10.1515/mecdc-2015-0009 BLOWBY GAS COMPOSITION IN SI ENGINES KAREL PÁV ŠKODA AUTO a.s., tř. Václava Klementa 869, Mladá Boleslav 293 60, Tel.: 326815450, Email: karel.pav@skoda‑auto.cz SHRNUTÍ Tento příspěvek se zabývá metodikou měření složení blow-by plynů v klikové skříni motoru s využitím konvenčních NDIR analyzátorů výfukových plynů. Vyhodnocení je zaměřeno na určení podílu spalin, paliva a vodních par obsažených v těchto plynech. Určení podílu spalin v blow-by plynech je založeno na měření koncentrace CO2. Výsledky měření na větším počtu zážehových motorů jsou statisticky zhodnoceny s ohledem na provozní podmínky motoru. Je zde rovněž ukázán vliv různých provozních podmínek motoru a vliv různého typu použitého paliva na složení blow-by plynů zážehových motorů s vnější tvorbou směsi. KLÍČOVÁ SLOVA: B LOW-BY PLYNY, PODÍL VÝFUKOVÝCH PLYNŮ, PODÍL VODNÍCH PAR, ZÁŽEHOVÝ MOTOR, CNG MOTOR. ABSTRACT The paper deals with a procedure for measuring the composition of blowby gas in the engine crank case by means of a conventional NDIR (Non-Dispersive Infra-Red) exhaust gas analyzer. This paper aims to evaluate the exhaust gas portion, as well as the fuel and water vapor fraction in the raw blowby gas. Determination of the exhaust content in the blowby gas is based on CO2 concentration measurement. The measurement results of several SI engines are statistically reviewed regarding the engine operational points. The influence of different operational conditions and used fuel type is shown on raw blowby gas composition in port injection SI engines. KEYWORDS: BLOWBY GAS, EXHAUST GAS FRACTION, WATER STEAM FRACTION, SI ENGINE, CNG ENGINE. 1. INTRODUCTION The blowby flow into the crank case is caused by imperfect sealing of the combustion chamber during the engine cycle. Due to the leakage of piston rings, the working gas flows down along the piston skirt. Dynamic movement of the piston rings is a very complex issue and can be behind an unpredictable leakage. Normally, the main flow occurs in the high pressure part of the working cycle, but due to the piston ring movement or fluttering a significant flow can also be observed in the low pressure part. The blowby gas consists of fuel vapor which negatively affects the oil in the oil sump and thereby contributes to oil degradation. It leads to shorter oil life and deteriorating lubrication ability. As well as fuel vapor, the blowby gas also includes water steam, which can condensate at low temperatures and subsequently freeze. This is a hazard, particularly with respect to oil pump functionality and venting through the crank case ventilation duct. The main source of the water steam is exhaust gas, which contains water as a product of combustion depending on fuel chemistry. CNG fuel produces a higher fraction of water vapor in the exhaust gas. Numerous measurements carried out at the Skoda Auto laboratories show that the composition of blowby Blowby Gas Composition in SI Engines Karel Páv gas can be significantly influenced by piston ring and groove design. Operational conditions of the engine also play an essential role in blowby gas composition. The most important factors are engine speed, EGR ratio (both internal and external), ignition advance and burning rate. Generally, the composition of raw blowby gas can be divided into three fractions – fresh air, fuel vapor and exhaust gas. The water steam is included in exhaust gas and to a small extent also in wet air. The typical blowby composition of SI engines with port injection technology is shown in Figure 1. The given ratio of the individual fractions depends mainly on engine operational point and piston design. 2. MEASUREMENT OF BLOWBY GAS COMPOSITION The direct measurement of species concentration in blowby gas, including H2O content, is possible using a FTIR (Fast Fourier Transform Infra-Red) technique with heated lines to the analyzer. Even if the sampling lines are heated, the condensation of both MECCA 03 2015 PAGE 01 Unauthenticated Download Date | 6/16/17 4:05 PM assuming that the H2O/CO2 ratio is constant and corresponds to chemical equilibrium WetWet Air Air at low temperatures (after chemical reaction freezing approx. 