SALT MINERALS AND WATERS FROM SOILS IN KONYA AND KENYA CENTRALE LANDBOUWCATALOGUS 0000 0086 7032 £«A-/3<U?c/, o% Promotor:dr.L.vander Plas,persoonlijk hoogleraar Mn G201 âtjr Lideke Vergouwen SALT MINERALS AND WATERS FROM SOILS IN KONYA AND KENYA Proefschrift terverkrijgingvandegraadvan doctorindelandbouwwetenschappen, opgezagvanderectormagnificus, dr.H.C.vanderPlas, hoogleraar indeorganische scheikunde, inhetopenbaarteverdedigen opvrijdag 22mei 1981 desnamiddagstevieruur indeaula vandeLandbouwhogeschoolteWageningen &rV\2,tO^ ^ BIBLIOTHEEK LH. 0 6 MEI J98I °NTV„TÏJDSCHR. » uo?20tjKK> STELLINGEN 1.Tenonrechte concluderenHallamenEugsterdatindeaardkorstdefugaciteit vanNH,enkeleordesgroterisdandefugaciteitvanstikstof;ditgeldt alleen bijonwaarschijnlijk lage totaalspanningenvanstikstof+ammoniakinmetamorfe enmagmatische vloeistoffen. Hallam,M.,andEugster,H.P., 1976.Contrib.Mineral.Petrol.,57,p.227-244 2.Skarnsincontact-halo'svanintrusies zijnniet altijdmetasomatisch veranderde carbonaatgesteentes.Skarnvormingkaneveneensplaatsvindentenkostevan hoornrotsen. 3.ZoutuitbloeiingenopNederlandse bakstenenbestaangrotendeelsuitdesulfaten eugsteriet,syngenietengips. 4.KittrickbestrijdtdeconclusievanGiltrapenChurchmandatbijdeoplosexperimentenmetdeColonymontmorillonietdeoplossingnaverloopvantijdinevenwichtismeteenvaste fase,opgrondvanhetonjuist citerenvanhunresultaten. Kittrick,J.A., 1978.Soil Sei.Soc.Am.J., 42,p.524-528. Giltrap,D.J., and Churchman,G.J., 1977.Geochim.Cosmochim.Acta,41,p.387-392. 5.Lateritisatieenferralitisatie zijngeochemischtweegeheel verschillende processendievaakverwardworden. Maignien,R., 1966.Review ofresearch on laterites.UNESCO. Jenny,H., 1980.TheSoilResource.Springer Verlag. 6.Hetheeft slechtsdanzinomfijnkorreligemineraal associatiesmeteenscanning electronenmicroscooptebekijken,wanneer dezeuitgerustismeteensysteem waarmeedeindividuelemineralen chemisch onderzocht kunnenworden.Vergissingen alsgemaaktdoorDriessenenSchoorlenEswaranenCarrerakunnenzovermeden worden. Driessen,P.m., and Schoorl,R., 1973.J. Soil Sei.,24,p.436-442. Eswaran,H.,andCarrera,M., 1980.International symposium onsalt affected soils,Karnal.p.237-293. 7.DemethodewaarbijdoorvereenvoudigingvandechemischesamenstellingGibbs energieënvanchemischgecompliceerdenatuurlijkemineralenwordengeschatof vergeleken,leidttotongeoorloofdeconclusies. Huang,W.H.,andKeller,W.D., 1972.Am.Min.,57,p.1152-1162. Reesman,A.L.,1978.ClaysClayMin.,p.217-225. 3.Bijtheoretischevoorspellingenoverdezoutsequentiediebijverdampingvan eenwaterigeoplossing zalneerslaan,moetterdegerekeninggehoudenwordenmet devormingvanmetastabielezoutmineralen. Ditproefschrift. 9.Wanneerbijverdampingvaneenwaterigeoplossingmagnesiumneerslaatniet alseencarbonaatmaaralseensilicaat,impliceerttoenamevandeCa +Mg - concentratiebijverdereverdampingnietnoodzakelijkerwijs afnamevandealkaliniteit. Ditproefschrift. 10.Vrouwenindezogenaamde "hogerefuncties"vormennogsteedseentegrote uitzondering. 11.Erlijkteeninverserelatietebestaantussenwetenschapsbeleid enwetenschapsbeoefening inNederland. zieookSpernaWeiland,J., 1981.UniversiteitenHogeschool,p.311-322. 12.Delaatstestellingvandemens isinmoederaarde. LidekeVergouwen Saltmineralsandwaters fromsoils inKonyaandKenya. Wageningen,22mei1981. CONTENTS 7. Introduction 1 2. Generalinformation about salt-affeoted soils 3 2.1Introduction 3 2.2 Someconcepts 4 2.3 Soilclassification 2.4Problems arisingwith irrigationandcroppinginaridregions 7 9 2.5 Reclamationofsalt-affected soils 10 2.6 Reclamationofsodicsoils 10 2.7 Preventionofresalinisation 12 2.8 Cropping 13 3. Salt-affected soils in the GreatKonya Basin in Turkey 14 3.1 Physiography 14 3.2 Geology 15 3.3 SoilTypes 3.4 Correlationofoccurrenceofsaltswith soil type 17 20 3.5 Samplingandanalyticalprocedure 21 3.6 Correlationbetweenthefabricandmineralogyofthesalt associations 21 3.7Methodsofwater analysis 23 4. Salt-affected soils in Kenya 27 4.1Physiographyandclimate 27 4.2Geology 27 4.3AmboseliBasin 30 4.4LakeVictoria 4.5EastofLakeTurkanaandtheChalbiDesert 4.6Samplingandanalyticalprocedure 32 33 35 4.7Correlationbetweenthefabricandmineralogyofthesalt associations 35 5. Brine evolution in closed basins 91 5.1 Introduction 41 5.2 Chemicalevolution 42 5.3Acquisitionofsolutes 43 5.4Evaporation 43 5.5Applicationtoirrigationofsalt-affected soils 6. Application of the model of brine evolution 55 to Konya and Kenya 56 6.1Salts 56 6.2Watercompositioninthesystem (Na+K)-Ca-Mg-Cl-S04-(HC03+C03) 57 6.3WatercompositioninthesystemMgO-SiCL-CaO 58 6.4Concentrationofindividual ionsversuschlorineconcentration 61 6.5Conclusions 66 7. Mineralogy 67 7.1Identificationofminerals 67 7.2Crystallographicproperties 67 7.3Eugsterite,anewsaltmineral 69 7.4Konyaite,anewsaltmineral 75 7.5TwonewoccurrencesandtheGibbsenergyofburkeite 79 7.6Scanningelectronmicroscopy appliedtosalinesoilsfromthe KonyaBasininTurkeyandfromKenya 8. Salt assemblages and evaporation 84 experiments 91 8.1 Introduction 91 8.2Evaporationexperiments 91 8.3PhasediagramsinthesystemNa-Ca-SO.-C02-H20 97 109 8.4SolubilitycalculationsinthesystemNa-K-Mg-Ca-Cl-S04-H20 9. Stable isotopes in waters from the Konya- and Amboseli a reconnaissance Basins; study 119 9.1 Introduction 9.2Stable isotopesofhydrogenandoxygen 9.3Factorsaffectingtheisotopiccompositionofnaturalwaters 9.4Analyticalproceduresanddata 9.5Discussions 119 119 120 123 125 10. Summary 129 77. Samenvatting 131 72. References VOORWOORD Hethangtvaneenveelheid van invloeden afwelk zoutuitkristalliseert en welkevormhetaanneemt.Zowerdenookvormeninhoudvanditproefschriftexternbeïnvloed.Vanhendietotdeuitkristallisatie hiervanbijdroegenwilik noemen: Prof.Dr.L.vanderPlas,mijnpromotor,wiensdeur inruime zinaltijdvoormij openstond, Drs.E.L.Meijer,mijnkamergenoot,die zijnthermodynamischinzicht belangeloos metmij deeldeenaltijdbereidwasmee tedenken, Prof.Dr. Ir.P.Buringh,Prof.Dr.R.D.Schuiling,Dr. Ir.N.vanBreemen, Drs.N.M.deRooij,Drs.B.W. Zuurdeeg,metwie ikverhelderende discussies voerde, Prof.H.P.Eugster,Dr.Y.Gat,Dr.C E . Harvie,Mrs.NancyMö11er-Weare, Dr.Y.Tardy,Prof.J.H.Weare,whokindly suppliednecessary information, Ing.H.W. Boxern,Dr.Ir.P.M. Driessen,Dr.A.Mermut,Drs.L.Touber, Dr. Ir.W.G.Sombroek,Drs.R.F.vandenWegen Ir.W.G.Wielemaker,die mij begeleidden opmijnverzamelreizen inKenyaenTurkije, Dr.R.KreulenenJ.Meesterburrie,diede isotoop-analyses uitvoerden, Drs.J.M.A.R.Wevers,diedeprecessieopnames verzorgde, Mevr.A.M.A.Baas,L.Th.Begheijn,J.D.J.vanDoesburg,A.J.Kuijper en E.J.Velthorstvanwegehunanalytische inspanningen, Dr.M.Barton,diedeskundig ensnelmijnEngelse tekst zuiverde, G. BuurmanenO.D.Jeronimusvoorhet tekenwerk, Z.vanDruutenvoordefotografie, Mevr.A.BouterenMevr.C.B.Beemsterdiehettype-werk verzorgden enOlafenElleke. 0 ED ^ % ovtf ^ ^# <> PUDERT J(* <? PIETER \& -f ^ «i BRAM -^ EEF ^^ * ^ Soi %ru vcy M# ? ^ T 9 S ^ amboseli * c \ ^ ^ ïft SALTMINERALS AND WATERS FROM SOILSINKONYA AND KENYA o0 c/i,aie 9N NOt\- 1. INTRODUCTION Salt-affected soilsarecharacterizedbythepresenceofhighly soluble salts,mainly chlorides,sulphatesandcarbonates,which influenceplantgrowth. Suchsalts increasetheosmoticpressureinthesoilmoistureandconsequently plants cannot takeupenoughwater.Thisresultsinphysiologicaldrought,a typicalphenomenonforplants growingonsaline land.Howmuchplants suffer dependsonthequantityofsaltsandonthetypeofsaltspresentinthesoil solution. Salt-affectedsoilsoccurinmanypartsoftheworld,mainlyinwarmarid andsemi-aridregions,whereprecipitationistoolowtoleachthesalts.Soil salinisationisanormalprocessinthoseregionsweregroundwaterissaline andatashallowdepth.Irrigatedlandinratneraridregionsoftenbecomes saline,because solublesaltsaccumulateinthesoils,particularlyifinsufficientprovisionsaremadeforleachinganddrainage. Thereclamationofsalt-affected soilsinordertomake themsuitablefor agriculturalproductionisasubject thathasbeenstudiedformanyyears.There areseveralbooksandarticlesdealingwith salt-affectedsoilsandinparticular withsaltsatthesoilsurface,inthesoilprofileandinthegroundwater.In studiesofsalt-affected soilsthesolublesaltsareusuallydissolvedandthe totalamountofsaltsand/ortheconcentrationofvarious ionsinthesolution aredetermined.Only littleattentionispaidtothemineralogicalcomposition ofthesesalts. Most saltsinsalt-affectedsoilsoriginatebyevaporationofgroundwateror irrigationwater.Slightdifferencesinthecompositionofthedilutewaters give risetodifferenttypesofsaltassemblagesandaccordinglytodifferent typesof saltprovinces.Conversely,theevolutionofthegroundwater compositionduring furtherevaporationislinkedtothemineralswhichformfromthesewaters. Thisstudytreatstherelationbetweenthemineralogical compositionofthe saltassemblagesandthegroundwatercomposition. Sampleswere takenfromthreedifferentregionsinKenyaduringtheautumnof 1977andfromtheGreatKonyaBasininTurkeyduringthesummerof1978.Inadditiontosamplesofsaltefflorescences,samplesofthegroundwaterswere taken atthesamelocalities. These twocountrieswere chosenfortworeasons: 1.Thesalts inKenyaconsistmainlyofsodiumcarbonateswhereas thoseinthe GreatKonyaBasinconsistmainlyofsodium-magnesiumsulphates. 2.Regions inbothcountrieshavepreviouslybeenstudied by soil scientists fromtheDepartment ofSoilScienceoftheAgriculturalUniversity inWageningen. Specialreference ismade tothestudiesofdeMeester (1970)andDriessen (1970). The latteralsostarted thestudyofsaltminerals intheGreatKonyaBasinin Turkey.Soilscientistsworkingatatrainingproject inKisii,Kenya,fromthe samedepartment,andDutchsoilscientistsworkingattheKenyaSoilSurveyin Nairobiprovided thenecessarypedological informationfor thesamplingprogram inKenya. Thecrystallographic andmorphologicalproperties ofmanysaltmineralsare notwelldescribed.Someoftheseminerals,occurring inoneormoreofthesamplingareas,wereselected toinvestigate theseproperties indetail. Moreover,twonewminerals'havebeendiscovered anddescribed. 2. GENERAL INFORMATION ABOUT SALT-AFFECTED SOILS 2.1 INTRODUCTION Salt-affected soils (Halomorphicsoils)areindicatedonthenewSoilMap oftheWorld (1:5.000.000)byFAO/Unesco (1974-1980)bytwomajor soilunits: SolonchaksandSolonetz. Solonchaks * aresoilswithahighsalinity (EC >15ms/cm)within 125cmof thesoilsurface. TheSolonchaksaresubdivided intofourmappingunits: OrthicSolonchaks,themostcommonSolonchaks, Gleyic " ,Solonchakswith ground water influenceintheupper50cm, Takyric " ,Solonchaks incracking claysoils, Mollic " ,Solonchakswithadark-coloured surface layer,oftenhigh inorganicmatter. Soilswith lowersalinity thanSolonchaksaremappedasa"Salinephase"of othersoilunits. Solonetz aresodium-rich soilswith accumulationofclayinthesubsurface * soil.This clayhasanESP> 15%andthestructureiscolumnarorprismatic. TheSolonetzaresubdivided intothreemappingunits: OrthicSolonetz, themostcommonSolonetz, Gleyic " , thosewithgroundwaterinfluenceintheupper50cm, Mollic " , thosewithadark-coloured surface layer,oftenhigh inorganicmatter. Soilswithalowerpercentageofexchangeable sodium thanSolonetzaremapped as"Sodicphase"ofothersoilunits. ReferenceismadetoFAO/Unesco (1974)forprecisedefinitions.Itisevident from theseshortdescriptions thatsalt-affected soilswhicharecharacterizedbythepresenceofhighlysolublechloridesandsulphates (Solonchaks)are distinguished fromthosewithhighlysolublecarbonatesandbicarbonates (Solonetz)inwhichthestructureofthesoilsisdeterioratedandconsequently there isapoormediumforrootgrowth. * Theseabbreviationswillbeexplained inSection2.2. Besides therealSolonchaksandSolonetz therearealsosoilshavingintermediatecharacteristics,which areoftencalledSolonchak-Solonetz orsalinesodicsoils (Richards,ed.,1954;theso-called "Handbook 60").Theterm"sodic" israthernew;inolderpublications thename "alkali soils"wasoftenused, butthisnameisnow abandoned. There isnotmuchconfusion aboutthecharacteristics,properties and agricultural evaluationofthevarious salt-affected soils.However,thereis muchconfusiononhowsuchsoilsshouldbeclassified orpresented asmapping unitsonsoilmaps. Insection2.3 theclassificationofsalt-affected soils willbedealtwith inageneralmanner;specificandoftencomplicateddefinitionsanddetailswillbeavoided. 2.2 SOME CONCEPTS Insection2.1 someabbreviationshavebeenintroduced.Theseterms,commonly used insoilscience,andsomeotherrelevant facts,whicharenotfamiliarto non-pedologists,willbeexplainedbeforedealingwiththeclassificationof salt-affectedsoils. Insomeclayminerals cations arereplaced byothercationswithalower valency,forexampleSi byAl orAl byMg .Thisproduces anegative chargeatthemineralsurfaceswhichenablesthemtoadsorbpositively charged ionsfromthesoilsolution. Organicmatter canalsoadsorb cations atthesurfaceandexchange these ions withothers. Theadsorbed ionsdistribute themselvesover thenegatively charged surfaceof theclayminerals according toaBoltzmann-typedistribution (fig.2.1a and 2.1b).This istheresult ofanequilibrium'betweentheattractive forcesof thesurfaceandthetendencyofthe ionstodiffuse away.The layerofliquid whichextends fromthemineral surfacetothepointwhere theconcentrationof theionshasdropped totheconcentrationofthesoilsolution iscalled the diffusedoublelayer (DDL). Thethicknessofthediffusedouble layerisdependentonthechargeofthe adsorbed ions;divalent ionsareattractedmorestronglytothesurfaceand theirDDL isthinnerthaninthecaseofmonovalent ions.Thethicknessofthe DDLisalsodependentontheconcentrationofthesoilsolution;thethickness decreaseswhentheconcentrationoftheions inthesoilsolutionincreases. Whenwater isintroduced intoadrysoil,theionsexertaswellingpressure, _ E E + + + - + + - + + — _ ++ + - + z ++ + + + + —+ —+ + + z + —+ + + - + + + + + + Fig. 2.1a and 2.1b Distribution of cations against the surfaceof aclay mineral:c=concentration;x=distance from the surface;DDL=diffuse double layer, (modified afterBolt &Bruggenwert, 1976) theclayparticlesaredrivenaway fromeachother,thesoilswellsandthe permeability decreases.Thisswellingismostpronouncedwhenmuchsodium,a monovalent ion,isadsorbedandwhen little saltisdissolved inthewater,as isthecasewithrainwater,becauseunder suchconditionstheDDLisatits maximum.Whenabundantwaterisavailable,thesoilpeptises,thewaterandthe clayparticles formakindofconcentrated suspensionandtherearenoaggregates anymoreandthesoilstructuredisappears completely. Thephysicalpropertiesofasoilarethusdependentupontheadsorptionof sodiumontheadsorbingcomplexandupontheconcentrationofthesolutesin thesoil solution.Thedependenceonthesetwoispresentedinfig.2.2. Theamountofcationswhichasoilcanadsorbbycationexchangeiscalled 1z+ -1 thecation-exchange-capacityor CEC,expressedasmmol-M .kg ofsoilin whichMdenotesthecationandzisitscharge.Theseunits conformtoSI,the Système International d'Unités (Brinkman, 1979).BeforetheintroductionofSI, theCECofasoilwasexpressedasmilliequivalent .kg ofsoil.ThemilliequivalentisnotrecognizedinSI. Theexchangeable sodiumpercentageor ESPisthepercentageoftheexchange- Fig. 2.2 Dependence of thesoil structure on the electroconductivity (Ec)of the soil solution and the exchangeable sodiumpercentage (ESP) inthe soil.ForexplanationofEc andESP,see text, (afterBolt & Bruggenwert, 1976) ablecationsontheadsorptioncomplexwhichconsistofsodium. ESP= exchangeable sodiummmolNa .kg ofsoil r-^ , — x100 mmol-M . k g ofsoil CEC Thesodiumadsorptionratioor SARisanothertermwhichiscommonlyused. Thisratioexpressestherelative activityofsodiuminsoil-andirrigation watersandisexpressedas Na SAR v/(Ca 2+ + Mg 2 + )/2 1 z+ _3 withallconcentrations expressedasmol-44 .m A saturated soil paste isasoilsampletowhichsomuchwaterhasbeen addedthatallofthevoidsarefilledwithwater.Thepastestartstoglisten andisabletoflow.Themoistureextracted fromthispasteiscalledthe saturationextract. Theelectricalconductivityor Ea isthereciprocalofelectricalresistivityexpressedasmillisiemenspercm (ms/cm).Before introductionoftheSI system,theEcwasexpressedasmmho/cm. 2.3 SOIL CLASSIFICATION All soil classification systemshavehierarchies ofgroupsofsoils (taxa). Thismeans thatthere aredifferent levelsofclassification.At thehighest levelssoils areclassified according tocertaincharacteristics whichareconsidered tobemore important thanothercharacteristicswhichareused todistinguish soilsatthe lower levels.Insomesoil classification systemssaltaffected soilsareseparated fromothersoils onthehighest levelsofclassification.Inother systemssoils are firstclassified according toother criteria and at lower levelsofclassification thepresence ofsoluble salts is indicated. The lastprocedure is,forexample,followed inthenewAmerican systemofsoil classification "SoilTaxonomy" (SoilSurvey Staff, 1975).Heretherealsaltaffected soilsbelong tothesoilorderoftheAridisols.Therearetwosubordersviz. the Argids (soilswithclay accumulation inthesubsurface horizon) and the Orthids (soilswithout suchaclayaccumulation).At thethird levelof classification there isagreatgroupnamed "Natrargids", whichareArgidswith ahighsodiumpercentage attheadsorption complex,andare indicated asthe SolonetzontheSoilMap oftheWorld (FAO/Unesco, 1974-1980).At this third levelofclassification (greatgroups)thereare the "Salorthids" inthesub- orderofOrthids,whicharetheSolonchaks ontheSoilMap oftheWorld. Inthe oldAmerican systemofsoilclassification (1938)thenames Solonchak soilsand Solonetz soilswereused. IntheFrenchsystemofsoil classification (CPSS, 1967)the salt-affected soils areseparated fromallother soilsonthehighest levelof classification. There isa"Classedessols sodiques"witha"Sous-classe des solssodiques à structurenondegrade"towhichbelong the"Groupedessolssalins" (Solonchak). Totheother "Sous-classe dessols sodiques àstructure dégradé"belongs a "Groupedessolssalins àalcalins" (Solonchak-Solonetz) and a"Groupedessols sodiques àhorizonB" (Solonetz). IntheprovisionalnewFrenchsystem (Fauck etal, 1979)thereareatthehighest level "LesSelsols".One ofthegreat subclasses iscalled "Halisols"or "Selsols haliques"andthis is subdivided according tothedominant saltspresent inthe soil,forexample "halisols à chloruredesodium".Another subclassofthe"Halisols"referstothe "halisols carboxiques"or "carboxihalisols",the formerSolonetz. IntheRussian classification of soils,Solonchaks andSolonetz aredistinguished atahigh levelofclassification. Theoriginofbothnames is Russian. TheSolonchaks canbesubdivided into external Solonchaks with soluble salts throughout thewhole soil,and internal Solonchaks with soluble salts inthe subsoilorsubstratum.The Solonchaks canbesubdivided accordingto thecompositionofthe salts.The following typesexist:nitrate-,nitratechloride-,chloride-,sulphate-chloride-,chloride-sulphate-,sulphate-, sulphate-soda-,soda-,borate-solonchaks. External Solonchaks canalsobesubdivided accordingtotheir morphological features.Thefollowing typesofexternal Solonchaksmayoccur: 1. Flooded Solonchaks These soilsareperiodically underwater.Evaporationofthesurfacewater producesacoherentwhite crust,sometimesofseveral centimeters thickness. This crust seals thesubsurface therebypreventing further evaporation.Therefore,the soilunder thecrustisratherwet. 2. Puffed Solonchaks (puffyorfluffy Solonchaks) Theupperpartofthesoilisvery looseandpuffybecauseofthepresenceof sodium sulphateneedleswhichpushthesoilparticles apart.Theuppermost layerissometimesalittlebit crusty (sodiumchloride)whichholds thesoil togetherand counteracts evaporation.This typeofsoilformsbyevaporation ofgroundwater. 3. Sabbakh soils (or wet mineral soils) These soilscontainmagnesium and calcium chlorideswhich areextremelyhygroscopic.Theyattractmoisture fromtheairandare,therefore,darkerincolour thanthesurroundings,especiallyinthemorning (SabbakhisArabic formorning). There aremanyotherways inwhich salt-affected soilshavebeen subdivided, althoughmostoftheseclassifications arenotofficial systemsofsoil classification.Sometimesasubdivisionismade accordingtotheoriginofthesalt. Thefollowing typesexist: 1. Closed basin saline soils Weathering products fromthehinterland aretransportedbysurface andsubsurfacewaters intothebasin,theyaccumulate andcannotberemoved fromthe basin.Evaporationofthewater causessaltstobedepositedinandontopof thesoilprofile.These soilswillbetreatedindetailinchapter5. 2. Marine saline soils Thesesoilsoccur along coasts eitherbyflooding,seepageofseawaterorby seaspray. 3. Alloahthonous airblown saline soils Salts fromother localitiesaretransportedbythewindandformnewsaline soilsattheplacesofdeposition. 4. Anthropogenic saline soils Salinesoils causedbytheinfluenceofmanbymeansofirrigationandflooding without concomittant drainagetoremovethedissolved salt.Theirrigation water evaporatesandsaltsareformed. This short introduction indicates thattherearemany criteriabywhich salt-affected soilsmaybeclassified.Itdependsonthepurposeofinvestigationwhichclassification systemwill'bechosen.Theclassification fromthe pointofviewofsoilsystematicsisquitedifferent fromonethatissetup tocharacterizetheproductive capacityforagriculturalpurposes.Forthe latteritisnecessarynotonlytoknowtheEC andESPvalues,butalsowhich saltsarepresentinthesoil,thesoilsolutionandinthegroundwater.A simpleECmeasurement alone givesonlyavery rough ideaofthetotal,amount ofsaltsbecausedivalent ionshaveadifferent contributiontotheelectroconductivity thanmonovalent ions.MoreovertheECmeasurements arecarried outonasaturationextractandthewater contentofdifferent soilsunder fieldconditions isextremelyvariable.Therefore,theosmoticpressureofthe soilsolution,whichthisECmeasurementismeanttoindicate,maybeincorrect. Inthisstudytheterms salt-affected soils and Solonchaks willbeused. 2.4 PROBLEMSARISING WITH IRRIGATIONANDCROPPING INARID REGIONS Inaridregions irrigationisappliedfortwodifferentpurposes: 1.water supplyforplants 2.improvementofchemicalandphysicalpropertiesofthesoil. Before soilswhichshowapoor naturalvegetationareusedforagriculture,it mustbeascertainedwhether theyarechemicallyandphysically suitablefor growingcrops. Saltsmustberemoved fromsoilswhicharetoosaline,andiftoomuch sodium isadsorbedontheadsorption complexinthesoil,thesodiummustbeexchanged withother cations.Inthefollowing sectionsthereclamationofsuchsoils willbedealtwith. 10 2.5 RECLAMATION OFSALTAFFECTED SOILS Irrigationisthemethodwherebywater issupplied forcropgrowth in aridregions.Ifthesoilsaresalt-affected,thesaltsmust firstberemoved. Usually,salts areremovedby leaching;somuchwater isaddedtothesoil thatallsaltsaredissolved and transported downwards intheprofile. Thedependence ofthesolubilities ofmostnaturallyoccurring binary saltsontemperature isshowninfig.2.3 andfig.2.4.The solubilities are expressed ing/kgwater and inmole/kgwater respectively. Thegyosumand anhydritedataarethemeancurvesoftherangesgivenby Hardie (1967).TheothersolubilitydataarefromLinke (1965).Sodium salts arepresent inmostsaltefflorescences,atleast inthecaseofsalinesoils whichoriginatedbyevaporationofgroundwater.Whenthesodiumsaltsare dissolved intheirrigationwater,caremustbe takenthattheSARvalueof theirrigationwaterremains lowinordertoprevent thesoilfrombecoming sodic. Leaching insummerhas theadvantagethatthesolubilityofmostsaltsincreaseswithtemperature (fig.2.3 and fig.2.4),but ithas thedisadvantage thatevaporation ishigh. Ifthere isahard layerofcalciteorgypsumpresent inthe soil,whichis impermeable and impenetrable toroots,this layermustbe brokenmechanically, forexampleby subsoiling.Suchanatural gypsumsupplyisvery favourable whenthesoil issodicaswell (seesection2.6). 2.6 RECLAMATION OFSODIC SOILS Iftoomuchsodium isadsorbed attheadsorptioncomplex,whichmakes the soilunsuitable forgrowingcrops,thefirst irrigationwater isused forimprovement ofthephysicalproperties ofthesoil.Thesodiummustbereplaced bydouble-charged cationssuchascalciumandmagnesiumbecausesodiumcauses thesoiltoswellandtobecome imoermeablewhenitbecomeswetand further irrigationisuseless. Theconductivity ofthefirst irrigationwatermustbehigh,because thedispersionoftheclayparticlesdependsnotonlyontheESPofthesoil,but alsoonthesaltcontentofthewater (seefig.2.2).Usually gypsum (CaS0..2H20)isaddedtotheirrigationwater.Theelectroconductivity increases andcalcium ionsbecome availabletoreplace thesodium ions. 11 XI cu CU 4-J CO •-H rH •H J3 CO CU 4-1 >1 ^^ u a. 3 CU C X i-I cu O co I-H CU •O u 3 cu J2 4-) •4-1 S-l CU 4-J O CU CU O CN raÏC 0 D. 0 0 B .ü -o CU o 4J T) 4-> •rH e a) .c C 4J t—1 CO co S co <U P. CU <r CO 4-t rH CO CO CN >> a 3 O U "0 co • oo C •H -O [K | CU .c co -o o"_ co >% CO U •H 4J 4J CU t—1 O S 0 tu o# 4J >^ .a -a CU co 3 CU e o e CO co C MH • H e o O •r4 4-1 cfl »H 4-1 " Ö 13 CU 4J CO •H CO t—1 CU •rH u X I p. >* 3 X ^O CU co e CU CU u CU 3 J = 4J 4J CO S-l 4-1 CU O o. CU o e CU •a s CU 4-1 -C i-t m CN CO CO CU O CN SC 00 M CO 3 O >H •a r^ U CO • •Ha u >> x; xi 4J 4-1 4-1 rH CO CO c • SH a. C U CO o 4-1 CU cu o *a C 0 0 3 o .c >> .c c 00 •rH CO Pu -a 00 T3 ^-N O CU T 3 C -H •H > i-H « H -0 T3 CU CU -C -Q co CO 4J T-) CO v_- g e CN r H CO CJ (3 CO O O -H 4-1 u ra o 4.1 u [U 12 Ca Na Na +CaS0 4 .2H 2 0 Na Ca +Na 2 S0 4+H 2 0 -Ca Iftheclaycontentofthesoilisveryhighandmuch sodiumisadsorbedat thisclay,themaximum electroconductivity reachedwiththeadditionofgypsum maynotbehighenoughtoavoidpeptisationoftheclayparticles.Thisis becausegypsumhasalowsolubility (2.1g/kgwaterat25 C ) .Insuchcases amore soluble saltsuchascalciumchloride,whichhasasolubilityof828g/kg waterat25 C,isadded.However,thissaltismuchmore expensive thangypsum. Sometimes sodium saltsareaddedinadditiontogypsuminordertoincreasethe electroconductivityoftheirrigationwater.Inthisparticular casetheprocess ofreplacing sodiumbycalciumisobviouslyslower. Sodiummustberemoved fromtheadsorptioncomplex,especiallyinregionswhere thecompositionoftheirrigationwater cannotbekeptundercontrol,suchas inregionswithintermittentrainfall.Rainwater containsfewdissolved salts andarainshower causestheclayparticlestodisperse immediately,iftheESP istoohigh. 2.7 PREVENTION OFRtSALINISATION Inaridregionsreclamationandirrigationofsoilsisuselesswithout drainage. Irrigationcausesthewater leveltoriseandbothcapillary rise andevaporationwill causetheharmfulconstituentstoreachtheroot zone andthesurfaceagain. Ifnaturaldrainageisabsent,anartificialdrainage systemmustbebuiltto keepthewater levelatacriticaldepth.Evaporationmustbereducedasmuch aspossible.Thiscanbeachievedbyadensevegetationcover,e.g.lucernein timesoffalloworafterharvesting.Theplantsprovide shade,therootsincreasethepermeabilityandtheyaddorganicmattertothesoil.This organic matter increasesthedissolutionofcalcium-carbonatebecauseofthereleased carbonic acidandinadditionnitrogenisaddedtothesoil. 13 Ingeneral,enoughwatermustbeaddedtothesoiltopreventtheupward movement ofthesalts.This ismorewaterthanisrequired tobalance the consumptionbythecropsplus thewaterwhichevaporates. 2.8 CROPPING Oncethesoilhasbeenreclaimed,cropscanbegrown.There isanintimate relationbetweenthesoilcondition,thequalityofthe irrigationwaterwhich isavailable,and thetypeofcropswhichcanbegrown. Ifthe irrigationwater israthermineralised,thesoilcannotbereclaimed completelyandonlysalt tolerantcropscanbegrown.Ontheotherhand,thechoiceofcropsdetermines thedegree towhich thesoilmustbereclaimed. Saline solutionsareharmful toplantsbecauseoftheosmoticpressurethe solutionexertsontheplant,which suppresses theabsorptionofwaterbythe plant,andbecauseofthetoxiceffectsoftheindividual ionspresent inthe solutions.Thesetwoeffectswillact simultaneously. Theconcentrationoftheconstituents inthesoil solutionwill increaseby evaporation.This leadstoanincreaseoftheosmoticpressure,but alsothe soilmoisture tension increases.Bothlimittheavailability ofwater tothe plants. Inaridregions,manyfactors,whicharesometimesdifficult toconsider simultaneously,mustbeaccounted beforeachoicecanbemade aboutthetype ofcrop togrowunder thosespecificcircumstances andaboutthedegreeof soilreclamationwhich isrequired. 