CHAPTER 98 THE LAPLACE TRANSFORM OF THE HEAVISIDE
FUNCTION
EXERCISE 357 Page 1042
1. A 6 V source is switched on at time t = 4 s. Write the function in terms of the Heaviside step
function and sketch the waveform.
The function is shown sketched below
The Heaviside step function is:
V(t) = 6 H(t – 4)
2 for 0 〈 t 〈 5
2. Write the function V (t ) =
in terms of the Heaviside step function and sketch
0 for t 〉 5
the waveform.
The voltage has a value of 2 up until time t = 5; then it is turned off
The function is shown sketched below
The Heaviside step function is:
V(t) = 2 H(t) – H(t – 5)
3. Sketch the graph of: f(t) = H(t – 2)
A function H(t – 2) has a maximum value of 1 and starts when t = 2, as shown in the sketch below
1475
© 2014, John Bird
4. Sketch the graph of: f(t) = H(t)
A function H(t) has a maximum value of 1 and starts when t = 0, as shown in the sketch below
5. Sketch the graph of: f(t) = 4 H(t – 1)
A function 4H(t – 1) has a maximum value of 4 and starts when t = 1, as shown in the sketch below
6. Sketch the graph of: f(t) = 7H(t – 5)
A function 7H(t – 5) has a maximum value of 7 and starts when t = 5, as shown in the sketch below
π
7. Sketch the graph of: f(t) = H t − . cos t
4
1476
© 2014, John Bird
π
Below shows a graph of H t − . cos t where the graph of cos t does not ‘switch on’ until t = π/4
4
π
π
8. Sketch the graph of: f(t) = 3H t − .cos t −
2
6
π
π
Below shows a graph of f(t) = 3H t − .cos t − where the graph of 3 cos(t – π/6) does not
2
6
‘switch on’ until t = π/2
9. Sketch the graph of: f(t) = H ( t − 1) . t 2
Below shows a graph of f(t) = H ( t − 1) . t 2 where the graph of t 2 does not ‘switch on’ until t = 1
10. Sketch the graph of: f(t) = H(t – 2). e
−
t
2
1477
© 2014, John Bird
Below shows a graph of f(t) = H(t – 2). e
−
t
2
−
t
where the graph of e 2 does not ‘switch on’ until t = 2
11. Sketch the graph of: f(t) = [H(t – 2) – H(t – 5)]. e
−
t
4
Below shows the graph of f(t) = [H(t – 2) – H(t – 5)]. e
−
t
4
−
t
where the graph of e 4 does not ‘switch
on’ until t = 2, but then ‘switches off’ at t = 5
π
π
12. Sketch the graph of: f(t) = 5 H t − .sin t +
3
4
π
π
Below shows a graph of f(t) = 5 H t − .sin t + where the graph of 5 sin(t + π/4) does not
3
4
‘switch on’ until t = π/3
1478
© 2014, John Bird
EXERCISE 358 Page 1044
1. Determine ℒ{H(t – 1)}
where in this case, F(s) = ℒ {1} and c = 1
ℒ{H(t – c).f(t – c)} = e − c s F(s)
Hence,
1
ℒ{H(t – 1)} = e − s
s
=
from (i) of Table 95.1, page 1023
e− s
s
2. Determine ℒ{7 H(t – 3)}
ℒ{H(t – c).f(t – c)} = e − c s F(s)
Hence,
where in this case, F(s) = ℒ {7} and c = 3
7
ℒ{7 H(t – 3) } = e − 3 s
s
=
from (ii) of Table 95.1, page 1023
7 e −3 s
s
3. Determine ℒ{H(t – 2).(t – 2) 2 }
ℒ{H(t – c).f(t – c)} = e − c s F(s)
Hence,
where in this case, F(s) = ℒ {t 2 } and c = 2
2!
