Problem Set 7 Due 2:00PM Sep. 12 1 Additional Differentiation Rules We did not prove the following propositions yet. We are going to prove on Monday. Feel free to use the following results for this problem set if needed. Proposition 1.1 Suppose that f (x) = lnx. Then f 0 (x) = x1 . Proposition 1.2 For any positive base b, d x dx a = (ln a) (ax ). Proposition 1.3 d (sinx) = cosx dx d (cosx) = −sinx dx d (tanx) = sec2 x dx 2 d (cscx) = −cscx · cotx dx d (secx) = secx · tanx dx d (cotx) = −csc2 x dx Questions 1. Find the derivatives of the following functions. • f (x) = e5x−4 √ • f (x) = ln 3x2 + 2x • f (x) = e3x−2 • f (x) = (x−x2 ) e2x • f (x) = ln(g(x2 )) • f (x) = eg(2x) • f (x) = g(x) + h(y) • f (x) = (xδ + aδ )γ 2. Find the derivatives of the following functions. • f (x) = 186.5 • f (x) = 5x − 1 • f (x) = x2 + 3x − 4 1 • f (t) = 14 (t4 + 8) • f (x) = x−2/5 • V (r) = 34 πr3 • Y (t) = 6t−9 √ • G(x) = x − 2ex • F (x) = ( 12 x)5 1 x2 • g(x) = x2 + • y= x2 +4x+3 √ x • y = 4π62 • y = ax2 + bx + c 1 √ 4 3 t • v = t2 − 3. Differentiate • f (x) = x2 ex • y= ex x2 3x−1 2x+1 = (2x3 • g(x) = • V (x) • F (y) = • y= • y= 1 y2 + 3)(x4 − 2x) − y34 (y + 5y 3 ) t2 3t2 −2t+1 (r2 − 2r)er √ v 3 −2v v v y = x4 +x1 2 +1 f (x) = x+x c x • y= • • 4. Differentiate • y = sin4x • y = (1 − x2 )1 0 • y=e √ x • F (x) = (x3 + 4x)7 √ • F (x) = 4 1 + 2x + x3 • g(t) = 1 (t4 +1)3 • y = cos(a3 + x3 ) • y = e−mx • g(x) = (1 + 4x)5 (3 + x − x2 )8 • y = (2x − 5)4 (8x2 − 5)−3 • y = xe−x 2 • y = excosx 2 • F (z) = • y= q z−1 z+1 √ r r2 +1 • y = tan(cosx) • y = 2sinπx • y = (1 + cos2 x)6 • y = sec2 x + tan2 x • y = cot2 (sinθ) p √ • y = x+ x √ • sin(tan sinx) 3
© Copyright 2026 Paperzz