Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 258985, 9 pages http://dx.doi.org/10.1155/2014/258985 Research Article Fixed Point Theorems in Quaternion-Valued Metric Spaces Ahmed El-Sayed Ahmed,1,2 Saleh Omran,1,3 and Abdalla J. Asad3 1 Mathematics Department, Faculty of Science, Taif University, Taif 888, Saudi Arabia Mathematics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt 3 Mathematics Department, Faculty of Science, South Valley University, Qena, Egypt 2 Correspondence should be addressed to Ahmed El-Sayed Ahmed; [email protected] Received 8 October 2013; Revised 14 January 2014; Accepted 23 January 2014; Published 30 March 2014 Academic Editor: Naseer Shahzad Copyright © 2014 Ahmed El-Sayed Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The aim of this paper is twofold. First, we introduce the concept of quaternion metric spaces which generalizes both real and complex metric spaces. Further, we establish some fixed point theorems in quaternion setting. Secondly, we prove a fixed point theorem in normal cone metric spaces for four self-maps satisfying a general contraction condition. 1. Introduction and Preliminaries A metric space can be thought as very basic space having a geometry, with only a few axioms. In this paper we introduce the concept of quaternion metric spaces. The paper treats material concerning quaternion metric spaces that is important for the study of fixed point theory in Clifford analysis. We introduce the basic ideas of quaternion metric spaces and Cauchy sequences and discuss the completion of a quaternion metric space. In what follows we will work on H, the skew field of quaternions. This means we can write each element đĽ â H in the form đ = đĽ0 + đĽ1 đ + đĽ2 đ + đĽ3 đ, đĽđ â R, where 1, đ, đ, đ are the basis elements of H and đ = 1, 2, 3. For these elements we have the multiplication rules đ2 = đ2 = đ2 = â1, đđ = âđđ = đ, đđ = âđđ = âđ, and đđ = âđđ = đ. The conjugate element đĽ is given by đ = đĽ0 â đĽ1 đ â đĽ2 đ â đĽ3 đ. The quaternion modulus has the form of |đ| = âđĽ02 + đĽ12 + đĽ22 + đĽ32 . Quaternions can be defined in several different equivalent ways. Notice the noncommutative multiplication, their novel feature; otherwise, quaternion arithmetic has special properties. There is also more abstract possibilty of treating quaternions as simply quadruples of real numbers [đĽ0 , đĽ1 , đĽ2 , đĽ3 ], with operation of addition and multiplication suitably defined. The components naturally group into the imaginary part (đĽ1 , đĽ2 , đĽ3 ), for which we take this part as a vector and the purely real part, đĽ0 , which called a scalar. Sometimes, we write a quaternion as [V, đĽ0 ] with V (đĽ1 , đĽ2 , đĽ3 ). Here, we give the following forms: đ := [V, đĽ0 ] , = V â R3 ; đĽ0 â R = [(đĽ1 , đĽ2 , đĽ3 ) , đĽ0 ] ; đĽ0 , đĽ1 , đĽ2 , đĽ3 â R (1) = đĽ0 + đĽ1 đ + đĽ2 đ + đĽ3 đ. Thus a quaternion đ may be viewed as a four-dimensional vector (đĽ0 , đĽ1 , đĽ2 , đĽ3 ). For more information about quaternion analysis, we refer to [1â4] and others. Define a partial order âž on H as follows. đ1 âž đ2 if and only if Re(đ1 ) ⤠Re(đ2 ), Imđ (đ1 ) ⤠Imđ (đ2 ), đ1 , đ2 â H; đ = đ, đ, đ, where Imđ = đĽ1 ; Imđ = đĽ2 ; Imđ = đĽ3 . It follows that đ1 âž đ2 , if one of the following conditions is satisfied. (i) Re(đ1 ) = Re(đ2 ); Imđ 1 (đ1 ) = Imđ 1 (đ2 ), where đ 1 = đ, đ; Imđ (đ1 ) < Imđ (đ2 ). (ii) Re(đ1 ) = Re(đ2 ); Imđ 2 (đ1 ) = Imđ 2 (đ2 ), where đ 2 = đ, đ; Imđ (đ1 ) < Imđ (đ2 ). (iii) Re(đ1 ) = Re(đ2 ); Imđ 3 (đ1 ) = Imđ 3 (đ2 ), where đ 3 = đ, đ; Imđ (đ1 ) < Imđ (đ2 ). (iv) Re(đ1 ) = Re(đ2 ); Imđ 1 (đ1 ) < Imđ 1 (đ2 ); Imđ (đ1 ) = Imđ (đ2 ). 2 Abstract and Applied Analysis (v) Re(đ1 ) = Re(đ2 ); Imđ 2 (đ1 ) < Imđ 2 (đ2 ); Imđ (đ1 ) = Imđ (đ2 ). Definition 4. Let đ be a nonempty set. Suppose that the mapping đH : đ × đ â H satisfies (vi) Re(đ1 ) = Re(đ2 ); Imđ 3 (đ1 ) < Imđ 3 (đ2 ); Imđ (đ1 ) = Imđ (đ2 ). (1) 0 âž đH (đĽ, đŚ) for all đĽ, đŚ â đ and đH (đĽ, đŚ) = 0 if and only if đĽ = đŚ, (2) đH (đĽ, đŚ) = đH (đŚ, đĽ) for all đĽ, đŚ â đ, (vii) Re(đ1 ) = Re(đ2 ); Imđ (đ1 ) < Imđ (đ2 ). (3) đH (đĽ, đŚ) âž đH (đĽ, đ§) + đH (đ§, đŚ) for all đĽ, đŚ, đ§ â đ. (viii) Re(đ1 ) < Re(đ2 ); Imđ (đ1 ) = Imđ (đ2 ). (ix) Re(đ1 ) < Re(đ2 ); Imđ 1 (đ1 ) = Imđ 1 (đ2 ); Imđ (đ1 ) < Imđ (đ2 ). (x) Re(đ1 ) < Re(đ2 ); Imđ 2 (đ1 ) = Imđ 2 (đ2 ); Imđ (đ1 ) < Imđ (đ2 ). (xi) Re(đ1 ) < Re(đ2 ); Imđ 3 (đ1 ) = Imđ 3 (đ2 ); Imđ (đ1 ) < Imđ (đ2 ). (xii) Re(đ1 ) < Re(đ2 ); Imđ 1 (đ1 ) < Imđ 1 (đ2 ); Imđ (đ1 ) = Imđ (đ2 ). (xiii) Re(đ1 ) < Re(đ2 ); Imđ 2 (đ1 ) < Imđ 2 (đ2 ); Imđ (đ1 ) = Imđ (đ2 ). (xiv) Re(đ1 ) < Re(đ2 ); Imđ 3 (đ1 ) < Imđ 3 (đ2 ); Imđ (đ1 ) = Imđ (đ2 ). (xv) Re(đ1 ) < Re(đ2 ); Imđ (đ1 ) < Imđ (đ2 ). Example 5. Let đH : H × H â H be a quaternion valued function defined as đH (đ, đ) = |đ0 â đ0 | + đ|đ1 â đ1 | + đ|đ2 â đ2 | + đ|đ3 â đ3 |, where đ, đ â H with đ = đ0 + đ1 đ + đ2 đ + đ3 đ, đđ , đđ â R; đ = đ0 + đ1 đ + đ2 đ + đ3 đ; đ = 1, 2, 3. (3) Then (đ, đH ) is a quaternion metric space. Now, we give the following definitions. Definition 6. Point đĽ â đ is said to be an interior point of set đ´ â đ whenever there exists 0 âş đ â H such that đľ (đĽ, đ) = {đŚ â đ : đH (đĽ, đŚ) âş đ} â đ´. (4) Definition 7. Point đĽ â đ is said to be a limit point of đ´ â đ whenever for every 0 âş đ â H (xvi) Re(đ1 ) = Re(đ2 ); Imđ (đ1 ) = Imđ (đ2 ). Remark 1. In particular, we will write đ1 ⨠đ2 if đ1 ≠ đ2 and one from (i) to (xvi) is satisfied. Also, we will write đ1 âş đ2 if only (xv) is satisfied. It should be remarked that óľ¨ óľ¨ óľ¨ óľ¨ đ1 âž đ2 ół¨â óľ¨óľ¨óľ¨đ1 óľ¨óľ¨óľ¨ ⤠óľ¨óľ¨óľ¨đ2 óľ¨óľ¨óľ¨ . Then đH is called a quaternion valued metric on đ, and (đ, đH ) is called a quaternion valued metric space. (2) Remark 2. The conditions from (i) to (xv) look strange but these conditions are natural generalizations to the corresponding conditions in the complex setting (see [5]). So, the number of these conditions is related to the number of units in the working space. For our quaternion setting we have four units (one real and three imaginary); then we have 24 conditions. But in the complex setting there were 22 conditions. Azam et al. in [5] introduced the definition of the complex metric space as follows. Definition 3 ([5]). Let đ be a nonempty set and suppose that the mapping đC : đ × đ â C satisfies the following. (d1 ) 0 < đC (đĽ, đŚ), for all đĽ, đŚ â đ and đC (đĽ, đŚ) = 0 if and only if đĽ = đŚ. (d2 ) đC (đĽ, đŚ) = đC (đŚ, đĽ) for all đĽ, đŚ â đ. (d3 ) đC (đĽ, đŚ) âž đC (đĽ, đ§) + đC (đ§, đŚ) for all đĽ, đŚ, đ§ â đ. Then (đ, đC ) is called a complex metric space. Now, we extend the above definition to Clifford analysis. đľ (đĽ, đ) ⊠(đ´ â {đĽ}) ≠ đ. (5) Definition 8. Set đ´ is called an open set whenever each element of đ´ is an interior point of đ´. Subset đľ â đ is called a closed set whenever each limit point of đľ belongs to đľ. The family đš = {đľ (đĽ, đ) : đĽ â đ, 0 âş đ} (6) is a subbase for Hausdroff topology đ on đ. Definition 9. Let {đĽđ } be a sequence in đ and đĽ â đ. If for every đ â H with 0 âş đ there is đ0 â N such that for all đ > đ0 , đH (đĽđ , đĽ) âş đ, then {đĽđ } is said to be convergent if {đĽđ } converges to the limit point đĽ; that is, đĽđ â đĽ as đ â â or limđ đĽđ = đĽ. If for every đ â H with 0 âş đ there is đ0 â N such that for all đ > đ0 , đH (đĽđ , đĽđ+đ ) âş đ, then {đĽđ } is called Cauchy sequence in (đ, đH ). If every Cauchy sequence is convergent in (đ, đH ), then (đ, đH ) is called a complete quaternion valued metric space. 2. Convergence in Quaternion Metric Spaces In this section we give some auxiliary lemmas using the concept of quaternion metric spaces; these lemmas will be used to prove some fixed point theorems of contractive mappings. Lemma 10. Let (đ, đH ) be a quaternion valued metric space and let {đĽđ } be a sequence in đ. Then {đĽđ } converges to đĽ if and only if |đH (đĽđ , đĽ)| â 0 as đ â â. Abstract and Applied Analysis 3 Proof. Suppose that {đĽđ } converges to đĽ. For a given real number đ > 0, let đ= đ đ đ đ +đ +đ +đ . 2 2 2 2 (7) Then 0 âş đ â H and there is a natural number đ such that đH (đĽđ , đĽ) âş đ for all đ > đ. Therefore, |đH (đĽđ , đĽ)| < |đ| = đ for all đ > đ. Hence |đH (đĽđ , đĽ)| â 0 as đ â â. Conversely, suppose that |đH (đĽđ , đĽ)| â 0 as đ â â. Then, given đ â H with 0 âş đ, there exists a real number đż > 0, such that, for â â H, |â| < đż ół¨â â < đ. Definition 14. Let đž be a nonempty subset of a quaternion valued metric space (đ, đH ) and let đš, đ : đž â đ satisfy the condition óľ¨ óľ¨ đ [óľ¨óľ¨óľ¨đH (đšđĽ, đšđŚ)óľ¨óľ¨óľ¨] óľ¨ óľ¨ óľ¨ óľ¨ â¤ đ {đ [óľ¨óľ¨óľ¨đH (đđĽ, đšđĽ)óľ¨óľ¨óľ¨] + đ [óľ¨óľ¨óľ¨đH (đđŚ, đšđŚ)óľ¨óľ¨óľ¨]} (13) óľ¨ óľ¨ óľ¨ óľ¨ + đ min {đ [óľ¨óľ¨óľ¨đH (đđĽ, đšđŚ)óľ¨óľ¨óľ¨] , đ [óľ¨óľ¨óľ¨đH (đđŚ, đšđĽ)óľ¨óľ¨óľ¨]} . For all đĽ, đŚ â đž, with đĽ ≠ đŚ, đ, đ ⼠0, 2đ + đ < 1 and let đ : R+ â R+ be an increasing continuous function for which the following property holds: đ (đĄ) = 0 ââ đĄ = 0. (8) (14) For this đż, there is a natural number đ such that |đH (đĽđ , đĽ)| < đż for all đ > đ. Implying that đH (đĽđ , đĽ) âş đ for all đ > đ, hence {đĽđ } converges to đĽ. We call function đš satisfying condition (13) generalized đcontractive. Motivated by [7, 8], we construct the following definition. Lemma 11. Let (đ, đH ) be a quaternion valued metric space and let {đĽđ } be a sequence in đ. Then {đĽđ } is a Cauchy sequence if and only if |đH (đĽđ , đĽđ+đ )| â 0 as đ â â. Definition 15. Let đž be a nonempty subset of a quaternion valued metric space (đ, đH ) and đš, đ : đž â đ. The pair {đš, đ} is said to be weakly commuting if, for each đĽ, đŚ â đž such that đĽ = đšđŚ and đđŚ â đž, we have Proof. Suppose that {đĽđ } is a Cauchy sequence. For a given real number đ > 0, let đH (đđĽ, đšđđŚ) âž đH (đđŚ, đšđŚ) . (15) óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨óľ¨đH (đđĽ, đšđđŚ)óľ¨óľ¨óľ¨ ⤠óľ¨óľ¨óľ¨đH (đđŚ, đšđŚ)óľ¨óľ¨óľ¨ . (16) đ= đ đ đ đ +đ +đ +đ . 