10-5 Solve Quadratic Equations by Completing the Square Name Date Solve: 2x2 3x 1 0 Use completing the square. 3 1 3 2 1 c b Write in the form x2 x a a x2 2 x 2 3 3 2 3 Add 4 () x2 2 x ( 4 ) 2 ( 4 ) (x 34 ) 2 1 1 x44 3 1 3 Take the square root of both sides. 1 x 4 4 or x 4 4 1 x 2 or to each side to complete the square. 3 9 Write x2 2x 16 as the square of a binomial. 16 3 2 x 1 Write and solve two equations. Apply the Subtraction Property of Equality; simplify. ? Check: 2x2 3x 1 0 ? 1 1 2( 2 )2 3( 2 ) 1 0 ? 1 3 2210 ? 2x2 3x 1 0 ? 2(1)2 3(1) 1 0 2310 0 0 True 0 0 True Solve each equation by completing the square. Then check. Check students’ work. Copyright © by William H. Sadlier, Inc. All rights reserved. 1. x2 2x 35 0 2. x2 4x 96 0 x2 2x 35 x2 2x 1 35 1 (x 1)2 36 x 1 66 x 1 6 or x 1 –6 x 5 or x –7 x2 4x 96 4x 4 96 4 (x 2)2 100; x 2 10 x 2 10 or x 2 10 x 8 or x 12 5. x2 11x 30 0 x2 x2 6x 2 2 x 6x 9 2 9 (x 3)2 7; x 3 7 x 3 7 or x 3 – 7 x 3 7 or x 3 7 ( ) ) ( ) 8. x2 11x 102 0 9x 36 9 2 9 2 2 36 x 9x 2 2 15 9 2 225 9 x ;x 2 2 4 2 9 15 9 15 or x x 2 2 2 2 x 12 or x 3 () x2 ( x2 13x 22 13 2 13 2 13x 22 2 2 13 9 13 2 81 x ;x 2 2 2 4 13 9 13 9 or x x 2 2 2 2 x 11 or x2 ( ) x2 ( ( ) ) 9. 2x2 5x 3 0 11x 102 11 2 11 2 2 102 x 11x 2 2 11 2 529 11 23 x ;x 2 4 2 2 11 23 11 23 or x x 2 2 2 2 x 17 or x 6 ( ) x2 6. x2 13x 22 0 11x 30 11 2 11 2 2 x 11x 30 2 2 11 2 1 11 1 x ;x 2 4 2 2 11 11 1 1 or x x 2 2 2 2 x 6 or x5 ( 7. x2 9x 36 0 x2 x2 4x 1 4x 4 1 4 (x 2)2 3; x 2 3 x 2 3 or x 2 3 x 2 3 or x 2 3 x2 4. x2 6x 2 0 () ( ) 3. x2 4x 1 0 ( ) ) Lesson 10-5, pages 260–261. 5 3 x2 x 2 2 5 5 2 3 5 2 2 x x 2 2 4 4 7 5 2 49 5 x ;x 4 4 16 4 5 7 5 7 x or x 4 4 4 4 1 x 3 x or 2 () ( () ) Chapter 10 255 For More Practice Go To: Solve each equation by completing the square. Then check. Check students’ work. 11. 5x2 6 13x 0 6 13 x 5 5 13 13 2 6 13 2 2 x x 5 5 10 10 13 2 289 x 10 100 13 17 13 17 x or x 10 10 10 10 2 x or x 3 5 11 4 x 3 3 11 11 2 4 11 2 2 x x 3 3 6 6 11 2 169 x 6 36 11 13 11 13 x or x 6 6 6 6 1 x or x 4 3 x2 ( ) ( ) x2 ( ) ( ) ( ) 13. 15x2 16 34x 34 16 x 15 15 2 34 17 16 17 x2 x 15 15 15 15 17 2 49 x 15 225 17 7 17 7 or x x 15 15 15 15 8 2 x or x 5 3 2 ( ) 2 3 2 x2 2x 1 1 3 1 2 (x 1) 3 3 x1 or x 1 3 3 3 3 x1 or x 1 3 3 3 17. 48x 36x2 11 1 27 x2 x 2 16 1 1 2 27 1 2 2 x x 16 2 4 4 1 2 7 x 4 4 1 1 7 x or x 7 4 4 2 2 1 1 7 or x 7 x 4 4 2 2 () () Solve. 19. Ten less than three times the square of a number is 0. Which numbers are possible? 10 ; 3 x 10 30 ; Possible numbers are 30 3 3 3 30 and . 3 31 9 31 x2 4x 4 4 9 5 2 (x 2) 9 5 x2 or x 2 5 3 3 5 x2 or x 2 5 3 3 x2 4x 18. 12x 7x2 5 4 11 x2 x 3 36 11 4 2 2 2 2 2 x x 36 3 3 3 2 2 5 x 3 36 2 2 5 x or x 5 3 3 6 6 2 2 5 or x 5 x 3 3 6 6 () ( ) 21 25 21 2 x 2x 1 1 25 4 (x 1)2 25 2 2 x 1 or x 1 5 5 7 3 x or x 5 5 x2 2x 15. 9x2 36x 31 x2 2x 16. 8x 16x2 27 () ( ) ( ) 14. 3x2 6x 2 x2 ( ) ( ) 12. 25x2 21 50x 7x2 12x 5 12 5 x2 x 7 7 12 6 2 5 2 x x 7 7 7 6 2 1 x 7 49 6 6 1 x or x 7 7 7 6 1 x or x 6 7 7 () ( ) (67) 2 1 7 1 20. The lengths of the sides of a square are increased by 5 in. If the new area of the square is 39 in.2, what was the original length of the square? Let x the number; Solve: 3x2 10 0; x2 21. (123)(98) (123)(100 2) 12,300 246 12,054 256 Chapter 10 Make a drawing; let x old length, so x 5 new length; (x 5)2 39; x 5 39; The length of the side cannot be negative, so the original length is 5 39 inches. 22. (23.4)(0.9) (23.4)(1 0.1) 23.4 2.34 21.06 23. 59.8 17.9 13.2 9.1 73 27 46 Copyright © by William H. Sadlier, Inc. All rights reserved. 10. 3x2 4 11x 0
© Copyright 2025 Paperzz