On the 2–, 3–, 4– and 6–dissections of Ramanujan’s cubic continued fraction and its reciprocal Michael D. Hirschhorn and Roselin July 2, 2010 Dedicated to the memory of K. Venkatachaliengar on the occasion of the Centenary of his birth. 2000 Mathematics Subject Classification: 30B70 Keywords: Ramanujan, cubic continued fraction, dissection. Abstract We give 2–, 3–, 4– and 6–dissections of Ramanujan’s cubic continued fraction, with each component a single product or if not a single product then a sum of two products. 1 Introduction The Rogers–Ramanujan continued fraction is R(q) := 1 q q2 q3 ( q, q 4 ; q 5 )∞ = 2 3 5 , 1 + 1 + 1 + 1 + ··· (q , q ; q )∞ |q| < 1. Ramanujan [13, p. 50] gave the 2–dissections of this continued fraction and its reciprocal, R(q) = (q 4 , q 6 , q 14 , q 16 ; q 20 )∞ (q 4 , q 4 , q 16 , q 16 ; q 20 )∞ − q (q 2 , q 10 , q 10 , q 18 ; q 20 )∞ (q 8 , q 10 , q 10 , q 12 ; q 20 )∞ and 1/R(q) = (q 8 , q 8 , q 12 , q 12 ; q 20 )∞ (q 2 , q 8 , q 12 , q 18 ; q 20 )∞ + q (q 6 , q 10 , q 10 , q 14 ; q 20 )∞ (q 4 , q 10 , q 10 , q 16 ; q 20 )∞ 1 and these were first proved by Andrews [2]. Here we use the standard notation (a; q)∞ = ∞ Y (1 − aq k ), (a1 , · · · , an ; q)∞ = k=0 n Y (ak ; q)∞ . k=1 Ramanujan [13, p. 50] also gave 5–dissections of R(q) and its reciprocal, and these results were improved upon and proved by Hirschhorn [8]. In so doing, he was able to demonstrate the periodic behaviour of the sign of the coefficients in the series expansion of R(q) and its reciprocal, first observed by Szekeres [16]. (It would be surprising if Ramanujan did not also observe this periodicity, given the tables in [13, p. 49].) In the same paper, Hirschhorn conjectured formulas for the 4–dissection of R(q) and its reciprocal, and these were first proved by Lewis and Liu [12]. Gordon’s continued fraction is G(q) := 1 q2 q4 ( q, q 7 ; q 8 )∞ = , 1 + q + 1 + q3 + 1 + q5 + · · · (q 3 , q 5 ; q 8 )∞ |q| < 1. Hirschhorn [10] found the 8–dissection of G(q) and its reciprocal, thereby demonstrating the periodicity of the sign of the coefficients in the expansion of G(q) and its reciprocal, and in particular that certain coefficients are zero, a phenomenon first observed and proved by Richmond and Szekeres [14]. These themes have been generalised by Andrews and Bressoud [3], Alladi and Gordon [1] and Chan and Yesilyurt [5]. Ramanujan’s cubic continued fraction is RC(q) := q + q2 q2 + q4 1 , + ··· 1+ 1 + 1 |q| < 1. Ramanujan [13, p. 44] states that RC(q) = ( q, q 5 ; q 6 )∞ (q 3 , q 3 ; q 6 )∞ and, indeed, this is a special case