ℒ{H(t – 2).f(t – 2) 2 } = e − 2 s
s3
=
from (vii) of Table 95.1, page 1023
2 e− 2 s
s3
4. Determine ℒ{H(t – 3).sin(t – 3)}
ℒ{H(t – c).f(t – c)} = e − c s F(s)
Hence,
where in this case, F(s) = ℒ {sin t} and c = 3
1
ℒ{H(t – 3).sin(t – 3) } = e − 3 s
s 2 + 12
=
from (iv) of Table 95.1, page 1023
e− 3s
s2 + 1
1479
© 2014, John Bird
5. Determine ℒ{H(t – 4). et − 4 }
where in this case, F(s) = ℒ {et } and c = 4
ℒ{H(t – c).f(t – c)} = e − c s F(s)
Hence,
1
ℒ{H(t – 4). et − 4 } = e − 4 s
s −1
=
from (iii) of Table 95.1, page 1023
e− 4 s
s −1
6. Determine ℒ{H(t – 5).sin 3(t – 5)}
where in this case, F(s) = ℒ {sin 3t} and c = 5
ℒ{H(t – c).f(t – c)} = e − c s F(s)
Hence,
3
ℒ{H(t – 5).sin 3(t – 5) } = e − 5 s
s 2 + 32
=
from (iv) of Table 95.1, page 1023
3e − 5 s
s2 + 9
7. Determine ℒ{H(t – 1).(t – 1) 3 }
ℒ{H(t – c).f(t – c)} = e − c s F(s)
Hence,
where in this case, F(s) = ℒ {t 3 } and c = 1
3!
ℒ{H(t – 1).(t – 1) 3 } = e − s
s 3+1
=
from (viii) of Table 95.1, page 1023
6 e− s
s4
8. Determine ℒ{H(t – 6).cos 3(t – 6)}
ℒ{H(t – c).f(t – c)} = e − c s F(s)
Hence,
where in this case, F(s) = ℒ {cos 3t} and c = 6
s
ℒ{H(t – 6).cos 3(t – 6)} = e − 6 s
s 2 + 32
s e− 6 s
=
s2 + 9
from (v) of Table 95.1, page 1023
9. Determine ℒ{5 H(t – 5).sinh 2(t – 5)}
1480
© 2014, John Bird
ℒ{H(t – c).f(t – c)} = e − c s F(s)
Hence,
where in this case, F(s) = ℒ {sinh 2t} and c = 5
2
ℒ{5 H(t – 5).sinh 2(t – 5) } = 5 e − 5 s
s 2 − 22
from (x) of Table 95.1, page 1023
10 e − 5 s
s2 − 4
=
π
π
10. Determine ℒ{ H t − .cos 2 t − }
3
3
where in this case, F(s) = ℒ {cos 2t} and c =
ℒ{H(t – c).f(t – c)} = e − c s F(s)
Hence,
π
s
− s
π
π
ℒ{ t − . cos 2 t − } = e 3
3
3
s 2 + 22
−
π
π
3
from (v) of Table 95.1, page 1023
s
se 3
=
s2 + 4
11. Determine ℒ{2 H(t – 3). et − 3 }
ℒ{H(t – c).f(t – c)} = e − c s F(s)
Hence,
where in this case, F(s) = ℒ {et } and c = 3
1
ℒ{2 H(t – 3). et −3 } = 2 e −3 s
s −1
=
from (iii) of Table 95.1, page 1023
2 e− 3 s
s −1
12. Determine ℒ{3 H(t – 2).cosh(t – 2)}
ℒ{H(t – c).f(t – c)} = e − c s F(s)
Hence,
where in this case, F(s) = ℒ {cosh t} and c = 2
s
ℒ{3 H(t – 2).cosh(t – 2) } = 3 e − 2 s
s 2 − 12
=
from (ix) of Table 95.1, page 1023
3 s e− 2 s
s2 −1
1481
© 2014, John Bird
EXERCISE 359 Page 1045
e− 9 s
1. Determine ℒ −1
s
Part of the numerator corresponds to e − c s where c = 9. This indicates H(t – 9)
Then
1
= F(s) = ℒ{1} from (i) of Table 97.1, page 1033
s
Hence,
e− 9 s
ℒ −1
= H(t – 9)
s
4 e− 3 s
2. Determine ℒ −1
s
Part of the numerator corresponds to e − c s where c = 3. This indicates H(t – 3)