1700 K). This assumption is not far from ∼ 73% ∼at73% reality because the blowby gas is formed by combustion products until the flame front reaches the piston rings region. At this time the temperature in the combustion chamber is usually bellow 2250 K thus the dissociation of combustion products declines in importance. An example of indicated pressure and in cylinder temperatures together with calculated equilibrium CO2 volumetric fraction and H2O/CO2 ratio for fuel C8H15 is given in Figure 2. The simplified calculation of chemical equilibrium was based on equilibrium constants according to Schüle [1], which provides results in good agreement with [2]. It is clear that rich mixtures are affected by reaction temperatures even at lower temperatures. Calculation analysis shows that the penetration of combustion products through the piston rings area begins at several degrees of crank angle after the end of burning. At this time the incylinder temperature is even lower. Here the assumption of insignificant dissociation allows the use of CO2 as a tracking gas, particularly for stoichiometric and lean mixtures. Rich mixtures can be affected by small errors as can be seen in Figure 2. Wet Exhaust ~25% Water ~4% Wet Air ~73% FIGURE 1: Typical raw blowby gas composition of port injection gasoline SI engines. OBRÁZEK 1: Typické složení neředěných blowby plynů u benzínového zážehového motoru s vnější tvorbou směsi. 50 50 40 40 30 30 20 20 10 10 0 Pressure Pressure T [K] Burned Zone Zone Burned Temperatute Temperatute 2000 2000 60 40 ϕ [deg] ϕ [deg] 0 0 80 60 100 80 120 100 120 0.04 0.02 0.00 0.00 2 2 0.06 RoB [1/deg] yH O / yCO [-] 0.08 RoB [1/deg] 0.08 Unburned Unburned1000 1000 0.06 Zone Zone Temp.Temp. 0.04 500 500 Rate of Rate Burning of Burning 0.02 λ = 1λ = 1 λ = 0.85 λ = 0.85 = 20 bar p = 20p bar p = 50p bar = 50 bar 0.06 0.06 0.10 0.10 1500 1500 Mean Mean Temp.Temp. 0 -80 -60 -80 -40 -60 -20 -40 TDC -20 TDC 20 40 20 0.10 0.10 0.08 0.08 T [K] 2500 2500 0.12 0.12 2 3000 3000 1.6 1.6 1.4 1.4 1.2 1.2 2 60 / yCO [-] 60 0.14 0.14 2O 3500 3500 Because of the use of conventional NDIR analyzers with a pre-chiller refrigerating the sample to 4–8 °C it is necessary to take into account condensed water in the gas samples. By means of experimental work, it has been proved that only water condensation takes place in the pre-chiller, there is negligible condensation of gasoline fuel vapors. Assuming only water condensation in the sampling line, the 2 70 2.1 CALCULATION OF COMPONENT FRACTIONS BASED ON MEASUREMENT yCO [-] 70 p [bar] p [bar] the fuel vapor and the water steam in the cold crank case cannot be completely avoided. Thus the measurement results can be influenced by this issue. If it is not possible to totally prevent the condensation, another method for this task can be applied. The use of more common NDIR analyzers with pre-chiller used routinely for exhaust gas analysis is also applicable. However, in order to obtain proper results it is necessary to apply further recalculation because of water removal from the sample. The determination of blowby gas composition is mostly based on a comparison between CO2 content in the blowby gas and exhaust gas sampled upstream of the after treatment system [3]. Although the H2O content is not measured directly, it can be calculated 1.0 yH Water Water ∼ 4% ∼ 4% yCO [-] Fuel ~2% WetWet Exhaust Exhaust ∼ 25% ∼ 25% 0.8 1.0 λ = 0.85 λ = 0.85 λ = 1λ = 1 0.8 1000 1000 1250 1250 1500 1500 1750 1750 2000 2000 2250 2250 2500 2500 2750 2750 3000 3000 T [K]T [K] FIGURE 2: Indicated pressure, unburned and burned zone temperatures, rate of burning (n = 4000 min-1, IMEP = 12.2 bar, l = 0.85), calculated CO2 equilibrium volumetric fraction and H2O/CO2 ratio in exhaust gas as a function of temperature and pressure for fuel C8H15. OBRÁZEK 2: Indikovaný tlak, teplota v zóně neshořelé směsi a v zóně spalin, jednotková rychlost hoření (n = 4000 min-1, IMEP = 12.2 bar, l = 0.85), vypočtený rovnovážný objemový podíl CO2 a poměr H2O/CO2 ve spalinách v závislosti na teplotě a tlaku pro palivo C8H15. Blowby Gas Composition in SI Engines Karel Páv MECCA 03 2015 PAGE 02 Unauthenticated Download Date | 6/16/17 4:05 PM 2 2 arly for stoichiometric and lean mixtures. Rich mixtures can be affected by small 2 ar, CO λ2 equilibrium =λ 0.85), calculated volumetric COthat equilibrium Hvolumetric O/CO2 ratio fraction in* exhaust and2 H gas as 2a ratio in exhaust gas piston as ay BB = 2culation bar, =analysis 0.85), vypočtený rovnovážný podíl CO aBB poměr H2O/CO 2fraction 2objemový 2O/CO Exh *products 2 ve the shows theand penetration of combustion through Exh in Figure 2. y y on sure of for temperature fuel C and pressure for fuel C H . H . CO CO 8 15 8 15 eplotě a tlaku pro degrees palivo C8of H15crank . 