of a general result of Ramanujan [13, p. 41], proved by Hirschhorn [7], as is R(q), as is also q + q2 q4 q3 + q6 1 ( q, q 7 ; q 8 )∞ = 3 5 8 = G(q). + ··· 1 + 1 + 1 + 1 (q , q ; q )∞ . The object of this note is to establish the following results. The first two are the 2– and 3–dissections of RC(q) and its reciprocal. In these dissections 2 each component is a single product. The third and fourth results are 4– and 6– dissections of RC(q) and its reciprocal. In these dissections, not all components are single products. Those components that are not single products are shown to be expressible as sums of two products. Note that the 2–and 4–dissections of the continued fraction 1/RC(q) were given by B. Srivastava [15]. Theorem 1.1. The 2–dissections of RC(q) and its reciprocal are given by RC(q) = 1/RC(q) = (q 4 ; q 4 )2∞ (q 12 ; q 12 )2∞ (q 2 ; q 2 )2∞ (q 12 ; q 12 )6∞ − q , (q 6 ; q 6 )4∞ (q 4 ; q 4 )2∞ (q 6 ; q 6 )6∞ (q 4 ; q 4 )3∞ (q 2 ; q 2 )∞ (q 12 ; q 12 )3∞ + q . (q 2 ; q 2 )∞ (q 6 ; q 6 )∞ (q 12 ; q 12 )∞ (q 4 ; q 4 )∞ (q 6 ; q 6 )3∞ Theorem 1.2. The 3–dissections of RC(q) and its reciprocal are given by (q 6 ; q 6 )∞ (q 21 , q 33 , q 54 ; q 54 )∞ (q 3 ; q 3 )2∞ 6 6 15 39 54 54 6 6 3 51 54 54 (q ; q )∞ (q , q , q ; q )∞ 5 (q ; q )∞ (q , q , q ; q )∞ −q − q , (q 3 ; q 3 )2∞ (q 3 ; q 3 )2∞ RC(q) = (q 3 ; q 3 )∞ (−q 12 , −q 15 , q 27 ; q 27 )∞ (q 6 ; q 6 )2∞ (q 3 ; q 3 )∞ (−q 3 , −q 24 , q 27 ; q 27 )∞ (q 3 ; q 3 )∞ (−q 6 , −q 21 , q 27 ; q 27 )∞ + q2 . +q 6 6 2 (q ; q )∞ (q 6 ; q 6 )2∞ 1/RC(q) = Theorem 1.3. The 4–dissections of RC(q) and its reciprocal are given by RC(q) = 1/RC(q) = (q 4 ; q 4 )2∞ (q 24 ; q 24 )14 ∞ 48 48 4 (q 12 ; q 12 )12 ∞ (q ; q )∞ 8 8 4 24 24 4 4 4 4 24 24 12 (q ; q )∞ (q ; q )∞ 4 (q ; q )∞ (q ; q )∞ −q + q (q 12 ; q 12 )8∞ (q 8 ; q 8 )4∞ (q 12 ; q 12 )12 ∞ 4 4 2 24 24 2 48 48 4 4 4 2 (q ; q )∞ (q ; q )∞ (q ; q )∞ (q ; q )∞ (q 24 ; q 24 )8∞ +4q 6 + 2q 3 , 12 12 8 (q , q )∞ (q 12 ; q 12 )10 ∞ (q 8 ; q 8 )2∞ (q 24 ; q 24 )2∞ (q 4 ; q 4 )∞ (q 16 ; q 16 )2∞ (q 24 ; q 24 )5∞ +q 8 8 12 12 5 48 48 2 (q ; q )∞ (q ; q )∞ (q ; q )∞ (q 12 ; q 12 )4∞ (q 8 ; q 8 )5∞ (q 48 ; q 48 )2∞ +q 2 4 4 (q ; q )∞ (q 12 ; q 12 )3∞ (q 16 ; q 16 )2∞ (q 24 ; q 24 )∞ (q 4 ; q 4 )2 (q 24 ; q 24 )6∞ −q 3 8 8 ∞ . (q ; q )2∞ (q 12 ; q 12 )6∞ 3 Theorem 1.4. The 6–dissections of RC(q) and its reciprocal are given by RC(q) 12 12 3 18 18 2 24 30 54 54 (q ; q )∞ (q , q )∞ (q , q , q ; q )∞ = (q 6 ; q 6 )5∞ (q 36 ; q 36 )∞ (q 12 ; q 12 )2∞ (q 36 ; q 36 )2∞ (q 6 , q 48 , q 54 ; q 54 )∞ −q 6 (q 6 ; q 6 )4∞ (q 18 ; q 18 )∞ 12 12 2 42 66 108 