2 2 2 2 (9) Then, 0 âş đ â H and there is a natural number N such that đH (đĽđ , đĽđ+đ ) âş đ for all đ > đ. Therefore |đH (đĽđ , đĽđ+đ )| < |đ| = đ for all đ > đ. Hence |đH (đĽđ , đĽđ+đ )| â 0 as đ â â. Conversely, suppose that |đH (đĽđ , đĽđ+đ )| â 0 as đ â â. Then, given đ â H with 0 âş đ, there exists a real number đż > 0, such that for â â H, we have that |â| < đż ół¨â â âş đ. (10) It follows that Remark 16. It should be remarked that Definition 15 extends and generalizes the definition of weakly commuting mappings which are introduced in [7]. 3. Common Fixed Point Theorems in Quaternion Analysis For this đż, there is a natural number đ such that |đH (đĽđ , đĽđ+đ )| < đż for all đ > đ, which implies that đH (đĽđ , đĽđ+đ ) âş đ for all đ > đ. Hence {đĽđ } is a Cauchy sequence. This completes the proof of Lemma 11. In this section, we prove common fixed point theorems for two pairs of weakly commuting mappings on complete quaternion metric spaces. The obtained results will be proved using generalized contractive conditions. Now, we give the following theorem. Definition 12. Let (đ, đH ) be a complete quaternion valued metric space. For all đĽ, đŚ â đ, đH (đĽ, đŚ) represents âđĽ â đŚâ. A quaternion valued metric space (đ, đH ) is said to be metrically convex if đ has the property that, for each đĽ, đŚ â đ with đĽ ≠ đŚ, there exists đ§ â đ, đĽ ≠ đŚ ≠ đ§ such that Theorem 17. Let (đ, đH ) be a complete quaternion valued metric space, đž a nonempty closed subset of đ, and đ : R+ â R+ an increasing continuous function satisfying (13) and (14). Let đš, đ : đž â đ be such that đš is generalized đ-contractive satisfying the conditions: óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đH (đĽ, đ§) + đH (đ§, đŚ)óľ¨óľ¨óľ¨ = óľ¨óľ¨óľ¨đH (đĽ, đŚ)óľ¨óľ¨óľ¨ . (11) The following lemma finds immediate applications which is straightforward from [6]. Lemma 13. Let (đ, đH ) be a metrically convex quaternion valued metric space and đž a nonempty closed subset of đ. If đĽ â đž and đŚ â đž, then there exists a point đ§ â đđž (where đđž stands for the boundary of đž) such that đH (đĽ, đŚ) = đH (đĽ, đ§) + đH (đ§, đŚ) . (12) (i) đđž â đđž, đšđž â đđž, (ii) đđĽ â đđž â đšđĽ â đž, (iii) đš and đ are weakly commuting mappings, (iv) đ is continuous at đž, then there exists a unique common fixed point đ§ in đž, such that đ§ = đđ§ = đšđ§. Proof. We construct the sequences {đĽđ } and {đŚđ } in the following way. 4 Abstract and Applied Analysis Let đĽ â đđž. Then there exists a point đĽ0 â đž such that đĽ = đđĽ0 as đđž â đđž. From đđĽ0 â đđž and the implication đđĽ â đđž â đšđĽ â đž, we conclude that đšđĽ0 â đž ⊠đšđž â đđž. Now, let đĽ1 â đž be such that đŚ1 = đđĽ1 = đšđĽ0 â đž. (17) Let đŚ2 = đšđĽ1 and assume that đŚ2 â đž; then đŚ2 â đž ⊠đšđž â đđž, (18) which implies that there exists a point đĽ2 â đž such that đŚ2 = đđĽ2 . Suppose đŚ2 â đž; then there exists a point đ â đđž (using Lemma 13) such that đH (đđĽ1 , đ) + đH (đ, đŚ2 ) = đH (đđĽ1 , đŚ2 ) . (19) Since đ â đđž â đđž, there exists a point đĽ2 â đž such that đ = đđĽ2 and so đH (đđĽ1 , đđĽ2 ) + đH (đđĽ2 , đŚ2 ) = đH (đđĽ1 , đŚ2 ) . (20) Let đŚ3 = đšđĽ2 . Thus, repeating the forgoing arguments, we obtain two sequences {đĽđ } and {đŚđ } such that (i) đŚđ+1 = đšđĽđ , (21) We denote đ = {đđĽđ â {đđĽđ } : đđĽđ ≠ đŚđ } . đH (đđĽđ , đđĽđ+1 ) âž đH (đđĽđ , đŚđ+1 ) = đH (đŚđ , đŚđ+1 ) , which implies that óľ¨ óľ¨ óľ¨ óľ¨óľ¨ óľ¨óľ¨đH (đđĽđ , đđĽđ+1 )óľ¨óľ¨óľ¨ ⤠óľ¨óľ¨óľ¨đH (đŚđ , đŚđ+1 )óľ¨óľ¨óľ¨ . (26) (27) Hence óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ đ (óľ¨óľ¨óľ¨đĄđ óľ¨óľ¨óľ¨) ⤠đ [óľ¨óľ¨óľ¨đH (đŚđ , đŚđ+1 )óľ¨óľ¨óľ¨] = đ [óľ¨óľ¨óľ¨đH (đšđĽđâ1 , đšđĽđ )óľ¨óľ¨óľ¨] óľ¨ óľ¨ óľ¨ óľ¨ â¤ đ {đ [óľ¨óľ¨óľ¨đH (đđĽđâ1 , đšđĽđâ1 )óľ¨óľ¨óľ¨] + đ [óľ¨óľ¨óľ¨đH (đđĽđ , đšđĽđ )óľ¨óľ¨óľ¨]} óľ¨ óľ¨ + đ min {đ [óľ¨óľ¨óľ¨đH (đđĽđâ1 , đšđĽđ )óľ¨óľ¨óľ¨] , óľ¨ óľ¨ đ [óľ¨óľ¨óľ¨đH (đđĽđ , đšđĽđâ1 )óľ¨óľ¨óľ¨]} óľ¨ óľ¨ óľ¨ óľ¨ = đ [đ (óľ¨óľ¨óľ¨đĄđâ1 óľ¨óľ¨óľ¨) + đ (óľ¨óľ¨óľ¨đH (đŚđ , đŚđ+1 )óľ¨óľ¨óľ¨)] . (28) Therefore, đ óľ¨ óľ¨ óľ¨ óľ¨ đ (óľ¨óľ¨óľ¨đH (đŚđ , đŚđ+1 )óľ¨óľ¨óľ¨) ⤠( ) đ (óľ¨óľ¨óľ¨đĄđâ1 óľ¨óľ¨óľ¨) . 1âđ (29) (30) Case 3. If đĽđ â đ, đđĽđ+1 â đ, so đđĽđâ1 â đ. Since đđĽđ is a convex linear combination of đđĽđâ1 and đŚđ , it follows that đH (đđĽđ , đđĽđ+1 ) âž max {đH (đđĽđâ1 , đđĽđ+1 ) , đH (đŚđ , đđĽđ+1 )} . (31) (22) Obviously, the two consecutive terms of {đđĽđ } cannot lie in đ. Let us denote đĄđ = đH (đđĽđ , đđĽđ+1 ). We have the following three cases. Case 1. If đđĽđ , đđĽđ+1 â đ, then óľ¨ óľ¨ óľ¨ óľ¨ đ (óľ¨óľ¨óľ¨đĄđ óľ¨óľ¨óľ¨) = đ [óľ¨óľ¨óľ¨đH (đđĽđ , đđĽđ+1 )óľ¨óľ¨óľ¨] óľ¨ óľ¨ = đ [óľ¨óľ¨óľ¨đH (đšđĽđâ1 , đšđĽđ )óľ¨óľ¨óľ¨] óľ¨ óľ¨ óľ¨ óľ¨ â¤ đ {đ [óľ¨óľ¨óľ¨đđť (đđĽđâ1 , đšđĽđâ1 )óľ¨óľ¨óľ¨] + đ [óľ¨óľ¨óľ¨đH (đđĽđ , đšđĽđ )óľ¨óľ¨óľ¨]} óľ¨ óľ¨ + đ min {đ [óľ¨óľ¨óľ¨đH (đđĽđâ1 , đšđĽđ )óľ¨óľ¨óľ¨] , óľ¨ óľ¨ đ [óľ¨óľ¨óľ¨đH (đđĽđ , đšđĽđâ1 )óľ¨óľ¨óľ¨]} óľ¨ óľ¨ óľ¨ óľ¨ = đ [đ (óľ¨óľ¨óľ¨đĄđâ1 óľ¨óľ¨óľ¨) + đ (óľ¨óľ¨óľ¨đĄđ óľ¨óľ¨óľ¨)] . (23) Thus, đ óľ¨ óľ¨ óľ¨ óľ¨ đ (óľ¨óľ¨óľ¨đĄđ óľ¨óľ¨óľ¨) ⤠( ) đ (óľ¨óľ¨óľ¨đĄđâ1 óľ¨óľ¨óľ¨) . 