2 egins at several angle after the end2 of burning. At this time the in-cylinder [ ( ) yCO22 − y Air yCO2 1 − yH 2 O + yCO2 yH 2 O BB* CO2 y y Exh H 2O Exh * CO2 +y (1 − y ) Exh H 2O zek plota2:vIndikovaný zóně neshořelé tlak, směsi teplotaa vv zóně zóně neshořelé spalin, jednotková směsi a vrychlost zóně spalin, hořeníjednotková (n = rychlostExhhoření (n =BB* * -1 yCOH2of as lower. Here the of podíl insignificant dissociation allows use CO22yve CO2a min λis=even 0.85), , IMEP vypočtený = 12.2 bar, rovnovážný λ =assumption 0.85),objemový vypočtený rovnovážný CO2 a poměr objemový H2O/CO podíl CO2 a the poměr 2 ve 2O/CO BB BB BB lysis shows that the.inapenetration of lean combustion products through the piston . y + y + y = in 1 exhaust for stoichiometric and mixtures. Rich mixtures can be affected by small fractions blowby and exhaust gas before and after sample The water steam fraction gas can be expressed as ách a, particularly tlaku v závislosti proCO palivo na C teplotě tlaku pro palivo C H H . Air Exh Fuel 8 15 8 15 2 of crank2.angle after the end of burning. At this time the in-cylinder BB BB BB neral be degrees seendrying in Figure are related by equations y Air + yExh + yFuel =1 . er. Here the assumption ofofinsignificant dissociation allows use of CO 2 as a the piston shows Calculation that the analysis penetration shows that combustion the penetration productsofthrough combustion thethe piston products through Exh* k yCO2 yarea forbegins stoichiometric and BB lean mixtures. can be affected Exhsmall egrees of crank atBB several angle after degrees the end crank of burning. angleRich after At mixtures this the time end of the burning. in-cylinder At this yby time the in-cylinder * of , (5) Exh* H 2O = y y Exh CO CO k yCO Figure a as *a − y* erature ere the assumption is2.even lower. of Here insignificant the dissociation of insignificant allows the use dissociation of CO2 asallows the use 1of+CO 2 2 assumption k y2CO Exh 2 = H O , 2 2 yH 2 O = BB lean Exh* stoichiometric ng gas, particularly for1stoichiometric mixtures. mixtures lean mixtures. can be affected Rich mixtures by small can be affected by small − y H* O Richand 1 − yand 1 + k yCO − yH* 2 O Exh Exh H O 2 k = y y eas2.can be seen in2 Figure 2. 2 , H 2 O (1) CO2 Exh Exh BB Exh * BB * where ratio k = yHExh2O yCO depends on used fuel, air/fuel ratio y y yCO y 2 CO CO CO 2 2 2 2 = = l and also air humidity. For the purposes of this paper there are 1 − 1y HExh −2 Oy HBB2 O1 − 1y H*−2 Oy H* 2 O shown particular values of the ratio k for gasoline and CNG fuel , Exh Exh * in Figure 3. These values are calculated considering chemical yCO 2 yCO 2with * denote BB BB * where variables marked volumetric fractions after y y = CO CO kinetics at the temperature of reaction freezing according to [4]. 2 * 2 = 1 −The y HExh2volumetric 1 −BB yfractions drying. of* CO2 and H2O in the blowby O H 2O − y − y 1 1 Hof BB gas are Airgiven BB by the ExhHcontribution 2 OBB 2 O both wet air and exhaust yCO = yyBB BB * y Exh , CO 2 y Air + y CO 2 2 y Steady-state measurements carried out on port injection Exh Exh * CO 2 COthe 2 gas passing through piston region . yrings y BB BB BB BB * * = CO CO BB Air BB Exh BB 2y 2 y y y BB * engines confirm that the air/fuel ratio in the raw blowby gas CO CO 2= yHCO =−y=yHH2 OOyCOAir2 1+−yHy H2Exh 21 O y Exh = * *2 2O 2 * 1 − y 2 O BB 1 − y roughly corresponds to the air/fuel ratio in the exhaust gas. H O Hy O , Air BB Exh BB − y − y − 1 − yyHBB2BB 1 1 1 2 2 H 2O O = yCOH2 2yOAiry, Exh + y* COH22 Oy Exh CO 2y Exh , This means that a nearly homogeneous mixture escapes the CO * 2 Exh BB* Air BB* Exh BBCO 2AirExh * (2) . .Exh * = y2 CO yCO y y yCO −2 yBBAir yExh 1 − y + y y Air BB Exh BB CO CO CO H O CO H O * 2 2 2 combustion chamber by leakage through the piston rings area. y1HBB2−O*=y=Exh y 2 y Air y =2 2 , − *y+2H y2 OHExh = 2O H 2 OH 2*O 1Exh ExhExh1 − y * − − 1 − y HyExh2CO y 1 y + y 1 − y O y1 H O H O H O Figure 4 shows sequences of different engine operational points 2 CO 2H O 2 H 2O 2 2 2 BB Air BB Exh BB for gasoline and CNG fuel comparing measured and calculated * * y Air + * y BB BB yequation Air = yCO Air Combining systems (1)yBB and CO Exhresults in a formula for 2 2 2 (2) yCO − y Air yCO BB CO2 1 − yH 2 O + yCO2 y H 2 O BB . 