108 2 (q ; q )∞ (q , q , q ; q )∞ −q (q 6 ; q 6 )4∞ 12 12 2 6 30 78 102 108 108 108 , q , q ; q )∞ 12 (q ; q )∞ (q , q , q , q +2q (q 6 ; q 6 )4∞ 12 12 3 18 18 2 12 42 54 54 (q ; q )∞ (q ; q )∞ (q , q , q ; q )∞ −q 2 (q 6 ; q 6 )5∞ (q 36 ; q 36 )∞ (q 12 ; q 12 )2∞ (q 36 ; q 36 )2∞ (q 24 , q 30 , q 54 ; q 54 )∞ − (q 6 ; q 6 )4∞ (q 18 ; q 18 )∞ 12 12 2 30 42 66 78 108 108 108 (q ; q )∞ (q , q , q , q , q , q ; q )∞ +q 3 2 (q 6 ; q 6 )4∞ 12 12 2 6 102 108 108 2 , q ; q )∞ 18 (q ; q )∞ (q , q −q (q 6 ; q 6 )4∞ 12 12 3 18 18 2 6 48 54 54 (q ; q )∞ (q ; q )∞ (q , q .q ; q )∞ −q 4 (q 6 ; q 6 )5∞ (q 36 ; q 36 )∞ (q 12 ; q 12 )2∞ (q 36 ; q 36 )2∞ (q 12 , q 42 , q 54 ; q 54 )∞ + (q 6 ; q 6 )4∞ (q 18 ; q 18 )∞ 12 12 2 30 78 108 108 2 (q ; q )∞ (q , q , q ; q )∞ −q 5 (q 6 ; q 6 )4∞ (q 12 ; q 12 )2∞ (q 6 , q 42 , q 66 , q 102 , q 108 , q 108 ; q 108 )∞ , −2q 6 (q 6 ; q 6 )4∞ 1/RC(q) 18 18 36 36 2 24 84 108 108 ; q )∞ (q ; q )∞ (q 48 , q 60 , q 108 ; q 108 )∞ 6 (q ; q )∞ (q , q , q − q = (q 6 ; q 6 )2∞ (q 36 ; q 36 )∞ (q 6 ; q 6 )∞ (q 12 ; q 12 )∞ (q 18 ; q 18 )∞ (q 12 ; q 12 )∞ (q 42 , q 66 , q 108 ; q 108 )∞ +q (q 6 ; q 6 )2 36 36 2 48 ∞60 108 108 18 18 12 96 108 108 (q ; q )∞ (q , q , q ; q )∞ ; q )∞ 6 (q ; q )∞ (q , q , q +q 2 − q (q 6 ; q 6 )∞ (q 12 ; q 12 )∞ (q 18 ; q 18 )∞ (q 6 ; q 6 )2∞ (q 36 ; q 36 )∞ (q 12 ; q 12 )∞ (q 30 , q 78 , q 108 ; q 108 )∞ −q 3 (q 6 ; q 6 )2∞ 18 18 36 36 2 12 96 108 108 ; q )∞ (q ; q )∞ (q 24 , q 84 , q 108 ; q 108 )∞ 6 (q ; q )∞ (q , q , q + q −q 4 (q 6 ; q 6 )2∞ (q 36 ; q 36 )∞ (q 6 ; q 6 )∞ (q 12 ; q 12 )∞ (q 18 ; q 18 )∞ (q 12 ; q 12 )∞ (q 6 , q 102 , q 108 ; q 108 )∞ −q 11 . (q 6 ; q 6 )2∞ 4 Theorem 1.5. If we write RC(q) =: X an q n , 1/RC(q) =: n≥0 X bn q n , n≥0 then the sign of the an is periodic with period 3, and the sign of the bn is periodic with period 6. Indeed, b6n > 0, a3n = b6n+1 > 0, b6n+2 > 0, a3n+1 = b6n+3 < 0, b6n+4 < 0, a3n+2 = b6n+5 < 0 except a2 = b5 = b8 = 0. 2 Preliminaries Lemma 2.1. The following 2–dissections hold: (q 3 ; q 3 )3∞ (q; q)∞ (q; q)∞ (q 3 ; q 3 )3∞ = = (q 4 ; q 4 )3∞ (q 6 ; q 6 )2∞ (q 12 ; q 12 )3∞ + q , (q 2 ; q 2 )2∞ (q 12 ; q 12 )∞ (q 4 ; q 4 )∞ (q 2 ; q 2 )∞ (q 4 ; q 4 )2∞ (q 12 ; q 12 )2∞ (q 2 ; q 2 )3∞ (q 12 ; q 12 )6∞ − q . (q 6 ; q 6 )7∞ (q 4 ; q 4 )2∞ (q 6 ; q 6 )9∞ Proof. Let c∗ (q) = ∞ 2 2 1 X q m +mn+n +m+n . 