4_2.5 3Cr12_400_160_25_10_2_2.5 3Cr12_400_160_25_10_3_2.5 3Cr12_400_160_25_10_4_2.5 3Cr12_400_160_25_20_2_2.5 3Cr12_400_160_25_20_3_2.5 3Cr12_400_160_25_20_4_2.5 3Cr12_800_400_40_15_3_2.5 3Cr12_800_400_40_15_4_2.5 3Cr12_800_400_40_15_5_2.5 3Cr12_800_400_40_15_6_2.5 3Cr12_800_400_40_30_4_2.5 3Cr12_800_400_40_30_5_2.5 3Cr12_800_400_40_30_6_2.5 3Cr12_150_100_10_10_1_2.5 3Cr12_150_70_15_10_1_2.5 3Cr12_150_70_15_10_2_2.5 3Cr12_200_80_15_10_1_2.5 3Cr12_200_80_15_10_2_2.5 3Cr12_150_110_15_10_2_2.5 3Cr12_300_200_20_15_2_2.5 3Cr12_300_200_20_15_3_2.5 3Cr12_100_70_20_10_1_2.5 3Cr12_250_95_20_10_2_2.5 3Cr12_250_95_20_10_3_2.5 3Cr12_100_60_10_10_1_2.5 3Cr12_200_150_15_15_2_2.5 3Cr12_90_60_10_5_1_2.5 3Cr12_150_70_15_10_4_2.5 3Cr12_150_70_15_10_5_2.5 3Cr12_200_160_35_20_6_2.5 3Cr12_200_160_35_20_7_2.5 Ag Ac 2 mm2 MPa mm 260 1157 157 260 1711 353 260 2262 565 260 1557 157 260 2311 353 260 3062 565 260 1607 157 260 2386 353 260 3148 628 260 5078 353 260 6739 628 260 8382 982 260 10069 1131 260 6888 628 260 8569 982 260 10234 1414 39 260 387 39 260 337 157 260 657 39 260 407 157 260 797 157 260 817 260 1522 157 260 2258 353 39 260 297 157 260 977 260 1441 353 39 260 257 260 1102 157 39 260 234 260 1268 534 260 1586 668 260 3545 1414 260 4078 1924 AS 4600 (1996) Test Results A c /A g f cr % 13.6 20.7 25.0 10.1 15.3 18.5 9.8 14.8 20.0 7.0 9.3 11.7 11.2 9.1 11.5 13.8 10.2 11.7 23.9 9.7 19.7 19.2 10.3 15.6 13.2 16.1 24.5 15.3 14.3 16.8 42.1 42.1 39.9 47.2 MPa 117 188 264 58 94 139 78 124 176 29 41 55 72 48 63 80 68 124 285 80 183 159 60 95 206 143 229 180 99 152 694 932 588 717 λd P u,t fu 1.49 1.18 0.99 2.11 1.66 1.37 1.82 1.45 1.22 2.99 2.51 2.17 1.90 2.32 2.03 1.80 1.96 1.45 0.96 1.81 1.19 1.28 2.08 1.66 1.12 1.35 1.07 1.20 1.62 1.31 0.61 0.53 0.66 0.60 kN 163 300 454 161 298 478 179 325 497 339 541 776 1110 674 953 1255 49 45 130 45 129 139 179 323 50 138 256 43 168 38 358 485 949 1184 MPa 141 175 201 103 129 156 111 136 158 67 80 93 110 98 111 123 127 135 198 111 161 170 118 143 169 141 178 168 153 160 282 306 268 290 f u /f y f n,4600 /f y f u /f n,4600 r/t=2.5 all tests Department of Civil Engineering Research Report No R845 193 April 2005 0.54 0.67 0.77 0.40 0.50 0.60 0.43 0.52 0.61 0.26 0.31 0.36 0.42 0.38 0.43 0.47 0.49 0.52 0.76 0.43 0.62 0.65 0.45 0.55 0.65 0.54 0.68 0.65 0.59 0.62 1.09 1.18 1.03 1.12 NAS Appendix 1 PROPOSED (2004) f n,NAS /f y f u /f n,NAS f n,prop. /f y f u /f n,prop. 0.52 0.65 0.75 0.37 0.47 0.57 0.43 0.54 0.63 0.25 0.30 0.36 0.41 0.33 0.38 0.43 0.40 0.54 0.78 0.43 0.65 0.61 0.37 0.47 0.68 0.58 0.71 0.64 0.48 0.59 na na na na 1.03 1.03 1.02 1.08 1.06 1.05 1.00 0.97 0.96 1.02 1.02 1.00 1.04 1.14 1.12 1.09 1.23 0.96 0.98 0.99 0.96 1.08 1.22 1.17 0.96 0.94 0.96 1.01 1.22 1.04 na na na na 1.05 0.50 0.61 0.70 0.36 0.45 0.54 0.41 0.51 0.60 0.25 0.30 0.35 0.39 0.33 0.37 0.42 0.38 0.51 0.73 0.41 0.61 0.57 0.36 0.45 0.64 0.54 0.67 0.60 0.46 0.56 na na na na 1.09 1.10 1.10 1.11 1.11 1.12 1.04 1.03 1.02 1.02 1.03 1.03 1.07 1.16 1.15 1.14 1.27 1.02 1.05 1.03 1.02 1.15 1.25 1.22 1.02 1.00 1.03 1.07 1.28 1.10 na na na na 1.09 0.48 0.65 0.75 0.36 0.44 0.53 0.41 0.49 0.63 0.26 0.30 0.35 0.40 0.33 0.37 0.41 0.38 0.49 0.77 0.41 0.65 0.59 0.36 0.44 0.68 0.54 0.72 0.64 0.45 0.57 na na na na mean 1.12 1.03 1.02 1.11 1.12 1.13 1.04 1.07 0.96 1.00 1.02 1.02 1.07 1.15 1.15 1.14 1.27 1.05 0.99 1.03 0.96 1.10 1.24 1.24 0.95 1.00 0.96 1.01 1.30 1.08 na na na na 1.08 st dev 0.0944 0.0822 0.0795 COV 0.088 0.079 0.073 mean 1.05 1.02 1.07 st dev 0.0943 0.0854 0.0834 COV 0.090 0.084 0.078
© Copyright 2026 Paperzz