14 SALT-AFFECTED SOILS IN THE GREAT KONYA BASIN IN TURKEY 3.1 PHYSIOGRAPHY TheGreat KonyaBasinissituated about300kmsouthofAnkaraontheCentral AnatolianPlateauonwhichseveralbasinsofvaryingsizeoccur.Theinsetin fig.3.2showsthelocationoftheKonyaBasininTurkey. Thealtitudeisabout1000mabovesealevel.ThehighestpeakintheBasin istheKaradag,avolcanicandlimestonemassif,2390mhigh.Theareaof 2 theBasinisabout 10,000km.Therearesomeperennial lakessuchasHotamis. GölandAkgöl.TheBasinhasnonaturalhydrographieoutlet. The climateintheKonyaBasinissemi-aridwith cold,moistwintersand hot,drysummers.Temperaturesof-25Carecommoninwinterwhereasinthe summertemperatures reach35C.Theaverage temperature inwinterisabout 0Candinsummer about20C.Thereisafrost-freeperiodofonly165days. Precipitationisrestrictedtoautumn,winterandspring.Inwinterprecipitationisintheformofsnow;foratleastthreemonthsperannumthebasin iscoveredwithsnow.Thesummersarenormally dry.Theaverage precipitation is about300mm/yearalthoughitcanvarybetween250mmand350mmdepending upongeographiclocation.Evaporationexceedsprecipitation;theaverage evaporationisabout930mm/year. Thereismuchevidence thatthebasinwasoncealake.Abandoned shore linescanbefoundattherimsofthebasin andsandbarriersrunparallelto the formershoreline.Furthermore therearedepositsoflimestone containing freshwater fauna.Terrarossalayers,which occur100-200mbelowthesoil surface indicate that this lakemusthaveperiodically driedup. Thereisarcheological evidence thatthebasinhasbeendryfromatleast 6500B.C.because fromthat timethebasinhasbeeninhabited (Mellaart, 1964).Ataboutthattimetheclimatemusthave changed;inthePleistocene thetemperaturewasalittlelowersothatprecipitationexceeded evaporation whereasevaporationnowexceedsprecipitationandthebasinisdrymostof thetime. 15 3.2 GEOLOGY TheBasinoriginatedwhen,during theTertiaryupfolding oftheAnatolian belt,theinnerAnatoliandomecollapsed andsubsidence tookplace.Throughout mostoftheTertiary andthePleistocene thelargedepressions soformedwere filledwithwater,forming inland seas. TheBasinisborderedbytwoalpineorogens.TheTaurusorogenforms theborder inthesouthandwest,whereas theAnatolidesborder theBasintothenorthand east.These twomountainchains consistofPaleozoic sediments andupperMiocene limestones.UltrabasicrocksoccuronalargescaleintheTaurusmountains. From theEocene-Oligocene onwardsclasticmaterial (clay,marl,sand,gravel andconglomerate)wasdeposited intheBasin.During theMio-Pliocenenonclasticfreshwater limestonewasdeposited and inmanyplaces this formsintercalationsbetweenmarlandclay. Insomeplacesratherthick freshwaterlimestonebeds canbefound.Theformationoflimestone terminated abruptly andthe upperpartsofthe sediments are formedofclasticmaterial. TheKonyabasinshowsmany featuresofvolcanicorigin.Thevolcanicactivitystarted intheUpper-MiocenewhentheCentralAnatolian Plateauwas still rising andthebasinsoriginated,whichbecame filledwithsediments.Volcanic activityreached amaximum inPliocenetime.During theQuaternary,volcanic activity started again.Thevolcanicproducts ofthesetwoperiodsdifferas follows (Jung&Keller, 1972): 1.Themainpartofthevolcanicmaterial from the Upper Mioaene periodconsistsofintermediate tobasicvolcanics suchasandesites,latites,and andesiticbasalts.Thesevolcanicsbelong totheso-called andesiticbelt whichranges fromthesouthof ItalytoPakistan.Examples ofthistypeof volcanismaretheErenlerDag-AlaçaDag-complexwestofthetownofKonya, theKaraDag inthecentreoftheBasin,theKaraçaDagNEofthevillage of Karapinar andtheHasanDag-MelendizDag-massifnear thetownofNigdeNEof theBasin.Someacid lavassuchasdacites andrhyolites alsooccur. 2.The Quaternary volcanicactivityproduced ontheonehandextremely acid obsidians andvitrophyres andontheotherhand isolated cindercones,made upofbasaltic scoriae,andmaars.Thecindercones formachainfromthe KaraDagMassiftowards thetownofBor intheNEoftheBasinwhich suggests a correlationbetweenthistypeofvolcanism andyoung faulttectonics. Nowadaysvolcanicactivity ismanifestby saline springsnearAkhüyük and theancient cityofTiana (localitiesT16andT25respectively,seefig.3.2). 16 e o 17 Legend tofig. 3.1 Q Np Nm 0 E Mj C P PC D S DI V Quarternary (mainly alluvial and lacustrine calcareous clays) Neogene (mainly Pliocenehorizontally stratified freshwater limestone) Neogene (mainlyMiocenemarine limestone) Oligocène (mainly gypsum or soluble salts) Eocene (mainly calcareous Flysch deposits) Mesozoic (mainly Jurassic and Triassic limestone) Cretaceous (mainlymarlswith Serpentine and radiolaries) Palaeozoic (mainly marmor) Permocarboniferic (mainly limestone and marmor) Devonic (mainly stratified limestone) Chrystalline Schist Diorites Volcanic deposits a mainlyAndesit andDacit b mainly Basalt t mainly Tuff 11mainly Quarternary lava ThespringsnearTianaarestillvisitedbypatients suffering from internal diseases. Fig. 3.1showsthegeologyoftheGreatKonyaBasin'scatchmentarea. 3.3 SOIL TYPES Fig. 3.2presentsasimplified soilmapoftheKonyaBasin (deMeester, 1971). Foradetailedmapreferenceismadeto"SoilmapoftheGreatKonyaBasin" (deMeester, 1971).Fig.3.3showsthecross sections.Thesoilassociationson themapoffig.3.2weredefinedbytheirphysiographic features.Thefollowing associationsaredistinguishedonthemap(deMeester, 1970): TheUplands (U).Theserepresentthesurroundingmountainswhichconsistof limestoneandvolcanicsandthevolcanoesinthebasinitself. TheColluvialSlopes (C). These formsteep talusesatthebaseoftheuplandsandconsistofrockdebris fromthemountains. TheBajadas (B). Thesearegently slopingpiedmontplains consistingof finegrainedmaterial fromtheuplands. TheTerraces (T).TheseareremnantsofNeogeneterraces;thehigherterracesarecutbyerosiongullies,thelowerterracesareflat. TheAlluvial Plains (A).These consistofsediments transportedbythe rivers intothebasin.Theyrange fromcoarsesandtoheavyclay. TheLacustrine Plains (L).Theseareveryflatmarlsoilswhichcoverthe flooroftheAncientLakeinthecentreofthebasin.They includetheoldsandy beachridges. o u CU 4-1 U-i CO "^s •r4 4J O 01 CO 1 CO CO O 1-1 > 1 o <u .ü n u o s lxH ca ca ca 60 e •H i-H >.Pe. ü o c a CO « CU 4-> ca J 3 CU 4J u o C4-4 O <u .C co 4-1 0) • H CH 4-1 O -r4 1-1 p. ca ca CJ e o j-t e o 01 • H J3 4-1 4J ca •H TS o c o ca m CO ao 0) • H a j CH *a 00 •H Ol [ u T3 CU CU co 19 Legend tofig. 3.2 Ur Uv Cr Cv Te Th Tc Br Bv Aa Ab Ac Ad Ae LimestoneUpland Soils Volcanic Upland Soils Limestone ColluvialSoils Volcanic Colluvial Soils Flat Terrace Soils Undulating Terrace Soils SoftLimeSoils LimestoneBajadaSoils Volcanic Bajada Soils ÇamurlukFanSoils Former Backswamp Soils Car^ambaFanSoils DeliFanSoils SelerekiFanSoils I Te Uv I Au I Cr l u I Cr I Br I Lr I Tc Af Ag Ah Ak Am An As Au Lm Lr Lp Lo Mf Dd CakrnakFan Soils ZanopaFanSoils BorFanSoils Meram and SilleFanSoils May FanSoils BayatFanSoils AyranFanSoils SoilsofMedium Sized Fans Marl Soils Sandridge Soils Sandplain and Beach Soils Old Sandplain Soils Marsh Soils Sand Dunes Lr I Cr I I I Lr I Ur I Cr I I Lp I Te lake I I Lo Lm I Te I Cr I iLrl Lm I Fig. 3.3 Three schematic cross-sections through theGreatKonyaBasin. Forposition,see fig.3.2 (fromdeMeester, 1970) Bv I Uv Ur (m)above sea level 20 " approximate extend of the Ancient Konya Lake extend of the present Lacustrine Plain secondary depressions constituent plains uplands Fig. 3.4 Extent of theLacustrine Plain in theBasin,of the constituent plains and of thedepressions inthem, (fromdeMeester, 1970) TheAeolianPlain (D).Thisplainconsistsofsandduneswhichhave formed recentlyasaresultofovergrazing. TheMarshes (M).Theyoccuratthefootofthealluvial fansandnear lakes. 3.4 CORRELATION OFOCCURRENCEOFSALTSWITH SOIL TYPE Salt-affected soilscanbefoundinthelowerpartsofthebasin.Themost extensive saltefflorescencesoccuronthelacustrinemarl soils (Lm).Continuous saltcrustscanbefoundinthedepressionsinthebasinfloor (seefig. 3.4), whichisfloodedforatleastafewmonthsperyear.Herethesaltoriginatesby evaporationofsurfacewater (flooded solonchaks).Somealluvialplainsoilsare very saline;thesalinityofthesesoils increases towardsthecentreofthe basin.Onthelowest terracesoils,thesoft limesoils (Tc),salt efflorescences canbefound. TheMarshsoils,whichcoverthelowestpartsofthebasin,aregenerallyvery saline,buttheyaresituated alongperennial lakesandaremoistduringthe wholeyearsonoefflorescencescanform. 21 3.5 SAMPLINGANDANALYTICAL PROCEDURE Asmanydifferent types ofsaltefflorescences aspossiblewere sampled duringthesummerof 1978.Thesamplingsitesareshownonfig.3.2. Whenthesaltconsisted ofaloosepowder,smallpolyethylene tubeswere filled withthesalt.Coherentcrustswerepacked intoiletpaperandtransported in plasticboxes.Samplesofgroundwaterwerealso takenwhenpossible,but in manycases itwas impossible topenetrate thesoilwith ahandauger,and in somecases thegroundwater levelwas toodeeptosample.Water samples from someinflowriverswerealsotaken. Twodifferent typesofbottleswereused forwater samples:a250ml glass bottlewhich isimpermeable toCCuwasused forsamples tobeanalysed for carbonates anda250mlpolyethylenebottleforsamplestobeanalysed for Na,K,Ca,Mg,Cl,SO.and silica.Theglassbottleswerebrowntominimize asfaraspossiblealgalgrowth.Allbottleswerepacked inaflanel cloth covertoavoidpenetrationoflightandriseoftemperature.A fewdropsof chloroformwereaddedtothecontentsofpolyethylenebottles.As little airspaceaspossiblewas left inthebottlesafter filling. Temperature,pH,Ehandelectroconductivityweremeasured atthe sampling site.Immediatelyafterarrival inWageningenthecarbonatesystemwas analysed. Na,K,Ca,Mg,Cl,SO.andsilicawere analysedwithinfourmonthsaftersampling.Allanalyseswereperformed induplicate.Theanalysesofthewater samples arereported inTable 3.1. The saltmineralswereidentifiedbymeansofX-raydiffraction analysis withaNoniusGuinier cameraFR 552withahigh-resolving JohanssonKcxjmonochromator,usingCoKcxjradiation (X=0.17889nm). Table 3.2 liststhesalt mineralswhichhavebeenfound intheBasin.Table 3.3 represents thesaltassociations atthedifferentlocalities. 3.6 CORRELATION BETWEEN THE FABRIC ANDMINERALOGY OFTHESALT ASSOCIATIONS Bloedite,thenardite andhalitearethemostabundantsaltminerals inthe KonyaBasinand,therefore,theydominate themorphology ofthesaltassemblages. Whenbloedite isthedominantspecies,thesaltassociation isvery fluffy andairywith largeopenholes and channelsthroughthecrustyparticles.When itoccurs incoherentcrusts,thecrust isveryfragileand friableandon touching itdésintégrâtesintosmallparticles.Whenitoccurs intheformof powder,thepowder isvery loose,againwithlargeholesandpores.These 22 O u~i Oi r - — i£> -T — s r co CM en — r - r - - f ) mCT\vß f O c n o c N r - o c M c N c n O O m e M — -3- m O c 1 u-1 f ) O O C O O O O O O O O O O O - ' O Oi r-~ CM L ON • * m o • O O O O • • J ^ m C i ' B C O I s i O ^ f O ' Û I N M o \ o ON co co f l O c o c o t CM CM <J\ • CM — >o ^o ^o o o I N n - IN (N J o o~> <r -^- co c - CM co m o CM • )CN W - J O ( - O 00 • (N kA - J C l »O I • CM CO — CO I - O — o N in N M O N ( CM O O O 0> i • O O O •£> CO O r-~ - r» o r- o o en co o - * r (•-»• — co — — CM r-- en — r-% \© CM — CM • M » M i/i N -* — Vf m LnencMOCTivOO-T - • ï t o n t N c o o r - — m co -r^\Dr-~r-i-^r»-cooot (O VO t co co r - r-. r - r ooooooooooooooooooooooooooooooo O 0 0 O 0 0 C 0 C T » O O ~ O m O O O v 0 O O O O O O O \ 0 C M O O O O O O O m - s j - r - o r ^ v £ ) O O r - o c M c o r - O v £ > o o c M O r - c M i o > o m — <r CM o r - o o -^ cncMcM — r - r - c N — co O co — 0> O < • O^ O t r i vu - I N - J ^ I A C O C M ^ \0 \0 CM C M C M C M -J — ~* — O — CO \ 0 u u « ai -u -u -u x: fflc5(i]4Jfflci!iDü 3 3 3 ca 3 3 3 C(] T3 "O M T3 T3 -Ö ö0 G C <U C d d O) 3 3 3 ., • 4J C > 0 ) - . S0 0 « 0 0 0 > 0 0 0 ! 3 3 - - 3 3 3 3 3 3 3 o o o o v o > o o o o o o o o • 1 \D CO 0~i O - 3 -o-D'O'O'O'OTj'a ^ ^ G d d d d d d d 3 4 1 3 3 3 3 3 3 3 P ' ' • - - i - H t i V j ^ i l - i M t - i M H l û S O O O O O O O O 23 observations contrastwith thoseofDriessenandSchoorl (1973)whostatethat bloediteformsglass-likecrusts. Thenarditeoccurs assmallneedleswhichpushthesoilparticles inthe upper layerofthesoilapart.This layerbecomesverypuffed andwhenwalking onthesoilonesinksafewcentrimetres init. Halite formsacoherentsmoothsaltlayerwhichsealsthesoilandprevents furtherevaporationofthegroundwater.This layer iseasytoremove fromthe soil. Themorphology ofmixed saltassociations dependsupontherelativeproportionsofthesethreemostabundant saltminerals:whenhalitepredominates the association ismorecoherent,sealinganddenser;whenthenarditepredominates theassociationislooseandpowdery;whenbloeditepredominates,the association ismorefluffyandairy. Thenardite inassociationwithhaliteadapts itselftohalite,butthenarditewithouthalite forms loose,powderyassociations. Bloeditemakes theassociationmore fluffyandairy. 3.7 METHODS OFWATERANALYSIS Themethodsofwateranalysiswhichwereusedaredescribed indetail in Begheyn CI980). Inbriefthefollowingmethodswereused: pH. Immediately afteropeningthebrownglassbottle,thepHwasmeasuredwith anOriondigital ionanalyzermodel 801A. Carbonate. Thewaterwas filtered througha0.2 \m micropore filter.CO,-and 2- HCO,-analyseswereperformedbyPotentiometrietitrationwithlUSO. 0.1 N or 0.05 N andC02(aq)withNaOH 0.1 or 0.05 N.Thesteepestslopesofthe titrationcurveswere considered tobetheendpoints. CI .ChlorinewasanalysedbyPotentiometrietitrationwithAgNO,0.02 Nusing anAg~Selectrode. 2- SO.. Sulphatewasdetermined turbidimetricallyasBaSO.obtainedwith BaCl ? .2H 7 0inamediumofnitricacid,aceticacid,orthophosphoric acid, bariumsulphatesuspensionandamixtureofacaciagumsolutionand acetic acid. Na and K . Thealkali ionswereanalysedbymeans ofaPerkinElmerAtomic AbsorptionSpectrofotometer afteradditionofanaluminiumnitratesolution. 2+ Ca 2+ and Mg . TheearthalkaliionswereanalysedbymeansofaPerkinElmer AtomicAbsorptionSpectrofotometer afteradditionofhydrochloricacidand a lanthaniumchloridesolution. 24 HSiO . Silicawasanalysedcolorimetricallyasblue3-silico-molybdenicacid afteradditionofanammoniummolybdatesolution,sulfuricacid,tartaric acidandareductionmixtureofNa o S0,,metolandK-,S„Or-solution. 2 3' 225 Table 3.2 Saltminerals found intheKonyaBasin Aphtithalite (aph) K 3 Na(S0 4 ) 2 Arcanite (arc) K 2 S0 4 Bloedite (bl) Na 2 Mg(S0 4 ) 2 .4H 2 0 Burkeite (brk) Na 6 C0 3 (S0 4 ) 2 Calcite (cal) CaCO Dolomite (dol) CaMg(C0 3 ) 2 Epsomite (eps) MgS0 4 .7H 2 0 Eugsterite (eug) Na 4 Ca(S0 4 ) 3 .2H 2 0 Glauberite (gl) Na 2 Ca(S0 4 ) 2 Gypsum (gps) CaSO,.2H.0 4 2 Halite (hal) NaCl Hexahydrite (hxh) MgS0 4 .6H 2 0 Konyaite (kon) Na 2 Mg(S0 4 ) 2 .5H 2 0 Loeweite (lw) Na ]2 Mg 7 (S0 4 ) )3 .15H 2 0 Mirabilite (mb)'^ Na„SO..10H„0 2 4 2 Nesquehonite (nqh) MgC0 3 .3H 2 0 Schoenite (sch)(picromerite) K 2 Mg(S0 4 ) 2 .6H 2 0 Sodaniter (sdn) NaNO Starkeyite (st) (leonhardtite) MgS0 4 .4H 2 0 Thenardite (tn) Na„S0. 2 4 Trona (tr) NaHCO .Na^CO .2H0 1)Mirabilite couldnotbe identified bymeans ofX-raydiffraction analysis because transport ofmirabilite proved tobe impossible.Mirabilite isassumed tobepresent fromobservations of thecrystals insitu. 25 Table 3.3 Salt associations in theKonyaBasin loc.no. salt association fabric along a temporary pond bl,hxh,gps very fluffy,very friablesalt crust;breaks into small particles on touching onthe soil surface bl,hxh,gps like 1but alittlemore coherent on the soil surface tn.gl small salt particlesmixed with loose soil particles tn,aph like4a bl.hal.gl sealing,bumpy,coherent salt crustonhard soil typeof sampling site d:bl,gps soft,fluffy powder sticking tosmall,round aggregates bl,hal,hxh, sch hard,coherent,very bumpy salt crust on the soil surface eps,bl,gps like1 on the soil surface bl,hxh,gps like 1,but alittlemore coherent small flinters alongacraterwall hal,gps,sdn along acrater lake hal,tn,nsqh, hard pieces of salt eug a dry,temporary lake hal,gl,gps sealing,flinterlikecrust hal,tn,eug like9a tn like4a 10 on the soil surface tn,aph loose,powdery,fluffy salt 11 on the soil surface bl.eug loose,very soft powder 13 on the soil surface hal,gps,eug like9a tn.eug like1 14 on the soil surface hal,gps like4a 15 on the soil surface hal,gps,brk coherent,flinterly,sealing crust,easily removable from the surface hal,tn like 15a,but alittle thicker 16 spring deposit hal,tn,eug hard pieces gps.cal ooliticmaterial 17 on thesoil surface bl.eug coherent,airy,hard salt crust 26 Table 3.3 continued loc.no. 19 typeof sampling site fabric salt association on thesoil surface a:hal,gl,eug b: bl,hal,gps sealing,coherent crust, difficult toremove from thesoil like4d 21 on the soil surface bl,hxh,gps like1 22 on thesoil surface bl,hxh,gps,kon like1 23 on thesoil surface a:bl,hal,gps b:bl.hal.gl 24 25 on thesoil surface a:hal,gl around thespring ofTiana 26 on thesoil surface 28 on thesoil surface 29 like 1,mixedwith soil particles like 19 coherent,sealing,bumpy salt crust b:hal,gl,tn,gps, eug like 24abutmorebumpy and airy hal,tn,nqh,gl, coherent,sealing,thinsalt crust eug hal,tr,brk like 15a openpatches hal,tn,aph like4c between grass tn.aph like4a on thesoil surface a:hal,tn b:hal,eug c: tn,aph soft,coherent saltbetween straws like9a like4a 31 on thesoil surface hal,tr,brk bumpy,hard salt crustwith airunder thebubbles 32 on thesoil surface hal,tr,brk like31 33 dry,temporary lake a:tn,hal,eug like9a b: tn,eug coherent,bumpy crustwith airunder thebubbles c: tn like4a 35 on thesoilsurface a:bl,hxh,gps,kon 36 on thesoil surface a:hal,bl b: bl,gps,lw b: hal,bl,stk,kon 37 on thesoil surface hal,bl,gps,kon loose,very fluffy powder like35a sugarlike,coherent crust like35a like4d 27 4. SALT-AFFECTED SOILS IN KENYA 4.1PHYSIOGRAPHYANDCLIMATE Samplesofsaltaffected soilshavebeencollectedfromthreedifferent regionsinKenya.Theseregionsare(seefig. 4.1): -TheAmboselibasinalongtheKenya-TanzaniaborderatthefootofKilimanjaro -AfewlocalitiesalongLakeVictoria -EastofLakeTurkana (theformerLakeRudolf)andtheChalbiDesert. Theclimatediffersinthesethreeregions. TheAmboseliareahasanaridclimatewithanannualrainfallof255-510mm. Therearetworainyseasons,oneinMarch-April,theotherinNovember-December. ThedriestmonthsarebetweenJuneandOctober.Themeanannualtemperatureis 22°C. ThedistricteastofLakeTurkanahasadesertclimate.Rainfallisnormally lessthan255mm/yrapartfromMt.Kulalwhererainfallis255-510mm/yr. Inthisregionthereisonlyonerainyseason,betweenMarchandMay,andthe meanannualtemperatureis27 C. AlongLakeVictoriathereismorerainfallthanintheothertwodistricts. AtHoma Islandtheannualrainfallis1015-1270mmwhileatSindoandLuandait is760-1015mm.Therainfallisnotrestrictedtoadefiniteseason;thereare maximainAprilandDecember.Themeanannualtemperatureis24 C (KenyaAtlas). 4.2GEOLOGY AllthreeareasaredominatedbythevolcanicsassociatedwiththeEast African (orGregory)RiftValley. InKenya,twotypesofvolcanismoccur (Williams,1970): -fissureandmulti-centreeruptions (plateauvolcanics) -centralvolcanoes Thevolcanicsofthe fissure and multi-centre eruptions consistmainlyof basalts,phonolitesandtrachytes. Basalticeruptionsoccurred fromtheMioceneonwards.Miocenebasaltscanbe 28 Fig.4.1 Map showing thedistribution of themainvolcanic associations inKenya (afterWilliams, 1970). The areasof sampling are indicated, a.AmboseliBasin,b.area alongLakeVictoria,c.areaeast ofLake Turkana. 29 FISSURE ERUPTIONS OR MULTI-CENTRE ERUPTIONS Basalt- Bosolt - phonolite - bosanite melonephelinite Phonolite- Trachyte -phonoNtic phonolitic t r a c h y t e trochyte Comendltepontellerite Mugearltetrachyte-rhyolite QUATERNARY • • • • + + + * + + * • MAJOR CENTRAL VOLCANOES NepheKnite - phonolite Bosolt-trachyte-phonolite Phonolite-trochyte Basalt- trochyte P L I O C E N E TO RECENT A A ^ foundinthecentralandnorthernpartsoftherift.ThePliocenebasalts form mostofthefloorandshouldersoftherift,whichdevelopedatthattime. DuringtheQuaternary,basaltic eruptionsoccurredtotheeastoftherift valley. ThephonolitesareofupperMioceneageandcover largeareasbotheastand westoftheriftinthesouthernhalfofKenya. Thetrachytesrange fromupperPliocenetoPleistoceneageandthey form large sectionsoftheriftfloorinsouthernKenya. Thevolcanicsofthe central volcanoes consistmainlyofnephelinite- phonolites,phonolites,basaltsandtrachytes. DuringtheMiocene,largecentralvolcanoes originated inwesternKenya. Thevolcanicproductsbelongtothenephelinite-phonolite series.Duringthe PlioceneandQuaternary,majorvolcanic activityofthistypeoccurred along thefloorofthenewly formedriftandalsobuilt some largevolcanoes (e.g., Mt. KenyaandKilimanjaro)whichoccurtotheeastoftherift. Thepost-Miocenevolcanoes consist alsoofbasalts,trachytesandphonolites. Fig.4.1showsthedistributionofthemainvolcanic associations inKenyaand thelocationofthethreeareasvisited.Thegeologyoftheseareaswillbe dealtwithindetailinthenextthreesections. 30 4.3 AMBOSELI BASIN ThereaderisreferredtoWilliams (1972)foradetaileddescriptionofthe regional geologyoftheAmboseliBasin. ThebasinisborderedtothenorthandwestbymetamorphicPrecambrianrocks suchasmarbles,schists,gneissesandgranulites.Towardsthesouthandeast thebasinisborderedbytheKilimanjarovolcanicrocks,whichconsistmainlyof olivinebasaltsbutnephelitesandphonolites alsooccur.Thesmall eruption centresinthebasin itselfaresurroundedbyPleistocene sedimentswhichinclude lacustrine clays,marlsandsilts.ThePleistocene sedimentswhichare knownastheAmboseli LakeBedshavebeensubdivided stratigraphically into three formationsbyWilliams (1972).Thestratigraphy frombottomtotopis asfollows (Stoessell, 1978): - Sinya Beds. TheseareexposedatSinyatothesouthofLakeAmboseli.Three metresofhard,massivegreensepioliteoccurontopoffivemetresofmassive, whitedolomite.Pocketsandveinsofmassive,whitesepioliteandpastel keroliteoccur throughoutthedolomiteandthegreensepiolite. - Amboseli clays. These consistofmassive,green lacustrine clayswitha thicknessofupto60munderthelakewhichrestuponabasal conglomerate consistingofdolomiteandsepiolite clast.Theclays consistofcalcite,dolomite,sepiolite,1runclayandK-feldsparwhichisprobably authigenic.Inthe southernhalfofLakeAmboseli largegaylussite crystalsoccurintheAmboseli clays,directlyunderthefewcentimetres alluviumwhich formthefloorofthe lake. - Old Tukai Beds. These consistofsilts,clays,clay-clastaggregates (metamorphicandvolcanicdetritus)andcaliches,upto25mthick.Themineralsin theclay-clastareauthigenic. InmanyplacesQuaternarydepositscanbefound,suchasalluvialsoils, sandysoils,dustyvolcanic soilsandwindblown clayeysiltsandsands.Asoil mapofthebasinisavailable,madebyL.Touber,UNDPFAOWildlifeManagement Project (inpress). Thefollowing soiltypesoccurintheAmboseliBasin: Plain soils Soilsdevelopedonalluvium,predominantly derived fromundifferentiated rocks ofthebasement system. Soilsdevelopedonwindblowndeposits,predominantly derived frompyroclastic rock. Soilsdevelopedonalluvium,predominantly derived frompyroclasticrock. Soilsdevelopedonrocksofthebasement system,undifferentiated. 31 Lavaflows Soilsdevelopedonbasicigneousrocks,richinferromagnesianminerals. Bottomlands Soilsdevelopedonalluvium,predominantlyderived fromundifferentiated volcanicrock. Piedmont plains Soilsdevelopedoncolluviumandalluvium,predominantlyderived fromcrystallinelimestone. ExternalSolonchakscanbefoundontheplainsoils.Salt efflorescences occurespeciallyonthefloorofLakeAmboseli,atemporary lake.Forthe Fig. 4.2 Map showing theAmboseli Basin (after Stoessell, 1978)and the locationof the sampling sites.Theregional surface-and groundwaterflowpattern isindicated byarrows. locationofthesampling sites,seefig.4.2. From theKilimanjaro,moltensnowandrainwater flowassurface streams andsubsurfacewater inthedirectionofthebasin.Most streams aredryat thefoothills.WateralsoflowsfromthePrecambrianrocks inthenorthtothe basinbut theregionswhere thesaline soilsoccurarefedbywater fromthe Kilimanjaro. 4.4 LAKE VICTORIA Sampleshavebeentakenfromdifferent localities onHomaPeninsulaand fromthesurroundings ofthevillages SindoandLuanda inthecoastalareaof LakeVictoria (seefig.4.3).Thegeologyofthisareaisdescribed inSaggerson (1952). HomaPeninsula isdominatedbyHomaMountain,which isacentralvolcano. ItsactivitybeganintheMiocene and lasteduntil latePleistocene times.Homa Mountainisatypicalcarbonatitic complexwithcarbonatite,nepheliniteand phonolite.On thelowerslopesandonHomaPeninsula thevolcanics arecovered withPleistocene andrecentsediments.Thesedimentarydeposits thuspartly formedwhenthevolcanowasstillactive.ThePleistocenedeposits are lacustrine andconsist ofanalternationoftuffs,clays,sands,gravelsand thinlimestones. Sampleshavebeentakenfromthreedifferent localities onHomaPeninsula:Lake Simbi,MitiBiliandKanam.LakeSimbi,avolcanicmaar,originated inhistorical times.Theexplosionthatproduced theventprobablybrokethroughtheoldcourse oftheRiverAwach,whichnowflowseastofthelake.LakeSimbi isfedby groundwater,springs andrains.Saltshaveformedalong theshoreofthelake. AtMitiBili,ahotspringoccursonlyafewhundredmetres fromLakeVictoria. Surface andsubsurfacewaterhasformedexternal solonchaks betweenthespring andthelake. AtKanamsaltefflorescenceshave formedalongadryriverbed. ThehinterlandofSindoandLuandaisformedbytheKisingiriVolcanic complex,oneofthebestexamplesofaMiocenenephelinite-phonolite central volcano inwesternKenya.Theplainalongtheshoreofthelakeconsistsof Pleistocene clays,sandsandgravels.Onthisplain,salt efflorescences developed inthevicinityofthesmallvillages SindoandLuanda. 33 Kendu Miti Bill' Kanam Rusinga ? :....."•'Mt.Homa \ Island ..-'""' 1 Lake \ Victoria /5 J Mi t i i Bili. 4/ | 1 1 HomaBay \3 'l 1 ,V3 - . 2J -.>...\ ..... 10km Fig. 4.3 Map showing the localities of the sampling sites along LakeVictoria. 4.5 EASTOFLAKE TURKANA AND THECHALBI DESERT Little isknown about the geologyofthe area eastofLake Turkana(the former Lake Rudolf)ando fthe geology ofthe Chalbi Desert.A soilmap 1:1.000.000ofthis whole district isavailable (Sombroek,inpress). The Chalbi Desert consists ofCenozoic lacustrine sediments. This desert is barrenofvegetation. Extensive External Solonchaks cover the Chalbi Desert. Normally, this salt plain isaccessibleb ymotor vehicle,but during the sampling trip (November 1977), the plain was flooded duetounusually heavy rainfall. Rainwater together with water draining from Ethiopia caused the desert to becomeatemporary lakeandsampleso fthe salts could onlyb etakenata few places where the rimsofthe desert couldbereached (at Kalacha, Maikona and North Horr) (see fig. 4 . 4 ) .Thesoilsofthe Chalbi Desert are classified as Orthic Solonchaks (very poorly drained, deep, firm, excessively saline clay 1 1 34 | 20 km North Horr / I \ \ \ \ / /\s' / J S / ^* ,.—* f/ El Molo \KMount l . !Kul al Loien- \ galani / -~^V,Kargi i i \ / \ ^ / / / —i Fig. A.4 Map showing the localities of thesampling sites intheregioneast ofLakeTurkana and theChalbiDesert.Thedotted line indicates atrackfor vehicles. withpuffed saltycrust)andTakyric Solonchaks (poorlydrained,deep,very firm,excessively salinecracking clay). Saltefflorescences occuratsomesitesalongtheshoreofLakeTurkana. Thisdistrict consistsmainlyofQuaternaryolivinebasaltsofthefissureand multicentre type.Theregionwherethesaltefflorescences occur,nearElMolo andLoiengalani (seefig.4.4),isdominatedbyMt.Kulal,aPliocene basaltic centralvolcano.Thesaltoccurrencesarerelatedtothedrainageofthewater flowingfromMt.KulaltowardsLakeTurkana.ThesoilsalongtheshoreofLake TurkanahavebeenclassifiedasSolonchaks gravellyphase (imperfectly drained, deep ,moderately calcareous,stronglysaline,gravelly clay loam,with gravelly desertpavement). 35 4.6 SAMPLINGANDANALYTICAL PROCEDURE Thesamplingandtheanalyticalprocedurewerethesameasdescribed insection3.5. Unfortunately thesamplingprogramwaspartiallydisturbedbyunusually heavyrainfall.TheAmboseliBasinand theregionalongLakeVictoriawere visitedbefore therainsstarted.Allofthewater samples fromAmboseliand somewater samplesfromlocalitiesnearLakeVictoriaweretakenbeforethe rainsbegan.Bothdistrictswerevisited againafter therains.LakeAmboseli wasno longeraccessiblebymotorvehicleandmostofthesalthaddisappeared. AlongLakeVictoriathesalthadalsodisappeared andthereforeonlysome additionalwatersampleswere takenaftertherains.Thefirstsampling trip toLakeTurkanawasunsuccessfulbecausetheexceptionallyheavyrainfall caused thetrackstobecome impassable.Thisregionwasonlyvisited after therains,whichhadmadethedesertgreenandfullofflowers. Table 4.1 showsthewateranalyses.Table 4.2 showsthesaltminerals whichhavebeenfound. Intable4.3 thesaltassociations atthedifferent localitiesarepresented. 