3 m,n=−∞ It is shown in Hirschhorn, Garvan and Borwein [11], using nothing deeper than Jacobi’s triple product identity, that [11, (1.7), (1.36)], c∗ (q) = (q 4 ; q 4 )3 (q 6 ; q 6 )2 (q 3 ; q 3 )3∞ = 2 2 2∞ 12 12 ∞ + q c∗ (q 4 ). (q; q)∞ (q ; q )∞ (q ; q )∞ This is the first identity. Also, (q; q)∞ (q 3 ; q 3 )3∞ = = = 1 c∗ (−q) = c∗ (q) c∗ (q)c∗ (−q) 4 4 3 6 6 2 2 2 3 (q ; q )∞ (q ; q )∞ (q 12 ; q 12 )3∞ (q ; q )∞ (q 12 ; q 12 )3∞ −q 4 4 (q 4 ; q 4 )∞ (q 6 ; q 6 )9∞ (q 2 ; q 2 )2∞ (q 12 ; q 12 )∞ (q ; q )∞ (q 2 ; q 2 )∞ (q 4 ; q 4 )2∞ (q 12 ; q 12 )2∞ (q 2 ; q 2 )3∞ (q 12 ; q 12 )6∞ −q 4 4 2 6 6 9 , (q 6 ; q 6 )7∞ (q ; q )∞ (q ; q )∞ which is the second identity. 5 Lemma 2.2. The following 3–dissections hold: (q 2 ; q 2 )∞ (q; q)∞ (q 6 ; q 6 )∞ (−q 12 , −q 15 , q 27 ; q 27 )∞ + q(−q 6 , −q 21 , q 27 ; q 27 )∞ (q 3 ; q 3 )2∞ = +q 2 (−q 3 , −q 24 , q 27 ; q 27 )∞ , (q; q)∞ (q 2 ; q 2 )∞ (q 3 ; q 3 )∞ 21 33 54 54 (q , q , q ; q )∞ − q(q 15 , q 39 , q 54 ; q 54 )∞ (q 6 ; q 6 )2∞ = −q 5 (q 3 , q 51 , q 54 ; q 54 )∞ . Proof. The first identity follows from Entry 31 [4, p. 48] by setting a = q, b = q 2 and n = 3, the second by setting a = −q, b = −q 5 and n = 3. Lemma 2.3. The following 2–dissection holds: 1 (q; q)4∞ = (q 4 ; q 4 )14 ∞ 2 8 ; q 8 )4 (q ; q 2 )14 (q ∞ ∞ + 4q (q 4 ; q 4 )2∞ (q 8 ; q 8 )4∞ . (q 2 ; q 2 )10 ∞ Proof. With φ(q) = ∞ X 2 qn = −∞ X 2 (q 2 ; q 2 )5∞ (q 2 ; q 2 )2∞ and ψ(q) = q (n +n)/2 = 2 4 4 2 (q; q)∞ (q ; q )∞ (q; q)∞ n≥0 it is easy to show that (Berndt [4, p. 40], Hirschhorn [9]) φ(q)2 = φ(q 2 )2 + 4qψ(q 4 )2 . That is, (q 2 ; q 2 )10 (q 4 ; q 4 )10 (q 8 ; q 8 )4∞ ∞ ∞ = + 4q . (q; q)4∞ (q 4 ; q 4 )4∞ (q 2 ; q 2 )4∞ (q 8 ; q 8 )4∞ (q 4 ; q 4 )2∞ The result follows. Lemma 2.4. The following 2–dissection holds: 1 (q; q)∞ (q 3 ; q 3 )∞ = (q 8 ; q 8 )2∞ (q 12 ; q 12 )5∞ 2 2 2 (q ; q )∞ (q 4 ; q 4 )∞ (q 6 ; q 6 )4∞ (q 24 ; q 24 )2∞ (q 4 ; q 4 )5 (q 24 ; q 24 )2 +q 2 2 4 6 6 2∞ 8 8 2 ∞ 12 12 . (q ; q )∞ (q ; q )∞ (q ; q )∞ (q ; q )∞ 6 Proof. It can be shown that (Berndt [4, (36.8)], Cooper and Hirschhorn [6, lemma (xxxiii)]) ψ(q)ψ(q 3 ) = φ(q 6 )ψ(q 4 ) + qφ(q 2 )ψ(q 12 ). That is, (q 2 ; q 2 )2∞ (q 6 ; q 6 )2∞ (q 8 ; q 8 )2∞ (q 12 ; q 12 )5∞ = (q; q)∞ (q 3 ; q 3 )∞ (q 6 ; q 6 )2∞ (q 24 ; q 24 )2∞ (q 4 ; q 4 )∞ (q 4 ; q 4 )5 (q 24 ; q 24 )2∞ +q 2 2 2 8∞ 8 2 . (q ; q )∞ (q ; q )∞ (q 12 ; q 12 )∞ The result follows. Lemma 2.5. The following 3–dissections hold: (q 2 ; q 2 )2∞ (q; q)∞ = (q 6 ; q 6 )∞ (q 9 ; q 9 )2∞ (q 18 ; q 18 )2 +q 9 9 ∞, 3 3 18 18 (q ; q )∞ (q ; q )∞ (q ; q )∞ (q, q)∞ = (q 12 , q 15 , q 27 ; q 27 )∞ − q(q 6 , q 21 , q 27 ; q 27 )∞ − q 2 (q 3 , q 24 , q 27 ; q 27 )∞ . Proof. The first identity follows from the first equality in Corollary (ii) [4, p. 49], the second from Entry 31 [4, p. 48] by setting a = −q, b = −q 2 and n = 3. 