Bioenergy at Aberystwyth

Biology that Delivers
IBERS
Institute of Biological, Environmental and Rural
Sciences
Member of the National Institutes of Bioscience
Strategic research funding from…
Operational budget of £30m/yr
£20m from research
£8m for collaborative projects
involving industrial projects
360 staff
1350 undergraduates
150 postgraduates
Miscanthus for marginal lands
(A Welsh perspective)
“the squeezed middle”
Jon McCalmont, Amanda Holder, Mariecia Fraser, John Davies, John Clifton-Brown
Pwll Peiran Upland Research Platform
~400ha mixed grassland and heathland
(semi-improved + semi-natural)
Altitude range 225 – 625m
Caterpillar and junotrac plough,
Pwll Peiran 1937-38
Energy Grass Options
High Biodiversity, Low Input Grasslands
Delivering: Environmental Management & Energy
(Corton et al. 2013)
(High Sugar) Forage Grasses
Delivering: Animal Feed, Energy & Products
Dedicated Energy Grasses
Delivering: Energy & Products: High Biomass and
Defined End Quality
Research Objectives
Miscanthus Genetic Resources
Optimising and Sustaining Yield
Matching Cell-Wall Composition with
Conversion Processes
Optimising Energy Output and Biorefining
Energy Crop
Breeding and
Modelling
Bioconversion
and Biorefining
flo
sin2x
2xMb9
Mb886
43
sin 2x
sin 2x Mb836 1
sin 2x Mb846 123
Mb
sin
2x Mb 846 21
846
sin
22
2x Mb
sin
85
2x
Mb8 0 1
sin
51
1
sin 2x M
b2
sin 2x M 55
sin 2x M b110
sin 2x b102
3x Mb1
sicosa
nn3x
c/R Mb1 38
2xo
MMbb9 08
b289x
ssinin
9M
2
5b
143
sin 2xx M
2
1
2x Mbb18
M 4983
b1
11 1
4 6 20
b1 6 0
M bb196 67 18
1 34 1
2x MM
n n 22xx Mb9 74 19
b4
sisi
sin n 2x Mb9b92x74M
M
si
2x ob
sin nc/2xR
09
sisa
Mb1 525 19
b3
2x
Mb9 933 11
sin 2x M
2x
sin
sin 2x Mb
113
sin
Mb
2x
31 6 13
sin 2x Mb
52
2x Mb
sin
sin
13
9
2x Mb
Mb914
sin
sin 2x
Mb522
17
sin 4x
Mb915
sin 2x
2 20
sin 2x Mb95
sin 2x Mb930 12
sin 2x Mb931
18
sac 4x Mb888
sac 4x Mb887
sac 2x Mb935 13
sac 2x Mb86
sin 2x Mb30
sin 2x Mb3
sin
Mb2
sac 2x
2x Mb539
sin 2x Mb115 1
sin 2x
Mb52
sin 2x
Mb5337 1
sin 2x
1
Mb577
sin 2x
sin 2x Mb585 1
sin
flo 2x Mb167 1
sin
Plo Mb13
idy? 9
sin 2x Mb
sin 2x Mb 37Mb10
sin 2x
22
1
sin 4x Mb8928 18
sa
Mb9 93
c/2x
Rob
Mb9
05 11
si
2x10 17
si n
Mb2
11
sinn 2x2x M
32
sisinn 2x Mb7b74
sin 22x M 1
2x x MMb b81
M b250
b7 21
20
29 5 1 1 55120
b2 756 2 b727
M bb38 51 MMb4
y? 1
2x xxMM Mlobid2x
2 x Pob 7094 0 17
R b4
sininin 2c 2c/
ss sasac Mb b104 Mb297
sa 2x
x M
2x
n 2 4x
si
sinsac Rob
4
sac/
Mb9
2x
sac
sa
c/R
ob
2x
M
b4
sa sasac
csa
31
4x c 2 4x
1
cM
4xb x MMb
sasa sa
9M61b 14
b2127 4
sac c/clu
sa4x
4x
tc4x
flo
266 2
McM
4x
M
sac/lut sa 2x4x
b9
M
M
b3
b1
50
M91
4x b1b9
sa4xcMb
40
1
Mb 0258
105
6 21
sac c 4x
19 b1
67831
3 16
sa3x
MbMb
81
c 4x
1037 0 11
Mb79
52
31
sac 4x
floMb10
4x Mb8
43 32
30 1
sac 4x
Mb344
sac 4x Mb819
19
sac 4x Mb353
sac 4x Mb956 19
sacMb956
4x Mb508
46
sac 4x
Economically viable
sa
c
sa sa sac 4x
sa c/lu c 2x Mb
sa c/lut t 2x2x M Mb7 488
c/lu 2x M b 7
1
t 2x M b1704
80 5 1 5
Mb7b774 6 216 8
sa
79 11
sa c 4x
14
sac c 4x Mb5
4x M
05
sac sac 4x Mb9 b485 1
13 1
3x
Mb Mb9 17
10 09
sa
sac c 4x Mb 44 501
sac/Ro
4x
b 2x Mb80799 1
8 18
Mb433
sac
4x
1
sac 4x Mb918
19
sac 4x Mb965 14
Mb965
15
sac
sac 4x 4x Mb142
sac Ploidy? Mb969 18
Mb814 18
sac/lut 2x Mb771
20
sin 2x Mb702 18
sac Ploidy? Mb714 18
sac Ploidy? Mb714 45
sac/lut 2x Mb1057 16
sac/lut 2x Mb306
51
sac/lut 2x2xMb1060
Mb782 262
sac/lut
2x Mb38
83 1
sac/lut2x Mb3
0739 14
sac/lut2x Mb1106900
6
sac/lut 2x Mb
107 53 19
18
sac/lut
2x Mb
Mb10 67
sac/lut t 2x Mb10770 18
99
sac/luut 2xy? Mb
28
Mb3
sac/lPloid
b712
M73
ut 2x
sin
Mb7 b416
ut 2x
sac/l
M b397
c/l
2x
sa t
M b41111
c/lu lut 2x
sa
c/ t 2x M 93
28 1
sa c/lu t 2xMb3
b6 25 1
sa c/lut 2x M b4631 01
sac/lu t 2x x M b b4
M
sa c/lu t 2 2x x M
lu
t
sa c/ lu
t2
sa c/
lu
c/
sa
sa
sac 4x Mb177
6
sac 4x Mb14
61 45
89
4x Mb8
4x Mb9
sac sac
1
13
Mb7884
4x 78
sac? Mb
13
2 891
Mb
Ploidy 4x Mb
4x89
sac sac sac
12
489 10
4x Mbb490
sac
M
4x
sac
Environmentally sustainable
7
Mb14
in 2x MbM14b1804
sac/s 2x y?