4.7 CORRELATION BETWEEN THEFABRIC ANDMINERALOGY OFTHESALTASSOCIATIONS Themostabundantsalts intheareasvisited inKenyaarehalite,thenardite,tronaandthermonatrite.Thesemineralsdominate themorphology ofthe saltefflorescences onthesoilsurface (seetable4.3). Thenarditeandhaliteshowthesamemorphological featuresasinKonya. Thethenardite needlespushthesoilparticles apartandcausetheupper layer ofthesoiltobecomepuffed.Halitehas asealingeffect.Itmakes thecrust moredenseandcoherent. Allassociationswiththermonatrite areveryfluffy.When itoccurs in crusts,thesecrustsareveryfriableandbreakeasily intofluffypieces. Enoughporesandchannelsarepresenttoavoid sealingoftheunderlying soil. Thecrusts inwhichtronaoccursareusuallymorerigid andcoherent than thoseinwhichthermonatriteoccurs.Thesurfacesofthetronacontaining crusts areveryirregularandusuallytheyareveryairywithmanyvoids and channels asisthecasewiththermonatrite. 36 - <j\ m ci — — m (M oo \D • er. o m m m o (N <r o co co r » co c •<T r - \ o i—. co c — CM moinoocr.r^-a' — j o - J r-. - * co o d o cr> o 1 c \ ~* o CM r- •— — ; —o o O O •—o — —o - r» o <£> r~~. -3 m f 1 — O i N CN M O " 1 —o o o — • \DO O O OOCNC CM CM — ) CO CM UO -3" Ol O o o o •o o o o o o o O co I CM ~ co vO CO u*ï — M M N N tM - 00 CM CO — C uO O CM O • O O O O O O O O O O - o o o o o o o o o o o o o - m oio (nOM 00o — odd u"ï u i -T M3 m o u-i <r CM — r - — co co i£> r— <r — rM o v c j \ CMr - o i CM\O — c M O O O r - a i - M 3 n o O O O CM CM <r v r v t M O O f l M ^ N 4 cor— CM O >ûM N Ci- CM-J-— — O COOiror— o-ir--\D~j-incNcoco ror--o>— O N M <tm m fi co CM coro m CMco— ( cocooNr-r-r-*r-.r- œ N h. isoi ( r-cocoo^coco > r—o co . o i o i o i o i o i o i t o c o o i r .OlOlco O O O O O O O O o c N O c o o m o c M o-j-cou-icocMOm o o o o o o o CM o o co — O O O O M3 r-~ O O O O O O O O O O O O O O O O O O O O O O O C 0 C 0 O O O O O oiOOr--r--Or--or-« — cocococoo n t O O U C N M / l O N — \ß COI— O M l-i l-i tl U tl U M (0 tO tO nj 4-J VJ JJ J-J 4J 3 r~( 4-1 4-1 4-1 -U 4-1 3 3 3 3 < u o a 3 3 3 3 3 eo-o O O C J O - O - Ö - O T 3 c d c c c d ö d c a c c a 3 3 3 3 3 - ^ 3 . H .H 3 3 3 3 <• O O O O O p - h ft ftIJ I o o o o 00 00 00 00 W 60 00 M OD M 333 32 3 3 T 3 3 3 U 3 0 o o c o o > o > M M a W) M IJ ÖO IJ O O O O > IJ M UI l-i M •I-I o . 00 00 00 Û0 U tn lj • CM CO -T - j in o 1 vD CO • •- I IIIII4II to C O ^ O —l n) (0 X i—i n) J - -C 3 M U u J- m ö <g u u u v 2 t 4 Ü Z fe J pq w co pa PQ c .O £ -H -H .H -H -H -H Ëg4-l4-14J4-14-l4J- • H - H PO .J e e a xi o 41 n] tl) « d TJ ^ e c G to ö W C O S S S S S S S J ^ W : 37 Table 4.2 Saltminerals observed in theKenya sample sites Amboseli aphtithalite (aph) K 3 Na(S0 4 ) 2 aragonite (ar) CaCO burkeite (brk) Na 6 C0 3 (S0 4 ) 2 calcite (cal) CaCCL dolomite (dol) CaMg(C0 3 ) 2 gaylussite (gay) NaCO .CaCO .5H„0 pirssonite (prs) NaCO .CaCO .2H20 thermonatrite (tm) Na 2 C0 3 .H 2 0 thenardite (tn) Na 2 S0 4 trona (tr) NaHCO .Na2C0 .2H20 Turkana burkeite (brk) Na 6 C0 3 (S0 4 ) 2 eugsterite (eug) Na 4 Ca(S0 4 ) 3 .2H 2 0 gypsum (gps) CaSO,.2H„0 4 2 halite (hal) NaCl thenardite (tn) Na„S0, I 4 trona (tr) NaHCO .Na 2 C0.2H 2 0 Lake Victoria burkeite (brk) Na 6 C0 3 (S0 4 ) 2 calcite (cal) CaCO^ eugsterite (eug) Na.Ca(S0.)Q.2H.0 4 4J 2 gaylussite (gay) Na„CO .CaCO .5H0 gypsum (gps) CaSO..2H.0 4 2 halite (hal) NaCl nahcolite (nah) NaHCO, thermonatrite (tm) Na 2 C0 3 .H 2 0 thenardite (tn) Na 2 S0 4 trona (tr) NaHCO .Na 2 C0.2H 2 0 38 Table4.3 Salt associations observed inKenya loc.no. salt association typeof sampling site fabric Amboseli 1 againstwallof profile pit,20cm a: tn,tr,aph thin,slightlybumpy,rather flat and friable coherent salt crust ditto, 70cm b: tr,cal,gay yellowish powder tr,cal,gay on thesoil surface like la on the soil surface a:tr soft,fluffy,coherent salt crust onthe soil surface b: tm,tr,cal like4a onthe soil surface c:tr,cal,prs, tm onthe soil surface d: tr,tm,gay flat,thin,coherent salt crust fluffy,small,loosesalt particlesmixed withother soilparticles alongpond a: tr,cal,gay, tm like4a alongpond b: cal,ar salt peels onthe soil surface tr,cal,gay, tm,aph very fluffy,coherent salt, breaks intopieces on touching on the soil surface tr,brk coherent,puffed crust, irregular surface onthesoil surface a: tr,tm,gay very loose,fluffy,irregular shaped salt particles on thesoil surface b: tr,aph like 8a,butmore coherent and littlemore yellowish on thesoil surface c: tr,aph,gay, prs coherent,thin,irregular, dense salt crust 9 on thesoil surface 12 onthesoil surface on the soil surface tr,prs,cal a: tr,brk slightly fluffy,coherent, soft crust very irregular,airy,coherent salt crust like 12abutmore friable b: tr,tm,brk c:tr tr,aph,gay, cal like4a fluffy,friable,coherent salt crust 13 onthe soil surface near swamp 15 onthe soil surface 16 on the soil surface a:tn thin,dense,bulged salt crust on the soil surface b: tn like 15 17 on the soil surface tn tn,aph white salt fluffs between clay particles like 12a 39 Table 4.3 continued loc.no. typeof sampling site salt association fabric Turkana Maikona on thesoil surface a:hal.tn thin salt layer deposited betweenbasaltic gravel onthe soil,not removable asacrust from the soil b:hal,gps Kalacha 1 onthe soil surface hal.tn.eug Kalacha 2 onthe soil surface hal,tn powdery salt onquartz pieces glassy salt layeron the soil surface NorthHorr onthe soil surface Furaful ElMolo Oasis hal,tr,brk on the soil surface Simbi thin,flinterly,dense,smooth salt crust thin,coherent,easyremovable, rough salt crust hal,tn on thesoil surface tn on the soil surface very irregular,thin,coherent, puffed salt crust a: tn,hal on the soil surface Lake likeKalacha1 flinterly,smooth,white salt crust b:tn,hal,brk likea,but alittlemore glassy and yellowish Victoria on thesoil surface near lake a: tr,tm ditto very fluffy saltparticlesmixed withclay b:tm.tr,gay Miti Bili 1around spring likea tr,cal,gay, thin,bumpy,hard salt layeron nah MitiBili 2 on thesoil surface a: tr onthe soil surface surface dark coloured,hard salt layer b:tr,tm airy,white,irregular salt crust Miti Bili 3on thesoil surface tr,gay MitiBili 4 onthe soil surface a:tr,tm,hal, thin,white,smooth salt film very fluffy salt crust brk b: tr,hal Kanam on the soil surface likeMiti Bili2b c:tr,nah,gay thin,flinterly film d: tr,gay bumpy, irregular saltcrust e:tr,hal,brk airy,irregular salt crust a:tr,nah thin,flintery crustwitha rough surface b: tr,tm,gay powdery salt oncoarse gravel c: tr,hal,gay d: tr,hal,tm, gay e: tr,gay puffed,rough crust likec likeMiti Bili4d 40 Table 4.3 Continued loc.no. Sindo typeof sampling site onthe soil surface salt association a:hal,tn b: gps c:hal.eug Luanda on thesoil surface eug,gps fabric salt filmonclay white spots likea white spots indark soil 41 5. BRINE EVOLUTION IN CLOSED BASINS 5.1 INTRODUCTION Theoccurrenceofsalt-affected soilsisdependentbothongeologicaland climaticfactors.Salt-affected soilsformeasilyinsemi-aridregionswhere evaporationishighandusuallyexceedsrainfall. Theoriginofsalt-affected soilsmaybeanthropogenicornatural.Anthropogenic salt-affected soilsoriginatewhenduring irrigationnoconcomitantdrainageis appliedtoremovethedissolved salts,aswasdiscussedinchapter2.Natural salt-affected soilspreferentiallyoccurinhydrographically closedbasins. Geologicallyspeaking,twodifferent typesofclosedbasinscanbedistinguished (EugsterandSurdam 1973,SurdamandSheppard 1978)whichshowacompletelydifferenthydrology.Bothtypeshaveatectonicorigin: a.Playa-lakecomplextype (seefig.5.1) A Playa-lakecomplexisabroad flatbasinsurroundedbymountains.Rivers descending intothebasinfromthemountainshaveusuallydisappearedbefore reachingthecenterofthebasin,whichmayconsistofaperennialorannual lake.Thegroundwater flowisshallow.Most clasticdebrisisdepositedin alluvial fansatthefootofthemountains. b.Rift-systemtype (seefig.5.1) Inarift-system closedbasinanannualorperennial lakeoccupiesthefloor ofanarrowflatvalleywhichisborderedbysteepmountains.Thegroundwater flowisdeepandusuallydischarge takesplaceattheedgeofthelakeby springs.Asspringsaredevoidofclasticmaterialnoalluvial fansoriginate. TheKonyaBasininTurkeyisatypicalexampleofaplaya-lakecomplextype (comparefig.5.1 andfig.3.3).LakeMagadiwhichislocatedintheEastAfrican riftvalleyinKenyaisatypicalexampleofarift-systemtype. Thegenesisofsaltaffected soilsinclosedbasinsisasfollows: Dissolvedmaterialisbroughtinbyrivers,groundwatersandsprings fromthe surroundings intothebasin.Duringevaporation,theremaining solutionbecomes moreandmore concentrateduntilitbecomes saturatedwithrespecttosome minerals,whichthenprecipitate.Itdependsonthepositionofthewaterwhere 42 A PLAYA-LAKE COMPLEX SANDSTONE ALLUVIAL FANS IGNEOUS AND METAMORPHIC ROCKS (ALKALINE 1EARTH CARBONATES) Fig. 5.1 Hydrologyandbrine evolutionin aplaya-lake complex (A)anda rift system (B).Solid arrows,rainwater;GW,groundwater circulation path, (fromSurdam&Sheppard, 1978) thesaltwillaccumulateifthewaterevaporatesassurface-water,forexample thewaterofatemporaryorpermanentlakeinthecenterofthebasin,whitesalt rimsformaroundthelake.Mostofthetime,however,thewater evaporates as groundwaterwithinthesoil.Mineralswillprecipitateatdifferent levelsinthe soilprofiledependingontheirsolubility.Thelesssolublemineralswillprecipitateinahorizonsomewhereinthesoilprofile (internalSolonchak)andthe more solublemineralswillaccumulateatthesoilsurface (externalSolonchak). 5.2 CHEMICAL EVOLUTION Thechemicalevolutionofwatersinclosedbasinscanbeseparated intothree mainphases: -acquisitionofsolutes Dilutewatersacquiresolutesbyweatheringreactionswith soilsandbedrock (GarrelsandMcKenzie 1967). -evaporation Thedilutewatersevaporate,whichcausesconcentrationofthedissolved material leadingtoprecipitationofminerals (EugsterandHardie1978, HardieandEugster 1970). 43 - re-solution Partial re-solutionofsaltsdeposited onthesoilsurface takesplace.This influences thecomposition ofthegroundwater (Drever andSmith 1977;Jones, Eugster andRettig, 1977). 5.3 ACQUISITION OF SOLUTES Chemicalweathering ofprimary silicatesbyCO^-chargedwaters causes the solution tobecomeenrichedwithcations,silicaandbicarbonate.Theweathering reactioncanberepresentedby (GarrelsandMcKenzie, 1967): primary silicate+ILO+CO,-*clayminerals +cations +HCO~+H.SiO° (aq) (1) During weathering of igneousandmetamorphicrocks,HCO-,willbethepredominant anioninthesolution. Weathering ofpreexisting evaporites canproduce solutions 2* inwhichCI andSO. arethepredominant anions.Theybothmayalsobe essential constituents ofrainwater. Inaddition,chlorineoftenoriginates fromfluidinclusions inminerals,andsulphatemay enter solutionbyoxidationofsulfides, forexamplebyweathering ofpyrite. 5.4 EVAPORATION Dilutewatersofdifferent compositionbehave indifferentwaysduringevaporation.Thedirection inwhichthesolutionwill evolve iscompletely determined bytheratiooftheionspresent inthedilutewaters after thestageofacquisition.Thisprinciple canbedemonstrated withasimple example:the precipitation ofNaCl (Al-Droubi, 1976).A fictivesolutioncontainingonlyNa andCI ions willbeconsidered.Undernatural circumstances suchafictive solutionwillnever occur,because carbonate-ions arealwayspresent inwaters inequilibriumwith an atmosphere containing C0 ? . Withcarbonate-ionswehave thecomplication thatthey areinvolved inthefollowing equilibria (Stumm&Morgan, 1970): (thevaluesoftheK's areat25°C,H 2 C0 3 =H 2 C0 3 +C02(aq)) C0, r -. +H,0ÎH,C0, 2(g) 2 H 2 C0 3 JH +HC0 3 K= -„ 2 3 * (H?C0,) = 10 -1,47 (2) PCQ2 K1 = (H+)(HC0") 3H±= 10 (H2C03) -6.35 (3) 44 (H+)(CO^) Hco" t H ++co::" -10.33 (4) 10 (HCO~) K H20 XH +OH _(H)(OH) w H20 •14 10 InafictivesolutioncontainingonlyNa andCl ions,theseionsmustbe presentinequalamountstomaintainelectroneutrality.Duringevaporationthe concentrationsofNa andCI willincreasebythesamefactoruntilthesolution becomessaturatedwithrespecttoNaCl.Thesaltwillprecipitate,Na andCI willbetakenfromthesolutioninequalamountsandduringfurtherevaporation thecompositionofthesolutioninequilibriumwithhaliteremainsconstant (point1infig.5.2).IfinadditiontoNa,K isalsopresentasacation, theelectroneutralityrestrictionimplies[Na]+[K]=[CI]and[CI]/[Na]>1 (squarebracketsdenotingmolarconcentrationsandroundbracketsdenotingactivities).Duringevaporation[CI]/[Na ]remainsconstant,theconcentrations following,forexample,line1 infig.5.2untilthesolutionbecomessaturated withrespecttoNaCl.AtthisstageanequalamountofNa andCI willbetaken fromthesolutionbutduringfurtherevaporationtheconcentrationofchlorine willincreaseandas(Na).(CI)=constant,theconcentrationofNa will log(Na+) 4- (Na>(CO 2 0 -2 ~l -4 1~" -2 ~! 1 r- 0 2 4 log(Cl) Fig.5.2 EvolutionduringevaporationofasolutioncontainingNa-andCI-ions incaseintheinitialsolution:1.[Na+]=[CI];la.[CI]>[Na+]and lb.[Na+]>[Cl"]. (5) 45 decrease.Theconcentrations followthelinedescribingthesolubilityproduct ofNaCl (direction2infig. 5.2).Ontheotherhand,whenforexampleSO. is + + presentinadditiontoNa andCI,[CI]/[Na ]<1andthesolutionwillevolve intheoppositedirection (direction3infig.5.2). ?- Duringtheprecipitationofcarbonates,analogousrestrictionstothosegoverningtheprecipitationofNaClmustbevalid. If,duringevaporation,calciteprecipitates (HardieandEugster,1970): 2+ 21.Ca andCO, mustbelostfromthesolutioninequalmolarproportions; 2+ 22.Theactivityproductofcalcite((Ca)(CO,))mustremainconstantatconstantPandT. InasolutioninequilibriumwithatmosphericCO-containingonlyCa ,H,CO,, HCO,,andOH thefollowingelectroneutrality equationisvalid: 2[Ca 2+ ]=2[C02~]+[HC0~]+[0H~]-[H+] (6) [H],[HC0~]and[0H~]canbeexpressedintermsof[CO,-]asfollows: V [H+] -K l K 2 P < T C 0 2- [Cof] %:o- (7) [HC0 ] 3 - r2 •Pco2 • K- T a f rœfh (8 ) T 0 H - [OH"]= Ü* (9) T H +[H] Intheseequationsy.meanstheactivitycoefficientofioni.Thefollowing relationexistsbetweenactivityandconcentration: y- .concentration.=activity, ory-[i]=(i) (10) Substituting intoequations7to9thevaluesfortheK'sat25Candp m =10 , + :itutingtheobtainedresults intoequation6, neglecting[H]andsubstituting theobtainedresults intoequation6,thefollowingequationresults: y2 2Y 2 2u J- -31. 1 7 5 U J4 9 5 ^ 3 2+, ™ 2 , . , , , „ 3 2-A ^ , 0 . r rnr n [Ca' ] = [CO'~]+ 1(10 . — - ^ - [CO' V + 10 * ^ . — ^ - [CO'rnn] 2Z) «-* TTA T T OH" 3 -J YITtr<n, HCO, C0 9 LU 2 (11) ^ 46 or, m activities: (Ça2^) < ^ P T Ca2+ T io-°- 495 (co 2 -)^ 103 J 7 S (C02~)a + 1(- CQ2- 'OH + 3 T,HCOv } (12) Inthedilutestage,activitycoefficientsmaybeneglectedwhichyields: [Ca2+]=[CO2-]+10°- 7 9 5 [C0 2 "F (13) ThisequationrepresentstherelationbetweentheCa -andtheCO, -concentrationsinthesystemCaO-CO^-H-,0duringevaporationunderatmosphericconditionsat25°C (line1onfig.5.3).Whenthesystembecomessaturatedwith respecttocalcite,calciteprecipitatesandthecompositionofthesolution remainsconstantatacompositionindicatedbypoint1'infig.5.3.IfNa,K, Mg, CI,andSO.,whicharenormalconstituentsofnaturalwaters,arepresentin log(Ca2+) A<0 -4 -5 log(C0|") Fig. 5.3 Evolution of the systemCaO-CO-HOduring evaporation incase 0, Ie1.A> 0and 1 D .A<0. 47 additiontotheionsmentioned inequation6,theelectroneutrality equation becomes: [Ca 2+ ]= [CO^"]+i([HCO:]+[OH"]-[H+])+i([Cl"]+2[S02"])-i([Na+]+[K+]+2[Mg2+]) (14) v _ ^ ^ / v * ^ y A [C02~]+ 10~ 0,795 [CO 2 ~:P atsmall I (=ionic strength) 2+ 2IfA iszerotherelationbetweentheCa -andCO,-concentrations during evaporation canagainbedescribed by line 1.Whentheconcentrations ofthe other ionsbecome toolarge,theactivity coefficientsmaybecome important which influences thepositionofcurve 1infig. 5.3,ascanbeseenfrom equation(11). IfA ispositive, [Ca ]isinexcess overcarbonate andduringevaporation the 2+ 2Ca -andCO,-concentrations aredescribed byacurveontheCa-richsideof curve 1 (forexamplecurve 1) . a b Fig. 5.3 suggests thatcurves 1,1 and 1 areparallel,but asthe absolute valueofA increases duringevaporation,these curves arenotparallelbut their verticalseparation increases. Whenthesolutionbecomes saturatedwithrespect tocalcite,Ca 2+ andCO, will beremovedfromthesolutioninequalmolar amounts andthecompositionofthe solutionwill changeaccording tothelinerepresenting thesolubility product ofcalcite indirection 2 (fig.5.3). WhenA isnegative,thecompositionofthesolutionwill changeinthe opposite direction(3). Theprecipitation of aaleite is the first decisive step intheevolutionof abrine (HardieandEugster, 1970;Eugster andHardie, 1978).Thesolutionbecomeseither carbonate-rich orcarbonate-poor,depending ontheratioofcalciumtocarbonate intheinitial solution,which iscorrelated tothesignof A of(14). Thenext cationwhichusuallywillberemoved fromthesolutionisMg Nesbitt (1974)found that inwaterswith intermediate (Ca 2+ +Mg2+)/(HCO~) ratiosmore andmoreMgwillbe incorporated inthecalcite asMg isenriched inthesolutionrelative toCaasaresultofcalciteprecipitation until finallyprotodolomite andmagnesitemaybe formed.Gacetal (1977)have shown experimentally that intheLakeChadenvironmentMgandSicoprecipitate which finally leads totheformationofMg-richmontmorillonite.Hardie (1968)found 2- 48 coprecipitationofMgandSiintheformofsepioliteatSalineValley,California. Letusconsiderwhathappens theoretically toasolution if,duringevaporation,calciteandsepiolite coprecipitate.Mgprecipitatesassepiolite accordingto(GarrelsandMcKenzie, 1967): 2Mg 2+ + 3Si0 2 (aq) + (n+2)H20 * Mg^ijOg.nh^O + 4H (15) log(Si02(aq) i SiO log(Ca sepiolite CaO MgO calci te Fig. 5.4a MgO-SiO„-CaO-diagram.During coprecipitation of sepiolite and calcite fromasolutionwith compositionP, thecomposition of the resulting solutionmoves somewhere intheshadedarea. Fig. 5.4b Activities of components pivot around join 1-2 during coprecipitationof calcite and sepiolite. Thecompositionofthesolutioncanberepresented inaMgO-Si02-CaO-diagram (fig. 5.4 a ).Theactivitiesofthecomponentscanbeplotted alongaxesperpendiculartotheplaneofcomposition (fig.5.4) .Fromtherelation Ca 2 + +H 7 0 $ CaO+2H +itfollows that log(CaO)isanalogoustolog(Ca+ )+2pH 9-*. + and fromMg +H 2 0$MgO+2H itfollows that log(MgO)isanalogousto CaO calcite + ) 49 log(Mg2+)+2pH. During calciteprecipitation atconstantPp n : log(Ca2+)+ 2pH=constant (point 1infig.5.4 ) (16) which follows fromthereactionequationCa +C0 ? +ILOÎCaCO„+ 2H. During sepioliteprecipitation: 31og(Si0 2(aq) )+2(log(Mg2+)+2pH)=constant (17) because thesolubility product ofsepiolite (18)isconstant. (HV K =• =constant ^2+)2(S02(aa/ Therefore,point 2infig.5.4 isfixed. Ifcalcite andsepiolite coprecipitate fromasolutionwith compositionP,the composition oftheremaining solutionplots somewhere inthesegment formedby thejoins ofcalciteandtheoriginal solution andofsepiolite andthat solution (shadedarea infig. 5.4 a ). Theactivities ofthecomponents insolutionare represented bythedissection from theaxesbyaplanewhichpivots around the linebetweenpoint 1and 2infig.5.4 .During sepioliteprecipitation,Mgand Si areremoved fromthesolution inamolar ratioof2/3.Ifatthemomentsepiolitestarts toprecipitateMg/Si> 2/3,whichmeans thatthecomposition ofthe solutionplots intheCaO-MgO -sepiolite triangleoffig.5.4 ,thisratioincreaseswithfurtherprecipitation. Conversely,whenthecompositionplots in theCaO-SiO?-sepiolitetriangle,theMg/Siratiodecreases during precipitation ofsepiolite. Inthefollowingdiscussionwhatmayhappen toasolution ifsepiolite starts tocoprecipitatewithcalcitewillbedealtwithsystematically. Itisassumed thatatthemoment sepiolite andcalcitestart tocoprecipitate: [Mg]/ [Si]> 2/3.During furtherevaporation andcoprecipitation thisratioincreases. - If (SiO?(. O isconstant,itfollows that log(Mg )+2pH=constant 61og(Mg2+)=-26pHI 6 o. I_^ 61og(Ca )=-26pHf ,, rr 2+. ,. n, 2+, 61og(Ca )=61og(Mg ) . (18) 50 As (Si02(. J isconstant,andMg/Simust increase,itfollows thatMgmust increaseandthereforeCaincreases alsoandpHdecreases. -If(SiO,, ,)increases,itfollowsthat log(Mg )+2pHdecreases.Thisispossible onlyif a.2pHdecreasesmorethanlog(Mg )increases•>6log(Ca )>Slog(Mg ) both+ b.2pHincreases lessthanlog(Mg )decreases-+[<5log(Mg )|>6log(Ca ) Mg+Ca c.2pHdecreasesandlog(Mg )decreases•+log(Mg )-I- log(Ca )t d.2pHdecreasesandlog(Mg )remainsconstant•+log(Mg )constant log(Ca )+ e.2pHremainsconstantandlog(Mg )increases->-log(Mg )+ log(Ca )const. BecauseMg/Simust increaseand(Si02(- •>)increases,Mgmustincreasetoo,so onlycasea.fulfillstherequirements. -If(SiCu, -.)decreases,itfollows that log(Mg )+2pHincreases.Thisispossibleif a.2pHdecreases lessthanlog(Mg )increases-+61og(Mg )>61og(Ca ) botht b.2pHincreasesmorethanlog(Mg )decreases-+|Slog(Ca )|>|<51og(Mg ) | both+ c.2pHincreasesandlog(Mg )increases •*• log(Ca )+ log(Mg )t d.2pHremains constantandlog(Mg )increases•>log(Ca )=const. log(Mg )+ e.2pHincreasesandlog(Mg )remainsconstant -*log(Ca )+ log(Mg )=const. BecauseMg/Simust increaseand(Si0 9r ,)decreases, casesa-eareallvalid. L aa l J 7+ However, case b. is only valid if |log(Mg )|<2/31og(Si02(- ,). Thesametypeofreasoningashasbeenappliedfor[Mg]/[Si]>2/3,canbeapplied forthecases [Mg]/[Si]=2/3andfor[Mg]/[Si]<2/3. Theresultsaresummarizedintable5.1.Asonlydirectionsinwhichthesolution evolvesareindicatedandabsoluteconcentrationsarenotgiven,activitycoefficientscanbedisregarded. Thefollowing symbolsareusedinthetable: Ca=log(Ca 2+ ) Mg=log(Mg 2+ ) Si=log(Si0 2(aq) ) J =concentration increases 1 =concentration decreases - =concentrationremains constant Thecompositionofthewateratthemoment sepiolite startstocoprecipitate with calciteplots: ^ intheMgO-CaO-sepiolitetriangle A intheCaO-SiCu-sepiolite triangle /^onthelinejoiningcalciteandsepiolite 51 Table5.1 A t t 1 t t 1 óMg=óCa 6Mg<6Ca 6Mg>6Ca 16MgI>|6Ca1 — Mg Ca pH 1 1 t l 1 1 Si \ \ t 1 t ! \ — t t — i — 1 t |6Mg|<2/3|6Si| A t t t 1 1 I I t óMg<óCa ÓMg<1ÓCa1 óMg=2/3óSi |óMgl=2/3lóSil Si Mg Ca pH t Si Mg Ca pH t \ \ \ \ t t t t \ t t t \ — t 1 t \ — 1 1 1 t \ lóMgl<|6Cal ôMg=6Ca |óMgl>óCa6Mg<6Ca Mg<2/36Si Theproblemcanalsobeapproached fromthesideoftheelectroneutralityequation,rewritten from(14): 2 2[Ca2+]+2[Mg2+]=[HCOl]+2[C0 M O H _ ] - [ H + ]+[Cl'>2[S02L"]-[Na+]-[K+] (19) ä \ £, alkalinity / v__ / .it A' 52 Fromthecarbonate equilibria (equation 2to 5)anintimate relationbetween pH,Pco ? andalkalinity canbederived (vanBeekandvanBreemen, 1973).At constantPCO?a n increaseofalkalinity impliesanincreaseofpHandviceversa. When,during evaporation,calcite andsepiolite coprecipitate,A'remains constantly zeroortheabsolutevalueofA' increases.Forthe caseA'remains zerowecanderivethe followingrelations: a.alkalinity remains constant -*•pHconstant andbecause log(Ca )+ 2pH=constant-*• (Ca )isconstant. From (19)itfollowsthat theMg-concentrationmust alsoremainconstant. Thiscombination isonlypossiblewhenthecompositionofthesolutionatthe moment sepiolite startstocoprecipitatewithcalcite (further called "comp. ")plotsonthejoinbetweensepiolite andcalcite intheCaO-SiCL- MgOdiagram (seetable5.1). b.alkalinity increases •*•pHincreases-»•(Ca )decreases.Ifalkalinity increases,thesumoftheCa andMg concentrationsmust also increasewhichfollowsfromequation (19)and therefore theMg-concentrationmust increasemore thanthe Ca-concentration decreases.Fromtable 5.1 itfollows that "comp. "plots intheMgO-CaO- sepiolite triangle. c.alkalinity decreases •*-pHdecreases->(Ca )increases and therefore theMg-concentrationmust decrease faster thanCaincreases."Comp. "plots intheCaO-SiCu- sepiolitetriangle. Thesametypeofreasoning canbe followed forA' isnegative andbecomesmore andmorenegativeduringevaporation andforA' ispositive andbecomesmoreand morepositiveduringevaporation.Theresults aresummarized intable5.2. Iftable 5.1 and 5.2.arecombined,therelationsbetween 2[Ca ]+2[Mg ] , thealkalinity,theMg/Si-ratio and thesignofA'(see formula (19))during coprecipitation ofcalciteandsepiolite canbederived.Theserelations are represented infig.5.5.Thefigureshows that ifMgprecipitates asasilicate instead ofacarbonate,increaseof [Ca ]+ [Mg ]concentrationdoesnotnecessarily implyadecrease inalkalinity andviceversa.This isincontrast tothe conclusionofSurdamandSheppard (1978).Theprecipitation of sepiolite the second decisive maybe step intheevolutionofbrines. Ifthealkalinitydecreases aftertheprecipitationofcalciteand sepiolite aNa-Ca-Cl-SO.oraNa-Mg-Ca-Cl-SO.-brineresults.Insuchbrinesthe 53 Table 5.2 la A' = O alk. — pH — 2+ „ 2 +„ Ca +Mg Ca — 2+ — 2+ — Mg A "comp. ,b ic t t t l t 1 1 1 1 1 A A sep. 2a A' > 0 1 t t t — ! alk. — PH — 2+ 2+ Ca +Mg „ 2+ Ca 2+ Mg "comp. " sep. t ! A A 3a A' < O alk. — pH — 2+ 2+ Ca +Mg Ca Mg ! 2+ 2+ ! "comp. sep. 2b A 3bl t t 2cl 1 2 c2 ! \ 1 1 t 1 1 t t 1 H A A • 3 b2 3 b3 ! — 1 t t t t 1 t H A A • — 2 c3 3C t t ! \ A 54 Mgt Cas MgtCatSitA MgtCal S l i A MgtCatSit A " A MgtCal sepiolite ^Sil HgO MgICal <45 MgtCalSII CaO cal ci t e The composition of the water plots: A on the l i n e joining calcite and s e p i o l i t e MgtCatSitA HglCalSiI /^K HglCalSil » A MglCaSil AMglCalS1l AMgICalSli AMgtCalSil A in the s e p i o l i t e - calcite - MgO t r i a n g l e A in the s e p i o l i t e - c a l c i t e - Si0 2 t r i a n g l e A random t concentration increases I concentration decreases — concentration remains constant a l k a l i n i t y ([HCOj)+ 2[C0j ]) 2+-, 2+-, Fig. 5.5 Thedirection inwhich 2([Ca ]+[Mg ])andthealkalinity evolve, when during evaporation calcite andsepiolite coprecipitate, inrelation with the initial Mg/Si ratio ofthesolution andthesign of A ' (see(19))atthe moment thetwominerals start to coprecipitate. 2+ 2precipitationof gypsum isthe third deoisive step. TheCa -andSO.-concentrationswillchangeinoppositedirectionswhenduringevaporationgypsum precipitates. Whenthealkalinity increasesaftercalciteandsepiolitecoprecipitation,it dependsontheinitialMg/SiratioofthesolutionwhethertheNa-CO-.-SO.-Clbrinewill containMgornot. Inthiswaysixessentiallydifferentbrinescanoriginateafterprecipitation ofcalcite,precipitationofsepioliteandprecipitationofgypsumascanbeseen infig.5.6(modifiedandsimplifiedafterÊugsterandHardie,1978).Fromthese brinessixessentiallydifferentsaltassemblagesanddifferenttypesofsolonchaksoriginatethroughevaporation. Sodium,unfortunatelythemostharmfulionforvegetationandforthephysical propertiesofthesoil,andchlorinearealwayspresentinthesaltassemblages ofexternalsolonchaks,ascanbeseenfromtheflow-diagramoffig.5.6.It dependsontheinitialcompositionoftheinflow-waterswhetherthesaltswill containMg,Ca,SO.andcarbonateinconsiderableamounts.Asmalldifferenceof theMg/Siratiointhedilute stagemaybeenoughtodeterminewhetherthe groundwaterwillshowMg-enrichmentornot,whichinturngivesrisetocompletelydifferenttypesofsolonchaks. 55 Icalcite Fig. 5.6 A flow sheet of theevolutionofwaters during evaporation calcite-, sepiolite-and gypsum-precipitation. For explanation of the triangles,see fig. 5.5. (modified and simplified afterEugster &Hardie, 1978) 5.5 APPLICATIONTOIRRIGATIONOFSALTAFFECTED SOILS Theflowdiagramoffig.5.6canbeusedintheoppositedirectionwhenirrigationisappliedonsalt-affectedsoils. Forexample,ifirrigationisplannedforasalt-affected soilwithsaltsof theNa-Cl-SO.-typeonitsoilsurface.Thefirst irrigationwaterisusedfor leachingofthesesalts.Ifthecropwhichwillbegrownissulphate-sensitive butchlorine tolerant,suchasPartheniumargentatumGrayorLinumL.,sufficient Camustbeaddedtothefirstirrigationwater,causingthemolarratioofCa/SO. tobecomelargerthan 1.ThisCacanbeaddedforexampleascalciumchloride. Subsequentevaporationandprecipitationofgypsumwill lowerthesulphateconcentrationandtheconstituentsofthesoilsolutionwillbeNa,CaandCI. 56 APPLICATION OF THE MODEL OF BRINE EVOLUTION TO KONYA AND KENYA 6.1SALTS Ifweconsiderthesaltswhichhavebeenfoundonthesoilsurface (seetable 3.2and4.2)thereappearstobeastrikingdifferenceinthetypeofsalt minerals foundinKenyaandthosefoundintheKonyaBasin. Thesaltswhichoccuratthesoilsurfacearethemostsolubleones.Theless solublesaltminerals,whichdeterminethecompositionoftheresidualbrine, haveprecipitatedatanearlier stagesomewherewithinthesoilprofile. Konya IntheKonyaBasinthesaltsaregenerallyoftheNa-Mg-SO.