2 fuel volumetric fractions assuming measured values y Air but , yExh = the exhaust BB fraction Air* inBB gas blowby gasy BB BB* yExh Exh Exhy Exh = y y + HO H 2 O1BB yCOAir2 yHExh −AiryBBH 2 OH 2 OExh ExhBB 2 O + yCO a homogenous mixture. Measured and theoretically calculated 2 BB Air BB BBy Exh2 yAir BB= BB BB y BB BB y yBB y AiryyCO +Exh y +Air2yy+ y y + y y CO Exh . yCOAir = 1 2 2 + 2 CO 2 Exh CO CO Air CO Exh BBy*CO 2 = CO Fuel2 2 2 fuel fractions in raw blowby gas display good mutual agreement. . . . O2 BB BB ExhAirAirBB BB * Exh BB BB* Air BBAir BB BB BB AirBB*Exh BB y − y y 1 − y + y y =y AiryH+2CO yH= OCO yH 2 O =y Hy2HOBB yy 2 Oyy+ yyH2Exh y Air +H 2yOH 2 O yExh Air CO2 H 2 O HExh O 2O 2O Exh2* 2 , (3) = O k2HAir yExh BB* Exh Exh * Exh y BB BB y BB CO2 y 2.2 SIMPLIFIED CALCULATION Exh +1, y.CO2 1 − yH 2 O CO H O y + y + y = y = 2 2 Air Air*Exh Fuel * AirAir BB* Air * BB* BB** *BB BB* Air H* 2 O AirBB Exh *BB BBBB − y y 1 − y y + − y y y y 1 − y + y y Considerable simplification of the above-stated calculation y O1CO− −y CO y2HAir *CO y AirBB *y 21 + +2CO H H Oy2CO y H HO2 O CO2 H 2 O BByk 2 2O COy2 − CO Air CO O B 2 , 2 Exh2* , yExh =*2 2CO2 2 ExhHBB CO , = BB * Exh Exh * Exh Exh 2 procedure is possible by taking into account the following hExh y Exh+ y yHy2 OBB+* yyExh − Exh yHy2*Exh − yH 2 O CO2 volumetric measured CO2 where O Hy2 O directly CO2 1 CO 1and CO 1*2−yare yCO y2CO CO2 H 2 O2 + ykCO H 2O 2 Exh assumptions: 2 Exh * fractions BB= * in exhaust and blowby gas , respectively. The relationship yH y2 OCO BBExh* BB * BB yCO 2 2 . y + y + y = 1 • The inlet air contains neither CO2 nor H2O, 1 + k Air ygas −ExhyH 2 O Fuelis given by general mass balance between blowby CO2components • Drying out of the sample is perfect without any residual h Exh BB BB BB BB BB BB .y Air + yFuel = 1 BB + yExh +Exhy*Fuel =1 . O yyCO Air2 + y Exh BB BB water steam, (4) y Air + yExh Exh + y = 1 k. y CO2 , yH 2 O Fuel = • There are no fuel vapors in blowby gas. Exh* Exh** Exh* 1 + k yCO k yCO k2 y−COy2 H 2 O Exh Exh 2 *, , y = Exh H O = k*yyExh Exh* Exh* * Exh 2.0 − y2.0 CO22 3.50 3.50 k H=2OyHExh y 1 k y 1 k y y + + − CO H O CO H O O CO , y2H 2 O = 2 2 2 2 2 Exh* * Gasoline Gasoline Fuel Fuel CNG Fuel CNG Fuel Exh 1 + Exh ky −y [ ( 1.6 1.6 () )[ ] ( ) ( ) ( ] ) ]) ] ) H 2O 1.2 1.0 / yCO 2O 1.4 k = yH 1.4 2O / yCO 2 1.8 k = yH 2 CO2 1.8 / yCO 2O y k = yH 2O yCO2 k = yH Exh CO2 () ( ) 2 [ ([ ] 1.2 pH O / pAtm pH =O 0/ p÷Atm 0.05 = 0, Δ ÷ 0.05 = 0.01 , Δ = 0.01 1.0 2 2 0.8 0.8 0.70 0.70 0.75 0.75 0.80 0.80 0.85 0.85 0.90 λ [-] λ [-] 0.90 0.95 0.95 1.00 1.00 3.25 3.25 3.00 3.00 2.75 2 ( ) ) / yCO ( ] 2.50 2O [ ( ) k = yH [ ( 2.75 2.50 2.25 2.25 2.00 2.00 1.75 1.75 pH 1.50 1.50 1.00 1.00 1.25 2O / pAtm pH =O 0/ p÷Atm 0.05 = 0, Δ ÷= 0.05 0.01 , Δ = 0.01 2 1.25 1.50 1.50 1.75 1.75 2.00 λ [-] λ [-] 2.00 2.25 2.25 2.50 2.50 FIGURE 3: Calculated H2O/CO2 ratio in exhaust gas as a function of air/fuel ratio l and partial water pressure in air for equivalent gasoline fuel C7.76H14.67O0.12 (rich mixtures) and CNG fuel CH4 (lean mixtures). OBRÁZEK 3: Vypočtený poměr objemových podílů H2O/CO2 ve spalinách v závislosti na součiniteli přebytku vzduchu l a na parciálním tlaku vodních par ve vzduchu pro ekvivalentní palivo C7.76H14.67O0.12 (bohaté směsi) a CNG palivo CH4 (chudé směsi). Blowby Gas Composition in SI Engines Karel Páv MECCA 03 2015 PAGE 03 Unauthenticated Download Date | 6/16/17 4:05 PM ], 0.10 0.09 CNG Fuel 0.08 BB [-] yFuel 0.07 0.06 0.05 Measurement 0.04 Theoretical Calculation 0.03 Gasoline Fuel 0.02 0.01 0.00 0 10 20 30 40 50 Engine Operational Point 60 70 80 FIGURE 4: Comparison of theoretically calculated and measured fuel volumetric fraction in raw blowby gas at different engine operational points for gasoline and CNG fuel. OBRÁZEK 4: Porovnání teoreticky spočítaných a změřených objemových podílů palivových par v neředěných blowby plynech při různých provozních režimech benzínového motoru a CNG motoru. In fact, the last assumption is only temporary. Applying equation (5) and the above-stated assumptions to equation (3) provides the final simplified form for calculation of the exhaust volumetric fraction in blowby gas TABLE 1: Compensation constants and H2O/CO2 ratios for different fuels. TABULKA 1: Kompenzační konstanty a objemové podíly H2O/CO2 pro různá paliva. Fuel Gasoline Constant K Ratio kDryAir 0.8 5.630 – 8.078 l + 3.409 l2 ( ) , (6) CNG (6) 1.7 2.037 – 0.019 l y =! y (1 +yK y(1 +)K y ) (6) y =! replaced by the , constant K. The new constant tio k has been formally where theKwater fraction in the sample after drying y ranges ( ) y 1 K y + for the influence of variable H O/CO ratios, but also for the presence of fuel in where the original ratio k has been formally replaced by the from 0.006 to 0.01 depending on conditions in the pre-chiller. BB Exh BB* Exh * yCO 1 + K yCO 2 2 Exh * CO2 BB Exh BB* BB* CO 2 CO2 Exh * CO2 2 Exh * CO2 BB* 2 CO2 * H2O ginal ratio k has been formally replaced by fuel the constant K. The new constant particular value of K depends on the according toRatio Table 1. for dryKair (p / p = 0) can be determined from constant K. constant The new constant K compensates notused only for the kDryAir H O Atm ot only for the influence of variable H