Math 251 Practice Exam 4 Solutions Cerro Coso Community College 1. Sketch the region of integration and write an equivalent double integral with the order of integration reversed and evaluate the integral. 3 ∫∫ 1 0 3 ∫∫ 0 1 3 e y dydx x3 y3 e dydx = x3 1 ∫∫ 0 3 y2 y3 e dxdy = 0 ∫ 3 y2 1 0 xe y3 dy = ∫ 1 3 3 y 2 e y dy = e y 3 0 0 0 1 = e −1 2. Find the volume of the solid cut from the first octant by the surface z = 4 – x2 – y. We are in the first octant which implies that x, y, and z ≥ 0. Set z = 0 and solve for y in terms of x. y = 4 – x2. A graph of the region follows. 2 ∫∫ 0 4 − x2 4 − x − y dydx = 2 0 ∫ 2 0 y2 4 y − x2 y − 2 x4 = 16 − 4 x − 4 x + x − 8 + 4 x − dx = 0 2 ∫ 2 = 16 − 2 2 4 2 4 − x2 dx = 2 ∫ 4(4 − x ) − x (4 − x ) 2 2 2 (4 − x ) − 2 2 0 0 ∫ 2 0 2 x4 4 x3 x5 + 8 − 4 x + dx = 8 x − 2 3 10 0 2 32 32 256 128 + = = . 3 10 30 15 Continued on the next page. 2 dx 3. Find the centroid of the region between the x–axis and arch y = sin x, 0 ≤ x ≤ π. Finding the centroid implies that δ(x, y) = 1. Draw a picture first. π M= π ∫∫ 0 Mx = My = x= sin x 0 ∫∫ 0 sin x ydydx = 0 π ∫∫ M ∫ 0 sin x xdydx = π 2 dx = y ∫ π ∫ π ∫ sin xdx = − cos x 0 0 0 0 = sin x π 0 π My dydx = y2 2 sin x dx = 0 0 sin x π dx = xy 0 ∫ π ∫ π 0 0 π 0 =2 π sin 2 x x sin 2 x π dx = − = 2 4 8 0 4 π x sin xdx = − x cos x + sin x 0 = π π ; y= Mx 4 π = = M 2 8 4. Find the center of mass and moment of inertia and radius of gyration about the y–axis of a thin plate bounded by the line y = 1 and the parabola y = x2 if the density is δ(x, y) = y + 1. Continued on the next page. Problem 4 continued. M= y 1 ∫∫ Mx = My = y + 1 dxdy = − y 0 ∫∫ ∫ xy + x 0 y 1 1 y 2 + y dxdy = − y 0 1 y 0 − y ∫∫ ∫ 1 ∫ x ( y + 1) dxdy = ∫ − y x ( y2 + y ) 0 1 0 1 4 5 4 3 32 dy = 2 y + 2 y dy = y 2 + y 2 = 0 5 3 15 0 y 1 3 y 1 2 ∫ dy = − y 1 2 5 1 3 2 y 2 + 2 y 2 dy = 0 y x2 ( y + 1) dy = 2 − y 4 52 4 32 48 y + y = 7 5 35 0 1 ∫ 0dy = 0 0 48 M x 35 9 0 x= = = 0; y = = = . 32 32 14 M M 15 15 My Iy = 1 ∫∫ y x 2 − y 0 ( y + 1) dxdy = ∫ 1 0 y x3 2 1 y + y ) dy = ( 3 3 − y 1 1 4 9 2 4 5 2 64 2 y + 2 y dy = y + y = 0 3 9 7 63 0 ∫ 1 7 5 2 2 5. Change this Cartesian integral into an equivalent polar integral. Then evaluate the polar integral. π 2 1− ( x −1) 2 cos θ 2 r 2 ( cos θ + sin θ ) x+ y dydx = drdθ 0 0 0 0 x2 + y 2 r2 2 ∫∫ = ∫ π 2 0 ∫ ∫ r ( cos θ + sin θ ) 2 cos θ dθ = ∫ π 2 2 cos 2 θ + 2 cos θ sin θ dθ 0 0 π θ sin 2θ sin 2 θ 2 π 1 π = 2 + + = 2 + = + 1. 4 2 0 4 2 2 2 6. Find the area of a region that lies inside the cardioid r = 1 + cos θ and outside the circle r = 1. π Area = 2 ∫ ∫ 0 = ∫ π 0 2 1+ cos θ 1 rdrdθ = 2 ∫ π 0 2 r2 2 1+ cos θ dθ = 1 ∫ π 2 0 1+ cosθ r dθ = 2 1 π 2 θ sin 2θ 2 π 2 cos θ + cos θ dθ = 2sin θ + + = 2+ 2 4 0 4 2 Continued on the next page. ∫ π 0 2 1 + 2 cosθ + cos 2 θ − 1 dθ 3− 3 x 1 ∫∫ ∫ 7. Evaluate 0 3− 3 x 1 ∫∫ ∫ 0 = 0 1 3−3 x 0 = ∫ 0 1 dz dy dx . 0 3− 3 x − y 0 ∫∫ 0 3− 3 x − y dz dy dx y2 3 − 3 x − y dydx = 3 y − 3 xy − 0 2 ∫ 9 − 9x − 9x + 9x 2 ( 3 − 3x ) − 2 0 = 1 2 ∫ 1 18 − 18 x + 9 x 2 dx = 0 1 2 dx = 3− 3 x dx = 1 ∫ 3 ( 3 − 3x ) − 3x ( 3 − 3x ) 0 0 ( 3 − 3x ) − 2 2 dx 1 1 18 − 36 x + 18 x 2 − 9 + 18 x − 9 x 2 dx 2 0 ∫ 1 1 18 x − 9 x 2 + 3 x 3 0 = 6 2 . 1 1 1 −1 −1 −1 ∫ ∫ ∫ ( x + y + z ) dy dx dz . y 1 1 x + y + z ) dy dx dz = xy + + yz dx dz = x + z + − − x − z + dx dz ( ∫∫∫ ∫∫ 2 ∫ ∫ 2 2 = ∫ ∫ 2x + 2z dx dz = ∫ x + 2 xz dz = ∫ (1 + 2z ) − (1 − 2 z ) dz = ∫ 4zdz = 2z = 0. 8. Evaluate 1 1 1 1 1 −1 −1 −1 −1 −1 1 1 1 2 −1 −1 −1 1 −1 1 2 −1 −1 −1 1 −1 1 1 −1 −1 2 1 −1
© Copyright 2026 Paperzz