1âđ or đ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ đ (óľ¨óľ¨óľ¨đĄđ óľ¨óľ¨óľ¨) ⤠đ (óľ¨óľ¨óľ¨đH (đŚđ , đŚđ+1 )óľ¨óľ¨óľ¨) ⤠( ) đ (óľ¨óľ¨óľ¨đĄđâ1 óľ¨óľ¨óľ¨) . 1âđ (iii) đŚđ â đž â đđĽđ â đđž, đ = {đđĽđ â {đđĽđ } : đđĽđ = đŚđ } , đH (đđĽđ , đđĽđ+1 ) + đH (đđĽđ+1 , đŚđ+1 ) = đH (đđĽđ , đŚđ+1 ) (25) Hence, (ii) đŚđ â đž â đŚđ = đđĽđ , or đH (đđĽđâ1 , đđĽđ ) + đH (đđĽđ , đŚđ ) = đH (đđĽđâ1 , đŚđ ) . Case 2. If đđĽđ â đ, đđĽđ+1 â đ, note that If đH (đđĽđâ1 , đđĽđ+1 ) âž đH (đŚđ , đđĽđ+1 ), then đH (đđĽđ , đđĽđ+1 ) âž đH (đŚđ , đđĽđ+1 ) implying that óľ¨óľ¨óľ¨đH (đđĽđ , đđĽđ+1 )óľ¨óľ¨óľ¨ ⤠óľ¨óľ¨óľ¨đH (đŚđ , đđĽđ+1 )óľ¨óľ¨óľ¨ . (32) óľ¨ óľ¨ óľ¨ óľ¨ Hence, óľ¨ óľ¨ óľ¨ óľ¨ đ (óľ¨óľ¨óľ¨đĄđ óľ¨óľ¨óľ¨) = đ (óľ¨óľ¨óľ¨đH (đđĽđ , đđĽđ+1 )óľ¨óľ¨óľ¨) óľ¨ óľ¨ â¤ đ (óľ¨óľ¨óľ¨đH (đŚđ , đđĽđ+1 )óľ¨óľ¨óľ¨) óľ¨ óľ¨ = đ (óľ¨óľ¨óľ¨đH (đŚđ , đŚđ+1 )óľ¨óľ¨óľ¨) óľ¨ óľ¨ = đ (óľ¨óľ¨óľ¨đH (đšđĽđâ1 , đšđĽđ )óľ¨óľ¨óľ¨) óľ¨ óľ¨ â¤ đ {đ [óľ¨óľ¨óľ¨đH (đđĽđâ1 , đšđĽđâ1 )óľ¨óľ¨óľ¨] óľ¨ óľ¨ +đ [óľ¨óľ¨óľ¨đH (đđĽđ , đšđĽđ )óľ¨óľ¨óľ¨]} óľ¨ óľ¨ + đ min {đ [óľ¨óľ¨óľ¨đH (đđĽđâ1 , đšđĽđ )óľ¨óľ¨óľ¨] , óľ¨ óľ¨ đ [óľ¨óľ¨óľ¨đH (đđĽđ , đšđĽđâ1 )óľ¨óľ¨óľ¨]} óľ¨ óľ¨ óľ¨ óľ¨ = đ [đ (óľ¨óľ¨óľ¨đH (đđĽđâ1 , đŚđ )óľ¨óľ¨óľ¨) + đ (óľ¨óľ¨óľ¨đĄđ óľ¨óľ¨óľ¨)] óľ¨ óľ¨ + đ min {đ [óľ¨óľ¨óľ¨đH (đđĽđâ1 , đđĽđ+1 )óľ¨óľ¨óľ¨] , (24) óľ¨ óľ¨ đ [óľ¨óľ¨óľ¨đH (đđĽđ , đŚđ )óľ¨óľ¨óľ¨]} . (33) Abstract and Applied Analysis 5 by induction, we get đ(|đĄđ |) ⤠((đ + đ)/(1 â đ))đ đ(|đĄ0 |). Letting đ â â, we have đ(|đĄđ |) â 0 and by (14), we have óľ¨ óľ¨óľ¨ óľ¨óľ¨ óľ¨óľ¨ (42) óľ¨óľ¨đĄđ óľ¨óľ¨ = óľ¨óľ¨đH (đđĽđ , đđĽđ+1 )óľ¨óľ¨óľ¨ ół¨â 0 as đ ół¨â â, It follows that óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ (1 â đ) đ (óľ¨óľ¨óľ¨đĄđ óľ¨óľ¨óľ¨) ⤠đđ (óľ¨óľ¨óľ¨đH (đđĽđâ1 , đŚđ )óľ¨óľ¨óľ¨) + đđ (óľ¨óľ¨óľ¨đH (đđĽđ , đŚđ )óľ¨óľ¨óľ¨) . (34) Since đH (đđĽđâ1 , đŚđ ) âż đH (đđĽđ , đŚđ ) as đđĽđ â đ, (35) óľ¨ óľ¨ đ (óľ¨óľ¨óľ¨đH (đđĽđâ1 , đŚđ )óľ¨óľ¨óľ¨) ⼠đ (đH (đđĽđ , đŚđ )) . (36) then Therefore, óľ¨ óľ¨ óľ¨ óľ¨ (1 â đ) đ (óľ¨óľ¨óľ¨đĄđ óľ¨óľ¨óľ¨) ⤠(đ + đ) đ (óľ¨óľ¨óľ¨đH (đđĽđâ1 , đŚđ )óľ¨óľ¨óľ¨) đ+đ óľ¨ óľ¨ óľ¨ óľ¨ ół¨â đ (óľ¨óľ¨óľ¨đĄđ óľ¨óľ¨óľ¨) ⤠( ) đ (óľ¨óľ¨óľ¨đH (đđĽđâ1 , đŚđ )óľ¨óľ¨óľ¨) . 1âđ (37) Now, proceeding as in Case 2 (because đđĽđâ1 â đ, đđĽđ â đ), we obtain that đ+đ đ óľ¨ óľ¨ óľ¨ óľ¨ đ (óľ¨óľ¨óľ¨đĄđ óľ¨óľ¨óľ¨) ⤠( )( ) đ (óľ¨óľ¨óľ¨đĄđâ2 óľ¨óľ¨óľ¨) . 1âđ 1âđ (38) Also from (31), if đH (đŚđ , đđĽđ+1 ) âž đH (đđĽđâ1 , đđĽđ+1 ), then đH (đđĽđ , đđĽđ+1 ) âž đH (đđĽđâ1 , đđĽđ+1 ) đđĽđ = đšđĽđâ1 , Therefore, noting that, by Case 2, đ(|đĄđâ1 |) < đ(|đĄđâ2 |), we conclude that (41) Thus, in all cases we get either đ(|đĄđ |) ⤠((đ + đ)/(1 â đ))đ(|đĄđâ1 |) or đ(|đĄđ |) ⤠((đ + đ)/(1 â đ))đ(|đĄđâ2 |); for đ = 1, we have đ(|đĄ1 |) ⤠((đ + đ)/(1 â đ))đ(|đĄ0 |); for đ = 2, we have đ(|đĄ2 |) ⤠((đ + đ)/(1 â đ))đ(|đĄ1 |) ⤠((đ + đ)/(1 â đ))2 đ(|đĄ0 |); đđĽđâ1 â đž; (43) then đH (đđđĽđ , đšđđĽđâ1 ) âž đH (đšđĽđâ1 , đđĽđâ1 ) = đH (đđĽđ , đđĽđâ1 ) . (44) This implies that óľ¨óľ¨ óľ¨ óľ¨ óľ¨ óľ¨óľ¨đH (đđđĽđ , đšđđĽđâ1 )óľ¨óľ¨óľ¨ ⤠óľ¨óľ¨óľ¨đđť (đđĽđ , đđĽđâ1 )óľ¨óľ¨óľ¨ . (45) On letting đ â â, we obtain đH (đđ§, đšđđĽđâ1 ) ół¨â 0, (39) which implies that |đH (đđĽđ , đđĽđ+1 )| ⤠|đH (đđĽđâ1 , đđĽđ+1 )|; hence óľ¨ óľ¨ óľ¨ óľ¨ đ (óľ¨óľ¨óľ¨đĄđ óľ¨óľ¨óľ¨) = đ (óľ¨óľ¨óľ¨đH (đđĽđ , đđĽđ+1 )óľ¨óľ¨óľ¨) óľ¨ óľ¨ â¤ đ (óľ¨óľ¨óľ¨đH (đđĽđâ1 , đđĽđ+1 )óľ¨óľ¨óľ¨) óľ¨ óľ¨ = đ (óľ¨óľ¨óľ¨đH (đšđĽđâ2 , đšđĽđ )óľ¨óľ¨óľ¨) óľ¨ óľ¨ â¤ đ {đ [óľ¨óľ¨óľ¨đH (đđĽđâ2 , đšđĽđâ2 )óľ¨óľ¨óľ¨] (40) óľ¨ óľ¨ +đ [óľ¨óľ¨óľ¨đH (đđĽđ , đšđĽđ )óľ¨óľ¨óľ¨]} óľ¨ óľ¨ + đ min {đ [óľ¨óľ¨óľ¨đH (đđĽđâ2 , đšđĽđ )óľ¨óľ¨óľ¨] , óľ¨ óľ¨ đ [óľ¨óľ¨óľ¨đH (đđĽđ , đšđĽđâ2 )óľ¨óľ¨óľ¨]} óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ óľ¨ = đ [đ (óľ¨óľ¨óľ¨đĄđâ2 óľ¨óľ¨óľ¨) + đ (óľ¨óľ¨óľ¨đĄđ óľ¨óľ¨óľ¨)] + đđ (óľ¨óľ¨óľ¨đĄđâ1 óľ¨óľ¨óľ¨) . đ+đ óľ¨ óľ¨ óľ¨ óľ¨ đ (óľ¨óľ¨óľ¨đĄđ óľ¨óľ¨óľ¨) ⤠( ) đ (óľ¨óľ¨óľ¨đĄđâ2 óľ¨óľ¨óľ¨) . 