3 Proofs of Theorems Proof. (Theorem (1.1)) We have, by Lemma (2.1), RC(q) = = = (q; q)∞ (q 6 ; q 6 )3∞ (q; q 2 )∞ = (q 3 ; q 6 )3∞ (q 2 ; q 2 )∞ (q 3 ; q 3 )3∞ 2 2 6 6 3 (q ; q )∞ (q ; q )∞ (q 4 ; q 4 )2∞ (q 12 ; q 12 )2∞ (q 2 ; q 2 )3∞ (q 12 ; q 12 )6∞ −q 4 4 2 6 6 9 (q 2 ; q 2 )∞ (q 6 ; q 6 )7∞ (q ; q )∞ (q ; q )∞ 4 4 2 12 12 2 2 2 2 12 12 6 (q ; q )∞ (q ; q )∞ (q ; q ) (q ; q ) − q 4 4 ∞2 6 6 6∞ (q 6 ; q 6 )4∞ (q ; q )∞ (q ; q )∞ 7 and 1/RC(q) = = = (q 2 ; q 2 )∞ (q 3 ; q 3 )3∞ (q 6 ; q 6 )3∞ (q; q)∞ 4 4 3 6 6 2 (q ; q )∞ (q ; q )∞ (q 2 ; q 2 )∞ (q 12 ; q 12 )3∞ +q 4 4 (q 6 ; q 6 )3∞ (q 2 ; q 2 )2∞ (q 12 ; q 12 )∞ (q ; q )∞ 4 4 3 2 2 (q ; q )∞ (q ; q )∞ (q 12 ; q 12 )3∞ + q . (q 2 ; q 2 )∞ (q 6 ; q 6 )∞ (q 12 ; q 12 )∞ (q 4 ; q 4 )∞ (q 6 ; q 6 )3∞ Proof. (Theorem (1.2)). We have, by Lemma (2.2), (q 6 ; q 6 )3∞ (q; q)∞ (q 3 ; q 3 )3∞ (q 2 ; q 2 )∞ (q 6 ; q 6 )∞ 21 33 54 54 (q , q , q ; q )∞ − q(q 15 , q 39 , q 54 ; q 54 )∞ (q 3 ; q 3 )2∞ RC(q) = = −q 5 (q 3 , q 51 , q 54 ; q 54 )∞ (q 6 ; q 6 )∞ (q 21 , q 33 , q 54 ; q 54 )∞ (q 6 ; q 6 )∞ (q 15 , q 39 , q 54 ; q 54 )∞ − q (q 3 ; q 3 )2∞ (q 3 ; q 3 )2∞ 6 6 (q ; q )∞ (q 3 , q 51 , q 54 ; q 54 )∞ −q 5 (q 3 ; q 3 )2∞ = and 1/RC(q) = = (q 3 ; q 3 )3∞ (q 2 ; q 2 )∞ (q 6 ; q 6 )3∞ (q; q)∞ (q 3 ; q 3 )∞ (−q 12 , −q 15 , q 27 ; q 27 )∞ + q(−q 6 , −q 21 , q 27 ; q 27 )∞ (q 6 ; q 6 )2∞ +q 2 (−q 3 , −q 24 , q 27 ; q 27 )∞ = (q 3 ; q 3 )∞ (−q 12 , −q 15 , q 27 ; q 27 )∞ (q 6 ; q 6 )2∞ (q 3 ; q 3 )∞ (−q 6 , −q 21 , q 27 ; q 27 )∞ +q (q 6 ; q 6 )2∞ (q 3 ; q 3 )∞ (−q 3 , −q 24 , q 27 ; q 27 )∞ . +q 2 (q 6 ; q 6 )2∞ 8 Proof. (Theorem (1.3)) We have, by Theorem (1.1) and Lemma (2.3) with q 6 for q and Lemma (2.1) with q 2 for q, RC(q) = = = (q 4 ; q 4 )2∞ (q 12 ; q 12 )2∞ (q 2 ; q 2 )2 (q 12 ; q 12 )6 − q 4 4 ∞2 6 6 6∞ 6 6 4 (q ; q )∞ (q ; q )∞ (q ; q )∞ (q 4 ; q 4 )2∞ (q 12 ; q 12 )2∞ 24 24 2 48 48 4 (q 24 ; q 24 )14 ∞ 6 (q ; q )∞ (q ; q )∞ × + 4q 48 48 4 (q 12 ; q 12 )14 (q 12 ; q 12 )10 ∞ (q ; q )∞ ∞ (q 12 ; q 12 )6∞ −q 4 4 2 (q ; q )∞ 4 4 2 4 4 3 24 24 6 (q ; q )∞ (q 8 ; q 8 )2∞ (q 24 ; q 24 )2∞ 2 (q ; q )∞ (q ; q )∞ × − q (q 12 ; q 12 )7∞ (q 8 ; q 8 )2∞ (q 12 ; q 12 )9∞ (q 4 ; q 4 )2∞ (q 24 ; q 24 )14 ∞ 48 48 4 (q 12 ; q 12 )12 ∞ (q ; q )∞ 8 8 4 24 24 4 4 4 4 24 24 12 (q ; q )∞ (q ; q )∞ 4 (q ; q )∞ (q ; q )∞ + q −q (q 12 ; q 12 )8∞ (q 8 ; q 8 )4∞ (q 12 ; q 12 )12 ∞ 4 4 2 24 24 2 48 48 4 4 4 2 (q ; q ) (q ; q ) (q ; q ) (q ; q )∞ (q 24 ; q 24 )8∞ ∞ ∞ ∞ +4q 6 + 2q 3 12 12 8 (q , q )∞ (q 12 ; q 12 )10 ∞ and, by Theorem (1.1) and Lemma (2.4) with q 2 for q and Lemma (2.1) with q 2 for q, = = 