in oid
c/sPl
sa
spe
49
b311
MMb1
3x b18890
ng3x
M
c/sigi 3x 437
sa
n x08
c/si M
sa 2x
Mb3 309
b
b 7
hy
n 4x x M 30
b
c/si 4
sa sin 3x M
101
c/
b3 2
sa sin
M 50
c/
6
4x b
sa
b7 6
c M
M 48
sa 4x
c
4x b
c xM
sa
sa c 4
sa
Energy Crop
Biology
flo 2x Mb1007
flo 2x Mb1005
flo 2x Mb1000
flo 2x Mb10
flo 2x
23 23
Mb1001
Bioenergy Products
Miscanthus Genetic Resources
• Created one of the most diverse collections
worldwide
• Overcame barriers to making wide crosses
and releasing heterosis
• Implemented UN protocols on CBD with donor
countries in Asia (REF Case study)
• Created populations to drive forward science
and breeding
Miscanthus Breeding (GIANT-LINK project)
• New seed based varieties are being trialled on
farms in the UK
• Primarily plug planting but also direct drilling
• Seed production established in Italy and the US
• Working with industry to develop agronomy
(3 kha of seed based hybrid by 2018)
Clifton-Brown et al. (2016)
Optimising Yield
• Phenology: Early canopy development is critical to achieving high yields
• Morphology: Canopy height is the best physiological predictor of biomass
yield (r2 = 0.6-0.8)
• Composition: Starch to fructose ratio is the best biochemical predictor of
biomass yield (r2 = 0.6-0.8)
Robson et al. (2013a)
Robson et al. (2013b)
Purdy et al. (2015)
Matching Cell Wall Composition with Conversion
• Cell wall directed antibodies reveal structural differences between Miscanthus
species
• Cell wall polysaccharides are the main contributors to the compositional
variability during stem development and between stem and leaf tissue
• Lignin content negatively correlates with ethanol release from stem tissue, but
NOT from leaf tissue
MxG
M Sac
Lee et al. (2013)
M Sin
Control
da Costa et al. (2014)
MYB-OX
Energy Output & Biorefining from Miscanthus
• Characterised phenolics which have potential as high value natural
product chemicals
• Identified optimal genotype and developmental stage combinations for
increased saccharification efficiency
• Developing chimeric synthetic enzymes to maximise carbohydrate
release from Miscanthus using HPC
Parveen et al. (2014)
Environmental Impact
• Demonstrated that Miscanthus can produce
significant levels of bio-energy for the UK
without negatively impacting the environment
or food production
• C fluxes for the transition of grassland to
Miscanthus, revealed a credit to C stocks from
the third year
• Miscanthus leaf litter is a major contributor to
McCalmont et al. (2015)
longer term soil C
McCalmont et al. (2016)
References
Clifton-Brown J., et al. (2016) Progress in upscaling Miscanthus biomass production for the European bio-economy with seed based hybrids. GCB
Bioenergy doi: 10.1111/gcbb.12357
Corton J., et al. (2013) Bioenergy as a biodiversity management tool and the potential of a mixed species feedstock for bioenergy production in
Wales. Bioresource Technology 129 pp. 142-149
da Costa R., et al. (2014) Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop
Miscanthus AoB 114(6) pp. 1265-1277
McCalmont J., et al. (2015) Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. GCB Bioenergy Early View Online:
doi: 10.1111/gcbb.12294
McCalmont J., et al. (2016) An inter-year comparison of CO2 flux and carbon budget at a commercial scale land-use transition from semiimproved grassland to Miscanthus x giganteus GCB Bioenergy Early View Online: doi: 10.1111/gcbb.12323
Robson P., et al. (2013a) Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield. J. Ex. Bot.
64 pp. 2373-2383
Robson P., et al. (2013b) Accelerating the domestication of a bioenergy crop: identifying and modelling morphological targets for sustainable
yield increase in Miscanthus. J. Ex. Bot. 64 pp. 4143-4155
Parveen I., et al. (2014) Screening for potential co-products in a Miscanthus sinensis mapping family by liquid chromatography with mass
spectrometry detection. Phytochemistry 105 pp.186-96
Purdy S., et al. (2015) Non-structural carbohydrate profiles and ratios between soluble sugars and starch serve as indicators of productivity for a
bioenergy grass. AoB plants, plv032