1âđ so that {đđĽđ } is a Cauchy sequence and hence it converges to point đ§ in đž. Now there exists a subsequence {đđĽđđ } of {đđĽđ } such that it is contained in đ. Without loss of generality, we may denote {đđĽđđ } = {đđĽđ }. Since đ is continuous, {đđđĽđ } converges to đđ§. We now show that đ and đš have common fixed point (đđ§ = đšđ§). Using the weak commutativity of đ and đš, we obtain that (46) which means that {đšđđĽđâ1 } ół¨â đđ§ as đ ół¨â â. (47) Now, consider óľ¨ óľ¨ đ (óľ¨óľ¨óľ¨đH (đšđđĽđâ1 , đšđ§)óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ â¤ đ {đ [óľ¨óľ¨óľ¨đH (đđđĽđâ1 , đšđđĽđâ1 )óľ¨óľ¨óľ¨] + đ [óľ¨óľ¨óľ¨đH (đđ§, đšđ§)óľ¨óľ¨óľ¨]} óľ¨ óľ¨ óľ¨ óľ¨ + đ min {đ [óľ¨óľ¨óľ¨đH (đđđĽđâ1 , đšđ§)óľ¨óľ¨óľ¨] , đ [óľ¨óľ¨óľ¨đH (đđ§, đšđđĽđâ1 )óľ¨óľ¨óľ¨]} . (48) Letting đ â â yields óľ¨ óľ¨ óľ¨ óľ¨ đ (óľ¨óľ¨óľ¨đH (đđ§, đšđ§)óľ¨óľ¨óľ¨) ⤠đđ [óľ¨óľ¨óľ¨đH (đđ§, đšđ§)óľ¨óľ¨óľ¨] , (49) a contradiction, thus giving đ(|đH (đđ§, đšđ§)|) = 0 which implies |đH (đđ§, đšđ§)| = 0, so that đH (đđ§, đšđ§) = 0 and hence đđ§ = đšđ§. To show that đđ§ = đ§, consider óľ¨ óľ¨ đ (óľ¨óľ¨óľ¨đH (đđĽđ , đđ§)óľ¨óľ¨óľ¨) óľ¨ óľ¨ = đ (óľ¨óľ¨óľ¨đH (đšđĽđâ1 , đšđ§)óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ â¤ đ {đ [óľ¨óľ¨óľ¨đH (đđĽđâ1 , đšđĽđâ1 )óľ¨óľ¨óľ¨] + đ [óľ¨óľ¨óľ¨đH (đđ§, đšđ§)óľ¨óľ¨óľ¨]} óľ¨ óľ¨ óľ¨ óľ¨ + đ min {đ [óľ¨óľ¨óľ¨đH (đđĽđâ1 , đšđ§)óľ¨óľ¨óľ¨] , đ [óľ¨óľ¨óľ¨đH (đđ§, đšđĽđâ1 )óľ¨óľ¨óľ¨]} . (50) Letting đ â â, we obtain óľ¨ óľ¨ óľ¨ óľ¨ đ (óľ¨óľ¨óľ¨đH (đ§, đđ§)óľ¨óľ¨óľ¨) ⤠đđ [óľ¨óľ¨óľ¨đH (đ§, đđ§)óľ¨óľ¨óľ¨] , (51) 6 Abstract and Applied Analysis a contradiction, thereby giving đ(|đH (đ§, đđ§)|) = 0 which implies |đH (đ§, đđ§)| = 0, so that đH (đ§, đđ§) = 0 and hence đ§ = đđ§. Thus, we have shown that đ§ = đđ§ = đšđ§, so đ§ is a common fixed point of đš and đ. To show that đ§ is unique, let đ¤ be another fixed point of đš and đ; then óľ¨ óľ¨ đ (óľ¨óľ¨óľ¨đH (đ¤, đ§)óľ¨óľ¨óľ¨) óľ¨ óľ¨ = đ (óľ¨óľ¨óľ¨đH (đšđ¤, đšđ§)óľ¨óľ¨óľ¨) óľ¨ óľ¨ óľ¨ óľ¨ â¤ đ {đ [óľ¨óľ¨óľ¨đH (đđ¤, đšđ¤)óľ¨óľ¨óľ¨] + đ [óľ¨óľ¨óľ¨đH (đđ§, đšđ§)óľ¨óľ¨óľ¨]} óľ¨ óľ¨ óľ¨ óľ¨ + đ min {đ [óľ¨óľ¨óľ¨đH (đđ¤, đšđ§)óľ¨óľ¨óľ¨] , đ [óľ¨óľ¨óľ¨đH (đđ§, đšđ¤)óľ¨óľ¨óľ¨]} óľ¨ óľ¨ = đđ (óľ¨óľ¨óľ¨đH (đ¤, đ§)óľ¨óľ¨óľ¨) , (52) (iii) đš and đ are weakly mappings, (iv) đ is continuous at đžâ ; then there exists a unique common fixed point đ§ in đžâ such that đ§ = đđ§ = đšđ§. Proof. Since each element đĽ â H can be written in the form đ = đĽ0 + đĽ1 đ + đĽ2 đ + đĽ3 đ, đĽđ â R, where 1, đ, đ, đ are the basis elements of H and đ = 1, 2, 3. Putting đĽ2 = đĽ3 = 0, we obtain an element in C. So, the proof can be obtained from Theorem 17 directly. 4. Fixed Points in Normal Cone Metric Spaces a contradiction, therefore giving đ(|đH (đ¤, đ§)|) = 0 which implies that |đH (đ¤, đ§)| = 0, so that đH (đ¤, đ§) = 0; thus đ¤ = đ§. This completes the proof. Remark 18. If Imđ đH (đĽ, đŚ) = 0, đ = đ, đ, đ then đH (đĽ, đŚ) = đ(đĽ, đŚ) and therefore, we obtain the same results in [9]. So, our theorem is more general than Theorem 3.1 in [9] for a pair of weakly commuting mappings. Using the concept of commuting mappings (see, e.g., [10]), we can give the following result. Theorem 19. Let (đ, đH ) be a complete quaternion valued metric space, đž a nonempty closed subset of đ, and đ : R+ â R+ an increasing continuous function satisfying (13) and (14). Let đš, đ : đž â đ be such that đš is generalized đ-contractive satisfying the conditions: (i) đđž â đđž, đšđž â đđž, (ii) đđĽ â đđž â đšđĽ â đž, In this section, we prove a fixed point theorem in normal cone metric spaces, including results which generalize a result due to Huang and Zhang in [11] as well as a result due to Abbas and Rhoades [12]. The obtained result gives a fixed point theorem for four mappings without appealing to commutativity conditions, defined on a cone metric space. Let đ¸ be a real Banach space. A subset đ of đ¸ is called a cone if and only if (a) đ is closed and nonempty and đ ≠ 0; (b) đ, đ â R, đ, đ ⼠0, đ, đ â đ implies that đđĽ + đđŚ â đ; (c) đ â(âđ) = {0}. Given cone đ â đ¸, we define a partial ordering ⤠with respect to đ by đĽ ⤠đŚ if and only if đŚ â đĽ â đ. Cone đ is called normal if there is a number đž1 > 0 such that, for all đĽ, đŚ â đ¸, óľŠ óľŠ 0 ⤠đĽ ⤠đŚ implies âđĽâ ⤠đž1 óľŠóľŠóľŠđŚóľŠóľŠóľŠ . (54) The least positive number satisfying the above inequality is called the normal constant of đ, while đĽ ⪠đŚ stands for đŚ â đĽ â int đ (interior of đ). We will write đĽ < đŚ to indicate that đĽ ⪠đŚ but đĽ ≠ đŚ. (iii) đš and đ are commuting mappings, (iv) đ is continuous at đž; then there exists a unique common fixed point đ§ in đž such that đ§ = đđ§ = đšđ§. Definition 21 (see [11]). Let đ be a nonempty set. Suppose that the mapping đ : đ × đ â đ¸ satisfies Proof. The proof is very similar to the proof of Theorem 17 with some simple modifications; so it will be omitted. (d1 ) 0 ⤠đ(đĽ, đŚ) for all đĽ, đŚ â đ and đ(đĽ, đŚ) = 0 if and only if đĽ = đŚ; Corollary 20. Let (đ, đC ) be a complete complex valued metric space, đžâ a nonempty closed subset of đ, and đ : R+ â R+ an increasing continuous function satisfying (14) and (d2 ) đ(đĽ, đŚ) = đ(đŚ, đĽ) for all đĽ, đŚ â đ; Then, đ is called a cone metric on đ and (đ, đ) is called a cone metric space. óľ¨ óľ¨ đ [óľ¨óľ¨óľ¨đC (đšđĽ, đšđŚ)óľ¨óľ¨óľ¨] óľ¨ óľ¨ óľ¨ óľ¨ â¤ đ {đ [óľ¨óľ¨óľ¨đC (đđĽ, đšđĽ)óľ¨óľ¨óľ¨] + đ [óľ¨óľ¨óľ¨đC (đđŚ, đšđŚ)óľ¨óľ¨óľ¨]} (53) óľ¨ óľ¨ óľ¨ óľ¨ + đ min {đ [óľ¨óľ¨óľ¨đC (đđĽ, đšđŚ)óľ¨óľ¨óľ¨] , đ [óľ¨óľ¨óľ¨đC (đđŚ, đšđĽ)óľ¨óľ¨óľ¨]} , for all đĽ, đŚ â đžâ , with đĽ ≠ đŚ; đ, đ ⼠0, 2đ + đ < 1. Let đš, đ : đžâ â đ be such that đš is generalized đcontractive satisfying the conditions: (i) đđžâ â đđžâ , đšđžâ â đđžâ , (ii) đđĽ â đđžâ â đšđĽ â đžâ , (d3 ) đ(đĽ, đŚ) ⤠đ(đĽ, đ§) + đ(đ§, đŚ) for all đĽ, đŚ, đ§ â đ. Definition 22 (see [11]). Let (đ, đ) be a cone metric space, {đĽđ } a sequence in đ, and đĽ â đ. For every đ â đ¸ with 0 ⪠đ, we say that {đĽđ } is (1) a Cauchy sequence if there is an đ such that, for all đ, đ > đ, đ(đĽđ , đĽđ ) ⪠đ; (2) a convergent sequence if there is an đ such that, for all đ > đ, đ(đĽđ , đĽ) ⪠đ; for some đĽ â đ, đ(đĽ, đŚ) ⤠đ(đĽ, đ§) + đ(đ§, đŚ) for all đĽ, đŚ, đ§ â đ. Abstract and Applied Analysis 7 A cone metric space đ is said to be complete if every Cauchy sequence in đ is convergent in đ. Now, we give the following result. Theorem 23. Let (đ, đ) be a complete cone metric space and đ a normal cone with normal constant đž1 . Suppose that the mappings đ, đ, đ1 , đ1 are four self-maps of đ satisfying đđ (đđĽ, đđŚ) + (1 â đ) đ (đ1 đĽ, đ1 đŚ) ⤠đźđ (đĽ, đŚ) + đ˝ [đ (đ (đĽ, đđĽ) + đ (đŚ, đđŚ)) From (54), we have đ óľŠ đžđż óľŠóľŠ óľŠóľŠđ (đĽđ , đĽđ )óľŠóľŠóľŠ ⤠1 1âđż (60) which implies that đ(đĽđ , đĽđ ) â 0 as đ, đ â â. Hence, {đĽđ } is a Cauchy sequence. Since đ is complete there exists a point đ â đ such that đĽđ â đ as đ â â. Now using (55), we obtain that đđ (đ, đđ) + (1 â đ) đ (đ, đ1 đ) + (1 â đ) (đ (đĽ, đ1 đĽ) + đ (đŚ, đ1 đŚ))] + đž [đ (đ (đĽ, đđŚ) + đ (đŚ, đđĽ)) ⤠đ [đ (đ, đĽ2đ+1 ) + đ (đĽ2đ+1 , đđ)] + (1 â đ) [đ (đ, đĽ2đ+1 ) + đ (đĽ2đ+1 , đ1 đ)] + (1 â đ) (đ (đĽ, đ1 đĽ) + đ (đŚ, đ1 đĽ))] (55) for all đĽ, đŚ â đ, where 0 ⤠đ ⤠1 and đź, đ˝, đž ⼠0 with đź + 2đ˝ + 2đž < 1. Then, đ, đ, đ1 , and đ1 have a unique common fixed point in đ. Proof. If đ = 0 or đ = 1, the proof is already known from [12]. So, we consider the case when 0 < đ < 1. Suppose đĽ0 is an arbitrary point of đ, and define {đĽđ } by đĽ2đ+1 = đđĽ2đ = đ1 đĽ2đ and đĽ2đ+2 = đđĽ2đ+1 = đ1 đĽ2đ+1 ; đ = 0, 1, 2, . . .. Then, we have đ (đĽ2đ+1 , đĽ2đ+2 ) ⤠đ (đ, đĽ2đ+1 ) + đźđ (đĽ2đ , đ) + đ˝ [đ (đĽ2đ , đĽ2đ+1 ) + đ đ (đ, đđ) + (1 â đ) đ (đ, đ1 đ)] + đž [đ (đĽ2đ , đ) + đ đ (đ, đđ) + (1 â đ) đ (đ, đ1 đ) + đ (đ, đĽ2đ+1 )] . (61) Now, using (54) and (61), we obtain that óľŠ óľŠ |đ| óľŠóľŠóľŠđ (đ, đđ)óľŠóľŠóľŠ óľŠ óľŠ â¤ óľŠóľŠóľŠđđ (đ, đđ) + (1 â đ) đ (đ, đ1 đ)óľŠóľŠóľŠ = đ (đđĽ2đ , đđĽ2đ+1 ) ⤠= đđ (đđĽ2đ , đđĽ2đ+1 ) + (1 â đ) đ (đđĽ2đ , đđĽ2đ+1 ) = đđ (đđĽ2đ , đđĽ2đ+1 ) + (1 â đ) đ (đ1 đĽ2đ , đ1 đĽ2đ+1 ) ⤠đźđ (đĽ2đ , đĽ2đ+1 ) + đ˝ [đ (đ (đĽ2đ , đđĽ2đ ) + đ (đĽ2đ+1 , đđĽ2đ+1 )) + đž [đ (đ (đĽ2đ , đđĽ2đ+1 ) + đ (đĽ2đ+1 , đđĽ2đ )) + (1 â đ) (đ (đĽ2đ , đ1 đĽ2đ ) + đ (đĽ2đ+1 , đ1 đĽ2đ ))] = (đź + đ˝ + đž) đ (đĽ2đ , đĽ2đ+1 ) + (đ˝ + đž) đ (đĽ2đ+1 , đĽ2đ+2 ) ; (56) this yields that đ(đĽ2đ+1 , đĽ2đ+2 ) ⤠đżđ (đĽ2đ , đĽ2đ+1 ) , where đż = đź+đ˝+đž < 1. 1â đ˝ â đž (57) óľŠ óľŠóľŠ óľŠóľŠđ (đ, đđ)óľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ óľŠ óľŠ â¤ (đž1 {óľŠóľŠóľŠđ (đ, đĽđ+1 )óľŠóľŠóľŠ + đź óľŠóľŠóľŠđ (đĽđ+1 , đ)óľŠóľŠóľŠ + đ˝ óľŠóľŠóľŠđ (đĽđ , đĽđ+1 )óľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ + đž óľŠóľŠóľŠđ (đĽđ , đ)óľŠóľŠóľŠ + đž óľŠóľŠóľŠđ (đ, đĽđ+1 )óľŠóľŠóľŠ }) â1 × (|đ| (1 â đ˝ â đž)) . (63) Since the right hand side of the above inequality approaches zero as đ â 0, hence âđ(đ, đđ)â = 0, and then đ = đđ. Also, we have óľŠ óľŠ |1 â đ| óľŠóľŠóľŠđ (đ, đ1 đ)óľŠóľŠóľŠ óľŠ óľŠ â¤ óľŠóľŠóľŠđđ (đ, đđ) + (1 â đ) đ (đ, đ1 đ)óľŠóľŠóľŠ Therefore, for all đ, we deduce that đ (đĽđ+1 , đĽđ+2 ) ⤠đżđ (đĽđ , đĽđ+1 ) ⤠â â â ⤠đżđ+1 đ (đĽ0 , đĽ1 ) . (58) Now, for đ > đ, we obtain that đżđ đ (đĽ0 , đĽ1 ) . 1âđż đž1 óľŠ óľŠ óľŠ óľŠ {óľŠóľŠđ (đ, đĽđ+1 )óľŠóľŠóľŠ + đź óľŠóľŠóľŠđ (đĽđ+1 , đ)óľŠóľŠóľŠ (62) 1âđ˝âđž óľŠ óľŠ óľŠ + đ˝ óľŠóľŠóľŠđ (đĽđ , đĽđ+1 )óľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ +đž óľŠóľŠóľŠđ (đĽđ , đ)óľŠóľŠóľŠ + đž óľŠóľŠóľŠđ (đ, đĽđ+1 )óľŠóľŠóľŠ } . Therefore + (1 â đ) (đ (đĽ2đ , đ1 đĽ2đ ) + đ (đĽ2đ+1 , đ1 đĽ2đ+1 ))] đ (đĽđ , đĽđ ) ⤠óľŠóľŠ óľŠ óľŠóľŠđ (đĽ0 , đĽ1 )óľŠóľŠóľŠ , (59) ⤠đž1 óľŠ óľŠ óľŠ óľŠ {óľŠóľŠđ (đ, đĽđ+1 )óľŠóľŠóľŠ + đź óľŠóľŠóľŠđ (đĽđ+1 , đ)óľŠóľŠóľŠ 1âđ˝âđž óľŠ óľŠ óľŠ óľŠ óľŠ + đ˝ óľŠóľŠóľŠđ (đĽđ , đĽđ+1 )óľŠóľŠóľŠ + đž óľŠóľŠóľŠđ (đĽđ , đ)óľŠóľŠóľŠ óľŠ óľŠ +đž óľŠóľŠóľŠđ (đ, đĽđ+1 )óľŠóľŠóľŠ } , (64) 8 Abstract and Applied Analysis which implies that óľŠóľŠ óľŠ óľŠóľŠđ (đ, đ1 đ)óľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ óľŠ óľŠ â¤ (đž1 {óľŠóľŠóľŠđ (đ, đĽđ+1 )óľŠóľŠóľŠ + đź óľŠóľŠóľŠđ (đĽđ+1 , đ)óľŠóľŠóľŠ + đ˝ óľŠóľŠóľŠđ (đĽđ , đĽđ+1 )óľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ + đž óľŠóľŠóľŠđ (đĽđ , đ)óľŠóľŠóľŠ + đž óľŠóľŠóľŠđ (đ, đĽđ+1 )óľŠóľŠóľŠ }) Corollary 24. Let (đ, đ) be a complete cone metric space and đ a normal cone with normal constant đž1 . Suppose that the mappings đ, đ, đ1 , đ1 are four self-maps of đ satisfying đđ (đđ đĽ, đđ đŚ) + (1 â đ) đ (đ1đ đĽ, đ1đ đŚ) ⤠đźđ (đĽ, đŚ) + đ˝ [đ (đ (đĽ, đđ đĽ) + đ (đŚ, đđ đŚ)) + (1 â đ) â1 × (|1 â đ| (1 â đ˝ â đž)) . (65) Letting đ â 0, we deduce that âđ(đ, đ1 đ)â = 0, and then đ = đ1 đ. Similarly, by replacing đ by đ and đ1 by đ1 in (61), we deduce that óľŠ óľŠóľŠ óľŠóľŠđ (đ, đđ)óľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ óľŠ óľŠ â¤ (đž1 {óľŠóľŠóľŠđ (đ, đĽđ+1 )óľŠóľŠóľŠ + đź óľŠóľŠóľŠđ (đĽđ+1 , đ)óľŠóľŠóľŠ + đ˝ óľŠóľŠóľŠđ (đĽđ , đĽđ+1 )óľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ +đž óľŠóľŠóľŠđ (đĽđ , đ)óľŠóľŠóľŠ + đž óľŠóľŠóľŠđ (đ, đĽđ+1 )óľŠóľŠóľŠ }) â1 × (|đ| (1 â đ˝ â đž)) , (66) where âđ(đ, đđ)â = 0, as đ â 0. Hence âđ(đ, đđ)â = 0, and then đ = đđ. Also, óľŠóľŠ óľŠ óľŠóľŠđ (đ, đ1 đ)óľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ óľŠ óľŠ â¤ (đž1 {óľŠóľŠóľŠđ (đ, đĽđ+1 )óľŠóľŠóľŠ + đź óľŠóľŠóľŠđ (đĽđ+1 , đ)óľŠóľŠóľŠ + đ˝ óľŠóľŠóľŠđ (đĽđ , đĽđ+1 )óľŠóľŠóľŠ óľŠ óľŠ óľŠ óľŠ +đž óľŠóľŠóľŠđ (đĽđ , đ)óľŠóľŠóľŠ + đž óľŠóľŠóľŠđ (đ, đĽđ+1 )óľŠóľŠóľŠ }) â1 × (|1 â đ| (1 â đ˝ â đž)) . (67) Letting đ â 0, we deduce that âđ(đ, đ1 đ)â = 0, and then đ = đ1 đ. To prove uniqueness, suppose that đ is another fixed point of đ, đ, đ1 , and đ1 , and then × (đ (đĽ, đ1đ đĽ) + đ (đŚ, đ1đ đŚ))] + đž [đ (đ (đĽ, đđ đŚ) + đ (đŚ, đđ đĽ)) + (1 â đ) (đ (đĽ, đ1đ đĽ) + đ (đŚ, đ1đ đĽ))] (69) for all đĽ, đŚ â đ, where 0 ⤠đ ⤠1 and đź, đ˝, đž ⼠0 with đź + 2đ˝ + 2đž < 1. Then, đ, đ, đ1 , and đ1 have a unique common fixed point in đ; đ, đ > 1. Proof. Inequality (69) is obtained from (55) by setting đ ⥠đđ , đ1 ⥠đ1đ , and đ ⥠đđ , đ1 ⥠đ1đ . Then the result follows from Theorem 23. Remark 25. If we put đ = 0 or đ = 1 in Theorem 23, we obtain Theorem 2.1 in [12]. Remark 26. It should be remarked that the quaternion metric space is different from cone metric space which is introduced in [11] (see also [12â19]). The elements in R or C form an algebra while the same is not true in H. Open Problem. It is still an open problem to extend our results in this paper for some kinds of mappings like biased, weakly biased, weakly compatible mappings, compatible mappings of type (đ), and đ-weakââ commuting mappings. See [20â 30] for more studies on these mentioned mappings. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. đ (đ, đ) = đđ (đ, đ) + (1 â đ) đ (đ, đ) = đđ (đđ, đđ) + (1 â đ) đ (đ1 đ, đ1 đ) Acknowledgments ⤠đźđ (đ, đ) + đ˝ [đđ (đ, đđ) + (1 â đ) đ (đ, đ1 đ) + đđ (đ, đđ) + (1 â đ) đ (đ, đ1 đ)] (68) + đž [đđ (đ, đđ) + (1 â đ) đ (đ, đ1 đ) + đđ (đ, đđ) + (1 â đ) đ (đ, đ1 đ)] = (đź + 2đž) đ (đ, đ) , which gives đ(đ, đ) = 0, and hence đ = đ. This completes the proof. Now, we give the following result. The authors are grateful to Taif University, Saudi Arabia, for its financial support of this research under Project no. 1836/433/1. The first author would like to thank Professor Rashwan Ahmed Rashwan from Assiut University, Egypt, for introducing him to the subject of fixed point theory and Professor Klaus GuĚrlebeck from Bauhaus University, Weimar, Germany, for introducing him to the subject of Clifford analysis. References [1] F. Brackx, R. Delanghe, and F. Sommen, Clifford Analysis, vol. 76 of Research Notes in Mathematics, Pitman, Boston, Mass, USA, 1982. Abstract and Applied Analysis [2] K. GuĚrlebeck, K. Habetha, and W. SproĚßig, Holomorphic Functions in the Plane and n-Dimensional Space, BirkhaĚuser, Basel, Switzerland, 2008. [3] K. GuĚrlebeck and W. SproĚßig, Quaternionic and Clifford Calculus for Engineers and Physicists, John Wiley & Sons, Chichester, UK, 1997. [4] A. Sudbery, âQuaternionic analysis,â Mathematical Proceedings of the Cambridge Philosophical Society, vol. 85, no. 2, pp. 199â 224, 1979. [5] A. Azam, B. Fisher, and M. Khan, âCommon fixed point theorems in complex valued metric spaces,â Numerical Functional Analysis and Optimization, vol. 32, no. 3, pp. 243â253, 2011. [6] N. A. Assad and W. A. Kirk, âFixed point theorems for set-valued mappings of contractive type,â Pacific Journal of Mathematics, vol. 43, pp. 553â562, 1972. [7] S. Sessa, âOn a weak commutativity condition of mappings in fixed point considerations,â Institut MatheĚmatique, vol. 32, pp. 149â153, 1982. [8] O. HadzĚicĚ and L. GajicĚ, âCoincidence points for set-valued mappings in convex metric spaces,â Univerzitet u Novom Sadu. Zbornik Radova Prirodno-MatematicĚkog Fakulteta, vol. 16, no. 1, pp. 13â25, 1986. [9] A. J. Asad and Z. Ahmad, âCommon fixed point of a pair of mappings in Banach spaces,â Southeast Asian Bulletin of Mathematics, vol. 23, no. 3, pp. 349â355, 1999. [10] G. Jungck, âCommuting mappings and fixed points,â The American Mathematical Monthly, vol. 83, no. 4, pp. 261â263, 1976. [11] L.