1/RC(q) = (q 4 ; q 4 )3∞ 2 2 (q ; q )∞ (q 6 ; q 6 )∞ (q 12 ; q 12 )∞ (q 4 ; q 4 )3∞ (q 12 ; q 12 )∞ +q (q 2 ; q 2 )∞ (q 12 ; q 12 )3∞ (q 4 ; q 4 )∞ (q 6 ; q 6 )3∞ (q 16 ; q 16 )2∞ (q 24 ; q 24 )5∞ 4 4 2 (q ; q )∞ (q 8 ; q 8 )∞ (q 12 ; q 12 )4∞ (q 48 ; q 48 )2∞ (q 8 ; q 8 )5 (q 48 ; q 48 )2∞ +q 2 4 4 4 12 12 ∞ (q ; q )∞ (q ; q )2∞ (q 16 ; q 16 )2∞ (q 24 ; q 24 )∞ 4 4 3 24 24 6 (q 12 ; q 12 )3 (q 4 ; q 4 )∞ (q 8 ; q 8 )2∞ (q 24 ; q 24 )2∞ 2 (q ; q )∞ (q ; q )∞ +q 4 4 ∞ − q (q ; q )∞ (q 12 ; q 12 )7∞ (q 8 ; q 8 )2∞ (q 12 ; q 12 )9∞ (q 8 ; q 8 )2∞ (q 24 ; q 24 )2∞ (q 4 ; q 4 )∞ (q 16 ; q 16 )2∞ (q 24 ; q 24 )5∞ +q 8 8 12 12 5 48 48 2 (q ; q )∞ (q ; q )∞ (q ; q )∞ (q 12 ; q 12 )4∞ (q 8 ; q 8 )5∞ (q 48 ; q 48 )2∞ (q 4 ; q 4 )2 (q 24 ; q 24 )6 +q 2 4 4 − q 3 8 8 2∞ 12 12 6∞ . 12 12 3 16 16 2 24 24 (q ; q )∞ (q ; q )∞ (q ; q )∞ (q ; q )∞ (q ; q )∞ (q ; q )∞ 9 Proof. (Theorem (1.4)) We have, by Theorem (1.1) and Lemmas (2.2) and (2.5), 36 36 2 (q 12 ; q 12 )2∞ (q 12 ; q 12 )∞ (q 18 ; q 18 )2∞ 2 (q ; q )∞ RC(q) = × + q 18 18 (q 6 ; q 6 )4∞ (q 6 ; q 6 )∞ (q 36 ; q 36 )∞ (q ; q )∞ (q 24 , q 30 , q 54 ; q 54 )∞ − q 2 (q 12 , q 42 , q 54 ; q 54 )∞ − q 4 (q 6 , q 48 , q 54 ; q 54 )∞ (q 12 ; q 12 )6∞ (q 6 ; q 6 )6∞ (q 6 ; q 6 ) ∞ 42 66 108 108 × (q , q , q ; q )∞ − q 2 (q 30 , q 78 , q 108 ; q 108 )∞ (q 12 ; q 12 )2∞ −q −q 10 (q 6 , q 102 , q 108 ; q 108 )∞ = 2 (q 12 ; q 12 )3∞ (q 18 , q 18 )2∞ (q 24 , q 30 , q 54 ; q 54 )∞ (q 6 ; q 6 )5∞ (q 36 ; q 36 )∞ 12 12 2 36 36 2 6 48 54 54 6 (q ; q )∞ (q ; q )∞ (q , q , q ; q )∞ −q (q 6 ; q 6 )4∞ (q 18 ; q 18 )∞ 12 12 2 42 66 108 108 2 (q ; q )∞ (q , q , q ; q )∞ −q (q 6 ; q 6 )4∞ 12 12 2 6 30 78 102 108 108 108 , q , q ; q )∞ 12 (q ; q )∞ (q , q , q , q +2q (q 6 ; q 6 )4∞ 12 12 3 18 18 2 12 42 54 54 (q ; q )∞ (q ; q )∞ (q , q , q ; q )∞ −q 2 (q 6 ; q 6 )5∞ (q 36 ; q 36 )∞ (q 12 ; q 12 )2∞ (q 36 ; q 36 )2∞ (q 24 , q 30 , q 54 ; q 54 )∞ − (q 6 ; q 6 )4 (q 18 ; q 18 )∞ 12 12 2 30 42 66 78 108 ∞ (q ; q )∞ (q , q , q , q , q , q 108 ; q 108 )∞ +q 3 2 (q 6 ; q 6 )4∞ 12 12 2 6 102 108 108 2 , q ; q )∞ 18 (q ; q )∞ (q , q −q (q 6 ; q 6 )4∞ 12 12 3 18 18 2 6 48 54 54 (q ; q )∞ (q ; q )∞ (q , q .q ; q )∞ −q 4 (q 6 ; q 6 )5∞ (q 36 ; q 36 )∞ (q 12 ; q 12 )2∞ (q 36 ; q 36 )2∞ (q 12 , q 42 , q 54 ; q 54 )∞ + (q 6 ; q 6 )4∞ (q 18 ; q 18 )∞ 12 12 2 30 78 108 108 2 (q ; q )∞ (q , q , q ; q )∞ −q 5 (q 6 ; q 6 )4∞ (q 12 ; q 12 )2∞ (q 6 , q 42 , q 66 , q 102 , q 108 , q 108 ; q 108 )∞ , −2q 6 (q 6 ; q 6 )4∞ 10 and 1/RC(q) = 1 (q 6 ; q 6 )∞ (q 12 ; q 12 )∞ 36 36 2 (q 12 ; q 12 )∞ (q 18 ; q 18 )2∞ 2 (q ; q )∞ + q (q 6 ; q 