-Cl-type.Halite andsulphatesofsodiumandmagnesiumarepredominantbutpotassiumandcalcium bearing sulphates alsooccur.Nochloridesofmagnesiumandcalciumoccur.From theflowdiagramofFig.5.6itisclearthatprecipitationofcalcite,sepiolite andgypsummusthaveprecededtheprecipitationofthemore solublemineralsat thesoilsurfaceinordertogenerateabrineoftheNa-Mg-SO.-Cl-type. IntheAkgölplain (seefig.3.4)different typesofsaltsoccur.Sodium bearingcarbonatessuchastrona,thermonatrite,andburkeitehavebeenfoundin additiontohaliteandthenardite. Onlytheprecipitationofcalciteisrequiredforthegenerationofthebrine oftheNa-CO_-SO.-Cl-typefromwhichthesaltsfoundintheAkgölplainhave originated. AlongthecraterwallofKrater Gölinthecentreofthebasin,sodaniter,a sodiumnitrate,occursinassociationwithhaliteandgypsum. Thebasiniscoveredwithmarl soils;therefore,itisdifficulttosee whetherthecalciteisarecentprecipitateorisofdetritalorigin.Gypsumis alsopresentinconsiderable amounts,bothinthesoil itselfandatthesoil surfacewhereitisassociatedwiththemore solubleminerals. SepiolitewasnotfoundintheKonyaBasin,butatthetimeofsampling there wasnoreasontosearchforitcarefully. Kenya Thesaltassociations observedinKenyaaredifferent fromthoseobservedin 57 theKonyaBasin.Themoststrikingdifference istheabsenceofMg-saltsfrom thesaltassemblagesonthesoilsurface inanyoftheKenyan localitiesvisited. InAmboselisodiumcarbonates suchastronaandthermonatritearepredominant. Calcium ispresent incalciteand inthe double-salts gaylussiteandpirssonite. Inaddition,somesulphatesoccur,butnochlorideshavebeenfound.Thetypeof minerals intheAmboseliBasincanbestbedescribedbytheNa-CO,-SO.-Cl-typeof fig. 5.6.Despite thefactthat chlorideshavenotbeenfound,themineralassociationcanbedescribedbythistypebecausechlorinedoesnottakepart ina decisiveprecipitationreactionand,therefore,when itispresent intheinitial dilutewater,occursinallsixtypesofbrinesoffig.5.6.Thistypeofassociationoriginates ifcalciteand/orsepioliteprecipitation areassumed.In Amboselibothcalciteandsepiolitearepresent inconsiderableamounts (Stoessell, 1978). The saltassociations atMiti Bili,KanamandLakeSimbialongLakeVictoria showthe sametypeofminerals asthosedescribed fromtheAmboseliBasin.However,halite ispresent inadditiontoabundanttronaandthermonatriteand, furthermore,sepiolitehasnotbeenfound.At SindoandLuandaonlysulphateand chloridewereobserved.Theseassociations canbecharacterisedbytheNa-Cl-SO.type.Calciteandgypsumprecipitationaretheoreticallyrequired togenerate thistypeofbrineandabundantcalciteandgypsumare indeedpresent. IntheNorthofKenya,eastofLakeTurkanaand intheChalbiDesert,the saltmineralsaremainlyoftheNa-Cl-SO.-typewithhaliteandthenarditeasthe mainrepresentatives. Thistyperequirestheprecipitationofcalciteandgypsumand theseminerals havebeenfound.Sodiumcarbonatesoccur locally atNorthHorr inthenorthof theChalbiDesert.Themainsaltrepresentatives aretronaaridthenarditeand thebrineatthis localityisoftheNa-CO,-SO.-Cl-type.Suchabrinecanonly originate ifthecompositionofthediluteinflowwater issuchthatcalcite precipitationcauses thefinalbrinetobecomealkaline. 6.2 WATERCOMPOSITION INTHESYSTEM (Na+K)-Ca-Mg-Cl-S04-(HC03+C03) Aswith thesaltassociations,therearepronounceddifferences inthecompositionofgroundwateratthedifferent localitieswhere thesaltefflorescences havebeensampled. Thewateranalyses (seetable 3.1 and 4.1) canbeplotted inthesystem (Na+K)-Ca-Mg-Cl-S04-(HC03+C03).Themolarratiosoftheanionsareplotted ina C1-S0.-(HC0,+C0,)-composition triangleandthemolarratiosofthecationsare 58 plotted ina (Na+K)-Ca-Mg-triangle (fig.6.1).Suchdiagrams give information about theratioofthe ionspresent inthesolution;theydonotgive informationabout totalconcentrations. Itgoeswithout sayingthat thesumofthe anion-concentrations ofaspecificwater isthesameasthesumofthecationconcentrations.Thecompositionofthewaterswillbedealtwithonthebasisof thesediagrams. Konya (Fig. 6.1a) The threesolid symbols inthediagramrepresent theinflowrivers -the Çarsambafromthesouthwest (locality T2), the Zanopafromthesoutheast (localityT12)and theBorfromthenortheast (localityT27,fig.3.2).Theratio carbonate/Cl+SO.forthese inflowwaters ismuch largerthanforthemoreconcentrated groundwaters.Asaresultofevaporation andprecipitationofminerals, thecompositionofthesolutionchanges insuchaway thattheratioofthe anionsmovesawayfromthecarbonate corner and theratioofthecationsmoves towards thesodiumcorner. Thewaters fromAkgölareindicatedwith adifferent symbolbecause the mineralogicalcompositionofthesaltassemblages intheAkgölplaindiffers fromthatatother sites.TheAkgölwaters areratherpoor insulphateandmagnesium. Kenya (Fig. 6.1b) Fromfig.6.1b itisobviousthatthecompositionofthewatersfromKenyais different fromthatoftheKonyawaters (fig.6.1a).Thedilute inflowwaters arepoorer inCaandMgthantheKonya-inflowwaters.The compositionofthemore concentratedwaters showspronounceddevelopment towards thesodium-rich sideof thediagram.Withregard totheanioniccomposition,theratio carbonate/Cl+SO. inboththedilutewatersandtheconcentratedwaters isveryhigh,especially inthewatersfromAmboseliand thosefromLakeVictoria. Itisevidentthatthe waters fromSindoandLuandaareexceptional,justasthemineralogy ofthesalt associations atthese localities areexceptional.SomeTurkanawatersalsoshow arelativelyhighsulphateandchlorinecontent. 6.3 WATERCOMPOSITIONS INTHE SYSTEM Mg0-Si02-Ca0 Aplotofthewater compositions inthesystemMgO-SiO?-CaOcanrevealwhether sepiolitewasaprecipitate (seefig. 5.4a); ifcalciteand sepiolitecoprecipitateduringevaporation,thecompositionoftheconsequent concentratedwaters 59 Na + + K + a.KONYA: • A Akgöl waters CO^~ + HCOJ "9 CTORIA CO3 + HCO3 "g Fig. 6.1 Composition ofwater samples plotted in the system Ca-(Na+K)-Mg-Cl-SO-(HCO+CO )from theKonya Basin inTurkey (a) and fromdifferent regions inKenya (b)expressed inmole percent. Solid symbols:surface inflowwaters;open symbols:groundwaters. Luanda 60 plotinthesegment formedbythejoinsofcalciteandthedilute inflowwaters andofsepioliteandthesewaters (segmentP,Q,MgO,Rinfig. 5.4 a ). Konya Fig. 6.2ashowsaplotofthewaters fromKonyaintheMgO-SiCU-CaO-system. MostwatersplotintheMgO-calcite-sepiolite triangleandthemore concentrated watersplotinthesegmentQ-MgO-R-dilutewaters. AlthoughnosepiolitehasbeenfoundintheKonyaBasin,thepatternasshownin fig. 6.2aisanindicationthatsepioliteoranother correlatedMg-silicatehas precipitated. Somewaters fromtheAkgölplainandthreeotherwaters formanexceptionto thispattern.However,thisisnotsurprising becauseithasalreadybeennoted thatthesaltassociationsarealsodifferentandthatforthegenerationofthe Akgölwatersnosepioliteprecipitationisrequired theoretically. Finally,the compositionofthedilute inflowwatersintheAkgölplainisnotknown. Kenya Fig. 6.2bshowsthecompositionofthewaters fromKenyaintermsofthe systemMgO-SiCL-CaO.AgainastrikingdifferencewiththeKonyawatersis apparent fromthisdiagram. a. KONYA: b KENYA: SiO, SiO, 2 o i A AMBOSELI A A A k g ö l waters / \ •0 T U R K A N A • O Other waters • O LAKE V I C T O R I A S L sepiolite R CaO (calcite) Sin d o a • Luanda MgO Fig. 6.2 Composition of water samples p l o t t e d in the system Ca0-Mg0-Si02 from the Konya Basin in Turkey (a) and from d i f f e r e n t regions in Kenya (b) expressed in mole per cent. Solid symbols: surface inflow w a t e r s ; open symbols: ground w a t e r s . CaO (calcite) 61 Thedilutewater fromtheregionalongLakeVictoriaplotsonthejoin betweencalciteandsepiolite andthemoreconcentratedwatersplotabove this join. Thispattern isconsistentwiththecoprecipitationofsepiolite and calcite.TheexceptionalpositionofthewatersfromSindoandLuandaisclear.The generationofthetypeofbrineatthese localitiesdoesnotrequireprecipitationofsepiolite. Thewatersboth fromtheAmboseli BasinandfromtheregioneastofLake TurkanaandtheChalbiDesert showaratherscatteredpatternaroundthejoin betweencalciteandsepiolite.No conclusions canbedrawnfromthesepatterns. 6.4 CONCENTRATION OF INDIVIDUAL IONSVERSUS CHLORINE CONCENTRATION Theevolutionoftheconcentrationofthe individual ionscanbeevaluated byplotting theconcentrations oftheseionsagainstchlorine concentrationof thesamesample.Thechlorine concentration canbeconsidered ameasureofthe concentration factorofthebrinesbecausethechloridesofthemain compounds occurring innaturalgroundwaters and surfacewaters areverysoluble (Eugster andJones,1977,1979;Jacks, 1973). Chloridesprecipitate onlyatthefinal stageofevaporationandhence ifan ionisnot lostfromasolutionbyprecipitationoranotherremovalmechanism, itsconcentration factor isthesameasthatofchlorine.Therefore,ifthelog oftheconcentrationofthisspecific ionisplottedversus the logofthe chlorine concentration,thepoints formastraight linewith slope 1.Ifanion isremoved fromthesolutionandthe logofitsconcentration isplottedversus itschlorineconcentration,wewill findapointwhichfallsbelowthislineof slope 1andviceversawhenanionisenrichedwewillfindapointwhichfalls above thisline. Konya Infig.6.3 the logoftheconcentrations ofNa,K,Ca,Mg,sulphate andthe alkalinity areplottedversus the logofthechlorineconcentration inthesamples fromtheKonyaBasin.Itmustbeemphasized thatthemostsolublesalts whichcanbe foundonthesoilsurfacehavenotyetprecipitated fromthese solutions.Againintheseplots theAkgölwatershavebeendistinguished from theotherwaters. TheplotofNaversus CIshowsthatduring evaporationsodium is,like chlorine,averyconservative element.Thesodiumconcentrations oftheAkgöl waters andtheotherwatersplot onastraight linewithslope1. 62 a. KONYA • 1- "3" O c/1 • • •• •• •• ± A A 0• A A A . -1 I . I •• • • •• A . A• A A • A A • A A • -1 -I l • • o ' **.. A A • • • o> 1 A 0 • 2- 2 . . 2 0 \ I I i . i i . 3 l o g Cl •• - Ol o • • •• A 1 -— o- •• • A - °1 - in D) 0 o A 4 . I -1 ^ 'A' . • . I I 2 3 l o g CI . I -1 A 4 -1 A , • . A A&A^. • * . A . .m • . I , •• •• • A 0 ^AA. . A • -1 • • 'I 4 -1 . I , I , 2 t I 3 l o g CI' Fig. 6.3 Plots of the logarithm of ionic concentrations versus the logarithm of chlorine concentrations ofwater samples from theKonyaBasin inTurkey. All concentrations expressed inmolm ,apart from alkalinity (eqm ) . Solid triangles:surface inflowwaters;open triangles:waters from the regionnearAkgöl; solid dots: otherwaters. i , i * 63 Potassiumshowsfor themostpart thesame linearrelationship as sodium apartfromasmallgroupofsampleswitha logCl ofabout 1which showsalargerincrease inpotassium concentration thancanbeexplainedby simpleevaporationalone.TheAkgölwatersaredepleted inpotassium;theyshowonlya slight increase inpotassium-concentration. Theabsolute Ca-concentration gradually increasesduringevaporationwitha slope lessthan 1.Therefore,Caisalreadybeingremoved fromthesolutionat thedilutestage.TheremovalofCacaneasilybeexplainedbytheprecipitation ofcalcite,which isconsistentwiththegradualdecreaseofthealkalinity.The Akgölwaters showjusttheoppositebehaviour.Thealkalinity,whichishigher atthesamechlorine concentration thanthealkalinity oftheotherwaters,increases.TheCa-patternoftheAkgölwaters showsnoconsistentbehaviourbut theCa-concentration isinanycase lowerthantheCa-concentrations ofthe otherwaters. Thepatternofsulphate israther scatteredbut ingeneralsulphate isconserved till logCl isabout 2.Fromthatstageonasmallamount ofsulphate is removed fromthesolution,but theconcentration ofsulphate inthe solution still increases. Atthisstageofevaporationsulphate ispossiblyremovedby theprecipitation ofgypsum,whichhasbeenfound ininternalsolonchaks (Driessen, 1970). Silica islostfromthesolutionfromthedilutestage.Thesilicaconcentrationfirstslowly increases and thereafterdecreases.Thedecreaseofthe silicaconcentrationmaybean indication thatsilicaprecipitates incombinationwithothercomponents andnotas,forexample,silicageloropalinesilica. Precipitationofsuchspecieswould causethesilicaconcentration toremain constantatconstantpH.As thepHintheKonyaBasinshows littlevariation (onlyatAkgölisthepHsomewhathigher thanintherestofthebasin),pH variation isnotthereasonforthe inflectionofthesilicaconcentration.The silicaconcentration oftheAkgölwatersremains atarather constant levelso intheAkgölplainsilicamayhaveprecipitated asalowtemperaturepolymorph of Si0 2 . Themagnesiumconcentration initially increasesand showsapositivecorrelationwithchlorine,althoughthere isa largespread inthedata.From logCl ofabout 2the increaseofthemagnesium concentration levelsoffand finallymagnesiumconcentrationdecreases.Thedecrease inmagnesiumconcentrationmaybecorrelatedwiththedecrease inthesilicaconcentration,both being causedby sepioliteprecipitation.Themagnesium concentrations inthe Akgölwatersareclearly lower thanthose intheotherwaters atthesamecon- 64 centrationofchlorine.ThepatternofMg isirregularbut correspondswith theirregular Ca-patternoftheAkgölwaters.Thismaybe anindicationthat atAkgölmagnesium isnotremovedbysepioliteprecipitationbutbyacoprecipitate ofMgandCasuchasmagnesium calciteordolomite. Kenya Conclusions drawnfromplotsoftheconcentrationofthedifferent ionsversuschlorinearevalidonlyfortheAmboseliBasinbecausethehomogeneity of theinflowwatershasnotbeenestablished fortheotherregionswhichwere sampled inKenya.Analyses fromthesamples ofthisstudyhavebeen supplemented by theanalyses givenbyStoessellandHay (1978).StoessellandHay'swatersampleswere collected inAugust,1975,fromstreams,wells,swampsandpits. Thewaters fromAmboseli show lessclearpatterns thanthewaters fromKonya, butgeneral trendscanbededuced (fig.6.4). Sodiumagainappearstobeaveryconservative element.Noremoval takes placeuntiltheveryconcentratedstage. Potassium isalsoconservative inthedilute stagebut fromalogCl ofabout 0.5 asuddenremovalofpotassium takesplace andthepotassium concentration evendecreasesduring furtherevaporation.Potassiumremoval canbe explained bytheprecipitationofaphtithalite (K,Na(SO.)?)which isfound atdifferent localitiesnotonlyonthesoilsurfacebut evenatadepthofaboutonemetre inthesoilprofile itself.Sulphate is,likepotassium,conservative inthe dilute stagebutagainat logCl ofabout 0.5 andhigher sulphate islostfrom thesolution,althoughitsconcentration stillincreases.Whereas,during aphtithaliteprecipitation,boththesulphate andthesodium concentrations increase,thepotassium concentrationmustnecessarilydecreaseduring further evaporation.This iscompatiblewith thesodium,potassium andsulphatepatterns. Boththealkalinity andCainthesolutionincreaseuptilla logCl ofabout -0.5isreached.Fromthatpointonwardsbothareremoved fromthesolution. Alkalinity still increasesbut theCa-plotshows aninflectionpointandthe Caconcentrationdecreases.Thecontrastingbehaviour ofCaand alkalinity during evaporationcanbeascribed totheprecipitation ofcalcite. SiandMg showthesamebehaviour.Theybothremaincompletely insolution till logCl isabout -1, thenboth areremoved fromthesolutionandtheirconcentrations remainatarather constant level and,finally,their concentrations decrease.Decreaseofbothmagnesium andsilicacanbeascribed tothecoprecipitationofsepioliteandcalciteonlywhentheCa-concentrationdecreases andthealkalinity increases (seefig. 5.5).This isthecaseatAmboseli so 65 AMBOSELI, KENYA o o CT>0 • O • o - • • ": A -• • 1 •• • a* i • -1 • _ • o„ o o • • • 2 A i -2 . i , i -1 * 1 2 log . Cl" 1 i -1 1 2 log Cl" O Ol o 0 *o o- o. . ,/fr. Al • -1 ° o • o I i ° o• I I 0 - 2 - 1 1 2 log C l " o •:. * . • V. A ' 0 -1 -2 -1 1 2 log Cl" '• • 9 o . o •• . • AO . :• A • . o o • • • • i I 1 I Fig. 6.4 Plots of the logarithm of ionicconcentrationsversus the logarithm of chlorine concentrations ofwater samples from theAmboseli Basin inKenya. All concentrations expressed inmolm--*,apart fromalkalinity (eqm~3). Solid dots:data from Stoessell &Hay (1978); solid triangles:surface inflow waters; open circles:groundwaters. 1 66 thebehaviourofMgandSicanbeexplainedbysepioliteprecipitation. 6.5CONCLUSIONS The saltsobservedintheKonyaBasinwerecomparedwith thoseobservedin Kenya.Variousdiagramswereusedtoinvestigatetheevolutionofthemain speciesinsolutionduringevaporationandtotestwhethertheprincipleof chemicaldividesisapplicabletotheareasstudied.Thesediagramsarealso ofgreathelpinestablishingthehomogeneityoftheinflowwaters. Konya Basin IntheKonyaBasinthebrinesandsaltmineralsaremainlyoftheNa-Mg-SO.-C type.ThesaltmineralsandbrinesattheAkgölplainareoftheNa-CO,-SO.-Cltype. Withinthebasin,nolossofsodiumandpotassium takesplaceuntilthevery concentrated stage.Thebehaviouroftheother solutescanbeexplainedbythe successiveprecipitationofcalcite,sepiolite,orarelatedMg-silicate,and gypsum. ThewatersfromtheAkgölplaincanbedistinguished fromtheotherwaters anditisconcluded thatthesewatershaveadifferent origin.InAkgöl,sodium andpotassiumarealsoconservative elements.ThecongruencyoftheCa-andMgpatternsfavoursdolomiteormagnesium calciteprecipitationoversepioliteprecipitation.Theconstancyofthesilicaconcentrationisprobably controlledby theprecipitationofapolymorphofSiCu suchasopalinesilicaorsilicagel. Kenya ThewatersandsaltmineralsinKenyaareingeneralverycarbonate-rich.The waters fromtheAmboseliBasinandthose foundalongLakeVictoriaareofthe Na-CO,-SO.-Cl-typeapartfromthelocalitiesofSindoandLuandawhichareof theNa-SO.-Cl-type.Thewaters eastofLakeTurkanaarealsomainlyofthe Na-S04-Cl-type. ThedescriptionoftheevolutionofthebrinesisrestrictedtotheAmboseli Basinbecausethehomogeneityoftheinflowwatersintheotherdistrictswas notestablished.InAmboseliNaisavery conservative elementasintheKonya Basin.MgandSiarelostfromthesolution fromalogCl valueofabout -1, Ca andalkalinityareremoved fromalogCl valueofabout-0.Sand,finally,K andSO.areremoved fromalogCl valueofabout0.5.Thebehaviourofthese solutescanbedescribedbycalcite,sepiolite andaphtithalite precipitation respectively. 67 7. MINERALOGY 7.1 IDENTIFICATION OFMINERALS Saltmineralsofboth thenaturallyoccurring saltefflorescences andthe saltsprecipitated intheevaporationexperiments inthe laboratory (seesection8.2)were identifiedbymeans ofX-raydiffraction analysiswith aNonius GuiniercameraFR552withahighresolvingJohanssonKcxjmonochromator,using CoKairadiation (X=0.17889nm). Table 7.1 showsasurveyofall identified saltmineralspresent inthesamplesofthisstudyandthecharacteristic dvaluesoftheirX-raypatterns.Thesecharacteristic linepositions arenot necessarily thestrongest ones. Ithappenednot infrequently thatasaltassemblageshowedanumber ofunidentiableX-rayreflections.TwounknownX-raydiffractionpatterns belonging tounknownmineralsoccurredregularly.Specialattentionwaspaidtothesetwo unknownminerals.Bothcompounds couldbesynthesized,analysed andtheircompleteX-ray diffractionpatternwasdetermined.Oneofthose,themineralnamed "eugsterite",isaccepted asanewmineralby theCommission onnewmineralsand mineralnames ofthe IMA (seesection 7.3).Theotherone,named "konyaite",is submitted totheCommissiononnewmineralsandmineralnamesoftheIMA.Fora descriptionof"konyaite",seesection7.4. 7.2 CRYSTALLOGRAPHIC PROPERTIES Thecrystallographicproperties,suchascrystalsystem,crystalclass, spacegroup,unitcelldimensions and theopticalpropertiesofallminerals listed intable 7.1 aredescribedextensively inDana,Volume II (1957)apart fromthoseofthemineralsburkeite,darapskite,gaylussite,loeweiteand starkeite andofcoursethenewmineral eugsterite.Thedataofdarapskite canbe foundinEricksenandMrose (1970),thoseofstarkeite inBaur (1962), thoseof loeweite in Fang (1970) andthoseofgaylussiteweredescribedby Maglione (1968).Crystallographicdataofeugsterite andkonyaitearegivenin section 7.3 andsection 7.4respectively.Burkeite isamineralwhich isvery rarelydescribed inliterature.A specialpaperwaswrittenaboutthismineral asitoccurs frequentlybothinKenyaandintheKonyaBasin,cf.section7.5. Table 7.1 Characteristic d-valuesof saltminerals.Intensities between brackets mineral d-values (Ä) 1. aphtithalite K 3 Na(S0 4 ) 2 4.09(30) 2. arcanite K-SO. 1 4 3. aragonite CaCO 4. bloedite Na 2 Mg(S0 4 ) 2 .4H 2 0 4.162(41) 2.940(75) 2.997(92) 3.396(100) 4.56(95) 3.795(75) 6. calcite CaCO 3.86(12) 7. darapskite Na 3 (N0 3 )(S0 4 ).H 2 0 10.3(100) 8. dolomite CaMg(C0 3 ) 2 9. epsomite MgS0 4 .7H 2 0 2.902(100) / 2.886(76) 3.273(52) 4.28(30) 5. burkeite Na 6 (C0 3 )(S0 4 ) 2 10. eugsterite Na.Ca(S0,)_.2Ho0 4 43 2 11. gaylussite Na 2 C0 .CaCO .5H0 2.839(100) 1.977(65) 3.29(95) 3.526(80) 3.25(100) 2.801(100) / 2.777(55) 3.035(100) 2.495(14) 3.46(35) 2.871(30) 3.69(5) 2.886(100) 2.192(30) 5.99(22) 5.35(26) 4.21(100) 9.20(39) 5.50(64) 4.50(33) 6.41(95) 4.50(45)/4.43(40) 12. glauberite Na 2 Ca(S0 4 ) 2 6.22(8) 13. gypsum CaSO..2H.0 7.61(45) 14. halite NaCl 2.821(100) 15. hexahydrite MgS0 4 .6H 2 0 5.45(50) 16. kainite KMgClSO .3H0 8.115(69) 7.771(83) 17. konyaite Na 2 Mg(S0 4 ) 2 ,5H 2 0 12.01(57) 4.541(100) 18. loeweite 10.3(80) Na ]2 Mg 7 (S0 4 ) 13 .15H 2 0 3.18(75) 2.677(24) / 2.659(22) 3.428(100) 3.21(100) 3.13(100) 3.11(80) 3.06(55) 2.87(25) 4.28(90) 1.994(55) 5.10(45) 9.41(25) 2.015(15) 1.628(15) 4.39(100) 7.372(100) 3.08(86) 4.002(88) 3.960(70) 4.29(95) 4.04(95) 19.nahcolite NaHC0 3 5.91(16) 4.84(25) 3.482(30) 2.956(70) / 2.936(100) 20.niter KNO. 4.66(23) /4.58(11) 3.78(100) /3.73(56) 2.647(55) / 2.632(30) 3.17(100) 3.082(25) / 3.059(35) 2.662(41)/ 69 Table 7.1 Continued mineral d. values 21. northupite Na 6 Mg 2 Cl 2 (C0 3 ) 4 8.08(50) 4.96(30) 2.697(75) 22. nesquehonite MgC0 3 .3H 2 0 6.48(100) 3.04(30) 23. pirssonite Na 2 Ca(C0 3 ) 2 .2H 2 0 5.13(70)/4.93(60) 2.654(90)/2.565(80)/2.506(100) 24. sodaniter NaNO 3.89(6) 3.03(100) 25. schoenite/ picromerite K 2 Mg(S0 4 ) 2 .6H 2 0 7.14(25) 4.16(85)/4.06(95) 3.71(100) 26. starkeite (leonhardtite) MgS0 4 .4H 2 0 6.83(45) 5.43(75) 3.951(65) 27. thenardite Na 2 S0 4 4.66(73) 3.178(51) 3.075(47) 2.473(100) 2.617(55) 2.311(25) 2.646(48) ScanningElectronMicroscopywasappliedtothesaltmineralswhicharethe mainconstituentsofthesaltefflorescencesinordertorevealthecrystalhabit andthemorphologyofthesesalts (seesection7.6). 7.3 EUGSTERITE,ANEWSALTMINERAL Ooouvvenae EugsteritehasbeenfoundinKenya,intheGreatKonyaBasinandonbricks ofDutchriverclays. - Kenya. InKenyaeugsteritehasbeenfoundalongtheshoreofLakeVictoria, atSindoandLuanda (seefig.4.3).Thereitoccursasasurfacemineralin associationwith thenarditeandhalite.ItisalsofoundatKalacha,Turkana district,eastoftheChalbiDesertinthenorthofKenya (seefig.4.4).In thisareavast saltefflorescences occurandeugsteriteisfoundinassociation withhaliteandthenardite.Thegroundwatersatthelocalitieswhere eugsterite hasbeenfound,areoftheNa-SO.-Cl-type. - Konya Basin. IntheKonyaBasineugsteritehasbeenfoundinassociationwith sulphatesandchloridesofsodiumandmagnesium.Itoccursinthefollowing associations:eugsterite,halite,thenardite;eugsterite,bloedite; 70 eugsterite,halite,gypsum;eugsterite,halite,glauberite;eugsterite,halite, glauberite,thenardite,nesquehonite.This lastassociationwasfoundaroundthe historicalmedicinal springofTiana.Formulaeofthemineralsaregivenin table3.2. Theanalysesofthewatersatthesiteswhereeugsteritehasbeenfound bothinKenyaandintheKonyaBasin,havebeenplottedinfig.7.1. Fig. 7.1 Composition of groundwaters at the localitieswhere eugsterite has been found in theKonyaBasin inTurkey and indifferent regions inKenya plotted inthe systemCa-(Na+K)-Mg-Cl-SO,-(HCO+CO )expressed inmolepercent. Type localityistheplayanorth-eastofthevillageofKarapinarwhichis situated alongthemainroad fromKonyatoEregli.Insummer thisplayais coveredwithaflintywhite saltcrustwhichconsistsofhalite,thenarditeand eugsterite. - Bricks. Eugsteritehasbeenfoundinsaltefflorescencesonfreshly laidbricks ofDutchriverclaysinassociationwithgypsum. Chemioal analysis Inordertodeterminethecompositionofeugsterite,sincetheminuteamounts ofmaterialavailableprecluded conventional chemicalanalysis,apreliminary investigationwasmadebyDTA. A naturalsampleofeugsteritewith thenarditeandhalite showsasharpendo- 71 thermiereactionbetween165°and185°.AMettlerTA2000BDTAapparatuswas used.Thereactionproduct contained glauberitesoitseemed likelythat eugsterite couldbeasodium-calcium-sulphate-hydrate. Inaddition,qualitative analysiswithanelectronmicroscopeequippedwithanenergy-dispersive system established thatNa,CaandSarethemajorcomponents. Themineralwassynthesized,becausethenaturallyoccurring eugsteritealways occurswithothermineralsandbecausethegrainsizewasvery small(see fig. 7.2).Solutionsofsodiumsulphateandgypsumwereevaporatedonawater bathof60 Candeugsterite formedinconsiderable amountsinsolutionswith amolarratioNa/Ca>4togetherwith thenarditeandgypsum.Eugsteritedidnot formfromthesamesolutionsatroomtemperature.Thenarditeandgypsumcould beseparatedwithaheavy liquidwithd=2.50.Eugsterite occurredbothinthe heavier fractiontogetherwiththenarditeandinthelighterfractiontogether withgypsumbecauseofitsstickycharacter.Thetinyeugsterite fluffswere separated fromthefractionwithgypsümbyhandpickingunderabinocular.The gypsumcontaminationofthesamples (samplesize approximately 1mg)wasdeterminedwiththeaidofaDTAapparatus.These samples showedinadditiontothe largeendothermicpeakofeugsteriteonlyverysmallnegligible gypsumpeaks. Na-andCa-contentofthesampleswereanalysedbyatomicabsorption.Sulphate couldnotbeanalysedaswellbecauseofthesmallsamplesize.Fromthefraction ofeugsteritewiththenardite,weight lossafterheatingwasdeterminedwitha TGAapparatus (DupontTA990). InthisfractionallCaandKLObelongsto eugsteritesotheELO/CaOratioofeugsterite couldbedetermined.These sampleswere largeenoughtoanalysesulphateaswell.Resultsofanalysesare givenintable 7.2.Combinationofthesetwosetsofanalyses leadstothe idealformulaNa 4 Ca(S0 4 ) 3 .2H 2 0. X ray crystallography TheX-raydiffractionpattern (table7.3)wasdeterminedforsynthetic materialasthesefilmsweremuch lesscomplicated thanthefilmsofthenatural occurrences.Onlythepatternofthenarditeorgypsumhadtobesubtracted.The linepositionsofnaturaleugsterite agreeexactlywiththoseofsynthetic eugsteriteandcomparisonofmany filmsshowednoshiftoflinesatall. Ithasnotbeenpossibletocalculatetheunit cellbymeansofthepowder data.Withacomputerprogram (Visser,1969)many solutionswereobtainedbut nonewasverysatisfactory.Effortstogrowlargercrystalsforasingle-crystal analysisdidnotsucceed. 