-G. Huang and X. Zhang, âCone metric spaces and fixed point theorems of contractive mappings,â Journal of Mathematical Analysis and Applications, vol. 332, no. 2, pp. 1468â1476, 2007. [12] M. Abbas and B. E. Rhoades, âFixed and periodic point results in cone metric spaces,â Applied Mathematics Letters, vol. 22, no. 4, pp. 511â515, 2009. [13] M. Abbas, V.CĚ. RajicĚ, T. Nazir, and S. RadenovicĚ, âCommon fixed point of mappings satisfying rational inequalities in ordered complex valued generalized metric spaces,â Afrika Matematika, 2013. [14] A. P. Farajzadeh, A. Amini-Harandi, and D. Baleanu, âFixed point theory for generalized contractions in cone metric spaces,â Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 2, pp. 708â712, 2012. [15] Z. Kadelburg and S. RadenovicĚ, âA note on various types of cones and fixed point results in cone metric spaces,â Asian Journal of Mathematics and Applications, 2013. [16] N. Petrot and J. Balooee, âFixed point theorems for setvalued contractions in ordered cone metric spaces,â Journal of Computational Analysis and Applications, vol. 15, no. 1, pp. 99â 110, 2013. [17] P. D. Proinov, âA unified theory of cone metric spaces and its applications to the fixed point theory,â Fixed Point Theory and Applications, vol. 2013, article 103, 2013. [18] S. RadenovicĚ, âA pair of non-self mappings in cone metric spaces,â Kragujevac Journal of Mathematics, vol. 36, no. 2, pp. 189â198, 2012. [19] H. Rahimi, S. RadenovicĚ, G. S. Rad, and P. Kumam, âQuadrupled fixed point results in abstract metric spaces,â Computational and Applied Mathematics, 2013. [20] A. El-Sayed Ahmed, âCommon fixed point theorems for mweakââ commuting mappings in 2-metric spaces,â Applied Mathematics & Information Sciences, vol. 1, no. 2, pp. 157â171, 2007. 9 [21] A. El-Sayed and A. Kamal, âFixed points and solutions of nonlinear functional equations in Banach spaces,â Advances in Fixed Point Theory, vol. 2, no. 4, pp. 442â451, 2012. [22] A. El-Sayed and A. Kamal, âSome fixed point theorems using compatible-type mappings in Banach spaces,â Advances in Fixed Point Theory, vol. 4, no. 1, pp. 1â11, 2014. [23] A. Aliouche, âCommon fixed point theorems of Gregus type for weakly compatible mappings satisfying generalized contractive conditions,â Journal of Mathematical Analysis and Applications, vol. 341, no. 1, pp. 707â719, 2008. [24] J. Ali and M. Imdad, âCommon fixed points of nonlinear hybrid mappings under strict contractions in semi-metric spaces,â Nonlinear Analysis. Hybrid Systems, vol. 4, no. 4, pp. 830â837, 2010. [25] G. Jungck and H. K. Pathak, âFixed points via âbiased mapsâ,â Proceedings of the American Mathematical Society, vol. 123, no. 7, pp. 2049â2060, 1995. [26] J. K. Kim and A. Abbas, âCommon fixed point theorems for occasionally weakly compatible mappings satisfying the expansive condition,â Journal of Nonlinear and Convex Analysis, vol. 12, no. 3, pp. 535â540, 2011. [27] R. P. Pant and R. K. Bisht, âOccasionally weakly compatible mappings and fixed points,â Bulletin of the Belgian Mathematical Society, vol. 19, no. 4, pp. 655â661, 2012. [28] H. K. Pathak, S. M. Kang, Y. J. Cho, and J. S. Jung, âGregusĚ type common fixed point theorems for compatible mappings of type (T) and variational inequalities,â Publicationes Mathematicae Debrecen, vol. 46, no. 3-4, pp. 285â299, 1995. [29] V. Popa, M. Imdad, and J. Ali, âUsing implicit relations to prove unified fixed point theorems in metric and 2-metric spaces,â Bulletin of the Malaysian Mathematical Sciences Society, vol. 33, no. 1, pp. 105â120, 2010. [30] T. Suzuki and H. K. Pathak, âAlmost biased mappings and almost compatible mappings are equivalent under some condition,â Journal of Mathematical Analysis and Applications, vol. 368, no. 1, pp. 211â217, 2010. Advances in Operations Research Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Advances in Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Applied Mathematics Algebra Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Probability and Statistics Volume 2014 The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Differential Equations Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014 Submit your manuscripts at http://www.hindawi.com International Journal of Advances in Combinatorics Hindawi Publishing Corporation http://www.hindawi.com Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Journal of Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Mathematics and Mathematical Sciences Mathematical Problems in Engineering Journal of Mathematics Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Discrete Mathematics Journal of Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Discrete Dynamics in Nature and Society Journal of Function Spaces Hindawi Publishing Corporation http://www.hindawi.com Abstract and Applied Analysis Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 International Journal of Journal of Stochastic Analysis Optimization Hindawi Publishing Corporation http://www.hindawi.com Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 Volume 2014
© Copyright 2026 Paperzz