Biology that Delivers IBERS Institute of Biological, Environmental and Rural Sciences Member of the National Institutes of Bioscience Strategic research funding from… Operational budget of £30m/yr £20m from research £8m for collaborative projects involving industrial projects 360 staff 1350 undergraduates 150 postgraduates Miscanthus for marginal lands (A Welsh perspective) “the squeezed middle” Jon McCalmont, Amanda Holder, Mariecia Fraser, John Davies, John Clifton-Brown Pwll Peiran Upland Research Platform ~400ha mixed grassland and heathland (semi-improved + semi-natural) Altitude range 225 – 625m Caterpillar and junotrac plough, Pwll Peiran 1937-38 Energy Grass Options High Biodiversity, Low Input Grasslands Delivering: Environmental Management & Energy (Corton et al. 2013) (High Sugar) Forage Grasses Delivering: Animal Feed, Energy & Products Dedicated Energy Grasses Delivering: Energy & Products: High Biomass and Defined End Quality Research Objectives Miscanthus Genetic Resources Optimising and Sustaining Yield Matching Cell-Wall Composition with Conversion Processes Optimising Energy Output and Biorefining Energy Crop Breeding and Modelling Bioconversion and Biorefining flo sin2x 2xMb9 Mb886 43 sin 2x sin 2x Mb836 1 sin 2x Mb846 123 Mb sin 2x Mb 846 21 846 sin 22 2x Mb sin 85 2x Mb8 0 1 sin 51 1 sin 2x M b2 sin 2x M 55 sin 2x M b110 sin 2x b102 3x Mb1 sicosa nn3x c/R Mb1 38 2xo MMbb9 08 b289x ssinin 9M 2 5b 143 sin 2xx M 2 1 2x Mbb18 M 4983 b1 11 1 4 6 20 b1 6 0 M bb196 67 18 1 34 1 2x MM n n 22xx Mb9 74 19 b4 sisi sin n 2x Mb9b92x74M M si 2x ob sin nc/2xR 09 sisa Mb1 525 19 b3 2x Mb9 933 11 sin 2x M 2x sin sin 2x Mb 113 sin Mb 2x 31 6 13 sin 2x Mb 52 2x Mb sin sin 13 9 2x Mb Mb914 sin sin 2x Mb522 17 sin 4x Mb915 sin 2x 2 20 sin 2x Mb95 sin 2x Mb930 12 sin 2x Mb931 18 sac 4x Mb888 sac 4x Mb887 sac 2x Mb935 13 sac 2x Mb86 sin 2x Mb30 sin 2x Mb3 sin Mb2 sac 2x 2x Mb539 sin 2x Mb115 1 sin 2x Mb52 sin 2x Mb5337 1 sin 2x 1 Mb577 sin 2x sin 2x Mb585 1 sin flo 2x Mb167 1 sin Plo Mb13 idy? 9 sin 2x Mb sin 2x Mb 37Mb10 sin 2x 22 1 sin 4x Mb8928 18 sa Mb9 93 c/2x Rob Mb9 05 11 si 2x10 17 si n Mb2 11 sinn 2x2x M 32 sisinn 2x Mb7b74 sin 22x M 1 2x x MMb b81 M b250 b7 21 20 29 5 1 1 55120 b2 756 2 b727 M bb38 51 MMb4 y? 1 2x xxMM Mlobid2x 2 x Pob 7094 0 17 R b4 sininin 2c 2c/ ss sasac Mb b104 Mb297 sa 2x x M 2x n 2 4x si sinsac Rob 4 sac/ Mb9 2x sac sa c/R ob 2x M b4 sa sasac csa 31 4x c 2 4x 1 cM 4xb x MMb sasa sa 9M61b 14 b2127 4 sac c/clu sa4x 4x tc4x flo 266 2 McM 4x M sac/lut sa 2x4x b9 M M b3 b1 50 M91 4x b1b9 sa4xcMb 40 1 Mb 0258 105 6 21 sac c 4x 19 b1 67831 3 16 sa3x MbMb 81 c 4x 1037 0 11 Mb79 52 31 sac 4x floMb10 4x Mb8 43 32 30 1 sac 4x Mb344 sac 4x Mb819 19 sac 4x Mb353 sac 4x Mb956 19 sacMb956 4x Mb508 46 sac 4x Economically viable sa c sa sa sac 4x sa c/lu c 2x Mb sa c/lut t 2x2x M Mb7 488 c/lu 2x M b 7 1 t 2x M b1704 80 5 1 5 Mb7b774 6 216 8 sa 79 11 sa c 4x 14 sac c 4x Mb5 4x M 05 sac sac 4x Mb9 b485 1 13 1 3x Mb Mb9 17 10 09 sa sac c 4x Mb 44 501 sac/Ro 4x b 2x Mb80799 1 8 18 Mb433 sac 4x 1 sac 4x Mb918 19 sac 4x Mb965 14 Mb965 15 sac sac 4x 4x Mb142 sac Ploidy? Mb969 18 Mb814 18 sac/lut 2x Mb771 20 sin 2x Mb702 18 sac Ploidy? Mb714 18 sac Ploidy? Mb714 45 sac/lut 2x Mb1057 16 sac/lut 2x Mb306 51 sac/lut 2x2xMb1060 Mb782 262 sac/lut 2x Mb38 83 1 sac/lut2x Mb3 0739 14 sac/lut2x Mb1106900 6 sac/lut 2x Mb 107 53 19 18 sac/lut 2x Mb Mb10 67 sac/lut t 2x Mb10770 18 99 sac/luut 2xy? Mb 28 Mb3 sac/lPloid b712 M73 ut 2x sin Mb7 b416 ut 2x sac/l M b397 c/l 2x sa t M b41111 c/lu lut 2x sa c/ t 2x M 93 28 1 sa c/lu t 2xMb3 b6 25 1 sa c/lut 2x M b4631 01 sac/lu t 2x x M b b4 M sa c/lu t 2 2x x M lu t sa c/ lu t2 sa c/ lu c/ sa sa sac 4x Mb177 6 sac 4x Mb14 61 45 89 4x Mb8 4x Mb9 sac sac 1 13 Mb7884 4x 78 sac? Mb 13 2 891 Mb Ploidy 4x Mb 4x89 sac sac sac 12 489 10 4x Mbb490 sac M 4x sac Environmentally sustainable 7 Mb14 in 2x MbM14b1804 sac/s 2x y? in oid c/sPl sa spe 49 b311 MMb1 3x b18890 ng3x M c/sigi 3x 437 sa n x08 c/si