Then
4
= F(s) = ℒ{4} from (ii) of Table 97.1, page 1033
s
Hence,
4 e− 3 s
ℒ −1
= 4 H(t – 3)
s
2 e− 2 s
3. Determine ℒ −1
s2
The numerator corresponds to e − c s where c = 2. This indicates H(t – 2)
1
= F(s) = ℒ{t} from (vii) of Table 97.1, page 1033
s2
Then
2 e− 2 s
ℒ −1
= 2 H(t – 2).(t – 2)
s2
5e − 2 s
4. Determine ℒ −1
s2 + 1
Part of the numerator corresponds to e − c s where c = 2. This indicates H(t – 2)
1482
© 2014, John Bird
5
s2 + 1
Then
Hence,
1
may be written as: 5
s 2 + 12
1
5
= F(s) = ℒ{5 sin t} from (iv) of Table 97.1, page 1033
s 2 + 12
5e − 2 s
ℒ −1
= H(t – 2).5 sin(t – 2) = 5 H(t – 2).sin(t – 2)
s2 + 1
3 s e− 4 s
5. Determine ℒ −1
s 2 + 16
Part of the numerator corresponds to e − c s where c = 4. This indicates H(t – 4)
3s
s + 16
2
Then
Hence,
s
may be written as: 3
s 2 + 42
s
3
= F(s) = ℒ{3 cos 4t} from (v) of Table 97.1, page 1033
s 2 + 42
3 s e− 4 s
ℒ −1
=H(t – 4).3 cos 4(t – 4) = 3 H(t – 4).cos 4(t – 4)
s 2 + 42
6 e− 2 s
6. Determine ℒ −1
s2 −1
Part of the numerator corresponds to e − c s where c = 2. This indicates H(t – 2)
6
s2 −1
Then
Hence,
1
may be written as: 6
s 2 − 12
1
6
= F(s) = ℒ{6 sinh t} from (x) of Table 97.1, page 1033
s 2 − 12
6 e− 2 s
ℒ −1
=H(t – 2).6 sinh (t – 2) = 6 H(t – 2).sinh (t – 2)
s2 −1
3e − 6 s
7. Determine ℒ −1
s3
The numerator corresponds to e − c s where c = 6. This indicates H(t – 6)
1483
© 2014, John Bird
1
1
= F(s) = ℒ t 2 from (viii) of Table 97.1, page 1033
s3
2
Then
1
3e − 6 s
ℒ −1
= 3 H(t – 6). (t – 6) 2 = 1.5 H(t – 6). (t – 6) 2
2
s2
2 s e− 4 s
8. Determine ℒ −1
s 2 − 16
Part of the numerator corresponds to e − c s where c = 4. This indicates H(t – 4)
2s
s − 16
2
Then
Hence,
s
may be written as: 2
s 2 − 42
s
2
= F(s) = ℒ{2 cosh 4t} from (ix) of Table 97.1, page 1033
s 2 − 42
2 s e− 4 s
ℒ −1
=H(t – 4).2 cosh 4(t – 4) = 2 H(t – 4).cosh 4(t – 4)
s 2 − 42
1
− s
2
2
s
e
9. Determine ℒ −1
2
s + 5
1
1
. This indicates H t −
2
2
Part of the numerator corresponds to e − c s where c =
2s
s2 + 5
Then
Hence,
s
may be written as: 2
2
s + 5
( )
s
2
s2 + 5
( )
1
− s
2
2
s
e
ℒ −1
s2 + 5
2
= F(s) = ℒ 2 cos 5 t
2
( )
{
}
from (v) of Table 97.1, page 1033
1
1
1
1
= H t − .2 cos 5 t − =
2 H t − .cos 5 t −
2
2
2
2
2
4 e− 7 s
10. Determine ℒ −1
s −1
Part of the numerator corresponds to e − c s where c = 7. This indicates H(t – 7)
1484
© 2014, John Bird
Then
1
= F(s) = ℒ{ et } from (iii) of Table 97.1, page 1033
s −1
Hence,
4 e− 7 s
ℒ −1
= 4 H(t – 7). et −7
s −1
1485
© 2014, John Bird
© Copyright 2025 Paperzz