6 )∞ (q 36 ; q 36 )∞ (q 18 ; q 18 )∞ × (q 48 , q 60 , q 108 ; q 108 )∞ − q 4 (q 24 , q 84 , q 108 ; q 108 )∞ −q 8 (q 12 , q 96 , q 108 ; q 108 )∞ (q 12 ; q 12 )3∞ (q 6 ; q 6 )3∞ (q 6 ; q 6 ) ∞ 42 66 108 108 × (q , q , q ; q )∞ − q 2 (q 30 , q 78 , q 108 ; q 108 )∞ 12 12 (q ; q )2∞ −q 10 (q 6 , q 102 , q 108 ; q 108 )∞ +q = (q 18 ; q 18 )2∞ (q 48 , q 60 , q 108 ; q 108 )∞ (q 6 ; q 6 )2∞ (q 36 ; q 36 )∞ (q 36 ; q 36 )2 (q 24 , q 84 , q 108 ; q 108 )∞ −q 6 6 6 ∞ 12 12 (q ; q )∞ (q ; q )∞ (q 18 ; q 18 )∞ (q 12 ; q 12 )∞ (q 42 , q 66 , q 108 ; q 108 )∞ +q (q 6 ; q 6 )2 36 36 2 48 ∞60 108 108 (q ; q )∞ (q , q , q ; q )∞ +q 2 (q 6 ; q 6 )∞ (q 12 ; q 12 )∞ (q 18 ; q 18 )∞ 18 18 2 12 96 108 108 ; q )∞ 6 (q ; q )∞ (q , q , q −q (q 6 ; q 6 )2∞ (q 36 ; q 36 )∞ 12 12 30 78 108 108 (q ; q )∞ (q , q , q ; q )∞ −q 3 (q 6 ; q 6 )2 18 18 2 24 ∞ (q ; q )∞ (q , q 84 , q 108 ; q 108 )∞ −q 4 (q 6 ; q 6 )2∞ (q 36 ; q 36 )∞ 36 36 2 12 96 108 108 ; q )∞ 6 (q ; q )∞ (q , q , q +q (q 6 ; q 6 )∞ (q 12 ; q 12 )∞ (q 18 ; q 18 )∞ 12 12 6 102 108 108 (q ; q )∞ (q , q , q ; q )∞ −q 11 . (q 6 ; q 6 )2∞ Proof. (Theorem (1.5)) We have, from Theorems (1.2) and (1.4), 11 X a3n q n = n≥0 X b6n+1 q n n≥0 2 = 1/(q, q, q , q 3 , q 3 , q 4 , q 5 , q 5 , q 6 , q 7 , q 8 , q 9 , q 9 , q 10 , q 11 , q 12 , q 13 , q 13 , q 14 , q 15 , q 15 , q 16 , q 17 , q 17 ; q 18 )∞ , X a3n+1 q n = n≥0 X b6n+3 q n n≥0 2 = −1/(q, q, q , q 3 , q 3 , q 4 , q 5 , q 6 , q 7 , q 7 , q 8 , q 9 , q 9 , q 10 , q 11 , q 11 , q 12 , q 13 , q 14 , q 15 , q 15 , q 16 , q 17 , q 17 ; q 18 )∞ , X a3n+2 q n = n≥0 X b6n+5 q n n≥0 = −q/(q, q 2 , q 3 , q 3 , q 4 , q 5 , q 5 , q 6 , q 7 , q 7 , q 8 , q 9 , q 9 , q 10 , q 11 , q 11 , q 12 , q 13 , q 13 , q 14 , q 15 , q 15 , q 16 , q 17 ; q 18 )∞ . Also, from Theorem (1.2), X b3n q n = n≥0 = (−q 4 , −q 5 , q 9 ; q 9 )∞ (−q 4 , −q 5 , q 9 ; q 9 )∞ = ψ(q) (−q, −q 2 , q 4 ; q 4 )∞ (−q 4 , −q 14 , q 18 ; q 18 )∞ (−q 5 , q 9 , −q 13 ; q 18 )∞ , (q 4 ; q 4 )∞ (−q; q 2 )∞ so X (−q 4 , −q 14 , q 18 ; q 18 )∞ (q 5 , −q 9 , q 13 ; q 18 )∞ (q 4 ; q 4 )∞ (q; q 2 )∞ P∞ 2 (−q 9 ; q 18 )∞ −∞ q 9n −5n = 4 4 (q ; q )∞ (q, q 3 , q 7 , q 9 , q 11 , q 15 , q 17 ; q 18 )∞ (−1)n b3n q n = n≥0 = f (q 4 , q 14 )f (q 9 , q 27 )/(q, q 3 , q 4 , q 7 , q 8 , q 9 , q 11 , q 12 , q 15 , q 16 , q 17 , q 19 , q 20 , q 21 , q 24 , q 25 , q 27 , q 28 , q 29 , q 32 , q 33 , q 35 , q 36 , q 36 ; q 36 )∞ , 12 and similarly, X (−1)n b3n+1 q n n≥0 = f (q 2 , q 16 )f (q 9 , q 27 )/(q, q 3 , q 4 , q 5 , q 8 , q 9 , q 12 , q 13 , q 15 , q 16 , q 17 , q 19 , q 20 , q 21 , q 23 , q 24 , q 27 , q 28 , q 31 , q 32 , q 33 , q 35 , q 36 , q 36 ; q 36 )∞ , X (−1)n b3n+2 q n n≥0 = f (q 8 , q 10 )f (q 9 , q 27 )/(q, q 3 , q 4 , q 5 , q 7 , q 8 , q 9 , q 11 , q 12 , q 13 , q 15 , q 16 , q 20 , q 21 , q 23 , q 24 , q 25 , q 27 , q 28 , q 29 , q 31 , q 32 , q 33 , q 36 , q 36 ; q 36 )∞ . The results follow. Acknowledgement. The latter part of the proof of Theorem (1.5) is essentially the proof of Chan and Yesilyurt [5, §4]. References [1] K. Alladi and B. Gordon, Vanishing coefficients in the expansion of products of Rogers–Ramanujan type, The Rademacher Legacy to Mathematics, Contemporary Mathematics 166 (1994), 129–139. [2] G. E. Andrews, Ramanujan’s “lost” notebook III: The Rogers–Ramanujan continued fraction, Advances in Mathematics 41 (1981), 186–208. [3] G. E. Andrews and D. Bressoud, Vanishing coefficients in infinite product expansions, Journal of the Australian Mathematical Society Series A, 27 (1979), 199–202. [4] B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer–Verlag, New York 1990. [5] S. H. Chan and H. Yesilyurt, The periodicity of the signs of the coefficients of certain infinite products, Pacific Journal of Mathematics 225 (2006), 13–32. [6] S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares, Discrete Mathematics 274 (2004), 9–24. 13 [7] M. D. Hirschhorn, A continued fraction of Ramanujan, Journal of the Australian Mathematical Society Series A 29 (1980), 80–86. [8] M. D. Hirschhorn, On the expansion of Ramanujan’s continued fraction, The Ramanujan Journal 2 (1998), 521–527. [9] M. D. Hirschhorn, Arithmetic consequences of Jacobi’s two–square theorem, The Ramanujan Journal 4 (2000), 51–57. [10] M. D. Hirschhorn, On the expansion of a continued fraction of Gordon, The Ramanujan Journal 5 (2001), 369–375. [11] M. D. Hirschhorn, F. Garvan and J. Borwein, Cubic analogues of the Jacobian theta function θ(z, q), Canadian Journal of Mathematics 45 (1993), 673–694. [12] R. P. Lewis and Z.–G. Liu, A conjecture of Hirschhorn on the 4–dissection of Ramanujan’s continued fraction, The Ramanujan Journal 4 (2000), 347– 352. [13] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, Delhi, 1988. [14] B. Richmond and G. Szekeres, The Taylor coefficients of certain infinite products, Acta Sci. Math. (Szeged) 40 (1978), 347–369. [15] B. Srivastava, On 2–dissection and 4–dissection of Ramanujan’s cubic continued fraction and identities, Tamsui Oxford Journal of Mathematical Sciences 23(3) (2007), 305–315. [16] G. Szekeres, Private communication (1969). [email protected] [email protected] 14
© Copyright 2026 Paperzz