Name ___________________________________________________ Date __________________ Exponential Functions Graphing Exponential Functions An exponential function is a nonlinear function of the form y = abx, where a ≠ 0, b ≠ 1, and b > 0. • When a > 0 and b > 1, the function is an exponential growth function. • When a > 0 and 0 < b < 1, the function is an exponential decay function. y y The graphs of the parent exponential functions y = b x are shown. f(x) = b x (b > 1) f(x) = b x (0 < b < 1) (1, b) (0, 1) (1, b) (0, 1) x x Example 1 Tell whether each function represents exponential growth or exponential decay. Then graph the function. ( )x a. f(x) = 2 —13 b. f(x) = 4(3)x Because a = 2 is positive and b = —13 is greater than 0 and less than 1, the function is an exponential decay function. Use a table to graph the function. −1 x y 6 0 1 2 2 2 —3 2 —9 Because a = 4 is positive and b = 3 is greater than 1, the function is an exponential growth function. Use a table to graph the function. y (−1, 6) ( 13 ) 6 x f(x) = 2 x −2 −1 0 1 y 4 —9 4 —3 4 12 y ( ) ( ) ( 2 (0, 2) 1, 3 2 2 2, 9 −2 −1, (−2, 49 ) 4x 2 (1, 12) 12 4 3 8 )4 f(x) = 4(3)x (0, 4) −2 Practice 2 x Check your answers at BigIdeasMath.com. Tell whether the function represents exponential growth or exponential decay. Then graph the function. ( )x 1 1. f(x) = —4 exponential decay 16 (−2, 16) ( )x exponential growth 4 2. f(x) = —3 y y () 8 4 (−1, 4) (0, 1) −4 x 8 3 12 1 x f(x) = 4 (4 ) f(x) = 3 3. f(x) = 0.5(4)x exponential growth (1, 14 ) (2, 161 ) −2 2 4 x ( ( 3 −1, 4 9 −2, 16 −4 ) ) 2 y (2, 8) 6 4 (2, 169) (0, 1) (1, 43 ) −2 2 4 x (−1, 18 ) −4 f(x) = 0.5(4)x (1, 2) 2 (0, 12 ) −2 2 4 x 4. f(x) = 3(0.75)x exponential decay 5. f(x) = 2(0.8)x exponential decay 6. f(x) = 5(2)x exponential growth 8 (−2, 163 ) (−1, 4) −2 f(x) = 2(0.8)x8 4 y 16 6 6 2 −4 y (−2, 258 ) f(x) = 3(0.75)x (0, 3) (1, 94 ) 2 ( 4 x Copyright © Big Ideas Learning, LLC −4 5 −1, 2 −2 ) (0, 2) 2 ( ) 8 1, 5 4 x (−1, 52 ) (−2, 54 ) (−3, 58 ) −4 −2 12 8 y f(x) = 5(2)x (1, 10) (0, 5) 2 x Topic 9.5 Name ___________________________________________________ Date __________________ Exponential Functions Rewriting Exponential Functions Exponential growth occurs when a quantity increases by the same factor over equal intervals of time, whereas exponential decay occurs when a quantity decreases by the same factor over equal intervals of time. Exponential Growth Model rate of growth (in decimal form) initial amount initial amount time y = a(1 + r)t final amount Exponential Decay Model rate of decay (in decimal form) y = a(1 − r)t final amount growth factor time decay factor Example 1 Rewrite the function y = 120(1.25)t/12 to determine whether it represents exponential growth or exponential decay. Then find the percent rate of change. y = 120(1.25)t/12 Write the function. 1/12 t = 120[(1.25) ] ≈ 120(1.02)t Power of a Power Property Evaluate the power. t = 120(1 + 0.02) Rewrite in the form y = a(1 + r)t. So, the function represents exponential growth and the growth rate is about 0.02, or 2%. Practice Check your answers at BigIdeasMath.com. Rewrite the function to determine whether it represents exponential growth or exponential decay. Then find the percent rate of change. 2. y = 67(1.13)t/4 1. y = 80(0.85)2t y = 80(1 − 0.28)t, exponential decay; 28% ( 25 ) ( 32 ) 3. y = 5 — −8t 4. y = 17 — y = 5(1 − 0.96)t, exponential decay; 96% 5. y = 4(0.5)t/88 0.65t y = 17(1 − 0.45)t, exponential decay; 45% 6. y = 31(1.02)4t t y = 4(1 − 0.01) , exponential decay; 1% y = 31(1 + 0.08)t, exponential growth; 8% 8. y = 750(0.88)t/3 7. y = 9(1.12)0.3t y = 9(1 + 0.03)t, exponential growth; 3% y = 750(1 − 0.04)t, exponential decay; 4% 10. y = 6(0.82)−0.25t 9. y = (0.64)5t t y = (1 − 0.89) , exponential decay; 89% 2 y = 67(1 + 0.03)t, exponential growth; 3% Copyright © Big Ideas Learning, LLC y = 6(1 + 0.05)t, exponential growth; 5%
© Copyright 2026 Paperzz