O/CO ratios, but also for the presence in 3 or 2can be calculated according to the ained by influence regression analysisHofO/CO measured realthe engines. wasofin fuel 2 data 2 on for of variable ratios, but also presenceEquation the(6) charts Figure 2 2 s. The value ofinconstant K depends the fuel used according 1. ange of particular exhaust the The blowby gas.value Theonof results were compared withtoina Table of fuel infractions the blowby gas. particular constant formulas Table 1. were obtained by regression analysis of measured on real engines. Equation (6) was tion as aK depends reference. error resulting from usedata ofThese the simplified calculation onThe the fuel used according to Table 1. values wide range of exhaust fractions in the blowby gas. The results were compared with a were obtained by regression analysis of measured data on real calculation as a reference. The error resulting from use of the simplified calculation engines. Equation (6) was verified with a wide range of exhaust All results presented in this paper are related to the raw blowby Ratio kDryAir Fuel Constant K fractions in the blowby gas. The results were compared with gas even if an engine was equipped with a PCV (Positive Crank 2 Gasolinea non-simplified 0.8 calculation5.630 – 8.078 λThe + error 3.409resulting λ as a reference. case Ventilation) system. In this case the PCV system was Ratio kDryAir Fuel Constant K CNG from use of the 1.7simplified calculation 2.037 – 0.019 was ±2%. λ 2 deactivated for measurement purposes. The blowby gas was 0.8different fuels. 5.630 – 8.078 λ + 3.409 λ onstants Gasoline and H2O/CO 2 ratios Regarding the crankfor case ventilation design it is desirable to sampled from the crank case ventilation path downstream of í konstantyCNG a objemové podíly 1.7 H2O/CO2 pro různá paliva. 2.037 – 0.019 λ estimate the amount of water vapor in blowby gas. It makes the oil separator. Then the sample was led through the fine filter ensation constants and H2O/CO2 ratios for different fuels. sense to evaluate the occurrence when there is a thread of to avoid analyzer fouling. All the measurements were O/CO pro různá paliva. mpenzační konstanty a objemové podíly H crank case ventilation design it is desirable of water 2 2 to estimate the amountelement water freezing inside the crank case. In this case the ambient out under steady-state engine conditions. It makes sense to evaluate the occurrence when there is a threadcarried of water isventilation below 0 °C design andtemperature absolute humidity very ding the temperature crank it is air desirable tois estimate amount water Numerous results show that the raw blowby gas composition nk case. In thiscase case the ambient is below 0°Clow. and the absolute airof dry air, the water volumetric fraction the blowby by gas. Assuming Itdry makes sense tovolumetric evaluate the occurrence when there a thread of water Assuming air, the water fraction in the inblowby gas isisgiven as mainly depends on engine speed and it almost independent * gas case. is givenInasthis e the crank casey BB the Exh ambient temperature is below 0°Cof and absolute aircharts in Figure 5 show possible values of engine load. The kDryAir Exh yCO2 ryyHBB low. Assuming dry air, the water volumetric fraction in the blowby gas is given as , (7) ( ) Dry Air = exhaust gas fraction and of water steam content in blowby gas at Exh * 2O 1 + kDryAir yCO − yyH*BB2 O y Exh* 2 k normal test cell environmental conditions. These measurements DryAir Exh CO2 BB , (7) * Air )drying = H 2 O ( Dry Exh * * on in theysample after ranges from 0.006 to 0.01 depending oncarried(7) y have been out on both port injection and direct injection H 2O y 1 + kDryAir y − CO2 H 2O SI engines. The depicted fields are relatively large, but the area of chiller. Ratioin kthe DryAir for dry air ( p H O / p*Atm = 0 ) can be determined from the 2 er fraction sample after drying yH 2 O ranges from 0.006 to 0.01 depending on an be calculated according to the formulas in Table 1. the pre-chiller. Ratio kDryAir for dry air ( pH 2 O / p Atm = 0 ) can be determined from the 3. MEASUREMENT RESULTS e 3 or can be calculated according to the formulas in Table 1. Blowby Gas Composition in SI Engines Karel Páv MECCA 03 2015 PAGE 04 Unauthenticated Download Date | 6/16/17 4:05 PM 0.450.45 0.070.07 0.400.40 0.060.06 0.350.35 0.08 0.50 0.05 0.05 0.40 0.200.20 0.40 0.06 0.02 0.02 0.05 0.05 0.35 0.30 yH BB O [-] 0.30 0.100.10 0.010.01 0.000.00 0.20 0.00 0.00 0.20 0.03 0 0 10001000200020003000300040004000500050006000600070007000 0 10001000200020003000300040004000500050006000600070007000 0 2 0.04 