72 Table7.2 Chemical analysesofsynthetic samples D.T.A.s amples 2 1 Nammol 9.15 x ÎO -3 Cammol 3 2.33 x 10~ Na/Ca 9 0 2 25 3.93 T.G.A.s amples X X 3 10 10 -3 9 15x10" 3 -3 2 33x 10~ 3 4 3.93 1 2 Nammol 0 150 0 019 Cammol 0 0226 0 0045 SO, mmol 4 H O mmol 0 10 0 0138 0 049 0 0087 H20/Ca 2 16 1 93 Morphology,crystallograpy and physical and optical properties Themineral formsclustersofthinfibres.Thenaturally-occurring fibres haveathicknessof0.5-1.5urnandtheyareupto40ymlong.Thesynthetic fibresare2-6urnthickandupto200ymlong (measuredonSEMpictures,see fig. 7.2).Themineraliscolourlessandtransparent;itshardnessisverylow anditissolubleinwater.Thedensity couldnotbemeasuredduetoitssticky nature.Intheheavy liquidwithd=2.50,theupper fractionconsistsofmixturesofeugsteriteandgypsum,whereasthelower fractioniscomposedof eugsteriteandthenardite. TheSEMpictureofthesyntheticmaterialshowsthesymmetrymostprobably tobemonoclinicwitha~c=116. Opticallyitisbiaxial,buttheaxialanglecouldnotbedeterminedon accountofthefibroushabit.Refractive indicesare1.492< a , P , Ï < 1.496; birefringence=0.004,n //b,n A c= 27°. Discussion Eugsteriteisaverycommonsaltmineralwhichformsduringevaporationof nonalkalinewaters.Themineralissynthesized easilyat60°whileatroomtemperatureitdidnotform.Thismaybeanindication thatitisametastable 73 Table7.3 X-raydiffractionpowderpatternofsyntheticeugsterite LinepositionsmeasuredbyDr.J.W.VisserattheTechnischFysische Dienst atDelftusingaGuiniercamerawithCuKalradiation, A=0.15406nm,andaspecialdensitometerforGuinierfilms. d(R) I d(£) I d(£) 12.62 9.20 6.32 5.96 5.50 1 39 4 1 64 2.545 2.458 2.291 2.284 2.231 5 5 5 5.35 4.64 4.60 4.58 4.50 1 5 5 8 33 2.214 2.178 2.170 2.158 2.148 4.20 3.860 3.819 3.622 3.590 4 7 5 3 2 3.454 3.428 3.233 3.211 3.150 I 2 1.7126 1.6999 1.6809 1.6632 1.6530 61 4 5 6 4 2 2 <1 <1 2 1.6459 1.6198 1.6053 1.5901 1.5829 <1 3 2 1 2 2.132 2.112 2.043 2.013 1.9837 2 2 1 7 2 1.5523 1.5418 1.5318 1.5234 1.5148 3 <1 <1 <1 2 32 100 4 10 4 1.9546 1.9431 1.9291 1.9199 1.9081 3 4 <1 <1 1.5046 1.4963 1.4645 1.4599 1.4536 <1 3 1 <1 1 3.118 3.065 3.054 2.973 2.936 <1 15 6 2 16 1.8935 1.8835 1.8494 1.8406 1.8313 <1 3 5 1 5 1.4293 1.4178 1.4021 1.3869 1.3820 2 3 2 1 <1 2.893 2.797 2.763 2.746 2.727 8 19 25 46 8 1.8125 1.7998 1.7922 1.7648 1.7619 6 4 2 1 2 1.3654 1.3555 1.3470 1.3353 1.3299 1 2 <1 3 <1 2.671 13 1.7273 T 0 3 1.3234 74 mineralundernaturalcircumstances. Hydroglauberite istheonlyotherknown sodium-calcium-sulphate-hydrous mineral.However,theX-raypatternofhydroglauberite differs essentially fromthatofeugsterite (Slyusareva,M.N., 1969).Anunknown sodium-calciumsulphate-hydrate,calledphaseX,hasbeenfoundbyL.A.Hardie,JohnsHopkins University,Baltimore,inSalineValleyandbyR.C.ErdoftheU.S.Geological Survey intheDeathValley saltpanassociatedwithglauberite,thenarditeand gypsum (bothfromL.A.Hardie,unpublished Ph.D.thesis,JohnsHopkinsUniversity).Thismineralwasnotchemically analysedbutHardieassumed ittobethe sameaswhat isknownas"labile salt",asyntheticdoublesalt (2Na2SO..CaS0..2H20) (HillandWills, 1938).NoX-raydataareavailablefor "labilesalt".TheX-raypowderdiffractionpattern givento"labilesalt"by Conley andBundy (1959)isforthenardite,which isalreadynotedby Braitsch (1971,p. 76).ThelinepositionsoftheX-raypowderpatternofHardie's phaseXagreefairlywellwith thatofeugsterite.Thereare,however,some differences inintensities.Itisveryprobable thateugsterite isthesameas Hardie'sphaseXandas"labilesalt". Themineral iscalled "eugsterite"afterHansP.Eugster,TheJohnsHopkins University,Baltimore,Maryland,whohasextensively studiedtheoriginand mineralogy ofsalinelakes. Themineraland thenamewere approvedbytheCommissiononNewMinerals andMineralNames,IMA.A revisedversionofthissectionwillbepublished in AmericanMineralogist (inpress). J^" ^ - f r ' / Fig. 7.2 S(canning)E(lectron)M(icroscope)pictureofnatural eugsterite in associationwithhalite. 75 7.4 KONYAITE,ANEWSALTMINERAL (co-authors J.D.J,vanDoesburg andL.vanderPlas) Occuvrenoe Konyaitehasbeenfoundinsaltefflorescencesonsaltaffected soilsin theGreatKonyaBasininTurkey.Itoccursinthefollowingassemblages: konyaite,calcite,gypsum,hexahydrite,bloedite;konyaite,bloedite,hexahydrite,gypsum;konyaite,bloedite,halite,starkeite;konyaite,bloedite, gypsum,halite,calcite;konyaite,calcite,gypsum,hexahydrite;konyaite, loeweite,hexahydrite; (forformulaeoftheseminerals,seetable3.2). The type localityisintheGreatKonya BasininTurkey alongtheroad fromEreglitoNigdenearthevillageofCakrnak. Synthesis and chemical analysis Becausemostmineralswhich occurinassociationwithkonyaite contain Na-SO.and/orMgSO.,itwasconsidered likely thatkonyaite alsocontains these components.Themineralhasbeensynthesizedbyevaporationofasolutionof Na~SO.andMgSO.inamolar ratio 1:1inawatch-glassintheovenatatemperatureof35 C.Inthiswayawhitepowder consistingofpurekonyaite formed. Larger crystals formedbyevaporationofasaturated solutionusingasecond largerwatch-glassasacover glass;whitepowderish salt consistingofpure konyaite crept overtherimofthewatch-glassandinthecentre transparent single crystals formed. Table7.4showsthechemical analysisofsynthetickonyaite.Sodiumand magnesiumwere analysedbymeansofAtomicAbsorptionSpectrometry.Thesulphate contentwasdeterminedbymeansofgravimetric analysis.ThewatercontentwasdeterminedwithaTGAapparatus (DupontTA990).Theanalysis leadsto theideal formula Na 2 Mg(S0 4 ) 2 -5H 2 0. Table7.4 Chemical analysisofsynthetic konyaite Na Mg SO/, H20 % % % % 1 2 mean value 13.06 6.99 53.93 25.25 13.14 6.89 54.14 25.63 13.10 6.94 54.04 25.44 13.05 6.90 54.51 25.54 99.52% 100.00% theoretical 76 Table 7.5 X-ray diffraction powder pattern of Konyaite d(Ä). obs 12.01 7.62 6.00 5.76 5.67 5.19 4.806 4.677 4.541 4.409 4.202 4.180 4.017 4.002 3.960 3.916 3.797 3.592 3.448 3.434 3.413 3.337 3.315 3.278 3.156 3.130 3.101 3.080 2.988 2.937 2.881 2.855 2.834 2.812 2.801 2.778 2.724 2.710 2.659 2.639 2.611 2.597 2.572 2.558 2.532 2.504 2.479 2.469 2.443 2.432 d(&)calc . 12.010 7.616 6.005 5.757 5.670 5.192 4.803 4.674 4.539 4.408 4.201 4.181 4.015 4.003 3.960 3.912 3.797 3.589 3.449 3.431 3.414 3.338 3.315 3.278 3.157 3.131 3.101 3.081 2.991 2.937 2.879 2.858 2.835 2.811 2.799 2.776 2.72.2 2.709 2.660 2.638 2.613 2.596 2.572 2.560 2.533 2.506 2.479 2.466 2.445 2.433 I hkl 57 12 2 19 9 9 27 2 100 59 65 17 9 88 70 3 9 36 10 12 33 19 12 21 22 21 8 15 31 15 1 1 13 16 35 22 35 12 51 50 10 55 9 2 2 1 6 1 5 13 020 011 040 101 031 121 110 131 120 112 122 130 002 060 012 132 140 032 101 150 111 042 121 152 103 113 160 052 141 133 202 212 062 170 222 211 221 232 013 231 023 242 223 180 091 112 163 122 043 171 d(&). obs 2.415 2.402 2.337 2.323 2.309 2.300 2.270 2.250 2.232 2.222 2.204 2.183 2.158 2.132 2.117 2.101 2.090 2.078 2.060 2.052 2.038 2.030 2.007 2.000 1.994 1.978 1.962 1.957 1.954 1.946 1.935 1.928 1.920 1.903 1.897 1.868 1.852 1.843 1.825 1.819 1.808 1.800 1.790 1.782 1.755 1.738 1.732 1.723 1.720 1.715 d(£)calc . 2.416 2.402 2.337 2.323 2.309 2.301 2.269 2.250 2.231 2.223 2.204 2.183 2.157 2.132 2.117 2.100 2.090 2.078 2.061 2.052 2.038 2.029 2.008 2.001 1.994 1.980 1.963 1.957 1.954 1.947 1.936 1.930 1.919 1.904 1.898 1.869 1.853 1.843 1.823 1.818 1.807 1.801 1.791 1.782 1.756 1.739 1.731 1.722 1.720 1.716 I hkl 11 25Ï 220 262 142 253 39 36 14 4 5 5 2 7 8 8 14 8 7 3 1 1 11 4 10 5 4 4 23 12 3 4 6 13 10 10 4 2 7 12 25 4 7 10 10 10 2 3 11 9 2 3 14 12 7 0101 240 134 152 092 224 250 1100 162 1102 247 260 282 0102 211 193 221 004 014 270 024 1_L_L2 292 103 113 174 182 303 044 133 215 1120 105 314 342 324 0131 0122 335 163 1102 IUI 362 212 0140 77 Table 7.5 continued obs 1.707 1.691 1.679 1.668 1.663 1.655 1.643 1.636 1.630 1.623 1.610 I.602 X ray d(Ä)calc . 1.707 1.692 1.679 1.669 1.663 1.657 1.644 1.636 1.630 1.623 1.610 1.601 I 10 3 3 3 3 4 4 4 4 9 3 4 hkl 222 0113 0132 084 364 242 1141 335 291 252 345 330 d(X)obs . 1.578 1.564 1.555 1.539 1.533 1.522 1.515 1.507 1.498 1.475 1.468 I hkl 9 6 1 1 1 1 6 3 9 2 10 0142 d(X) , calc 1.578 1.565 1.556 1.540 1.534 1.522 1.516 1.508 1.498 1.476 1.469 225 134 0104 144 1150 195 116 2111 0J_6_1 265 Crystallography About 25X-ray reflectionsofnaturally occurring konyaite havebeen obtained bycomparisonoftheX-ray diffractionpatternsoftheassemblages inwhich konyaite occurred after subtractionofthereflectionsoftheother known minerals inthese assemblages.Itwasimpossibletoseparate konyaite from itsassociatingminerals.Therefore,thecompleteX-ray diffraction pattern wasdetermined forsyntheticmaterialwithaNonius Guinier cameraFR552with ahighresolvingJohansson Kajmonochromator,using CoKajradiation (A=0.17889 run).Table7.5showstheX-raydiffractionpattern.AnX-raypowder photograph ofthelarger single crystalsproved that thisX-ray patternbelongstoonepure mineralandnottoamixtureofmoreminerals.Thepurityofthesingle crystals wasestablishedbymeansofsingle crystalphotographs.Theintensities were measuredwithadensitometer. Unit celldatawere obtained fromthepowder datausingacomputer program (Visser, 1969).Themineralismonoclinic,a=0.8066nm,b=2.4025nm, c=05783nm,beta=95.375 .From single crystal rotation-,Weissenberg-and precession-photographsthefollowingunit celldatawere obtained:monoclinic, a=0.5783nm,b=2.402nm,c=0.9474nm,beta=122.04°. Theseunit cellsobtained fromthepowder dataandthesingle crystalphotographsrespectivelyareidentical.Inaplaneperpendicular totheb-axis,the c-axisobtained fromthesingle crystalphotographs,whichisparalleltothe morphological c-axis,formsthediagonaloftheunit cellobtained fromthe powderdata.Theunit cellobtained fromthesingle crystalphotographsis proposed because orientationofthecrystallographic c-axisparalleltothe morphological c-axisisfavourable.Thespace groupisP2 1 /n,Z=4 (number 78 ofmoleculesperunit cell). Morphology, crystallography, physical and optical properties Thewhitepowderishkonyaite consistsofclustersofflakeswithathicknessofabout3urnandadiameterofabout50ym (measuredonSEMpictures).If konyaite growsinlarger singlecrystals thesecrystalsareprismatic,transparent,2mmlongand0.4mmthick.Thehardnessofkonyaiteisverylowandit issolubleinwater.Thedensitymeasuredbymeansofheavy liquidsis2.088. Thedensity calculatedonthebasisof4moleculesperunit cellis2.097. Opticallythemineralisbiaxialpositive,n =1.464,n =1.468,n =1.474. Birefringence=0.10.2V=74°( 2 V c a l c u l a t e d a = 79°).n a//b;n"c= 30°. Chemical stability Konyaiteisavery instablemineral.Itwasidentifiedinthesamplestaken fromtheKonyaBasinwithinthreemonthsafter sampling.Twoyears laterin somesampleskonyaitewasstillpresentbutinothersitcouldnolongerbe identified.Synthetickonyaite couldneitherbeconservedintheovenatthe temperatureofsynthesis35 Cnoratroomconditions.Inbothcasesittransformedbetweenoneandfivedaystobloedite. Grinded samplesofsynthetickonyaitewere conservedindifferent exsiccators atroomtemperaturewith 01,201,50$,80°srelativehumidityrespectively,afew samplesperexsiccator.Aftersixweeksallexsiccators contained sampleswhich were completelyorpartly transformedtobloedite.Inadditionat20%and80$ relativehumidity sampleswerepresentwhichconsisted stillofpurekonyaite. Ungrinded samples transformedmoreslowly.Thelargesinglecrystalsdidnot transformaftersixweeks. Itcanbeconcludedthatkonyaiteismetastablewithrespecttobloediteat roomtemperature.Minor factors suchasgrainsizedeterminewhetherittransformstobloedite. Themineralisnamedforthelocality. ItissubmittedtotheCommissiononNewMineralsandMineralNamesofthe IMA. 79 7.5 MINERALOGICAL MAGAZINE, SEPTEMBER 1 9 7 9 , VOL. 4 3 , PP. 3 4 1 - 5 Two new occurrences and the Gibbs energy of burkeite LIDEKE VERGOUWEN Department of Soil Science and Geology, Agricultural University, PO Box 37,Wageningen, The Netherlands SUMMARY. Burkeite (Na 6 C0 3 (S0 4 ) 2 ) is found as a surface mineral in the north of Kenya associated with thenardite and halite and in the Konya basin in Turkey associated with tronaandhalite.Thecelldimensionsofa natural burkeite are a= 7.070, b=9.220, c= 5.173Â. The Gibbs energy of burkeite isestimated in relation to other sodium carbonates and sulphates. A Gj 7J9S-15 (burkeite) = 3594.2 + 3 kj. T w o new occurrences of the salt mineral burkeite (Na 6 C0 3 (S0 4 ) 2 ) were found in Kenya and in Turkey as a surfacemineral on saline soils. Up till now burkeite has only been found in Searles Lake California (Haines, 1957, 1959).There burkeite is found in a drillhole from a depth of 28 ft to 465 ft always associated with trona ( N a 2 C 0 3 •N a H C 0 3 • 2 H 2 0 ) and in association with one or more of the following minerals: halite (NaCl), hanksite ( 9 N a 2 S 0 4 •2 N a 2 C 0 3 •KCl), borax ( N a 2 B 4 0 7 • i o H 2 0 ) , thenardite (Na 2 S0 4 ), pirssonite ( N a 2 C 0 3 •C a C 0 3 •2H 2 0), gaylussite (Na2C03-CaCCv5H20), and northupite ( N a 2 C 0 3 • M g C 0 3 •NaCl). Geological setting and pangenesis a.Kenya. Burkeite was found during a sampling trip in summer 1977 in the north of Kenya along the eastern shore of Lake Turkana (the former Lake Rudolf) near the small village of Loiengalani. Most of the area east of the lake is covered with Miocene and Pliocene basalts. Some spectacular eruption centres can be seen. Along theshore alacustrine laminated clay loam occurs, which was deposited when the level of the lake was a few metres higher. In some places this impermeable clay is covered by a very permeable gravelly basaltic material. Water which infiltrates the gravelly basaltic material cannot penetrate the underlying clay and moves on the interface of the gravel and the clay. This water flowing down the surface of the clay evaporates and forms a salt crust. The salt crust consists of halite and thenardite. Around some cracks in the clay the salt looks a bit more glassy. This salt contains burkeite. S(canning) E(lectron) M(icroscope) pictures show rosettes of thenardite needles on burkeite. Halite occurs both in cubes and in patches with no crystalline form on burkeite and between the needles ofthethenardite. Sometimes the thenardite needles are overgrown with a layer of halite. Fig.1 is a SEM of pure burkeite from Kenya. b.Turkey. InTurkey burkeite wasfound during a sampling trip in summer 1978in the Konya basin, which is a lacustrine plain in Central Anatolia. The Uplands of the basin are mostly formed of limestone formations but in some places also of andesitic volcanics. In the basin itself some stratovolcanoes occur. The plain consists of salt-affected clayey marl soils.From theedgessomealluvial fans spread into the basin. Huge areas are covered with powdery and crusty salt, especially near the lower edges of the alluvial fans. These salts are mainly chlorides and sulphates of sodium and magnesium, but in the centre of the basin near Ak Gol sodium carbonates can be found. This is the only place where the pH of the ground water was found to be higher than 8. Here burkeite was found associated with halite and trona. They form a white salt crust, which formed asa resultofévapotranspiration and seals the surface. Chemical analysis Due to the small grain-size of the burkeite (a few micrometres measured on a SEM picture)and to its intimate intergrowth with other salt minerals, it is impossible to separate burkeite from its associated salt minerals. Therefore, no quantitative analysis could be performed and only some qualitative analyses have been made by means of an electron microscope equipped with an energy-dispersive system. In this way it was established that Na, S, and C are the major components. Crystallographic properties X-ray powder diffraction data of the natural burkeites were obtained with a Nonius Guinier 342 L. VERGOUWEN FIG. I. Scanning Electron Micrograph of burkeite from Kenya (made by TFDL, Wageningen). camera using Co-Ka, radiation, X= 1.7889Â. The data are listed in Table I. The calculated d-values show reasonable agreement with the measured ones. The cell dimensions were calculated using a program written by Visser (1969). From powder diffraction data the space group isdetermined to be either Pmmi or P222. Stability and thermodynamic properties of burkeite Eugster and Smith (1965) constructed an a CO] <*HjO diagram for mineral reactions involving sodium carbonates and sodium sulphates. They — labelled the fields of stable associations under the assumption that burkeite (a mixed carbonatesulphate) occurs with carbonates. This restriction is valid in the Searles Lake environment, as well as for the locality in Turkey, where burkeite has been found with trona and halite(seefig.2a).The burkeiteinKenya isfound withthenardite and haliteonly, so for the Kenya environment the labels of the stability fields have to be changed accordingly (see fig. 2b). Comparison of the two diagrams shows that the association burkeite+ trona occurs under more restricted conditions than the association burkeite + thenardite. There are no thermodynamic data available for GIBBS ENERGY OF BURKEITE 343 j \ Tn+Nh •/ Nh 1 M ^v \.2/ B+Nh T n y / \ / Tr \+ 3/^:::::::^ \ :•:::::•::::T1 M+Na V:B +Tr:\ O t' Y B +Tm -.detail t"\ ' \ CN V::::;: u Vwi*.' M-l O \ . • . ( . • . JLB+Na Ü a c t i v i t y of H_0 a c t i v i t y of H-0 Tn (b) (a) Na .^ 0.69 0.88 0.81 0.88 FIG. 2a and b. a H l o-aco, diagrams for the system Na 2 COj-Na 2 S0 4 -H 2 0. For abbreviations see Table II. B= burkeite.Infig.2afieldsarelabelled assuming that burkeiteoccurswith carbonates.Infig.2bfieldsarelabelled assuming that burkeite occurswith sulphates.Thecoordinates ofpoints i,2,and3 infig.2aare: iPco, = !0~ 4atm., fl H,o = 0-81;2PCOi= to" 26 atm.,<jHl0 = 0.29;3PCo, = 10"> atm-> "Hfi = 0.01.Intheenlargements ofthedetailsthe slopes of thefieldboundaries arearbitrary but their relative steepness hasbeen maintained. 82 L. VERGOUWEN 344 T A B L E I. X-ray data for burkeite Burkeite from Kenya NBS synthetic burkeite hkl 9.199 4.609 4.510 9.220 4.610 4.512 4175 3.862 3.804 4-175 3.862 3.803 3-537 3.440 3.300 3-535 3-442 3.301 3-075 2.806 2.778 2.643 2.588 2.490 3073 2.805 2.783 2.642 2.587 2.490 030 2-347 2.305 2.283 2.191 2.150 2-145 2.106 1.980 1.925 1.906 1.899 2-349 2.305 2.283 2.192 2.149 2.145 2.105 1.979 1.931 1.906 1.902 112 1.768 1.768 400 1-737 1-737 051 1.680 1.647 1.635 1.675 1.648 1.635 1.616 1.615 1-559 1.550 1-559 1-549 1.546 1-537 1.529 '•547 1-537 1.528 a 7.070 b 9.22c Pmmi 3r F 2 2 2 010 020 on 101 120 i n 200 021 210 220 211 031 002 012 040 310 140 122 301 041 032 240 132 222 103 113, 340 250 023 251 203 242 060 213 c 5.173  hkl llh 9.215 4.607 010 8 020 5 4-507 4.172 OH 17 101 3-854 3-795 3.526 120 4 40 3-439 3307 3-072 2.801 2-777 2.640 2.583 2.488 2-345 2.305 2.279 2.191 2.147 2.142 2.105 1.978 1.929 1.904 1.898 1.784 1.764 1-735 1.722 1.673 1645 1.635 1.627 1.614 1-557 1.548 1-545 1.536 1.526 III 200 75 80 021 19 210 3 030 220 •7 100 211 55 03I 75 002 75 012 112 5 6 040 11 3IO 4 I40 3 122 14 11 3OI 04I 6 O32 12 240 30 I32 222 25 I50 4OO 051 OO3 103 II3.34O 250 322 O23 25I 203 242 060 213 a 7.055 b 9.215 c 5.167  30 2 17 8 3 2 3 4 4 4 5 6 5 6 5 burkeite, but an approximate Gibbs energy of burkeite can be calculated from the Gibbs energies of the other minerals plotted in fig. 2(seeTable II). The equilibrium fCOi between thermonatrite and nahcolite can be calculated as follows: Tm+ C 0 2 ± ? 2 N h (1) AGR = -RT\nK = +RT\nfCO]; at 298.15 K /co, = io" 4 bar. In fig. la it can be seen that at thisfCOl and at an aHl0 where thenardite and mirabilite are in equilibrium with each other (point 1 in fig. 2a) burkeite is unstable with respect to the assemblage thenardite + trona, which means that at these conditions the AGR of the following reaction must be positive: 6Tn + 2 T r t ; 3 B + C 0 2 + 5 H 2 0 ; (2) / c o 2 = icT 4 bar AGR > 0 3GB > 6GTn + 2GTr - Geo, «rin/co2-5GH2o-5«7-lnaHlo(3) aUl0 can be calculated from the equilibrium: Tn+ioH20±îM (4) AGR = + i o R T l n a H 2 o ; at at 298.15 K ÖH2O = O.8I. Substituting this value as well as/ C o 2 = 1 0 * m t n e inequality (3), the following result is obtained: GB > - 3 5 9 6 0 2 kJ. (5) In fig. 26 it can be seen that the equilibrium between burkeite and natron + mirabilite is situated at a higher a H2 o than the equilibrium between thenardite and mirabilite (where a H î o = 0.81). at "H 2 O = 0-81 B+ 3 0 H 2 O ± ; N a + 2M AGR > o (6) GB < GNa+ 2GM - 3OGH2O- 3°KTIna H2 o GB < - 3592-40 kJFrom (5) and (7) it follows: -3596.02 kJ < GB < -3592.40 kJ. (7) The accuracy of these values depends on the accuracy of the Gibbs energies of the individual minerals which take part in the reaction equations (1, 2, 4, and 6).As there are no uncertainties given TABLE II. Gibbs energies of the minerals Name Formula A Nahcolite (Nh) Natron (Na) Thermonatrite (Tm) Trona (Tr) Thenardite (Tn) Mirabilite (M) Carbon dioxide (g) Water (liq.) NaHC0 3 Na 2 C0 3 ioH 2 0 Na2C03H20 NaHC0 3•Na 2 C0 3-2H 2 0 Na2SO„ Na2S04ioH20 -851.86 - 3428.98 -1286.55 -2386.55 -1269.985 -3646.540 co 2 H 0 2 References: 1.Garrels (R. M.) and Christ (C. L.), 1965.(1cal. = 4.184J). 2. Robie (R. A.),Hemingway (B.S.), and Fisher (J. R.), 1978. G/298.,5kJ/mol -394-375 -237.141 Reference 83 GIBBS ENERGY OF BURKEITE for theGibbsenergiesofthesodium carbonates,we cannot give an exact uncertainty for the Gibbs energy of burkeite. Therefore, we estimated: AG,/: 298.15 (burkeite) = 3594.2+ 3 kj. The Gibbs energy of burkeite is calculated from equilibrium relationships with respect to other minerals. As soon as the values of the Gibbs energies of the other minerals change, the Gibbs energy for burkeite has to be changed accordingly. Once the Gibbs energy of burkeite is known, the positions ofall other equilibria in the diagrams can be calculated. It can be seen that burkeite can form under the atmospheric condition fCOl = io~ 3 ' 5 atm and that during formation thesolution must be rather concentrated (activity ofH 2 0 lessthan 0.88), a stage which iseasily reached during evaporation. Acknowledgements.IthankDrE.L.Meijer forhelpingme with the unit-cell computer program and for his helpful discussions. REFERENCES Eugster (H. P.)and Smith (G. I.), 1965.J. Petrol. 6,473. Garrels (R. M.) and Christ (C. L.), 1965. Solutions, MineralsandEquilibria. Harper and Row edn., New York, 450 pp. Haines (D. V.), 1957. Geol. Surv., open-file report. 1959. US Geol. Surv. Bull.1045-E, 139. Robie (R. A.), Hemingway (B. S.), and Fisher (J. R.), 1978. Ibid. 1452, US Government Printing Office, Washington. Visser (J. W.), 1969.J. Appl.Cryst.2,89. [Manuscript received 30 October 1978] 345 7.6 SCANNING ELECTRON MICROSCOPY APPLIED TOSALINE SOILS FROMTHEKONYA BASIN INTURKEYANDFROM KENYA This sectionispartof Vergouwen,L.,1981,Scanning ElectronMicroscopy applied tosaline soils from theKonyaBasininTurkeyandfromKenya.In:E.B.A. Bisdom (ed.):Submicroscopyofsoilsandweathered rocks. 1stworkshopofUndisturbed Soil Materials (IWGSUSM),Wageningen, 1980.Pudoc,Wageningen,theNetherlands, inpress. Summary SaltsoftheKonyaBasininTurkeyandfromdifferent regionsinKenyawere investigatedbyScanning ElectronMicroscopy. This techniquewasusedtoexamine the crystallographic propertiesoftheindividual salt crystals,toinvestigate theirmorphologyandtheir influenceonthemorphologyofthesaltassemblagesin which theyarepresentandtostudytherelations betweenthedifferent salt crystals. Thedifficultiesaredescribedwhich arisewhenthisvery friablematerialis handled.Ananalysing equipment isessentialforidentificationofthedifferent minerals. Backscattered electron scanning imagesandX-ray imagesarealsoof greathelp. Halite formsasmooth crust sealingthesoil; trona,bloediteandhexahydritemakethesalt crustvery fluffy.Thenardite occurs intwocrystal forms. Procedure Sampleswere selectedwith different saltassociations. Fromeachsamplea piecewasusedforX-ray diffraction analysis,todeterminetheexactmineralogical contentofthesaltpiece,usingaGuinier camerawithCoK1radiation; a corresponding piecewasusedforSEManalysis. The typeofmaterialwasvery complicated tohandle.Only coherent material whichdidnotbreak intopiecesontouching couldbeused.Thisisinfactalreadyapreselection.Forexampleitwasnotpossible tohandlethethenardite crystals fromthepuffed solonchaks becauseoftheir fragility.Many thermonatrite samples disintegrated aswellonhandling. Thesampleswere gluedwith silverpaintwith tolueneassolventonasmall aluminium stub.Alcoholassolventisnotsuitablebecausethesalts dissolve 85 init.Thissilverpainthastheadvantage overnormalglue thatitisconductive atthesametime.Thesampleswereprepared atthesamedayofusingthem. Preparationafewdaysbeforeuseappeared tobeuselessbecause thesamples disintegrateeasily.Thematerialwas coated firstwith acarbon layerand then with agold layer.A carboncoating isrequiredbecauseotherwise thegolddoes notadheresufficiently tothematerial.Thegoldwasevaporated thermally.With thismethod thedistancebetween thehotspotand thesample islarger thanwith thesputteringmethod.The temperature ofthesamplemustbekeptas lowaspossiblebecause somemineralscontaincrystalwater.Thermal evaporationhasthe additionaladvantage thatthegold layerbecomes thickerwhich isfavourable becauseoftheirregular surfaceofthesamples.A disadvantageofthiscoating method isthatthevacuum inthechambermustbehigher (10 torr)thaninthe caseofsputtering (0.1 torr). Thesamplesveryoftenshowcharging.This iscausedbythe factthatthe sidewhich isfixedonthealuminiumstubisusuallyvery irregular.Therefore noteverypartofthespecimen isincontactwith thealuminiumstubbutonly somelocalspotsarefixed.Thisproblemisusually less severeontherimof thespecimen.Therethenicest imagescouldbeseen. Toreduce theeffectofchargingwe tried tocoatthespecimenwithosmium whichhasahigherconductivity thangold.Thiswasnotverysuitablebecause osmium isfirstdissolved indistilledwater andthenthesolutionisevaporated inacoveredpetribowl inwhichthespecimen isalsoplaced.Thedistilledwater withthedissolved osmiumprecipitated onthesampleanddissolved thesalt material.Smallholescouldclearlybeobservedwith theSEM. Somespecimenswere investigatedwith theSEMbeforecoating themtosee whether thecoatingprocedurewould causemineral transformations.This seemed nottobe thecase. TheSEMpicturesweremadewithaJEOLJSM-35cequippedwithEDAXPV 9100 withanECONwindowlessdetector.Polaroid filmwasused toobtaindirectresults because ofthedifficultmaterial.Themineral-content ofthesample isknown fromtheX-raydiffractionanalysis.Allmineralswere chemically identified withEDAX.Althoughthisanalysing system isnotquantitative,atleastnotwith samples coatedwithgold,itappeared tobe indispensable.Wrong identifications couldbeprevented inthisway formineralswhichoftenshoweddifferentcrystal habits thanexpected. Inothercasesmineralswere identifiedwhichwerepresent insuchsmallamounts thattheycouldnotbedetectedbyX-raydiffraction. 86 Results Themineralogy andmorphology ofhalite,thenardite,bloedite,hexahydrite, eugsterite,tronaandburkeitewere investigated.Thecrustswere 1/2 -3mm thick.No zoningcouldbedetected,neithermacroscopicallynormicroscopically with alightmicroscope. Eugsterite isanewsaltmineralwhichoccursbothinKenyaandinKonya.The constituting elementsofeugsterite couldonlybedeterminedbymeansofEDAX becausethemineralcouldnotbeseparated fromitsassociatedminerals.This qualitative indicationmade itpossible tosynthesize themineraland toanalyse thissynthesizedmaterial quantitatively (themineralhasbeenapprovedbythe CommissiononNewMineralsandMineralNamesofthe IMA).FromSEMpictures the monoclinicnature ofthemineral couldbededuced and theanglebetweentheaandc-axiscouldbemeasured. Fig. 7.3a showsthenardite crystalswithbloediteandeugsterite.Thenardite wasexpected togrowinneedle-type crystalsascanbeseenmacroscopically in puffed solonchaks.Inassociationwithother saltminerals,thenarditehasthe tendencytogrowinthecrystalline formasshowninfig.7.3.Inevaporation experiments inbeakersthenardite growsasneedles.Infig.7.3b itcanbe seen thatthesmallbloedite crystalshaveprecipitated onthethenardite inalater stage.Theeugsterite (fig.7.3c)hascrystallized attheexpenseofthethenardite.Fig.7.3 isanexample ofthenecessityofananalysingequipment.Without suchanequipmenttheeugsteriteneedleswouldhavebeenattributed toeither gypsumor thenardite andthethenarditewouldnothavebeenrecognized.Figs. 7.4a and 7.4b showthedifference inanalysisbetweentheeugsteriteneedles andthethenarditecrystals.Fig.7.4c isanexampleofthenarditegrowing in itsneedle-type form. Figs. 7.5a and 7.5b areanexampleof-halite.Thesmoothsurface iscontinuouswithonlyfewpores.This isthetypeofcrustwhichsealsthesurface, preventing furtherevaporation.Thesmallparticles onthesmoothsurfaceare calciteandquartz. Fig. 7.6a showswellcrystallizedhalite cubes inequilibriumwithbloedite. Bothminerals seemtohavecrystallized atthesametime.Theyhave completely intermingledwitheachother.Thebloeditecrystalshaveasomewhatsmallersize andarepacked somewhat looserthanthehalite.Fig.7.6b isanenlargement of thebloedite. Figs. 7.7a and 7.7b showtronaminerals.Tronacrystallizes asbars,both criss-cross inalldirections and inradiating fans.These tronabars causethe 87 saltassociationtobecomevery fluffy. Figs.7.8and7.9showtheapplicationofdifferenttechniques. Infig.7.8athetopologyofasaltcrustmainlyconsistingoftronabarswith different irregularitiescanbeobserved. Fig.7.8bisabackscattered electronscanning image (BESI)ofthesamespot. WithBESI,thedifferenceincontrastiscausedbythedifferenceinchemical compositionandnotbythetopologyasinthecaseofsecondaryelectronimages. A comparisonoffigs.7.8aand7.8bindicates thattheirregularitiesonthe topsofthetronacrystals correspondwiththelighterpartsofBESI.Spot analyses showthatthesmallgrains thatoccur throughoutthesamplearequartz grainsandthatburkeitereplacesthetronacrystals.Thepresenceofthese mineralsisconfirmedbyX-raydiffraction analysis.SiandSX-ray imagesof thesamespotshowthedistributionofthesilicaandtheburkeite (figs.7.9a and 7.9b). Figs. 7.10aand7.10bisanexampleoftheassociationhexahydriteand bloedite.Hexahydriteconstituesthemainpartandthesmallbloeditecrystals aredepositedonthehexahydrite.Thiscrusthasavery largeporosity.IdentificationwithEDAXwasagainindispensableinthiscase.Themiddleoffig. 7.10ashowsclearlythephenomenonofcharging. Discussion and conclusions Scanningelectronmicroscopyincombinationwithananalysingequipmentis averyuseful techniquetoevaluatethesubmicroscopicalpropertiesofsalt minerals.Themorphologicalpropertiesofthesalts,whichweredetermined macroscopically,couldbeestablishedwiththeSEM. Thesurfaceofhalitecrustsisindeedaverysealing smoothcrustwithmany pores. Bloediteispresentincrustsassmallrounded crystalswhicharelooselypacked. Especiallyinassociationwithhexahydrite thesecrustsarevery fluffy. Driessen&Schoorl (1973)assumedbloedite crystalstoberesponsibleforthe sealingofthesoilsurfacebutdetailed investigationofmany crusts containing bloedite contradict theseassumptions. Tronaminerals seemtoincreasetheporosityofthesaltcrustaswell. Whensalinesoilsareirrigated,thesoilscoveredwithhalitecrustsneed ploughingtoavoidrunoffoftheirrigationwater.Theporosityoftheother typesofcrustsisusually suchthattheirrigationwatercanpenetratethecrust easily. ssiwa o. J3 (3 0) T3 e 0! 0) 60 U e .a c w E-l 3 3 u o T3 U c • 01 <u .C -u H -H • S-4 n) <u •u en w . ÛO r- 3 • <u M •H m t* o o) 89 Fig.7.5a. Smoothhalite crustwith quartz and calcite grains,b.Enlargement. w% 'y> w. v' •''**. 'SS? 1 ^' 11 ".'* Fig.7.6a.Halite cubes intermingled withbloedite.b.Enlargement ofbloedite ft *#.*# r*>;' X P ' OT* . rn/. *$>£ .,• *r Î-if^i t k / ! r . •10/im Fig.7.7a.Trona crystalsbetween aphtithalite.b.Fanof tronacrystals. 90 .Jfs^.»y»r~ J, ,<•* f->*i "S Fig.7.8a. SE-image of trona,locally transformed intoburkeitewith scattered quartz grains,b.BESI-imageof the samespot. Fig.7.9a. SiX-ray image of the same spot as fig.7.8.b.SX-ray imageofthis spot. Fig.7.10a.Hexahydritewith smallbloedite crystals,b.Enlargement of hexahydrite. All SEMpicturesweremade atTFDL,Wageningen. 91 8. SALT ASSEMBLAGES AND EVAPORATION EXPERIMENTS 8.1 INTRODUCTION Inthis chapteradescriptionisgivenofthedifferent salt associations, inordertoexaminetheconditions underwhichthesaltsprecipitated,totest whethertheassociations represent equilibrium assemblagesandtoconsiderthe processes thatoperated during evaporationandprecipitation.Inordertosolve someoftheseproblems,thewaterswhichwere sampled inthefieldwereevaporatedinthelaboratory.Acomparisonwasthenmadebetweenthesalts precipitated fromthesewatersinthelaboratoryandtheassemblages foundinthefield. The chapter isdivided intothreeparts.Inthefirstparttheresultsof theevaporation experimentswillbegiven.Inthesecondparttheassemblagesin thesystemNa-Ca-SO.-CCL-TLOwillbeexamined. Saltassemblages belongingtothis system occurmainlyinthevisited localities inKenyaandonlyinafewlocalitiesintheKonyaBasin. Itisimpossibletocalculatewhichmineralswill theoreticallyprecipitate from specificwatersinthis systemduring evaporationbecauseuntilnownoactivitycoefficientsforcarbonate-ions inconcentrated solutionshavebeenavailable. Therefore,theassemblages inthis systemhavebeen investigated withtheaidof log P Q Q -logaj-[Qdiagrams.Inthethirdpartthesalt associations inthesystemNa-K-Ca-Mg-SO.-Cl^-TLOwillbeconsidered. Salt assemblages belongingtothis systemoccurmainly intheKonyaBasin. 8.2 EVAPORATION EXPERIMENTS The ground-andsurfacewaterswhich havebeensampledintheGreat Konya BasininTurkeyandindifferent localities inKenyawere evaporated inevaporatingdishesinthelaboratory.Thewater sampleswere first filtered througha 0.2 ymmicropore filter.Theamountofwaterwhichevaporated fromeach sample varied between 150-300mldependingontheamountofwater leftafter analysis ofeachsample.Therelativehumiditywasapproximately 401andtheroom temperature 20 C+2.Thesamples evaporated inabouttwoweeks.Fig.8.1shows aphotographofsuchanexperiment. During suchexperiments fractional crystallization occursbecausethesalts precipitate againstthesidesofthedishesandduring further evaporationof 92 Table 8.1 SaltAssemblagesprecipitated fromthewater samples fromKenya inthelaboratory compared withnatural assemblages Typeofwater Saltassemblages found inthe log field 2 ) » Amboseli laboratory 3) waters Am 3 groundwater -1.30 tr,tm,hal,tn tm,hal,KNaSO, tm,aph,hal groundwater Am4 -2.72 tr tr,tm,hal tm,tr,cal hal,cal tr,cal,prs,tm tr,tm,gay pond Am5 -3.05 tr,cal,gay,tm cal,ar tm tr,hal,tm tr,tm,hal Am6 groundwater -1.67 Am8 groundwater -0.98 tr,cal,gay,tm,aph tr,tm,gay tr,aph tr,hal,syl,KNaSO^ syl,hal,tm hal,syl tr,aph,gay,prs Am11 Am 14 Turkana riverwater -2.60 hal,syl,cal riverwater -1.82 cal,hal waters Maikona groundwater -2.79 hal,tn pth,kai,hal hal,kai,gps hal,gps Kalacha I Kalacha II NorthHorr kai,hal,gps hal, tn,ntp groundwater -2.44 hal,tn,eug -2.35 hal,tn -2.89 hal,tr,brk hal,cal dpsk,ntr,tn,hal groundwater tn,hal,ntr,dpsk tr,hal,brk groundwater tr,hal,brk brk,hal Furaful riverwater Loyengalani spring -3.59 tn,hal tn,hal -2.78 tn,hal ntp,hal,cal tn,hal,brk 1)logp r n calculated fromHCO~-concentrationandpHmeasured inthefield. Equilibrium constants fromStummandMorgan (1970). 2)Thesearethesaltassemblages formed intheimmediatevicinity ofthesite ofsamplingof thegroundwater. 3)Thesaltsdeposited intheevaporating dishes.The sequenceofthedifferent assemblages isthesameasinthedishes,fromtheupperrim till thebottom. 4)b.r. beforerains 5)a.r. afterrains 93 Table8.1cont'd Loc. Saltassemblages found inthe 2) laboratory 3) log Typeofwater P C0„ field Lake Victoria Waters Simbi 1 spring -2.17 tm,tr sdn Simbi2 groundwater -1.51 tr,tm,gay sdn, gps MitiBili 1 spring b.r. 4> -0.10 tr,cal,gay,nah sdn, dpsk,tm,tr,hal MitiBili 1 spring a.r.5) -0.16 tr,cal,gay,nah tm,tr,hal,brk sdn, dpsk,tm,tr,hal tm,tr,hal,brk tm,tr,hal,brk MitiBili2 groundwater a.r. MitiBili 3 groundwater a.r. -1.95 tr,tm,hal tr . -2.08 tr,tm tr,gay tr, tm,hal tr, tm,hal,brk tr, tm,hal,brk tm,hal,brk tr, tm,hal,brk MitiBili4 groundwater a -2.05 tr,tm,hal,brk 'r* tr,hal tr,nah,gay tr, tm,hal,sdn,dpsk tr, tm,brk,hal,sdn brk, tr,hal,tm,sdn tr,gay tr,hal,brk MitiBili 5 surfacewater a.r. tm,hal,brk -3.71 tr, tm,hal cal, hal,syl,tm LakeVictorialakewater -3.32 Kanam 1b.r.groundwater -1.30^ tr,nah sdn, dpsk,hal tr, tm,gay sdn, dpsk,hal tr,hal,gay Kanam 1a.r.groundwater -1.38[ tr,hal,tm,gay tr,gay Kanam2a.r. groundwater tm,tr,hal,brk tm,tr,hal,brk tm,hal,brk -2.45' tr, tm,hal,brk Luanda groundwater -1.0 eug,gps bl,tn,kon tn, hal,bl,kon tn,hal Sindo groundwater -0.83 hal,tn gps kai, hal tn, lw,hal,kon lw,hal,kon Forabbreviationsoftheminerals,seetable 2.2and 3.2.Inadditiondarapskite (dpsk),Na (NO)(S0,).H0;pentahydrite (pth),MgS04.5H20;kainite (kai), KMgClSO,.3H20;northupite (ntp),Na 6 Mg 2 Cl 2 (C0 3 ) 4 . 94 Table 8.2 Salt assemblages precipitated fromthewater samples from the Konya Basincompared with natural assemblages Loc. Typeofwater log Salt assemblages found inthe 3) 2) laboratory field 1) P C0, Tl pond -2.53 bl, hxh, gps eps,hal,hxh T4 groundwater -1.28 tn, gl hal,bl,hxh,kon,lw tn, aph hal,bl,hxh,lw,kon bl, hal, gl bl, gps bl, hal, hxh, sch T5 T5 irrigation channel groundwater T4 hal,hxh,gps,lw -0.97 hal,hxh,gps -2.27 eps,bl,gps T5 hal,hxh,gps hal,hxh,gps T6 groundwater •1.1! bl,hxh,gps hal,hxh hal,hxh,ar T8 crater lake -2.64 hal, tn,nsqh,eug hal,eps hal,eps T9 T10 groundwater groundwater -1.75 -1.46 hal,gl,gps hal,hxh hal, tn,eug hal tn hal tn,aph lw,hal hal Til groundwater -1.79 bl,eug pth,hal pth,gps,hal T13 groundwater -1.57 hal,gps,eug tn,hal,lw,hxh tn,eug gps,hal,hxh,tn gps,hal,hxh,tn,kon T14 groundwater -1.08 hal,gps gps,lw,hal,kon gps,hxh,lw,hal,kon gps,hal,hxh,bloed,kon T15 groundwater -1.76 hal, gps,brk hal,tn hal,tn T15 T16 irrigation channel -3.19 spring -0.23 hal, cal,lw hal,cal hal, tn,eug gps,cal hal,tn 95 Table8.2 cont'd Loc. Typeofwater log,. P T17 groundwater 1) Salt assemblages found inthe field Z' C0„ J 2 -1.86 bl,eug laboratory gps,hal,hxh, kon,lw gps,hal,hxh,kon,lw gps,hal,lw,hxh,kon T22 groundwater -1.71 bl,hxh,gps,kon gps,hxh,lw, hal eps, gps,lw,hxh,hal eps, gps,hal T23 groundwater -1.87 bl,hal,gps T24 groundwater -2.22 hal,gl T25 spring +0.03 hal,tn,nsqh,gl,eug hal,tn,Na & Mg 2 Cl 2 (C0 3 ) 4 bl,hal,gl pth,hal,gps gps,hxh,pth,hal hal, gps hal,gl,tn,gps,eug hal,MgCO .3H20 hal,gps brk,tn, hal T26 groundwater -0 53 T27 river -1 97 T28 groundwater -1 28 hal tr, brk brk, Na 6 Mg 2 Cl 2 (C0 3 hal hal tn, aph hal, gps, cal, hxh tn, aph T29 T31 groundwater groundwater -1 74 -2 51 tn tn, hal hal eug cal, hal hal tr, brk hal tr, tm,hal,brk hal, brk, tr groundwater -2 .84 hal T33 groundwater -1 .99 tn, hal, eug hal, hxh, kon tn, eug hal, hxh, kon T35 groundwater -2 .05 tr, brk hal, brk, tr T32 tn hal bl, hxh, gps, kon hal, hxh, kon bl, gps, lw hxh hal, lw hxh, hal lw, hxh, kon T36 groundwater -1 .30 hal bl hal, hxh, pth hal bl, stk, kon hal, pth, hxh, gps T37 groundwater -1 .76 hal bl, gps, kon hal hxh gps hal, hxh 1), 2 ) ,3) seetable8.1 For abbreviationsoftheminerals seetable3.2and 4.2. 96 Fig.8.1 An example of anevaporation experiment. thesolution,thesaltmineralsarenolongerincontactwiththesolution. Thesaltsattheupperrimhaveprecipitated first.Thesaltatthebottom isamixtureofthelast-formed crystalsandofcrystalswhichsinktothebottomduringthewholeprocessofevaporation.Usuallyonlywell crystallized halite cubessanktothebottom.Evaporationinevaporatingdishesinthelaboratorycloselyreproducestheprocesswhichtakesplaceduringevaporationof groundwaterinnaturebecauseinthelatter casefractional crystallizationalsooccurs. ThesaltmineralsproducedinthedisheswereanalysedbyX-raydiffraction. Enoughsaltprecipitated fromthemore concentratedwaterstoenabledifferent analysesofthesaltassociation,beginningwiththeprecipitateoftheupper rimandgoingdownwards towardstheprecipitateinthecentre.Thelessconcentratedwaters,suchasriverwater,formedaverythinsaltfilmagainstthe sideofthedishespermitting onlyoneanalysistobemade. Table8.1and8.2showthemineralswhich formedinthedishes fromthe 97 watersfromKenyaandKonyarespectively.For comparison,thenaturalsalt assemblages foundintheimmediatevicinityofthesamplingsitearealsogiven togetherwiththeequilibrium log ~PQQ °fthewaters (calculatedusingthe analysedHCO,-concentrations),thepHmeasuredinthefield (seetable3.1 and 4.1)andtheequilibriumconstantsat25 Cand1bar,takenfromStummand 2Morgan, 1970.Theequilibrium logpco 0 °ft n ewaterscontainingCO, calculated 9 - 2 -J usingtheanalysedCO,-concentrationandthepHmeasuredinthefieldappears tobeingeneralafactor0.5higher thanthatcalculatedbymeansoftheHCO,concentration.Thismaybeduetothefactthatactivitycoefficientshavebeen neglected,whichhasagreatereffectinthecaseofbivalent thanmonovalent ions. 8.3 PHASEDIAGRAMSINTHESYSTEM Na-Ca-S04-C02-H20 The system m-COg-üg) Thestability fieldsofthemineralstrona,thermonatrite,nahcoliteand natroninthesystemNa-CO?-H?0canbestudiedwithalogpçg -loga^ Q diagramatconstantPandTinwhichp „ 0 isthepartialC02-pressureand a H Qisthewater-activity. Itwouldbemorerigouroustouse £QQ7, t n e ^US~ acityofCO2,insteadofPQV,> but,becauseP c o isameasurablequantityand becausethedifferencebetweenp ™ andfCg isnegligiblysmall,itisconvenienttouseppQ. Theslopeofthefieldboundariesbetweenthestability fieldsofminerals insuchaplotisdeterminedbytheratioofILOtoC0 2 moleculesinthereaction equation (Garrels&Christ,1965).Thereactionequationsandtheir corresponding slopesare(forabbreviationsandformulaeoftheminerals,seetable8.3): 2tr t 3tm+CO,+2H 2 0 tr+C0 2 t 3nah+H 2 0 2tr+25H20 $ 3nat+C0 2 tm+9H 2 0 $ nat tm+C0 2 *2nah 2nah+9H 2 0Înat+C0 2 slope -2 (1) 1 25 (2) (3) 0 0 (4) (5) (6) 0 9 IftheGibbsenergyofformationofthesemineralsisknown,thepositionof theselinesinalogp r „ -log SL,0 diagramcanbecalculated. Forexampleforreaction(1): AG°=-RTlnK=-2RTIna R0-RT Inp œ inwhich AG R = 2AGfQ^0) 2AGf(tr) +A G £ ( C o 2 ) + 3 A G f ( t m ) I£AGScanbecalculated,thepositionofthefieldboundarybetween thestabilityfieldsoftronaandthermonatriteisfixed.Thesameprocedure canbeappliec totheotherminerals inthesystemNa 2 0-CCL -H 2 0. Itisclear that theresultantdiagram isdependentuponthevaluesoftheGibbs energies oftheindividualminerals,andmanydifferentvalues arereported inthe literature.Fig. 8.2 and fig.8.3 showthediagramcalculatedwithtwodifferent setsofGibbs energies offormation -thoseselectedbyAl-Droubi (1976)andthose selected byGarrelsandChrist (1965) (seetable8.3). Table 8.3 Gibbs energies of formation ofminerals andother species in thesystem Na.O-CaO-SO,•C0r - H O at25°Cand 1bar (AG°) AG"f Species Chemical formula nahcolite (nah) NaHCO, natron(nat) Na 2 CO 3 .10H 2 O Gibbs energyo f formation - 851.68 (1) - 851.86 (2) -3429.58 (1) -3428.98 (2) trona (tr) NaHCO .Na 2 C0 3 .2H 2 0 -2381.7 (0 -2386.55 (2) thermonatrite (tm) Na 2 CO .H 2 0 -1289.59 (1) -1286.55 (2) gaylussite(gay) Na CO .CaCO . 5 ^ 0 -3384.04 (1) -3372.64 (3) pirssonite (prs) Na 2 C0 3 .CaC0 3 .3H 2 0 -2661.79 (1) -2661.79 (3) thenardite (tn) Na2S04 -1269.99 (4) mirabilite (mb) Na„S0..10H.0 2 4 z Na,CO,(SO.). 6 3 42 CaCO -3646.54 (4) -3594.2 (5) -1129.40 (6) - 394.37 (4) - 237.14 (4) burkeite(brk) calcite(cal) 2(g) H 2 0 (1) (1)Al-Droubi (1976).Thesevalues havebeencalculated frompKvaluesand fromvalues for the species in solution fromRobie et al. (1978). (2)Garrels &Christ (1965). (3)Hatch (1972). (4)Robie,Hemingway and Fisher (1978). (5)Vergouwen (1979). (6)Helgeson (1969). kJ/mol 99 e 4-1 O nt 01 H H u ffl . >-, o ni) Ctl -rH Tl T) CU •u 1 I—t O *— •H -O r) o VJ oi ï~i ra < 3 ^ o XI CN.-1 en o T) CO ta OU o oCN U 0) i—1 ,—< 1 i CU CN <) CNO 1 01 <"> u o. a t>0 R o •J (11 4J ca !>J 30 CU 4J >^ co tu .c en CIt 4-1 ai •o o •r - l H e ctl T> o ti 100 InthediagramcalculatedwiththevaluesofGarrels&Christ,the stability fieldoftronaisconsiderably enlargedattheexpenseoftheother threecarbonatesincomparisonwith thediagramcalculatedwiththevaluesofAl-Droubi. Thisdemonstrates thedependenceofthecalculatedmineral stability fieldson thechoiceofthermodynamicdata. Inthe following considerations thevaluesofGarrels&Christhavebeenused because,contrarytoAl-Droubi'svalues,thesearemore consistentwiththeobservationsmadeinthefieldandintheexperiments. The system Na-Ca-COn-H„0 Thestability fieldsofthemineralsgaylussite andpirssonitecanbesuperposedonthesodium carbonatediagram,assuming calciteoraCaCO..-containing mineraltobestableover thewhole logp m -loga„»range.Gaylussiteand pirssonite arerelated accordingtothereaction: prs+3H 2 04 gay slope oo (7) Oncemore,theGibbsenergiesofformationdetermine thea„„atwhichthese twominerals areinequilibriumwitheachother.TheGibbsvalues selectedby Al-Droubi (1976)yieldanequilibriumwater activitybetweenpirssoniteand gaylussite thatiscompletelydifferent fromthatcalculatedwiththevaluesof Hatch (1972) (seetable 8.3).Theequilibriumwater activity calculatedwith Hatch'svaluesisgreaterthan 1,whichmeansthatgaylussitewouldalwaysbe metastablewithrespecttopirssonite.Asgaylussite occursmuchmore frequently thanpirssonite,Hatch'svalues areprobablynotrealistic. Thestability fieldsofgaylussite andpirssonite aredelineatedbythefollowingreactions: prs *tm+cal+H 2 0 slope o o (8) prs+C0 2 %cal+2nah+H 2 0 3prs+C0 2 X 2tr+3cal+H 2 0 3 gay+C0 2 %2tr+3cal+10H20 gay+C0 2 $ cal+2nah+4H 2 0 gay+5H 2 0 Î cal+nat '1 1 10 4 oo Infig.8.4thesecalcium-containingminerals aresuperposedonthesodiumcarbonatediagramcalculatedwithGarrels&Christvalues fortheGibbsenergiesofthesodiumcarbonates.Thegaylussite andpirssonite stability-fields areboundedbyreactions (8),(10),(11),(12)and(13) (seefig.8.4).From thisdiagramitisconcluded thatbothpirssonite andgaylussite canformin equilibriumwithtrona.Thesamediagramcalculatedwith theGibbs energy (9) (10) (11) (12) (13) 101 01 u <u e H H •i"in ^__^ •§- |J !_ •i•e- » =, _£ c > 5 \ " / « **' jS"^ / \ is. / I \ \ », H al 4J 00 M ai H tui ot S / I * i IN - öl) o r-i / 1 1 / o Z H ci) •J 4-1 un CO m a) -C > 1 1 01 co 1 1 1 1 CI) > O 1 —|— VJ P. CM 0) -Q C) C-) f> Cslc/3 01) |- \ 1 (U 1 O <r 4J 1 iJ 1 O W IfiS?-' i « Sln ^ S 1 c • T4 H •a I ) O. |^ O .C |ï a) g a) 1o 1 c/i <N T—1 U-l Ü 1 i 1 i *" <l) ^r S J S \ I <•> où •H ta ai ^m ^ m ö •H H 011 >. a ou a m u i o 61) o w i c* O C •r-1 m 4-1 G cO CJ r a m •H 4-1 •rH (1) cj a. 011 o i-t al >-i m c •r-t H U o m J2 4J CU •U •H C) ,—1 m o fi al u on ni •H XI al CJ 01) > Cl 4-» C C Cl) CO cil fi u eu ••H 71 C0 CO 1 M m oCN al Cl) .a S3 r> n CM 4-1 ai 33 011 1CNl T - l o al i-i O u l C.J cil 1 al •H M U n t) Cl- OU o r-J 1 01 S5 fi Cl) •U C0 01) •H ta fi 011 C 01) VJ 1 n Cs X al 01) o t—i 1 •H CN C f ) al Cu •H 1) 4J .e u C ou o o c) r - 1 1 en Cl) r-l o i) O c al c_) .e r-> -tf 00 C • eu cal CO 0) • H •a 102 valuesofthesodium carbonates selectedbyAl-Droubishows thatpirssonite cannot forminequilibriumwithtrona.Becausepirssoniteandtronaoften occurinthesamemineral assemblages innature,preference isgiventothe values selectedbyGarrels&Christ. Al-Droubi (1976)statesthatathighCO^-pressurestheassociation calcite+ nahcoliteisunstablewithrespecttogaylussiteandthatthelatterisfavored byhighp ™ .Itisclear fromboth fig.8.4andfromreaction (12)thatthis statement isincorrect. The system Na-SO -CO -H 0 Themineralsburkeite,thenarditeandmirabilitecanberepresented inthe systemNa-SO.-CCu-lLOinadditiontothesodiumcarbonatesmentioned insection8.3.Thenarditeandmirabilitearerelatedviathereaction: Tn+10H20 X Mb slopeo o (14) Thestability fieldofburkeiteinrelationtothesodiumcarbonatescanbe determined assuming either thenarditeormirabilite (dependingonthewater activity)orasodiumsulphatecontainingmineraltobestableoverthewhole logCCL-loglLO-range.TheGibbsenergyofburkeiteasdeterminedinsection 7.5isusedtocalculateitsstability field (fig.8.5).TheGibbsenergyof burkeitewasfoundusingGarrels'valuesoftheGibbs energiesofthesodiumcarbonatesanditis,therefore,consistenttousethisvaluetodeterminea stability fieldofburkeiteinadiagram constructedwiththeGarrels&Christ Gibbsenergyvaluesofthesodiumcarbonates. The following reactionsdelineatethestability fieldofburkeite: brk+ CO ? + 3brk + C0 ? + 3brk + brk+ C0 ? + 30H20 H?0 2nah+2tn slope -1 5H 2 0 6tn+2tr " -5 65H 2 0 6mb+2tr "'-65 2mb+nat " c ^3 The system Na-Ca-SO -HO-CO Fig.8.6showsalogpco 7 "l°ga H?0-diagramofthesystemNa-Ca-SO.H-O-CCL.This figureisacombinationoffig.8.4andfig.8.5andisconstructedundertheassumption thatbothaCaC0_-containingandaNa?SC\-containingmineralispresent overthewholelogPQ-, -logau Q -range.With thisassumption,minerals suchaseugsterite,glauberiteandgypsum,whichalsobelongtothesystemNa-Ca-SO.-FLO-CO,arenotstable,whichisconsistent (15) (16) (17) (18) 103 logp Fig. 8.6 Logpeg - logajjg-diagramofminerals inthe system Na-Ca-SO,-CO„-H„0assuming aCaCO-and aNa„SO,-containingmineral tobepresent over thewhole logp CO„ loga H20 range. 104 withtheabsenceoftheseminerals fromnatural assemblages containing sodium carbonates. Fig.8.6shows thattheburkeiteandgaylussitestability field contractin comparisonwith thoseintheNa-Ca-ŒL-FLO (fig.8.4)andtheNa-SO.-CCL-FLO (fig.8.5)systems.Theirbounding reactionis: gay+2tn X brk+cal+5FLO slope c^=> (19) Wheneverthesulphate concentrationpermitstheformationofburkeite,pirssonite ismetastablewith respecttoburkeite+calcite. Ingeneral,iftronaoccursinassociationwith thermonatrite,theconditionsof formationmusthavebeensomewhere along line 1-2(fig.8.6),whichmeansap r n -3S belowatmospheric conditions (10 ' atm.)ifequilibriumhasbeenmaintained duringtheprocessofprecipitation.Theassemblage trona-nahcolitemust have formed under equilibrium conditions describedbyline 1-3,atap r n aroundor higher thanatmospheric CO,-pressure. The largerthenumberofminerals formedinequilibriumwith eachother,at constantPandTandwithadefinitenumberofcomponents,themore restricted arethepossible conditionsofformation.Forexampletheassemblage trona, thermonatrite,burkeite,canonly formatconditions describedbyline1-7; trona,thermonatrite,gaylussitebyline7-2;trona,nahcolite,gaylussiteby line5-3,etc.(seefig. 8.6). Explanation of symbols used in fig. 8.4, fig. 8.5 and fig. 8.6 Theminerals occurringinfig.8.4containthecomponents Na~CO,andCaCO, inadditiontoCCLandFLO.Ifthecompositionofthemineralsisrepresentedby a linewithNa_CO,ononesideandCaCO,ontheother side,allsodium carbonates plotontheNa7C0,-sideofthis lineandcalciteplotsontheCaCO,-sideofthe line.Gaylussiteandpirssoniteplotinthemiddleofthelineasonemoleof gaylussiteorpirssonite iscomposedofonemoleNa^CO,andonemoleCaCO,in additiontoILO(seeinsetinfig. 8.4).Wheremoreminerals coincideatthe samepoint alongtheline,theonethatappearsinacertainstability field isnamed.Forexample i i means:inthis field thermonatrite isstable inassociationwithcalcite. tmDrs i *i i means:inthis fieldpirssoniteisstableeitherwith thermonatrite orwith calcite.Thermonatriteandcalcitecannot coexistheresinceatthe boundarybetweenthesetwofieldsthethermonatriteplus calcitereacttogive pirssonite. Theminerals occurring infig.8.5containthecomponents Na^CO,andNa^SO. inadditiontoC0 ? andFLO.Ifthecompositionoftheminerals isrepresented 2 105 onalinewithNa.CCLononesideandNa^SO.ontheother,burkeiteplotsata distance2/3,becauseonemoleofburkeiteiscomposedoftwomolesofNa~S0. andonemoleNa?CO_ (seeinsetinfig.8.5).Themineralsoffig.8.6canbe representedinthecompositional triangleNa ? CO,,Na~SO.andCaCO,(seeinset fig.8.6). Forexample: means:inthisfield,theassociationnahcolite,thenarditeandcalciteisastableassociation. nah tn means:inthisfieldburkeiteisstableeitherwith tronaandcalcite t r / '\tn orwith thenarditeandcalcite;tronaandthenardite cannot coexist, cavA means:inthis fieldgaylussiteisstableeitherwith thenarditeand tr tn tronaorwith thenarditeandcalcite;tronaandcalcitecannotcoexist. Attheboundarybetweenthestability fieldsofthelasttwoexamples,thereactionburkeiteplus calcitegivesgaylussiteplus thenardite (crossingofthetwo joinsinthetriangle)takesplace. Thismethodofrepresentingstableassociationsofmineralsandtheircompositions along linesorintrianglesisextensively describedinKorzhinskii (1959). Salt assemblages in the system Na-Ca-SO .-CO„-H„0 Theaimofthissectionistoinvestigatewhethertheassemblages belonging tothesystemNa-Ca-SO.-CCu-h^Owhichhavebeenfoundinthefieldandinthe evaporatingdishesareequilibrium assemblagesandwhether theseassemblagescan beexplainedbymeansofthelogp„„ -loga„„-diagrams previouslydiscussed. Intable8.4theagreementsanddifferencesbetweenthetwosetsofsaltassemblageshavebeengiven. Lake Victoria. Thesamples alongLakeVictoriaatSimbi,MitiBiliandKanamall containtrona. AtMitiBilithecalculatedequilibriumCCL-pressureofthegroundwater originating fromthespringdecreasesdownstreambutisalwayshigher thanatmosphericCCL-pressure (seetable 8.1).ThesaltssampledatlocalityMitiBili1 (seefig.4.3)precipitated fromsurfacewater.Water coming fromaspringflows overthesoilsurfaceandevaporates.TheCCu-pressure liessomewherebetween thecalculatedvalueofthespringwater (10~ ' bar)andatmosphericCCL-pres-35 sure (10 ' bar).Ifthesaltassociation foundaroundthespring (trona,calcite,gaylussite,nahcolite)hasformedinequilibriumatp m of10 ' bar -257 106 Table 8.4 Differences and similarities of salt assemblages belonging tothe systemNa-Ca-SO,-CCL-H.O found inKenya and those inevaporating dishes precipitated fromwaters sampled inKenya. Kenya (see table 4.3) Lake Victoria Evaporation experiments (see table 8.1) Lake Victoria - trona ispresent inallassemblages -tronadoesnot occur inall assemblages - thermonatrite isnot always present - thermonatriteoccurs inall assemblages - nahcolite occurs -nahcolite doesnot occur - burkeiteoccurs -burkeite occurs - gaylussite occurs,not in -gaylussitedoesnot occur associationwith burkeite - pirssonite doesnotoccur -pirssonite doesnot occur - nitrates donot occur -nitrates occur Amboseli Amboseli - tronaoccurs inall assemblages -trona doesnot occur inall assemblages - nahcolite doesnot occur -nahcolite doesnot occur -,aphtithaliteoccurs,no sylvite -both aphtithalite and sylvite occur - burkeite doesnot occur -burkeite doesnotoccur - bothpirssonite and gaylussite occur -pirssonite and gaylussite donot occur (point5,fig.8.6),degassingmusthavetakenplacebeforeprecipitationaccordingto: 2HC0~*COj"+C0 2 +H 2 0 (20) Attheother localitiesatMitiBili,thesaltefflorescencesprecipitated from waterwhichwasbroughttothesoilsurfacebycapillaryrise.AgaintheCCLpressureofthesewatersmustbesomewherebetweenatmosphericCCL-pressureand thecalculatedCCL-pressureofthegroundwaterwhichishigher thanatmospheric CCU-pressure.Thesaltassociations formedinthiswayshowassemblagescharacteristicforlowCCLpressures,iftheyrepresent equilibriumassemblagesof minerals.Forexample,theassemblagetrona,thermonatrite,gaylussitewould have formedunder conditionsdescribedbyline7-2infig.8.6whichmeansat CCL-pressuresbetween 10~ " and10" " bar.Suchadropinp m undernatural circumstancesishighly improbable.Therefore,theseassociations (formedunder conditionsofcapillaryrise)mustbeassumedtobenon-equilibriumassemblages. Theformationofnahcoliteisapparently inhibitedalthoughthisisastable sodiumcarbonateunderthecalculatedCCL-pressuresinthewaters. ThepresenceofburkeiteatMitiBiliexplainstheabsenceofpirssonitein theassemblages.Burkeitedoesnotoccurinsamplesinwhichgaylussiteispresentandthesetwomineralscanonlycoexistatonespecificwateractivityat 107 whichreaction (19)takesplace (seefig.8.6). Amboseli. Thesaltssampled atAmboseli (seetable 4.3) originated by evaporation ofgroundwater.ThepartialCCu-pressuresoftheAmboseli groundwatersvaryfrom -074 -305 10 ' to 10 ' bar (seetable 8.1), well aboveatmosphericCCu-pressure. JustasalongLakeVictoria,tronaispresent inallsamples containing sodium carbonates.Nahcolitehasnotbeenfoundandthermonatriteiswidespread.Once more,manyassemblages occurwhichcouldonlyhave formedundermuch lowerCCupressures -iftheyprecipitated underequilibrium conditions. Because someofthewatersatAmboseli contain significant amountsofpotassium,aphtithalite isformedboth inassociationwithpirssonite andwithgaylussite.Theaphtithalite controls theactivityofsulphate insuchaway that burkeitedoesnotform.Theabsence ofburkeite inthesesamples explains the presence ofpirssonite. Konya Basin. IntheKonyaBasininTurkeysodium carbonates occuronly ina restricted areaaroundAkgöl,atlocalities T15,T26,T31 andT32.The carbonate associations areverysimple,mainly trona,burkeite.Thisassociation isstable overavery large logpçg -logau Q rangebelow log PQ-^ =-2.61 bar (fig.8.5). TheCCU-pressuresofthewaters atthese localitiesvarybetween 10 ' and 10"3.19bar.SomeoftheseCO,pressures fallwithinthetrona,burkeitestabilityrange.Incaseofthehighervaluesdegassingwillhave takenplacebefore precipitation ofthesaltassemblage. Evaporating dishes. A fewwater samples taken intheLakeVictoria areaproduced nitratesuponevaporation inthe laboratory.Thenitrate concentrationofthe waterswasnotdetermined atthe timeofanalysisbut thehighnitrate content explains insomecasesthegreatdifferencebetweenanion-andcationconcentrationoftheanalysed ions (seetable4.1).For example thewaters fromSimbi appeared tobeverynitrate-rich afterevaporation inthe laboratory. Inthe field,however,onlycarbonates -nonitrates -were found. Thewaters fromthespringatMitiBilishowanotherremarkablefeature. Fromawater sample takenbefore therainy season,nitratesprecipitated inthe evaporationdishes inassociationwithcarbonates.Nonitrates formed atall fromawater samplefromthesamespring collected onemonth laterafterabundantrainfall.Thesamephenomenonwasobserved ingroundwatersamples takenin adryriverbed atKanam (fig.4.3). Intheevaporationexperiments itwasobserved thatthermonatrite isthe 108 firstsodiumcarbonatetoprecipitate,sometimes inassociationwithtrona,in mostdishes inwhich anysodiumcarbonatesprecipitated.Fromtherimdownwards towardsthecentreofthedishestheratiooftronatothermonatrite increases. Theinitial(XL-pressureofthewaters liessomewherebetweenthecalculated CO ? pressure (seetable 8.1) andatmospheric(XL-pressure.Apparently,thesame process takesplace inthedishes asundernatural circumstances.Thermonatrite forms intheexperimentsalthoughnahcoliteortronaarethestablesodiumcarbonates at(XL-pressures that arehigherthantheatmosphericvalue.Thesameis observed inthefield-Thiscanbeexplained asfollows:Once thermonatrite precipitates,twoprocessesoccur simultaneously: 1.Evaporationcausesallconcentrations insolutiontoriseand thereforealso the(XL-content.Itiswellknownthatthediffusionof(XL throughthesolutionair interfase isaslowprocess andthe(XL-pressureofthesolution,therefore, willincrease. 