Calculus Quiz 13 1. (5 pts) ˆ bx 1 a. Evaluate the limit lim 3 sin(ct2 )dt, abc 6= 0. x→0 ax 0 b. Find r, s such that lim x−3 sin 3x + rx−2 + s = 0. x→0 Sol. ˆ a. It is clear that lim ax x→0 3 x→0 bx sin(ct2 )dt. = 0 = lim By 0 L’Hospital’s rule and FTC, we have that ˆ bx 1 b sin(b2 cx2 ) b sin(b2 cx2 ) lim 3 sin(ct2 )dt = lim = lim x→0 ax x→0 3ax2 3a x→0 x2 0 sin b2 cx2 b3 c b3 c = lim = 3a x→0 b2 cx2 3a sin 3x + rx + sx3 b. Let L = lim x−3 sin 3x+rx−2 +s = lim . x→0 x→0 x3 By L’Hospital’s rule 3 cos 3x + r + 3sx2 x→0 3x2 Since lim 3x2 = 0, the existence of L implies that x→0 lim 3 cos 3x + r + 3sx2 = 3 + r = 0 ⇒ r = −3 L = lim x→0 Since L = 0, so 1 − cos 3x sin 3x − 3x = lim 3 x→0 x x2 3 sin 3x 9 9 = lim cos 3x = = lim 2 x→0 x 2 x→0 2 s = − lim x→0 1. (5 pts) a. Evaluate the indefinite integral ˆ sin(ln x)dx b. If p(x) is a polynomial with deg p = n. Show that ˆ n X p(k) (x) ax ax p(x)e dx = e (−1)k k+1 + C a k=0 Sol. a. ˆ ˆ y ey sin ydy, by letting y=ln x⇒x=ey , dy= dx = edx y ⇒e dy=dx x ˆ u=ey , dv=sin ydy y = −e cos y + ey cos ydy, by letting du=ey dy, v=− cos y ˆ u=ey , dv=cos ydy y y = −e cos y + e sin y − ey sin ydy, by letting du=ey dy, v=sin y ˆ ey ey This shows that ey sin ydy = sin y− cos y+C. Thus 2 2 ˆ x x sin(ln x)dx = sin(ln x) − cos(ln x) + C 2 2 b. We prove the state by induction on n. For n = 0, then p(x) = p0 for some constant p0 and ˆ ˆ p0 ax p(x)e dx = p0 eax dx = eax + C a Suppose that the equality hold for polynomials p with deg p < k. Then if p(x) is a polynomial with deg p = k, ˆ ˆ p(x) ax 1 u=p(x), dv=eax dx ax e − p(x)e dx = p0 (x)eax dx, by letting du=p0 (x)dx, v= a1 eax a a Write q(x) = p0 (x), note that deg q = deg p0 = n − 1, so ˆ ˆ n−1 X q (k) (x) 0 ax ax ax p (x)e dx = q(x)e dx = e (−1)k k+1 + C a k=0 sin(ln x)dx = Hence ˆ n−1 p(x) ax eax X q (k) (x) ax p(x)e dx = e − (−1)k k+1 + C a a k=0 a n−1 X p(k+1) (x) (−1)k+1 +C k+2 a a k=0 n p(x) X p(k) (x) ax =e + (−1)k k+2 + C a a k=1 = eax =e ax p(x) n X k=0 + (−1)k p(k) (x) +C ak+1 By mathematical induction hypothesis, the equality holds for all n ∈ N.
© Copyright 2026 Paperzz