0.25 2 0.050.05 0.25 0.15 0.07 0.03 0.03 0.06 BB BB [-] yyHExh O [-] BB [-] yExh 0.35 0.150.15 0.45 0.04 0.07 0.04 2 2 0.45 0.25 0.25 0.08 yH BB O [-] yH BB O [-] 0.300.30 BB [-] yExh BB [-] yExh 0.50 0.10 0.15 0.02 0.10 0.05 0.01 0.05 n [1/min] n [1/min] 0.00 0.03 n [1/min] n [1/min] 0.02 0.01 0.00 0 1000 2000 3000 4000 5000 6000 0.04 0.00 7000 0 1000 2000 3000 n [1/min] 4000 5000 6000 7000 n [1/min] FIGURE 5: Exhaust gas and water steam fraction in raw blowby gas at normal test cell conditions (25 °C, wet air) as a function of engine speed for different gasoline SI engines, highlighted characteristics of single engines. OBRÁZEK 5: Objemové podíly spalin a vodní páry v neředěných blowby plynech při běžných okolních podmínkách (25 °C, vlhký vzduch) v závislosti na otáčkách motoru pro různé benzínové zážehové motory, zvýrazněná úzká pole přísluší vždy jednomu konkrétnímu motoru. 1.100.850.85 18 18 20 20 20 20 22 22 23 23 18 18 19 19 20 20 21 21 23 23 23 23 19 19 20 21 20 21 23 23 24 24 25 25 21 21 22 22 19 19 21 21 BB [%vol.] 20 20 yExh 1.050.800.80 0.750.75 1.00 20 18 λ [-] 18 0.700.70 0.95 0 0 5 0.90 19 21 0.85 FIGURE 6: Exhaust 21 20 21 20 20 21 21 23 21 21 22 21 21 23 24 26 24 26 27 27 24 24 26 28 24 24 26 28 28 24 24 24 29 28 29 -1 MAP = 574 mbar n =222000 23 24 , 26 23 min 24 26 25 25 27 27 23 23 23 18 20 20 22 19 20 21 23 23 24 23 23 24 25 24 25 27 15 15 15 16 16 17 17 18 18 16 16 17 17 16 16 17 17 20 20 16 16 16 16 17 17 18 18 21 21 16 16 16 16 17 17 19 18 BB [%vol.] 17 yExh 17 y BB17[%vol.] 17 20 -120 -1 , MAP = 22 574 = 2000 min 18n 18 19 =22mbar 528 mbar n =19 4000 min 21, MAP 21 2015 18 18 20 17 21 0.950.95 27 27 15 1.001.00 24 27 20 21 24 25 [deg] 26 Ignition Advance Angle Ignition Advance Angle [deg] 1.10 0.85 0.85 1.10 Exh 0.80 0.80 1.05 1.05 1.00 21 22 23 24 27 16 0.900.90 0.750.75 1.00 24 16 18 18 17 17 18 15 0.90 0.90 16 21 20 16 20 2120 20 18 18 22 16 23 25 25 23 16 19 16 19 19 17 23 19 24 17 2618 21 19 17 23 30 30 17 21 18 25 0.70 26 27 28 29 22 23 24 19 27 20 21 35 35 26 21 2821 20 21 20 20 21 21 20 20 24 Ignition Advance Angle [deg] Ignition Advance Angle [deg] 2116 18 24 gas volumetric fraction in raw blowby gas as28a function advance and relative air/fuel ratio l, 20 20 20 21 21 21 2117 17 22 22 gasoline SI engine, partial loads. 23 23 18 24 26 25 1924 26 25 21 27 0.80 0.80 0.80 20 20 20podíly 21 20 a součiniteli OBRÁZEK 6: Objemové spalin 23 v neředěných blowby plynech v závislosti na předstihu zážehu vzduchu l, 21 23 přebytku 23 23 24 24 17 25 25 18 18 27 19 19 0.75 středního zatížení benzínového motoru. 0.75 0.75 režimy 24 0.85 of ignition 0.85 21 18 19 16 0.700.70 0.95 0.95 5 10 10 15 15 20 20 25 25 30 30 35 35 40 40 45 45 15 10 10 19 15 16 21 19 23 19 24 -1, MAP = 528 mbar -1, MAP = 4000 = 528 mbar n = n4000 minmin 20 24 20 40 40 27 28 45 45 20 29 21 27 22 27 20 0.70 0.70 0 5 10load 15 partial at 10 engine 15 20 0 values 5 15 engine 20 is relatively 25 30 narrow. 35 Examples 40 45 possible for10a single Advance Angle [deg] of such measurementsIgnition for three specific engines at various engine speeds and loads are given. These three highlighted areas cover any possible fraction at any engine operation point. Along with engine speed, the exhaust gas fraction also depends on piston design and soot build up level within piston rings region. Raw engines lie normally in lower range of the field and worn engines lie in upper range. Besides the engine speed and of course EGR rate there are two more parameters influencing the blowby gas composition, namely air/fuel ratio and ignition advance angle. The specific influence of these two parameters has been investigated at Blowby Gas Composition in SI Engines Karel Páv 20 selected 30 35 40 40 45 two operational points. The 45 25 25 30 35 Ignition Advance AngleAngle [deg][deg] Ignition Advance results of measurements are graphically displayed in Figure 6. The exhaust fraction in the blowby gas is strongly affected by ignition timing because it shifts the angular position of the end of combustion. The moment when the flame front reaches a distant piston edge is the most important factor. Until then, only the surrounding unburned mixture can pass through the piston rings area. It is apparent that the air/fuel ratio also has a minor impact on the resulting exhaust gas fraction in blowby gas, partly as the mixture enrichment causes a slight increase in the amount of residual gases passing through the piston rings region together with the unburned mixture. It is generally known that the fastest MECCA 03 2015 PAGE 05 Unauthenticated Download Date | 6/16/17 4:05 PM 1.10 1.05 1.00 24 21 λ [-] 0.900.90 18 BB BBy [%vol.] yExh Exh [%vol.] λ [-] λ [-] λ [-] 0.950.95 18 1.051.05 λ [-] 1.001.00 1.101.10 -1, MAP = 574 mbar -1, MAP = 2000 n = n2000 minmin = 574 mbar λ [-] 1.051.05 BB BBy [%vol.] yExh Exh [%vol.] λ [-] 1.101.10 0.95 0.90 0.85 0.80 0.75 0.70 10 12 12 12 12 10 10 10 10 88 pe [bar] p pee [bar] [bar] pe [bar] 8 6 4 2 0 66 44 22 8 1616 17 1717 14 15 1515 1616 1616 16 17161717 14 14 14171515 141515 14 151516 1616 16 15 1717 1717 1818 1919 14 16 16 15 16 15 16 1616 1515 141414 17 17171817191815 19 15 16 21 21 15 15 15 16 16 15 15 16 16 1514 1416 2121 21 21 15 15 16 16 21 232321 161515 16 21 21 1717 1818 1313 1414 1616 1717 1414 1616 23 23 2424 21 2117 1718 1813 1314 1416 1617 1714 1416 1615 15 24 24 2525 2121 1919 1818 1414 1515 1414 1616 1515 1212 1515 25 2521 2119 1918 1814 1415 1514 1416 1615 1512 1215 15 16 1717 2626 2121 2121 1919 18 1818 1818 16 1717 1313 1111 1414 2019 1818 26 2621 2121 20 21 191818 1818 16181716 1717 1713 1311 1114 14 24 24 6 4 14 14 14 14 Gasoline Fuel Gasoline Fuel Gasoline Fuel Gasoline Fuel 17 BB[%vol.] BB yBB [%vol.] BB Exh Exh yyExh y[%vol.] Exh [%vol.] 20 20 141111 22 2323 2222 262624 22 2121 1818 1818 1616 1616 14 1212 1313 24 26 2622 22 222322 2321 2118 1818 1816 1616 14 1611 14 1112 1213 13 12 12 12 12 2727 2222 2323 2222 2020 1919 1515 1616 1111 1212 1111 27 2722 2223 2322 2220 2019 1915 1516 1611 1112 1211 11 26 26 26 26 28 28 2323 28 2823 12 12 12 13 12 13 1212 2323 2020 1818 1919 1717 1515 2323 2320 2018 1819 1917 1715 1512 1213 1010 1310 10 8 6 4 1212 1212 1111 12 1212 1211 11 2 88 1313 1313 1212 13 1313 1312 12 2 66 44 22 CNG Fuel CNG Fuel CNG Fuel CNG Fuel BB[%vol.] BB yBB [%vol.] BB Exh Exh yyExh y[%vol.] Exh [%vol.] 10 10 10 10 pe [bar] p pee [bar] [bar] pe [bar] 14 14 14 14 8 6 4 1515 1616 1212 1414 1616 15 16151216 15 15 11 1313 1212 12 14 1614 16 15 1111 15 111213 13 13 1717 1717 1515 1313 1212 12 12 12 1515 13 1616 1515 1313 2222 202017 1717151713151212 11 13 13 12 15 12 1516 1615 1513 1313 1111 242422 2022 20 11 11 11 24 24 2626 11 13 11 262525 26 2020 1818 1616 1414 1616 1717 1515 1111 1111 13 25 2520 2018 1816 1614 1416 1617 1715 1511 1111 1113 13 16 16 16 16 2525 2121 2121 1717 1717 171716 16 1313 1414 1111 1111 25 2521 2121 2117 1717 1717 1716 1613 1314 1411 1111 11 121111 2424 2222 2121 2020 1717 1717 1818 1111 1313 12 1111 24 17 2422 2221 21 20 1717 1718 1811 1113 121311 12 1111 11 18 18 2020 20 20 2018 18 14 14 22 2323 14 12 2525 2323 22 2020 1919 1616 151514 12 1010 1010 1212 25 2523 22232322 2320 2019 1916 1615 1512 1210 1010 1012 12 24 24 24 24 2424 2222 24 2422 2222 1919 1919 1616 1616 1313 1212 1111 1111 2222 2219 1919 1916 1616 1613 1312 1211 1111 11 1313 1212 1010 13 1312 1210 10 2 1313 1212 1212 13 1312 1212 12 00 00 0 0 0 500 1000 1000 1500 1500 2000 2000 2500 2500 3000 3000 3500 3500 4000 4000 4500 4500 5000 5000 5500 5500 6000 6000 6500 6500 500 1000 1000 1500 1500 2000 2000 2500 2500 3000 3000 3500 3500 4000 4000 4500 4500 5000 5000 5500 5500 6000 6000 6500 6500 500 500 500 500 10001000 1500 1500 2000 2000 2500 2500 30003000 3500 3500 4000 4000 4500 4500 5000 5000 5500 5500 6000 6000 65006500 500 500 1000 1000 1500 1500 2000 2000 2500 2500 3000 3000 3500 3500 4000 4000 4500 4500 5000 5000 5500 5500 6000 6000 6500 6500 n[1/min] [1/min] nn[1/min] n [1/min] n[1/min] [1/min] nn[1/min] n [1/min] FIGURE 7: Engine map of exhaust volumetric fraction in raw blowby gas for gasoline and CNG fuel. OBRÁZEK 7: Objemové podíly spalin v neředěných blowby plynech v úplné charakteristice motoru při provozu na benzín a CNG. 6060 60 60 5050 50 50 pp[bar] p [bar] [bar] p [bar] Pressure Pressure Pressure Pressure 4040 40 40 8080 80 80 0.07 0.07 0.07 0.07 7070 70 70 0.06 0.06 0.06 0.06 6060 60 60 0.05 0.05 0.05 0.05 5050 50 50 0.04 0.04 0.04 0.04 4040 40 40 [deg] [deg] ϕϕϕ [deg] ϕ [deg] 6060 60 60 0.04 0.04 0.04 0.04 0.02 0.02 0.02 0.02 2020 20 20 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 1010 10 10 2020 20 20 000 0 -40-40 -20 -20-20 TDC TDC 2020 -40 -20 TDC 20 -40 TDC 20 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 Pressure Pressure Pressure Pressure 4040 40 40 0.07 0.07 0.07 0.07 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 Rate Burning Rate Burning Rate ofofofBurning Rate of Burning λλλ==λ=11=1 1 3030 30 30 3030 30 30 1010 10 10 0.08 0.08 0.08 0.08 CNG Fuel CNG Fuel CNG Fuel CNG Fuel RoB [1/deg] RoB RoB [1/deg] [1/deg] RoB [1/deg] 0.82 λλλ==λ=0.82 =0.82 0.82 0.08 0.08 0.08 0.08 pp[bar] p [bar] [bar] p [bar] 7070 70 70 Gasoline Fuel Gasoline Fuel Gasoline Fuel Gasoline Fuel RoB [1/deg] RoB RoB [1/deg] [1/deg] RoB [1/deg] 8080 80 80 0.00 0.00 0.00 0.00 