2.Thesodiumconcentration ishigher thanthealkalinity inmostwater samples fromwhichthesodiumcarbonatesprecipitated. Inthecaseof thermonatrite precipitationthesameprocesswill takeplace asinthecaseofcalciteprecipitationwhichwasexplained insection 5.4.Duringprecipitationofthermonatriteand furtherevaporation,thesodium concentrationwill increaseandthe alkalinitywilldecrease causing the(XL-pressure ofthewatertodecrease. Thesetwoprocesses counteract eachother and,therefore,itis impossible topredictwhetherthe(XL-pressure ofthe solutionwill increaseordecrease during thermonatriteprecipitation.An increasing(XL-pressure favours theformationoftronaoverthemonatrite. Gaylussiteandpirssonitedidnot form intheevaporationexperiments.In thosecaseswhere gaylussite formedundernatural conditions from carbonate-rich samples takenfromtheLakeVictoriaarea,burkeite formed intheevaporating dishes.Thismightbeduetothefollowing tworeasons: 1.DegassingofCO,causestheCa-concentrationtobecometoolowfortheformationofgaylussite.Duringfractionalcrystallisationcalcite isno longer in contactwith thesolutionandcannotreacttoformgaylussite asitwould dounderequilibriumconditions. 2.TheactivityofH~0reachesalowervalue intheevaporatingdishes thanundernaturalcircumstances.At lowwateractivities gaylussite ismetastablewith respecttoburkeite (seefig.8.6),provided thatsufficientsulphate ispresent. 109 Itmustbeemphasized that theconclusions inthis section,whichhave been drawnon thebasisof thermodynamic data,arevalid only ifthelatter arevalid. Thus,thermonatriteprecipitates either asametastable phasewithrespect to tronaandnahcolite.or thethermodynamic data onwhich this conclusion isbased arenotvalid. 8.4 SOLUBILITY CALCULATIONS INTHE SYSTEM Na-K-Mg-Ca-Cl-S04-H20 Most saltminerals intheKonyaBasin inTurkeybelong tothe system Na-K-Mg-Ca-Cl-SO.-FLO,theso-called "seawater system".Much experimental work hasbeendone inthis system inorder toexplain salt sequences inmarine evaporitedeposits.Especiallyvan 'tHoff andcoworkers (1905,1909,1912} determined manyphasediagrams inaneffort toelucidate theseawaterproblem.Phase diagrams areuseful as longas the system isnottoocomplicated. Formulticomponent systemshowever,phasediagrams have their limitations andmineral solubility predictions insuchsystems require atheorywhich describes thebehaviour ofelectrolyte solutions inanaccurateway.First ashortreviewof thedevelopment of the theory describing suchsolutionswillbegiven. The activity ofaspecies iisdefinedas: a. =y.m. l (221 v 'l l J where a. =activity ofspecies i y•=activity coefficientof speciesi m. =molality ofspecies i. ForanelectrolyteA ,B which dissociates inv+kationsA and v-anions B (v++v-=v ) ,themean ionic activity coefficient y isused,which isdefined as: iV/ ïf-ïr (23) Indilute solutions themean ionicactivity coefficient canbe calculated using theExtended Debye-Hückelequation: -A|z z _ | V f l o g Y+= - ^= 1+BaVl whereA and Bareconstantswhich involve the temperature and thedielectric constant inadifferentway (24) 110 a =distanceofclosestapproachoftheions 2 I=ionicstrength,definedas I= \ Em.z.wherem. isthemolality of everydifferent ionicspeciesiand z. isthechargeofioni z+=electricchargeofthekation z_= electric chargeoftheanion. TheExtendedDebye-Hückelequation isvalid forsolutionswithanionicstrength lessthan0.1.Scatchard (1936)describes thedeviationathigherionicstrengths betweentheexperimentalmean ionicactivitycoefficient andtheactivitycoefficientcalculated fromtheExtendedDebye-Hückel equation.Thenewequation becomes: -A|Z+Z ivr logy + = =—-+B!I (2S) 1+BaVT Thefirstterm isthenormalExtendedDebye-Hückelequationandthesecond term iscalled the"Scatcharddeviationfunction".Scatchard foundthatthefunction B.appearstobeeitherconstantoverawiderangeofionicstrengthsor isa slowlyvarying functionofI. Harned (1935)didmanyexperimentswithmixedelectrolytesandhe foundthe followingrelation,knownas"Harned'srule",betweentheactivity coefficient ofanelectrolyte Bandthemolalityofanother electrolyte C. log Y B =i°gy B ( 0 ) - < v c (26) wherey R ,,istheactivitycoefficient ofBinasolutionwhichcontainsonly saltBanda R isamixingparameter,called"Harned'.scoefficient" (Harned,1935; Robinson&Stokes,1970). Wood (1972,1975)combined theScatcharddeviationfunctionwithHarned's ruleresultinginanequationwhichappearedtobeapplicabletoconcentrated brinesandwhichagreedratherwellwithexperimentaldata.Hisequationisas follows: logY + = -A|zz IVF 2vv_ n '-=+ (B.+S^ y J I 1 1+BaVT v j=11;>1 (j*i) (27) where a- • isaconstantmixingparametercharacterizingtheinteractionofthei andjcomponents y- istheionicstrengthfractionofthej component. 111 Pitzerandcoworkers (1973,1974,1975)describethethermodynamicpropertiesofbrinestohigh ionicstrengthsbyavirialexpansionoftheactivity coefficientusing second,thirdandhighervirial coefficients.Referenceis giventoPitzeretal (1973,1974,1975)andHarvie&Weare (1980)astheequationsarerathercomplicated.Scatchard (1968)andPitzer (1973)indicated that theuseofonlyasecondvirial coefficientisnotsufficienttopredictthermodynamicpropertiesofsolutions aboveaionicstrengthof4.Thirdorhigher virialcoefficientsarerequired.RecentlyHarvie&Weare (1980)developedthe methodofPitzerandcoworkers (1973,1974,1975)formineral solubility calculations.Harvie&Weare (1980)objected againsttheWoodmodelasthisisonly a secondvirialcoefficientmodel.Another objectionagainsttheWoodmodelis thattheHarned's coefficientswhichareusedinthemodelarenotinternally consistent (deRooij,personalcommunication).Harvie&Weare (1980)demonstrated thatsecondandthirdvirial coefficientsaresufficienttoperformmineral solubilitycalculations.Theyderived chemicalpotentialsandthirdvirialcoefficients fromternaryexperimentalphasediagrams.Unfortunately,theircalculationsdidnotyetincludeparametersforsystemswithcarbonates. ThecomputerprogramofHarvie&Wearepermitsthepredictionofprecipitation ofmineralsequences from solutions,forexamplethesequencesinmarineevaporites (Eugsteretal, 1980;Harvieetal,1980).Withtheprogrambothsequences formedunderequilibrium conditionsandsequences formedduring fractional crystallisationcanbetraced.Precipitationunder equilibrium conditions allows backreactionofpreviously formedmineralswiththesolution.During fractional crystallisationamineralwhichonceprecipitatedisnolongerincontactwith thesolution. The system Na-Mg-SO -H 0 Mineralsprecipitating fromasolutionintheternarysystemNa-Mg-SO.-H^O canbedepictedinam^ a gg -n w g o -diagram,whichisshowninfig.8.7.This diagramhasbeencalculatedbyHarvieandWeare (1980)fromexperimentaldataat 25°C.' Suchdiagrams indicatewhichmineral(s)areinequilibriumwiththesaturated solutionaswellasthecompositionofthesaturated solution.If,forexample, a solutionwithaninitialcompositionPevaporates,mirabilitewillbethe firstprecipitateinequilibriumwithasolutionwithcompositionQ.Duringfurtherevaporationandprecipitationofmirabilite,thecompositionofthesolution will changealongthesaturation lineofmirabiliteuntilthesolutionbecomes 112 2.0 mirabi1ite y bloediteN P./ 1.0 / / SOLUTION 1 .0 2 0 „„ .. , epsomiteV -° "'MMgSO. en 3 '° Fig. 8.7 Calculated mineral solubilitiesinthe systemNa-Mg-SO-H„0at25C (fromHarvie&Weare, 1980) alsosaturatedwithrespecttobloediteatcompositionR.Thephaseruleshows thatRisaninvariantpointatconstant temperatureandpressure.Therefore, thecompositionofthesaturated solutionnolongerchanges onceithasreached compositionR.Atthispointbothmirabiliteandbloeditewillprecipitate.It isevident thattheNa?S0./MgS0.ratiointheinitial solutiondetermineswhether thefinalprecipitatewillconsistofmirabilite+bloediteorofepsomite+ bloedite. The system Na-Mg-SO -Cl-HO Additionofchlorinetotheternary systemoftheprecedingparagraph results inthequaternaryreciprocalsystemNa-Mg-Cl-SO.-FUO.Fig.8.8isaJänecke diagramofthissystemat25 C,ascalculated recentlybyHarvie&Weare (1980). Theseauthors claimabetteragreementwithexperimentaldatathananyearlier effort.Onthechlorine-freerighthand sideofthesquare,thesame sequence mirabilite-bloedite-epsomiteappearsasintheternarydiagramoffig.8.7. InthisJänecke typeofdiagramonlytheratioofthecomponentsinasaturated solutioncanbefoundandnottheirabsolute concentrationsasinfig.8.7. The labelsinthefields indicatethefirstmineral specieswithwhichasolution, plottinginthatfield,becomes saturated.Forexample,thenarditewillbethe firstmineraltoprecipitatewhenasolutionwith initialcompositionPevaporates.During furtherevaporationandthenarditeprecipitationthecompositionof thesolutionwillmoveawayfromthesaltpointofthenardite (thepointatwhich solidthenarditeplots)alongaline throughtheinitial compositionP(see 113 bischofite kieserite MgS04 ~Q-eps. hxh.ks hexahydrite halite epsomite bloedite hal. Fig. 8.8 Jänecke diagram of thereciprocal systemNa-Mg-SO,-Cl-HOat 25 C fromHarvie &Weare (1980).For abbreviations of saltpoints,see table3.2. Inaddition,bi:bischofite (MgCl .6H0 ) ;ks: kieserite (MgSO .H0) arrowinfig.8.8)untilthecompositionofthesolutionreachesthefieldlabelledbloedite.Atthis compositionQboththenarditeandbloeditewillprecipitate andthecompositionofthesolutionwillchangealongtheboundarybetweenthe thenarditeandbloeditefieldsuntiltheinvariantpointRisreached,where thenardite,bloediteandhaliteareinequilibriumwithasaturated solution withcompositionR.Thefinalprecipitatewill consistofthesethreeminerals. Thesquarecanbedividedinthreesubtriangles (seefig.8.8).Allinitial solutionsplottinginsubtriangleNa2Cl2-Na2SO.-bloeditewillterminateatinvariantpointR;allinitialsolutionsplottinginsubtriangleNa2Cl2-bloediteMgSO.will terminateatinvariantpointSandallinitial solutionsplottingin subtriangleNa ? Cl ? -MgCl 2 -MgS0.willterminateatinvariantpointT.Ateachinvariantpointthreemineralsareinequilibriumwithasaturatedsolution. The system Na-K-Mg-Cl-SO -H 0 ThequinarysystemNa-K-Mg-Cl-SO.-rLOcannotberepresentedinatwodimensionaldiagramunlessanadditionalrestrictionismade.Fig.8.9isaJänecke projectionofthisquinarysystemat25°Cwiththerestrictionthatallmineral 114 Fig. 8.9 Jäneckeprojection at 25 Cof the systemNa-K-Mg-Cl-SO,-H„0calculated byHarvie &Weare (1980).Allmineral zonesdenoted are saturated with respect tohalite.Abbreviations of saltpoints,see fig.8.7.Inaddition, leo: leonite (KMg(S0 ) .4H„0);kai:kainite (KMgClSO,.3H 0 ) ;car: carnallite (KMgCl3.6H20). zonesarealsosaturatedwithrespecttohalite.Alongthepotassium-freeMg-S0. sideofthetrianglethesamemineral sequencecanbeseen (thenardite,bloedite epsomite,hexahydrite,kieserite,bischofite)asthesequence alongtheboundary ofthehalitefieldinfig.8.8. The labelsofthefieldshavethesamemeaningasthelabelsinfig.8.8and theevolutionofasolutionwhichissaturatedwithrespecttocertainminerals isalsoderivedinthesameway.ForadetaileddescriptionoftheuseofJänecb diagrams,thereaderisreferredtoBraitsch (1971).Boththeratioofthecompo nentsinthesaturated solutionandtheratioofthequantityofmineralswhich haveprecipitated fromthissolutioncanbederived fromthisdiagram. Thediagramcanbedividedinsubtrianglesbyjoiningthesaltpointsofthe differentminerals.Thesubtriangleinwhichaninitial solutionplotsdetermine: theinvariantpointatwhichtheevaporationwillend.Forexample,initialcompositionsplottinginsubtrianglethenardite-aphtithalite-bloedite willterminât' atinvariantpointSatwhichpoint thenardite,aphtithaliteandbloeditecoprecipitatewithhaliteinequilibriumwithasaturated solutionwithcompositionS Threemineralsareinequilibriumwithasaturated solutioninadditionto 115 haliteataninvariantpointinthissystem. The system Na-K-Ca-Mg-Cl-SO -H20 ThephaserelationsinthesenarysystemNa-K-Ca-Mg-Cl-SO.-1-LOcanberepresented inatetrahedronwithMg,K,CaandSO.atthecornersandallmineral zonessaturatedwithrespecttohalite.Thistetrahedroncanbesubdivided into subtetrahedra formedbyfoursaltpointsofminerals.Evaporationofaninitial solutionplottinginacertainsubtetrahedronmust terminateattheinvariant pointatwhichthefourminerals formingthecornersofthesubtetrahedroncoprecipitate.Fourmineralsareinequilibriumwithasaturated solutioninadditiontohaliteataninvariantpointinthissystem. Itisevidentthatthephaserelationsaretoocomplicatedtovisualizein twodimensions.TheprogramofHarvie&Weare (1980),whichhasbeendeveloped forthissystem,permitsthecalculationofthemineral sequences thatprecipitate fromasolutioninthissenary system. Salt assemblages in the system Na-K-Mg-Ca-Cl-SO -H„0 Somestrikingdifferencesbecomeapparentbycomparingthesaltassemblages foundintheKonyaBasinandtheassemblagesintheevaporatingdishesprecipitated fromthewaters sampledintheKonyaBasin.Table8.5showsthesimilarities anddifferencesbetweenthetwosetsofsaltassemblages.Theassemblagescontaining sodiumcarbonateshavenotbeentakenintoaccountinthistable(see table8.3). Theanalysesoffivecarbonate-poor samples, 19, T8,T5,T11andT13from Turkey (forchemicalanalyses,seetable3.1)andthecarbonate-poor Luandasample fromKenya (seetable4.1)were selectedandrunwiththecomputerprogramof Harvie&WeareinSanDiego,CaliforniabyNancyMöller-Weare.Thecalculation wasdoneassumingthatequilibriumprecipitation takesplace.Beforerunningthe samples,thewateranalyseswereallchargebalancedwithinthestatedpercent deviation.Thenecessaryconcentrationchangesweremadeonthemajorion(ifobvious)oronallthemajor ionsiftheir concentrationsweresimilar.Thecarbonate-ionswere subtracted fromthesolutionsbyassuming calciteprecipitation. Inallselectedsamplesgypsumwasthefirstmineraltoprecipitate.Glauberiteformedinthenext stagebybackreactionofgypsum.Halitewasthethird mineralwithwhichthesolutionsbecamesaturated,followedbythenarditeand/or bloedite.Thepotassium-bearingminerals formedinalaterstage.Accordingto 116 Table 8.5 Differences and similarities of salt assemblages belonging tothe systemNa-K-Mg-Ca-Cl-SO^-H^O found intheKonya Basinand those in evaporating dishesprecipitated fromwaters samples intheKonya Basin.For abbreviations ofminerals,seetable 3.2. Konya Basin (see table 3.3) Evaporation experiments (seetable 8.2) bloedite occurs inmany assemblages inthe followingassociations: bl-hxh-gps -hal-gl -eps-gps -hxh-sch-hal -eug -hal-gps -gps-lw -hal-stk-kon -hal-gps-kon -hxh-gps-kon bloedite occurs inonly twodishes in thefollowingassociations: bl-hal-hxh-kon-gps -hal-hxh-kon-gps thenarditeoccurs inthe following associations: tn-gl -aph -hal-eug -gps-hal-eug-gl -hal-aph thenardite doesnot occurwith Mg-bearingminerals thenardite occurs inthe following associations: tn-gps-hal-hxh -gps-ha1-hxh-kon -hal -hal-lw-hxh thenardite occurswithMg-bearing minerals,notwith bloedite loeweite occurs only once inthe following association: lw-gps-bl loeweite occursvery often inthe following associations: lw-hal-b1-hxh-kon -gps-hal-hxh -hal-hxh-tn -gps-hal-kon -gps-hxh-hal-kon -hal-cal -gps-eps-hxh-hal -hxh-hal aphtithalite istheonly potassium bearingmineral,nopolyhalite nopotassiumbearing minerals glauberite occurs no glauberite eugsterite occurs no eugsterite notalwayshalite alwayshalite konyaite occurs rarely konyaite occurs often 117 thecomputer calculations thefollowingmineralsprecipitate fromthe selected samplesunder theassumptionofequilibrium precipitation: gypsum [-backreaction glauberite halite thenardite bloedite bloedite polyhalite aphtithalite The sampleswererununtil SL, „reached avalue ofabout 0.70.At thiswateractivity twosamples (T9and theLuanda sample)ended atan invariant point (bloedite,thenardite,aphtithalite,glauberite,halite). Itmustbe concluded from acomparisonofboththenatural salt assemblages and thesaltassemblages formed inthe laboratorywith theequilibrium sequences calculatedwith theprogram ofHarvie &Weare,that theassemblages formed inthe field,mainly due toévapotranspirationofgroundwater,approachmuch better precipitation under equilibrium conditions than theassemblages formed inthe evaporatingdishes. There issomeevidence forthenon-equilibrium conditions inthedishes. Eugsterite can,asglauberite,beregarded asamineralwhich formsattheexpenseofgypsumduring equilibriumprecipitation,although it isametastable mineral contrary toglauberite.Eugsterite andglauberite arebothabsent inthe evaporating dishes.Theminerals loeweite and konyaite,bothbeingmetastable minerals atambient conditions,formed often inthedishes.Furthermore,thenarditeandeitherhexahydrite orepsomitecannot form inequilibriumwith each other inthesameassemblage (seefig.8.9).Inthedishes thenardite occurs often inassociationwithhexahydrite.This association canonlyhave formed during aprocess offractional crystallisation. Inthefield equilibrium conditions predominate.Botheugsterite and glauberite,whichprecipitate bybackreaction ofgypsumwith thesolution,have formed widespread undernatural circumstances.Apparently all thenardite,ifithas formed inMg-rich solutions,hasbackreactedwith thesolution toMg-bearingmineralsbecause thenardite doesnotoccur inassociationwithaMg-bearing mineral inthefield,notevenwithbloedite.Notallassemblages found inthe field 118 have formedunder equilibrium conditions.Thecoexistence ofthenardite and gypsumand thepresence ofeugsterite andkonyaiteprove thatalsoduring évapotranspirationboth fractional crystallization and formationofmetastable minerals takesplace.Konyaite evenhaddisappeared insome samples twoyears after sampling,whichproves themetastability ofthismineral.Suchnonequilibriumprocesses occuronalessextensive scale than inthe evaporating dishes. Prediction ofmineral assemblages insalt efflorescences and in evaporating dishes isdifficult,evenifaccurate activity coefficients forbrines areavailable. Inbothcases theprocesses areamixture ofequilibrium conditions,fractionalcrystallizationand formationofmetastableminerals.The salt assemblages innatural saltefflorescences arebestpredicted by assumingprecipitationunder equilibrium conditions,whereas themineral assemblages inevaporating dishes in the laboratory arebestpredicted byassuming theformationofmetastablemineralsand fractional crystallization. 119 STABLE ISOTOPES IN WATERS FROM THE KONYA- AND AMBOSELI BASINS; A RECONNAISSANCE STUDY 9 . 1 INTRODUCTION Inrecentyearsthestableisotopecompositionofnaturalwatershas increasinglybeenusedtotracetheoriginofthesewaters,andtheirsubsequent historyduringevaporationand/or interactionwithsoilsandrocks.Thisstudy isprimarily concernedwiththeevolutionofevaporating solutionsandtheprecipitationofsaltminerals fromthesesolutions. Itwasfeltthatthestableisotopiccompositionofthewater samplesfrom theKonyaBasininTurkeyandfromtheAmboseliBasininKenyacouldgiveadditionalinformationontheprocesses involved suchastheevolutionofthe evaporating solutionsandtheprecipitationofsaltminerals fromthesesolutions. Theopportunitytodeterminetheisotopiccompositionofthewatersamples arose duringthepresentstudybutbecausethesampleswerenottakenwiththisaimin mind,onlythosesamples couldbeusedwhich fulfilledtherequirementsfor isotopicanalysis. 9.2THESTABLE ISOTOPESOFHYDROGENANDOXYGEN Hydrogenandoxygen,bothconstituentsofwater,occurasmixturesofdifferent isotopes,namelyhydrogenwithmass 1(99.9841),deuteriumwithmass2 (0.016V)andthree isotopesofoxygenwithmasses 16(99.761),17(0.041)and 18 (0.201).Thedifferentmassesoftheseisotopes causethemtobehavein slightlydifferentwaysinchemicalreactions,althoughtheirchemicalpropertiesareidentical.Consequently,theisotopiccompositionsoftwooxygenand/ orhydrogenbearing compoundswhichareinequilibriumwill,ingeneral,be slightlydifferent.Thisdifference,definedastheequilibrium isotopefractionation,increasesastheequilibriumtemperatureislowered.Ingeneralthe heaviest isotopeisconcentratedinthephaseinwhichitismost strongly bound. Theisotopiccompositionofasampleismeasuredwithamassspectrometer. Unknownsamplesaremeasuredrelativetoastandardofknownisotopiccomposition.Thestandardusedforwater analysesistheso-called SMOW (Standard 120 MeanOceanWater). Isotopicvalues arecommonlyreported inthe6-notation, in which the isotopic compositionofanunknownsample (x)isrelated tothe isotopiccompositionofastandard sample (st)inthefollowingway: R -R 6X = ~ K. 51.1000 st 1ft16 1ft In this formula Rdenotes theisotope ratios D/Hor 0 / 0 .Consequently 6 0 and 6D ofSMOW are0.The6-value isexpressed in /oo(permil) andhasan analytical precision which isingeneral oftheorder of1 /ooforÖDand o 1ft 0.1 /oof o r ö 0.Positive values of6 indicate that thesample is enriched 1ft inDor 0relative tothestandard andi s ,therefore,heavier; negative values indicate that thesample hasless oftheheavy isotope than thestandard and is, therefore, lighter. 9.3 FACTORS AFFECTING THEISOTOPIC COMPOSITION OFNATURAL WATERS The oceans arethelargest reservoir ofwater ontheearth'ssurface.All meteoric waters andthelakes, rivers andgroundwaters originating from themare directly orindirectly derived from theocean reservoir. The isotopic compositions ofmany meteoric waters ranging from tropical rainwater toAntarctic iceandsnow have been measured (Craig, 1961; Epstein et al, 1965, 1970). Forthese waters there isa linear relationship between 6Dand6 0 givenby: 6D =86 1 8 0+5 This line, called theMeteoric Water Line (MWL), determines theisotopic composition ofalmost allprecipitations asa function ofgeographic latitude, topography, andlocal climatic conditions. 1ft In older papers this equation isalso given as6D=86 0+ 10because at that time theAntarctic precipitations hadnotyetbeen analysed. The linear relationship between thehydrogen andoxygen isotopic compositions is caused bythefact that thecondensation ofwaters from theearth's atmosphere in theform ofrain orsnow isessentially anequilibrium fractionation process, and that allofthese waters derive ultimately from a single source ofwater, namely ocean water. Thefractionation ofD/Hisproportional tothe 0/ 0 fractionation intheratio of8:1.Astemperature decreases, both fractionations increase proportionally. Some deviations from thelinear relationship given above dooccur. Inthe Eastern Mediterranean,which isrelevant tothediscussion oftheisotopic 1ft 121 results oftheKonyaBasin,theprecipitations followa linegivenby (Gat, 1966): 6D=86 18 0+22 Otherexceptions tothenormal linearrelationship are the isotopiccompositions ofwaters fromclosedbasins.Waters inclosedbasinsareusuallyconcentrated salinewaterswhich formbyevaporationofprecipitationwaters.The isotopiccompositions ofsuchwaters alsoshowa linearrelationship,buthave a slopeof 1-6, instead of8as fornormalwaters.Suchlines,whicharecharacteristicforevaporationprocesses,intersect theMWL at thepointofthemean oftheprecipitations inthatparticulararea. Another typeofwaterswhichdonot followtheMWLarethe (usuallyhot) springwaters,thathavehadameasurabledegree of interactionand exchange with solidrocks.Rocks constitue alargereservoir ofoxygen,becausealmost allminerals canbeconsidered ascompoundsofoxides,butonlyasmallreservoirofhydrogen,asmostminerals containno,oratmostonlyasmall amount of hydrogen.Water,onthecontrary,isa largereservoir bothofoxygenandhydrogen. Ifacertainamount ofwater interactswith arockbody,withwhich itis not inisotopicequilibriumunderthegivenconditions,the isotopeexchangewith therockwill causeasignificant shiftoftheoxygenisotopiccompositionof thewater.Thehydrogen isotopiccompositionremainsvirtuallyunchangedduring thisprocess,because thereisrelatively littlehydrogentoexchangewith. Theseeffects areessentially causedbytherelative sizesofthe exchanging reservoirs. If,forexample,hydrogenandoxygen isotopes areexchanged between 1kgofwaterand 1.6 kgofkaolinite,amineral certainly richer inhydrogen thanmostminerals,the finaloxygenisotopecompositionwould be for 501determined by thecontributionofthekaolinitewhereas thehydrogen isotopiccompositionwould onlybedetermined for less than Z% bythekaolinite contribution. Thismeans thattheoriginalD/H ratioofthewaterwould hardly changeby the water-rock interaction.Fig.9.1 showstheMeteoricWaterLine (MWL),theEast MediterraneanWaterLine (EMWL),andtheevolutionofthe isotopic composition ofaspecificprecipitateduringevaporationandwater-rock interactionrespec18 tivelyina6D-6 0diagram. Notonly the isotopiccomposition ofanaturalwater changesduringevaporation,butalsoits chemicalcomposition changesasalinearfunctionofits degreeofevaporationas longas itisnot saturatedwithrespect tooneormore saltminerals.Ontheotherhand,awater canalsochange itschemical com- 122 S,80 or 8° &D(°/oo) 60- ^„pnTition Une 40 dissolution of salts without I -10 - 8 - I 6 I - 4 I - 2 I 0 I 2 1 4 evaporation 1 s a l ini ty 6 ,8 S 0(% o ) F i g . 9 . 1 E a s t M e d i t e r r a n e a n Water L i n e (EMWL) D = 8 6 1 8 0 + 2 2 . M e t e o r i c Water L i n e (MWL) D = 86 0 + 5 . E v a p o r a t i o n t r e n d , slope 5. Water-rock i n t e r a c t i o n trend, slope + 0. Fig. 9.2 The isotopic compositionof anevaporatingwaterbody undernatural circumstanceswith a given relativehumidity reaches a steady state.Dissolutionof salts increases the salinity without changing the isotopic composition. positionbydissolutionofsaltswithout changingitsisotopic composition. The simplecaseofevaporationofasinglebatchofwaterinacompletely dryatmosphere (relativehumidity0)is,ofcourse,never realized innature. ExampleswhichcloselyapproachthissituationhavebeendescribedbyFontes& Gonfiantini (1967).Inmost casesofevaporationundernatural conditions,with a givenhumidity,inwhichthevaporhasadefined isotopic composition,the isotopiccompositionoftheevaporatingbodyofwater reachesasteadystate. Theprocessiscomplicatedbythefactthatthereisusuallyacontinuousinflowofnewwater intotheevaporatingbody.Themathematicsofsuch situations becomerather complicatedandarebeyondthescopeofthis study. Theevolutionoftheisotopic compositionofanevaporatingbodyinwhichno evaporation,butonlydissolutionofsaltstakesplace,isshown schematically 18 ina6Dor6 0versus salinitydiagraminfig.9.2. Itcanbeconcluded thatthehistoryofanaturalwatercanbetracedby measuringitschemicalanditsisotopiccomposition.Itbecomespossibleto determinetheisotopiccompositionoftheprecipitationinaspecific areaand 123 todistinguishbetweeneffects ofevaporation andofinteractionsbetweenwater androcksorspecificminerals. 9.4 ANALYTICAL PROCEDURESANDDATA For the6Ddetermination,thewaterswere reduced tohydrogengaspriorto o 18 analysisbyreacting thewaterwithuraniummetal at 800 C.For the6 0 measurement,thewaterswere equilibratedwith small amounts ofCO,ofknown isotopiccompositionat 25 C;thefractionationbetweenwater andCCLis accuratelyknown.Analyseswereperformed byDr.R.KreulenandJ.Meesterburrie ofthedepartment ofGeochemistry,VeningMeineszLaboratory,RijksUniversiteit, Utrecht,onamass spectrometerMicro-mass602. From theanalyticalmethodsused,itisclearthat inthecaseoftheoxygen isotopecompositions activityratios areinfactmeasured insteadofconcentrationratios (thesampleandthestandard areequilibratedwith smallamounts ofCCU),whereas inthecaseofD/H ratios concentrationratios aremeasured (allthehydrogenofthewater sampleandstandard isconverted tohydrogengas). Indilutesolutions thedifferencebetweenconcentrations andactivitiesis negligible.Forsomeofthehighly concentrated brines thissalteffectbecomes measurable. Sofer&Gat (1975)determined thattheMg-concentrationhas the largest effectontheactivityoftheisotopes.Therefore,theÓDofthesamplewith thehighestMg-concentrationhasbeenrecalculated,using theformulagivenby Sofer &Gat (1975),toshowthedifferencebetweenthe6Dexpressed inconcentrationratiosandthe6Dexpressed inactivityratios.Thisdifference,calculated forsample 37fromtheKonyaBasin,is-1.5/oo,i.e. around theanalytical precision.Becausethecorrections aresmaller fortheothersamples,thecorrectionshavenotbeenapplied inthediscussionoftheresults. Table 9.1 summarizes thedataobtained. Inaddition,theCl-concentrations havebeengivenasanindicationoftherelative salinities.Thedatahavebeen plotted onfig.9.3 and 9.4 (KonyasamplesandAmboselisamples respectively). Thelocalitiesofsampling canbe seenonfig.3.2 and fig.4.2.Tables 3.1 and 4.1 showthechemicalanalysesofthewatersamples.Thedataonprecipitation intheKonyaBasin,aswellastwosamples fromtheCar§ambariverasreported bySentürketal (1970)havebeenincluded infig. 