M sa 2x Mb3 309 b b 7 hy n 4x x M 30 b c/si 4 sa sin 3x M 101 c/ b3 2 sa sin M 50 c/ 6 4x b sa b7 6 c M M 48 sa 4x c 4x b c xM sa sa c 4 sa Energy Crop Biology flo 2x Mb1007 flo 2x Mb1005 flo 2x Mb1000 flo 2x Mb10 flo 2x 23 23 Mb1001 Bioenergy Products Miscanthus Genetic Resources • Created one of the most diverse collections worldwide • Overcame barriers to making wide crosses and releasing heterosis • Implemented UN protocols on CBD with donor countries in Asia (REF Case study) • Created populations to drive forward science and breeding Miscanthus Breeding (GIANT-LINK project) • New seed based varieties are being trialled on farms in the UK • Primarily plug planting but also direct drilling • Seed production established in Italy and the US • Working with industry to develop agronomy (3 kha of seed based hybrid by 2018) Clifton-Brown et al. (2016) Optimising Yield • Phenology: Early canopy development is critical to achieving high yields • Morphology: Canopy height is the best physiological predictor of biomass yield (r2 = 0.6-0.8) • Composition: Starch to fructose ratio is the best biochemical predictor of biomass yield (r2 = 0.6-0.8) Robson et al. (2013a) Robson et al. (2013b) Purdy et al. (2015) Matching Cell Wall Composition with Conversion • Cell wall directed antibodies reveal structural differences between Miscanthus species • Cell wall polysaccharides are the main contributors to the compositional variability during stem development and between stem and leaf tissue • Lignin content negatively correlates with ethanol release from stem tissue, but NOT from leaf tissue MxG M Sac Lee et al. (2013) M Sin Control da Costa et al. (2014) MYB-OX Energy Output & Biorefining from Miscanthus • Characterised phenolics which have potential as high value natural product chemicals • Identified optimal genotype and developmental stage combinations for increased saccharification efficiency • Developing chimeric synthetic enzymes to maximise carbohydrate release from Miscanthus using HPC Parveen et al. (2014) Environmental Impact • Demonstrated that Miscanthus can produce significant levels of bio-energy for the UK without negatively impacting the environment or food production • C fluxes for the transition of grassland to Miscanthus, revealed a credit to C stocks from the third year • Miscanthus leaf litter is a major contributor to McCalmont et al. (2015) longer term soil C McCalmont et al. (2016) References Clifton-Brown J., et al. (2016) Progress in upscaling Miscanthus biomass production for the European bio-economy with seed based hybrids. GCB Bioenergy doi: 10.1111/gcbb.12357 Corton J., et al. (2013) Bioenergy as a biodiversity management tool and the potential of a mixed species feedstock for bioenergy production in Wales. Bioresource Technology 129 pp. 142-149 da Costa R., et al. (2014) Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus AoB 114(6) pp. 1265-1277 McCalmont J., et al. (2015) Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. GCB Bioenergy Early View Online: doi: 10.1111/gcbb.12294 McCalmont J., et al. (2016) An inter-year comparison of CO2 flux and carbon budget at a commercial scale land-use transition from semiimproved grassland to Miscanthus x giganteus GCB Bioenergy Early View Online: doi: 10.1111/gcbb.12323 Robson P., et al. (2013a) Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield. J. Ex. Bot. 64 pp. 2373-2383 Robson P., et al. (2013b) Accelerating the domestication of a bioenergy crop: identifying and modelling morphological targets for sustainable yield increase in Miscanthus. J. Ex. Bot. 64 pp. 4143-4155 Parveen I., et al. (2014) Screening for potential co-products in a Miscanthus sinensis mapping family by liquid chromatography with mass spectrometry detection. Phytochemistry 105 pp.186-96 Purdy S., et al. (2015) Non-structural carbohydrate profiles and ratios between soluble sugars and starch serve as indicators of productivity for a bioenergy grass. AoB plants, plv032
© Copyright 2026 Paperzz