8080 80 80 000 0 -40-40 -20 -20-20 TDC TDC 2020 -40 -20 TDC 20 -40 TDC 20 Rate Burning Rate Burning Rate ofofofBurning Rate of Burning 4040 40 40 [deg] [deg] ϕϕϕ [deg] ϕ [deg] 6060 60 60 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 8080 80 80 FIGURE 8: Indicated cylinder pressure and normalized rate of burning at engine speed n = 6000 min-1 and full load for gasoline and CNG fuel. OBRÁZEK 8: Indikovaný tlak ve válci motoru a jednotkový průběh hoření při otáčkách n = 6000 min-1 a plném zatížení motoru při provozu na benzín a CNG. combustion can be expected approximately at an air/fuel ratio l = 0.85, which corresponds to the peaks in both charts. For investigation of the fuel influence on blowby gas composition, a fuel bivalent engine was chosen; specifically an SI engine of swept volume 1.6 L with port fuel injection system designed to run on gasoline or CNG fuel. The effect of used fuel on exhaust volumetric fraction in blowby gas is presented in Figure 7. Some differences in exhaust fractions are notable only at full load and high engine speeds. The higher ratio of the exhaust in blowby gas in the case of gasoline fuel is caused by faster combustion of a gasoline rich mixture compared to a stoichiometric CNG mixture as indicated in Figure 8. Blowby Gas Composition in SI Engines Karel Páv 4. CONCLUSION Blowby gas flow within piston rings region is very complex. However, a simplified explanation of the phenomena mentioned above can be summarized as follows: The piston rings region can be thought as a reservoir. The exhaust gas from the combustion chamber cannot pass through this area until all the mixture in this space is blown-by. There is more time for this phenomenon at lower engine speeds. The higher the soot level, the smaller space between piston rings and consequently more exhaust gas flows through. The exhaust gas fraction in blowby is strongly affected by the burning process in terms of angular position of the end of combustion, which can be simply controlled by MECCA 03 2015 PAGE 06 Unauthenticated Download Date | 6/16/17 4:05 PM ignition advance. Residual gases in the combustion chamber contribute markedly to exhaust fraction in blowby gas. A nearly homogeneous mixture escapes the combustion chamber by leakage through the piston rings area in port injection engines. The portion of the fuel vapor in the blowby gas strongly depends on fuel type. Knowledge of the water steam concentration in the crank case is very important during engine development phase when the crank case ventilation system is being tested and optimized. Investigation of more engines shows their strong diversity. Therefore, the direct measurement of blowby composition for a particular engine is desirable. The measurement results of raw blowby gas composition can be utilized for a qualitative validation of the piston rings movement simulation. ACKNOWLEDGEMENT This work was supported by ŠKODA AUTO a.s. REFERENCES [1] BURCAT, A., RUSCIC, A.: Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables, Argonne National Laboratory, TAE 960, 2005. [2] GRILL, M.: Objektorientierte Prozessrechnung von Verbrennungsmotoren, Dissertation, Universität Stuttgart 2006. [3] PÁV, K.: Measurement of Blow-by Gas Composition, XLV. International Scientific Conference of Czech and Slovak University Departments and Institutions Dealing with the Research of Combustion Engines, str. 97 – 105, Kostelec nad Černými lesy 2014, ISBN 978-80-7375-801-1. [4] PÁV, K.: Složení výfukových plynů zážehových motorů, Sborník přednášek mezinárodní konference Motor-Sympo, str. 199 – 206, Vydalo ČVUT v Praze, ÚVMV s.r.o., Výzkumné centrum Josefa Božka, Brno 2001, ISBN 80-01-02382-6. LIST OF NOTATIONS AND ABBREVIATIONS Air BB CNG DryAir Exh Fuel H2O IMEP MAP NDIR RoB SI Wet air Blow-by gas Compressed natural gas Dry air Exhaust gas Fuel vapour Water steam Indicated mean effective pressure Manifold air pressure Non-dispersive infra-red Rate of burning Spark ignition k n p pAtm pe pH O 2 T y✳H O 2 yix ✳ yix ϕ l Volumetric H2O/CO2 ratio [-] Engine speed [1/min] Indicated in-cylinder pressure [bar] Atmospheric pressure [bar] Engine brake mean effective pressure [bar] Water vapour partial pressure in wet air [bar] Calculated in-cylinder temperature [K] Volumetric fraction of water steam in front-end condenser [-] Volumetric fraction of species i in matter x [-] Volumetric fraction of species i in matter x after drying [-] Crank angle [deg] Relative dry air/fuel ratio [-] Blowby Gas Composition in SI Engines Karel Páv MECCA 03 2015 PAGE 07 Unauthenticated Download Date | 6/16/17 4:05 PM
© Copyright 2026 Paperzz