9.3. 124 18 Table9.1 6 0andÓDvaluesofwatersamplesfromtheKonyaBasininTurkey andfromtheAmboseliBasininKenya locality ó'80°/oo (SMOW) ÓD°/oo (SMOW) logCl(mol/m) Konya 1 +4.7 +12 1.1 -37 0.3 2 -5.8 5a -11.0 5b -11.1 6 -4.2 -24 0.5 8 +2.3 -3 2.9 9 -1.7 12 -11.4 -65 -65 -35 -71 -70 0.6 0.6 3.2 -1.1 13 -10.5 14 -9.9 2.3 16 +10.0 17 -9.6 22 -9.8 -64 1.4 26 -9.3 -65 1.5 27 -7.8 -45 -0.1 28 -9.6 -62 0.8 -67 2.1 -9 2.7 -64 1.5 29 -10.3 -66 0.9 31 -11.6 -80 1.4 32 -11.0 33 -2.3 -35 3.2 37 -6.5 -44 3.0 3 -0.4 -9 4 -4.8 -24 5 +14.1 6 -5.3 -25 -17 -74 0.9 Amboseli +63 0.6 0.5 1.8 -0.2 8 -4.0 11 -5.0 13 -1.9 -8 0.2 14 -4.8 -23 -0.5 -18 1.1 -0.6 125 6D(SM0W)(%o) 40 4 6 8 10 18 6 0(SM0W)(%o) Fig. 9.3 Isotopic composition ofwaters from theKonyaBasin.Symbols: +,precipitationwaters from§enturk et al. (1970).A andA;Riverwaters from this study and §enturk et al. respectively. C:Çarsambariver;Z:Zanopariver; B: Bor river.• andO otherwaters from this study and §enturk et al.respectively. S:SuglaLake.Figures aredescribed in thetext. 9.5DISCUSSION Konya Ascanbeseenfromfig.9.3,mostprecipitationsamplesaswellastheriver 18 samplesintheKonyaBasinplotwellabovetheMWL(6D= 8 6 0+ 5),andare 18 closetotheEastMediterraneanWaterLine (6D= 8 6 0+22).Thespreadof theindividualvaluesisconsiderable.Therefore,nosinglecombinationof6D 18 and6 0foraparticularwatercanbeconsideredasthestartingcomposition forgroundwatersintheKonyaBasin.Arangeofpossibleprecipitationsisindicatedinfig.9.3.AlthoughtheÇarçambariveristhemostimportantsingle sourceofwaterfortheBasin,othersmallriversliketheZanopaandtheBor riverscontributealsotoitswaterbudget,asdoeslocalrainfallinthebasin. CraterLake(no.8),withinthemouthofanextinctvolcano,derivesallofits waterfromlocalrainfall. 126 6D(SM0W)(%o) 100 16 18 6180(SM0W)(%o) Fig. 9.4 Isotopic composition ofwaters from theAmboseli Basin inKenya.Symbols:•,riverwaters;• otherwaters;O inferred compositionof localprecipitation. Fromthespreadofthepossibleprecipitationsitseemsevidentthataconsiderablescatteroftheisotopiccompositionoftheevaporatedwatersistobe expected.Therefore,wehavetolimitthediscussiontosomegeneralremarks, whichcanbemadeonthisbasis. Gat(1979)discussesdifferenthydrologiemodelsinwhichevaporationtakes place.InhisterminologymostofthehydrologiesituationsintheKonyaBasin whichgaverisetosaltformationcanbeconsideredas"terminalgroundwater lakes"(typeA.,)(seefig.9.5),or"groundwaterlakeswithlowwaterstand"(type B ? ).CraterLake(no.8)comesclosestotypeC,a"perchedlake"withoutconnectionwiththeregionalgroundwatersystem.TheKa§inhanisample(no.1)isa "terminalsurfaceflowlake",typeA..LakessuchastypeA-,ortypeC,characterizedbyhighevaporation,showhighlyenrichedisotopiccompositions,afact bornoutbythedataobtainedinthisstudy.TheKa§inhanisampleshowsinfact thelargestenrichmentinheavyisotopesofanyofthenormalground-andsurface waterslistedintable9.1. ThelakesamplesKa^inhani(no.1),CraterLake(no.8)andPlaya(no.9)showa largeshiftinisotopiccompositionfollowinganevaporationtrendwithslope5 (seefig.9.3).InthegroundwatersbelongingtotypeB?-waters(groundwater 127 lakeswithlowwaterstand),theevolutionofthewatersthroughcapillary evaporationresultsinanincreasingsalinity,withoutlargechangesinthe 6-values.Fig.9.3showsindeedthattheisotopiccompositionsofmostwaters, evenofthosethatshowaconsiderablesalinity (seetable9.1),havenotshifted farfromtheisotopiccompositionoftheprecipitations. Asinglesampleisunique,asitcannotconceivablybederivedexclusively byevaporationprocessesfromanyoftheavailablesources.Thisisthesample 18 ofthespringsatAkhüyük (no.16)whichhasanextremelyhigh6 0-valueof +10 /oo.Mostprobablythiswateroriginatedbyevaporationfromlocalrainwaters,bringingitfirsttoahypotheticalcompositionofroughly6D=-10 /oo, -IQ .-. 6 0=+2 /oo,therebygreatlyincreasingitssalinity.Afterthisevaporation step,thewaterinfiltratedintothesubstratumtoconsiderabledepthandunderwentrock-waterinteractionatelevatedtemperatures,therebyshiftingtheoxygen isotopecompositionfromthehypotheticalvalueof+2toitspresentlevelof 6 0=+10 /oo,afterwhichthewatersfroundtheirwayupwardsalongafault zoneonwhichthehotspringsaresituated.Thegeologicalsettingofthe springsatAkhüyükmakesthishypothesisacceptable. Amhoseli Basin (Kenya) TheAmboselibasininKenyamostcloselycorrespondstotheterminalsurface flowlakes(typeA)inGat'sclassification.Thegroundwatersinsuchasituation showmoderateenrichmentintheheavyisotopes (seefig.9.4),whereasthesurface samplescanbehighlyenriched.Thisisexactlyashasbeenfound,themostenrichedsampleat6D=+63°/oo,and6 0=+14.1°/oobeingthesurfacesample ofthelakeinanadvancedstageofevaporation,whereastheothersamplesrepresentthelocalgroundwaters. 1 terminal groundwater lake low water stand / \ terminal surface flow lake perched lake Fig. 9.5 Different hydrologicalmodelswhich giverise to salt formation. Typenumbers and figures fromGat (1979). 128 Themost consistentexplanationofthe isotopedataoftheAmboselibasin seems tobe thatthe localprecipitation isnot lyingontheMWL,but isinfact lyingonalinesimilartotheEastMediterraneanWater Line;thiscouldwellbe thecaseastheAmboselibasin is,liketheEasternMediterranean,characterized byasemi-arid climate.Theestimated compositionofthe localprecipitationhas been indicated infig.9.4. Theuseofthe isotopiccompositionofwaters inorder toobtainquantitative informationonthesourceanddevelopmentofthegroundwaters inclosedbasins would require amoredetailed samplingprogram,preferablywithsampling carried outover aperiodoftime.Inadditionhumiditymeasurements shouldbemade, both inandabovethesoilprofile. 129 10.SUMMARY This studydealswith therelationbetween themineralogical composition of saltassemblages andthecomposition ofgroundwaters fromwhich these salts precipitated.A comparisonwasmadebetween salts andwaters sampled inthe KonyaBasin inTurkey andwaters sampled inthreedifferent regions inKenya. The chemical composition ofwaters fromrivers entering theKonyaBasinis different from thecomposition of those fromrivers inKenya.The initial composition oftheseriversdetermines thetypeofminerals thatwill precipitate during evaporation oftheseriverwaters.Theratio ofcalcium tocarbonate at themoment thesolutionbecomes saturatedwith respect tocalcite,usually the firstmineral toprecipitate,determineswhether thefinal solutionwill become carbonate-rich orcarbonate-poor.Theratio ofmagnesium tosilicaand theratio ofcalcium tosulphate atthemoment thesolutionbecomes saturatedwith respect tosepiolite andgypsumrespectively,determine themagnesium and sulphate contentofthefinal solution. Inthisway sixdifferent types ofconcentrated brines originate and sixdifferent typesofsaltassemblages precipitate from these brines during evaporation. The concentrated waters and thesaltassemblages intheKonyaBasinbelong mainly totheNa-Mg-SO.-Cl-type.The evolutionofthegroundwater composition and the typeofmineralswhichprecipitated from these groundwaters canbeexplainedby assuming successive precipitation ofcalcite,sepiolite and gypsum. The concentratedwaters and thesaltassemblages fromKenyabelongmainly to theNa-CCL-SO.-Cl-type.Thebehaviour of thedissolved species and thetypeof saltminerals canbe explained by assuming calcite andsepiolite precipitation only. Thecrystallographic properties ofsomesaltmineralsweredetermined by meansofX-ray diffraction analysis and themorphologicalproperties by Scanning ElectronMicroscopy. Thepresence ofhalite causes asalt crust tobecome dense and sealing.Theporosity ofasalt crust increaseswhenbloediteor trona is present. Prediction ofthesequence ofsaltmineralswhichwillprecipitate froma concentrated solutionrequires anaccurateknowledge ofthethermodynamicpropertiesofconcentrated electrolyte solutions.Unfortunately, theseproperties are stillunknown forcarbonate-rich solutions.Only recently atheorywas developed 130 for carbonate-poor solutions. Thewatersampleswereevaporated inthelaboratory inevaporating dishes under ambient conditions.Themineralogicalcomposition oftheprecipitates was comparedwith theassemblages thatoccur inthe field. The carbonate-containing saltassemblages bothfromthefield and fromthe laboratory experimentswere investigated bymeans of log PQQ -loga^ Q diagrams. Itappeared thatneither thefieldnor thelaboratory saltassemblageswere inequilibriumwith theCO^-pressuresofthesolutions fromwhich theyprecipitated.TheseCO^-pressureswere calculated fromtheanalytical data. Thecarbonate-free saltassemblages from theKonyaBasinwere investigated bymeans ofJänecke-diagrams.For afewselected samples thetheoretical mineral sequenceswere calculated under theassumption ofequilibrium precipitation withthehelpofthecomputerprogram ofHarvie &Weare (1980). Itappeared that prediction ofmineral assemblages insaltefflorescences isdifficult evenwith a sound thermodynamic theory.Saltassemblages innatural salt efflorescences couldbest bepredicted assumingprecipitation under equilibrium conditions, whereasmineral assemblages inevaporating dishes inthe laboratory could best bepredicted assuming bothmetastablemineral formation and fractional crystallization.This conclusion issupportedby thepresence of thetwonewminerals, konyaite andeugsterite,whichhavebeendiscovered inthis study.Botharemetastablemineralsunder ambient conditions. Theoxygenandhydrogen isotopic composition ofsomewaters from theKonya BasininTurkey andofthewatersamples from theAmboseliBasin inKenyawere determined. The isotope fractionation causedby evaporation isdifferent in groundwater andsurfacewater.Processes ofevaporation andwater-rock interactioncouldbe distinguished. 131 11. SAMENVATTING Zoutegrondenzijnnietgeschiktvoorlandbouw.Daaromishetvanhetgrootstebelangtevoorkomendatgeschikte landbouwgrondenverzouten.Bovendienmoet veelaandachtgeschonkenwordenaandeverbeteringvanreedsverzoutegronden. Zoutegrondenkomenvoorinsemi-arideenaridegebieden.Doordehogeverdampinginzulkegebiedennemendeconcentratiesvandeopgeloste stoffeninhet oppervlaktewatereninhetgrondwater toe.Wanneerdezestoffennietvoldoende afgevoerdworden,zullenzealszouteninofopdebodemneerslaan.Natuurlijk gevormde zoutegrondenontstaanveelaldoorverdampingvangrondwaterinhydrografischafgeslotenbekkens.Ookdoormenselijke invloedkunnengrondenverzouten wanneerinaridegebiedenirrigatiewordttoegepastzonder zorgtedragenvoor voldoendedrainage. Bodemkundigendiezichmetzoutegrondenbezighouden,zijnoverhetalgemeen nietgeïnteresseerdindemineralogische samenstellingvandezouten.Gewoonlijk lossenzijdezoutenopenbepalendeconcentratiesvandeverschillende ionenin oplossing.Vanuit landbouwkundigoogpuntisditbegrijpelijk omdatplanten lijden vantehogeconcentraties zouteninopgelostevorm. Inditproefschriftis eenverband gelegdtussendemineralogischesamenstellingvandezoutenende chemischesamenstellingvanhetgrond-enoppervlaktewaterwaaruitzeneerslaan. MonstersuitdrieverschillendestrekeninKenyaenuithetKonyabekkenin Turkijewerdenmetelkaarvergeleken.Detweeverschillende gebiedenwerdenom devolgenderedenenuitgezocht: 1.DezoutenuitKenya zijnvaneengeheelander typedandieuitKonya. 2.BeidegebiedenwarenreedseerderbestudeerddoorNederlandse bodemkundigen vandeLandbouwhogeschoolinWageningenenvandeKenyaSoilSurveyinNairobi. Hierdoorwasvoldoendebodemkundigekennisaanwezigenbestonddemogelijkheid voordeskundigebegeleiding. Naastmonstersvandezoutuitbloeiingenwerdenookmonstersvanhetgrondenoppervlaktewatergenomen. DesamenstellingvanderivierwatersdiehetKonyabekkenbinnenstromenverschiltvandeKenyaanserivierwatersamenstelling.Deverhoudingvandeopgeloste stoffeninhetrivierwaterbepaaltuiteindelijkhettypemineralendatbijverdampingzalneerslaan. 132 Calciet isgewoonlijkheteerstemineraaldattijdensverdampingneerslaat.Deverhoudingtussencalciumencarbonaatindeverdundeoplossingbepaaltofdegeconcentreerdeoplossing carbonaat-armof-rijkzalworden.Wanneer deoplossingverzadigdraaktaansepioliet isdemagnesium-silicaverhoudingbepalendofdeuiteindelijkeoplossingmagnesium-rijkof-armzal zijn;decalciumsulfaatverhoudingophetmomentdatdeoplossingverzadigdraaktaangipsbepaalt hetsulfaat-gehaltevandegeconcentreerdeoplossing.Zoontstaanzesverschillendehoofdtypesgeconcentreerdeoplossingenwaaruit zesverschillende types zoutenneerslaan.Dezetypesbevattenallechloride. InhetKonya-bekkenbehorendegeconcentreerdewatersendezoutmineralen grotendeels tothetNa-Mg-SO.-Cl-type.Deontwikkelingvandegrondwatersamenstellingenhetbijbehorende typemineralenkanverklaardwordenwanneeruitgegaanwordtvandeopeenvolgendeprecipitatievancalciet,sepiolietengips.De geconcentreerdewatersende zoutmineralenuitKenyabehorenhoofdzakelijk tot hetNa-CO,-SO.-Cl-type.Hetgedragvandeioneninoplossingenhetvoorkomen vandittype zoutmineralenkunnenverklaardwordendoordeopeenvolgendeprecipitatievancalcietensepioliet. Dekristallografische enmorfologische eigenschappenvaneenaantalzoutmineralenwerdenmetbehulpvanröntgendiffractie analyseenelektronenmicroscopiebepaald.Wanneerhaliet involdoendemate aanwezig isineenzoutassociatie,vormtdezeeendichte,afsluitendekorst.Bloedietentronavergrotendeporositeitvaneenzoutkorst. Wanneerwewillenvoorspellenwelke zoutmineralenuitgeconcentreerde oplossingenzullenneerslaan,moetenwedethermodynamischeeigenschappenvanelectrolytoplossingenkennen.Totophedenzijndezeeigenschappenvoorcarbonaatrijkeoplossingennietbekend.Zeerrecentiseentheorievoorcarbonaat-arme oplossingenontwikkeld. Allewatermonsterswerdeninindampschalenonder laboratoriumomstandigheden verdampt.Demineralogische samenstellingvanhetneerslag isvergelekenmetde mineraalgezelschappendieinhetveldondernatuurlijke omstandigheden zijnneergeslagen. Zoweldenatuurlijkecarbonaathoudendemineraalgezelschappenalsdegezelschappendie zichinhet laboratoriumgevormdhebben,werdenonderzochtmetbehulpvanlogpço -loga^g-diagrammen.Hetbleekdatdezebeidegroepen mineraalgezelschappenniet inevenwichtwarenmetdeCO?-drukvandeoplossingenwaar zeuitneersloegen.DezeŒL-drukwerdberekenduitdeanalytischegegevens. DecarbonaatvrijemineraalgezelschappenuithetKonya-bekkenwerdenonder- 133 zochtmetbehulpvanJäneckediagrammen.Vaneenaantalmonsters ismetbehulp vanhetcomputerprogrammavanHarvie &Weare (1980)berekend inwelkevolgordede zoutenonderevenwichtsomstandighedenzoudenneerslaan.Hetbleek,dat zelfsmet eengedegenthermodynamischetheoriehetmoeilijk iseengoedevoorspellingte doenomtrentde zoutendiegevormd zullenworden.Degezelschappendieonder natuurlijkeomstandighedendoorevapotranspiratievangrondwaterontstaanzijn, blijkenbeterverklaard tekunnenwordenwanneerprecipitatie onderevenwichtsomstandighedenwordtaangenomen.Degezelschappendieindeverdampingsexperimentenonder laboratoriumomstandighedenontstaanzijn,kunnenbeterverklaardwordenonderdeaannamedatmetastabielevormingvanmineralenenfractionelekristallisatieplaatsheeftgevonden.Dezeconclusieismedegebaseerdophetvoorkomenvandemineraleneugsterietenkonyaiet.Dit zijntweenieuwemineralendie tijdensdezestudieontdektzijn.Beidemineralen zijnmetastabielbij 1atmosfeer drukenkamertemperatuur. Dezuurstof-enwaterstofisotoop-samenstellingvaneenaantalwatermonsters uithetKonya-bekkenenvandewatermonstersuithetAmboseli-bekken inKenya werdenbepaald.Deisotoop-fractioneringingrondwatereninoppervlaktewater onder invloedvanverdamping isverschillend.Erkoneenonderscheid gemaaktwordentussenwaterdatverdampinghadondergaanenwaterwaarbij intensieveinteractiemetgesteentenhadplaatsgevonden. 134 12. REFERENCES Al-Droubi,A., 1976.Géochimie des sels etdes solutions concentrées par evaporation.Modèle thermodynamique desimulation.Application aux sols salésdu Tchad.Thèse,Université Louis-Pasteur,Strasbourg,France, 177p. Aubert,G., 1967.Classificationdes Sols.Edition 1967.Trav.CPSS,Grignon. Beek,C.G.E.M. van,Breemen,N.van, 1973.Thealkalinity of alkali soils.J. Soil Sei.,24,p.129-136. Begheyn,L.Th., 1980.Methods of chemical analyses for soils andwaters.AgriculturalUniversity,Wageningen,theNetherlands. Braitsch,0., 1971.Saltdeposits,their originand composition. Springer-Verlag, NewYork, 297p. Brinkman,R., 1979.Ferrolysis,asoil-forming process inhydromorphic conditions. Pudoc,Wageningen,theNetherlands. Brinkmann,R., 1976.Geology ofTurkey.Elsevier,Amsterdam,Oxford,NewYork, 158p. Conley,R., andBundy,W.M., 1959.Mechanism ofgypsification.Geochim.Cosmochim. Acta, 15,p. 57-72. Craig,H., 1961.Isotopicvariations inmeteoricwaters.Science, 133,p.17021703. Dana,J.D., 1951.System ofMineralogy,vol.II.JohnWiley &Sons,NewYork. Drever,J.I.and Smith,C.L., 1978.Cyclicwetting and drying of thesoil zone asan influence on thechemistry of groundwater inarid terrains.Am.Jour. Sei.,278,p.1448-1454. Driessen,P.M., 1970.Soil salinity and alkalinity in theGreatKonyaBasin, Turkey.Pudoc,Wageningen,theNetherlands,99p. Driessen,P.M.,and Schoorl,R., 1973.Mineralogy andmorphology of saltefflorescences onsaline soils in theGreatKonya Basin,Turkey.J. Soil Sei.24, no. 4,p.436-442. Epstein,S., 1970.Antarctic icesheet:stable isotope analyses of Byrd station cores and interhemispheric climatic implications.Science, 168,p.1570-1572. Epstein,S.,Sharp,R.P.,andGow,A.J., 1965.Six-year record of oxygenand hydrogen isotopevariations inSouthPolefirn.Journ.Geophys.Research, 70,p.1809. 135 Ericksen,G.E.,andMrose,M.E., 1970.Mineralogical studies of thenitrate deposits of Chile.II.Darapskite,Na (NO )(SO).H0.Am.Min.,55,p. 1500-1517. Eswaran,H.,and Carrera,M., 1980.Mineralogical zonation in saltcrust. International Symposium onsalt-affected soils,Karnal. p.237-293. Eugster,H.P., 1970.Chemistry and originof thebrines ofLakeMagadi,Kenya. Mineral. Soc.Amer.Spec.Paper 3,p.215-235. Eugster,H.P.,andHardie,L.A., 1978.SalineLakes.In:Lerman,A.,ed.,Lakes: Chemistry,Geology and Physics.NewYork,Springer-Verlag,p.237-293. Eugster,H.P.,Harvie,C.E.,andWeare,J.H., 1980.Mineral equilibria inasixcomponent seawater system,Na-K-Mg-Ca-SO,-Cl-H0,at 25 C.Geochim.Cosmochim.Acta,44,p.1335-1347. Eugster,H.P.,andJones,B.F., 1977.Thebehaviour ofpotassium and silica during closed basin evaporation. 2nd IAGC SymposiumWater-Rock Interaction, Strasbourg,II,p. 1-12. Eugster,H.P.,andJones,B.F., 1979.Behaviour ofmajor solutes during closed basinbrine evolution.Am.J. Sei.,279,p.609-631. Eugster,H.P.,Smith,G.I.,1965.Mineral Equilibria inSearles LakeEvaporites, California.J. Petr.,6,p.473-522. Eugster,H.P.,and Surdam,R.C., 1973.Depositional Environment of theGreen River Formation ofWyoming:APreliminary Report.Geol. Soc.Amer.Bull., 84,p. 1115-1120. Fang,J.H., andRobinson,P.D., 1970.Crystal Structures andmineral chemistry of double-salt hydrates:II thecrystal structure of loeweite.Am.Min.,55, p.378-386. FAO/Unesco, 1973.Irrigation,drainage and salinity:an international source book.Unesco,Paris.510p. FAO/Unesco, 1971-1978.SoilMap of theWorld, 1:5.000.000.Unesco,Paris.In twoof thefour following languages:English,French,Russian and Spanish. Vol. 1-10. Fauck,R.,Lamouroux,M.,Perraud,A.,Quantin,P.,Roederer,P.,Vieillefon, J., and Ségalen,P., 1979.Projet declassificationdes sols.O.R.S.T.O.M., Paris. Fontes,J.C., andGonfLantini,R., 1967.Comportement isotopique au coursde 1'evaporationd'eaux bassin Sahariens.Earth Plan. Sei. lett.,3,p.258-266. Gac,J.Y.,Al-Droubi,A.,Fritz,B.,and Tardy,Y., 1977.Geochemical behavior of silica andmagnesium during theevaporationofwater inChad.Chem.Geol., 19,p.215-228. 136 Garrels,R.M., and Christ,C.L., 1965.Solutions,Minerals and Equilibria. Harper and Row,NewYork,450p. Garrels,R.M., andMackenzie,F.T., 1967.Originof thechemical compositionof some springs and lakes.In:Equilibrium concepts innaturalwater systems. American Chemical Society,Washington,D.C.,p.222-242. Gat,J.R., 1966.The isotopic composition of atmosphericwater intheMediterraneanSeaarea and their interpretation interms of air-sea interactions, presented at the 20th Congress of theComité International de l'Exploration Scientifique de laMerMéditerranée,Bucharest. Hardie,L.A., 1965.Phase equilibria involvingminerals of the system CaSO,Na.S0,-H0.Ph.D.Thesis,TheJohnsHopkins University,Baltimore. Hardie,L.A., 1967.Thegypsum-anhydrite equilibrium at 1atm.pressure.Am. Min.,52,p.121-200. Hardie,L.A., 1968.Theoriginof therecentnon-marine evaporitedepositof SalineValley,Inyo County,California.Geochim.Cosmochim.Acta,32,p. 1279-1301. Hardie,L.A., and Eugster,H.P., 1970.The evolution of closed-basinbrines. Mineral. Soc.Am.Spec.Paper 3,p.273-290. Harned,H.S., 1935.Some thermodynamic properties ofunivalent halidemixtures inaqueous solution.J.Amer.Chem.S o c , 57,p.1865. Harvie,C.E.,andWeare,J.M., 1980.Theprediction ofmineral solubilities in naturalwaters:theNa-K-Mg-Ca-Cl-SO,-H_0 system from zero tohighconcentration at 25 C.Geochim.Cosmochim.Acta,44,p.981-997. Harvie,C E . ,Weare,J.H.,Hardie,L.A., and Eugster,H.P., 1980.Evaporationof seawater:calculated mineral sequences.Science,208,p.498-500. Hatch,J.R., 1972.Phase relationships inpart of the system sodiumcarbonatecalcium carbonate-CO„-H„0at 1atm.pressure.Ph.D.,Univ.ofIllinois, Urbana-Champaign. Helgeson,H.C., 1969.Thermodynamics ofhydrothermal systems atelevated temperatures and pressures.Am.J. Sei., 267,p.729-804. Hill,A.E.,andWills,J.H., 1938.Ternary systemsXXIV.Calcium sulfate,sodium sulfate andwater.J.Am.Chem.S o c , 60,p. 1647-1655. Jacks,G., 1973.Chemistry of groundwater inadistrict inSouthern India.J. Hydrol., 18,p.185-200. Jones,B.F.,Eugster,H.P.,and Rettig,S.L., 1977.Hydrochemistry of theLake Magadi basin,Kenya.Geochim.Cosmochim.Acta,41,p. 53-72. Jung,D., andKeller,J., 1972.DiejungenVulkanite imRaum zwischenKonyaund Kayseri (Zentral-Anatolien).Z.Deutsch.Geol.Ges.,123,p.503-512. 137 Korzhinskii,D.S., 1959.Physicochemical basis of theanalysis of the paragenesis ofminerals.Consultants Bureau,Inc.,NewYork, 142p. Linke,W.F., 1965.Solubilities of organic andmetal organic compounds.Amer. Chem.S o c ,VanNostrand. Maglione,G., 1968.Présencede gaylussite etde trônadans les "natroniëres"du Kanem (pourtournord-est duLac Tchad). Bull.Soc.Fr.Minéral.Crystallogr., 91,p.388-395. Meester,T.de (ed.), 1970.Soilmap of theGreatKonya Basin.Agricultural University,Wageningen,theNetherlands. Meester,T.de (ed.), 1970.Soils of theGreatKonya Basin,Turkey.Pudoc,Wageningen, theNetherlands,290p. Meester,T.de, 1971.Highly calcareous lacustrine soils in theGreatKonyaBasin, Turkey.Pudoc,Wageningen,theNetherlands, 169p. Mellaart,J., 1964.Early cultures of theSouthAnatolian Plateau.Anatolian Stud.XIII. Nesbitt,W.H., 1974.The study of somemineral-aqueous solution interactions: Ph.D. thesis,JohnsHopkinsUniv.,Baltimore, 173p. Pitzer,K.S., 1973.Thermodynamics of electrolytes.I.Theoretical basis andgeneral equations.J.Phys.Chem., 77,p.268-277. Pitzer,K.S., 1975.Thermodynamics of electrolytes.V.Effects ofhigher-order electrostatic terms.J. Solution Chem., 4,p.249-265. Pitzer,K.S.,andKim,J.J., 1974.Thermodynamics of electrolytes.IV.Activity and osmotic coefficients formixed electrolytes.Am.Chem. S o c , 96,p.57015707. Pitzer,K.S.,andMayorga,G., 1973.Thermodynamics of electrolytes.II.Activity and osmotic coefficients for strong electrolytes with one orboth ions univalent.J.Phys.Chem.,77,p.2300-2308. Pitzer,K.S.,andMayorga,G., 1974.Thermodynamics of electrolytes.III.Activity and osmotic coefficients for 2-2 electrolytes.J. Solution Chem., 3,p.539546. Richards,L.A., 1954.Diagnosis and improvement of saline and alkalisoils. Agriculture handbook no.60.U.S.Department ofAgriculture, 160p. Robie,R.A.,Hemingway,B.S.,and Fisher,J.R., 1978.Thermodynamic properties ofminerals andrelated substances at 298.15K and 1bar pressure and at higher temperatures.U.S.Geol. Surv.Bull. 1452,456p. Robinson,R.A., and Stokes,R.H., 1970.Electrolyte solutions.Butterworths, 570p. Saggerson,E.P., 1952.Geology of theKisumuDistrict.Report no.21.Geological 138 SurveyofKenya,Nairobi. Scatchard,G., 1936.Concentrated solutions of strong electrolytes.Chem.Rev., 19,p.309-327. Scatchard,G., 1968.The excess free energy and related properties of solutions containing electrolytes.J. Am.Chem.S o c , 90,p.3124-3127. Sentürk,F., Bursali,S.,Omay,Y.,Ertan,I.,Güler,S.,Yalçin,H.,andOnhan, E., 1970.Isotope techniques applied togroundwatermovement in theKonya plain.From:IsotopeHydrology 1970.Proceedings of anIAEA syposium, 9-13 march 1970.International Atomic Energy Agency,Vienna,1970. Slyusareva,M.N., 1969.ZapiskiVses.Mineralog.Obshch.,98,p. 59-62. (in Russian). Sofer,Z.,and Gat,J.R., 1975.The isotopic composition of evaporatingbrines; effect of the isotopic activity ratio insaline solutions.Earth Planet.Sei. Lett., 26,p. 179-186. Soil Survey Staff, 1975.Soil taxonomy: abasic system of soilclassification formaking and interpretating soil surveys.Soil Conservation Service,U.S. Dept.ofA g r i c ,Washington,D.C.,AgricultureHandbook No.436. Sombroek,W.G., 1980.Legend of theexploratory soilmap ofKenya,scale 1 :1000000.Internal communication no.22,Kenya Soil Survey,Nairobi. Stoessell,R.K., andHay,R.L., 1978.The geochemical originof sepioliteand kerolite atAmboseli,Kenya.Contr.Miner.Petr.,65,p.255-267. Stoops,G.,Eswaran,H.,and Abtahi,A.,1978.Scanning electronmicroscopy of authigenic sulphateminerals insoils.In:M.Delgado (ed.),Proceedings fifth internationalworkmeeting on soilmicromorphology,Granada,Spain, p. 1093-1113. Stumm,W.,andMorgan,J.J., 1970.Aquatic chemistry.An introductionemphasizing chemical equilibria innaturalwaters.Wiley.Interscience Ed.,New York,583p. Surdam,R.C.,and Sheppard,R.A., 1978.Zeolites insaline alkaline lake deposits In:Sand,L.B.,andMumpton,F.A., eds.Natural zeolites:Occurrence,properties,use.Elmsford,NewYork,PergamonPress,p.145-174. Touber,L.Reconnaissance soilandvegetation survey of the Amboseli-Kibwezi area. Inpreparation. United StatesDepartment ofAgriculture, 1938.Soils andMen,Yearbook of Agriculture,1938. Van 'tHoff,J.H., 1905.ZurBildung ozeanischer Salzablagerungen.ErstesHeft. Vieweg. 85p. Van 'tHoff,J.H., 1909.ZurBildung ozeanischer Salzablagerungen. ZweitesHeft 139 Vieweg,90p. Van 'tHoff,J.H., 1912.Untersuchungen über dieBildungsverhältnisse derozeanischen Salzablagerungen.Precht and Cohen,eds.Akad.Verlags ges.,Leipzig, 374p. Vergouwen,L., 1979.Twonew occurrences and theGibbs energy ofburkeite.Min. Mag., 43,p.341-345. Vergouwen,L., 1981.Mineralogical composition and origin of saltefflorescences intheKonyabasin,Turkey and inKenya.N.Jb.Miner.Mh.,p. 23-34. Vergouwen,L., 1981.Scanning electronmicroscopy applied to saline soils from theKonyaBasin inTurkey and fromKenya.In:E.B.A.Bisdom (ed.):Submicroscopy of soils andweathered rocks.1stworkshop of theInternationalWorkingGroup onSubmicroscopyofUndisturbed SoilMaterials (IWGSUSM),Wageningen, 1980.Pudoc,Wageningen,theNetherlands,inpress. Vergouwen,L., 1981.Eugsterite,anew saltmineral.Am.Min. ,inpress. Visser,J.W., 1969.A fully automatic program for finding theunit cell from powderdata.J. Appl. Cryst.,2,p.89. Williams,L.A.J., 1970.Thevolcanics of theGregory RiftValley,EastAfrica. Bull.Volcanol.,34,p.439-465. Williams,L.A.J., 1972.Geology of theAmboseli Area.Geological Survey ofKenya, Report no.90,Nairobi,86p. Wood,J.R., 1972.Prediction ofmineral solubilities inconcentrated brines.A thermodynamic approach.Ph.D.Thesis,Baltimore,Maryland, 121p. Wood,J.R., 1975.Thermodynamics ofbrine-salt equilibria. I-The systems NaClKCl-MgCl-CaCl-H0and NaCl-MgSO-H„0at 25°C.Geochim.Cosmochim.Acta,39, p. 1147-1163. 140 CURRICULUM VITAE NahetbehalenvanheteindexamengymnasiumbètaaanhetStedelijkGymnasium teUtrecht,begondeschrijfsterin1969haar studiegeologieaandeRijksUniversiteitteUtrecht.Inmei1972deedzijhaarkandidaatsexamenmethoofdvakken geologieenscheikundeenbijvakkenwiskundeennatuurkunde.Indecember1976 werdhetdoctoraalexamengeologieafgelegdmetalshoofdvakgeochemieendebijvakkenalgemeneeneconomischegeologieenchemische thermodynamica.Injanuari 1977tradzijindienstalspromotie-assistentebijdeafdelingBodemkundeen GeologievandeLandbouwhogeschoolinWageningen.GedurendehetpromotieonderzoekwerdenreizengemaaktnaarKenyaenTurkijewaar zoutmineralenverzameldwerden.
© Copyright 2026 Paperzz