Letters to the Editor 220 + (1/3)p(g2/477:) (e-x/x) X (1+ (3/x) + (3/x 2» X [1 +3aT (e-"'/ x) +3bT (e- x/ X)2JS12 +p.GLS(e- x / x) [aLAe-x/x) +bis(e- z /x)2](L·S) , A Proton-Proton Potential Tetsuo Hamada The Daily Telegraph Theoretical Department, School of Physics University of Sydney Sydney, N. S. W., Australia A search has been going on for the energy independent potential which is consistent with the available pop scattering data. We report here on the preliminary results. Based on the belief that the potential must have the one·pion-exchange tail, we have assumed the following type of potentials: V+ (x) = - p. (g2/477:) (e-'"/ x) X [1+1ao+ (e--"/x) + Ib&(e--"/x) 2] , = (1/3)p.(g2/477:) (e-"'/x) X [1 +3ao (e- c/ x) +3bo (e- z / x) 2] 1 V ~ (x) Q12= - 0.0054p (e- x/ x 3) Q12, Q12=1/2·[(L·Ul) (L'U2) + (L'U2) (L'UI)]' There is some pion theoretical evidence for a weak, although long ranged, QpotentiaP) We did not find such a force useful for the triplet odd potential (2). The best over-all fit so far to the experimental data has been attained for the following values of parameters: (t/477:) =0.08, Ixt=0.343, 3xo =0.32, (1) 3V-(X) wherep=pion mass,x=pr, and (g2/477:) =effective pion-ncleon coupling constant. We have also assumed a hard core of radius lXd and 3X I; for (1) and (2), respectively. The singlet even potential (1) with the parameters given in (4) can reproduce the zero energy scattering parameters and at the same time ISO phase shift of MacGregor et al.'s solution 1 (MMS 1) at 310 Mev. l ) This potential, however, gives too large ID2 phase shifts above 100 Mev. The difficulty has been overcome by adding to (1) a weak quadratic spin-orbit potential (Q-potential) where* April 28, 1960 1 (2) la~=10, Ib6=9, 3ao =-9, 3bo =5, * Q12=-l(l+l) for the singlet states. Letters to the Editor sa;=-1.2, sb;=0.35, G.iS=-0.1474, a£s= -0.75, bLS =7.9. 6 (4) 0---- ,,I ,, , 0- : \~oc!-;'_:_ In. f •• -o-_Q ~/ 145Mev 95Mev -L • 0 0 0 •• 0 -- __________ ~_.:' __o__ .?_ Fig. 1. As an illustration we show in Figs. 1 to 4 the observable quantities calculated from (1) to (4) at 95 and 145 Mev. Experimental points are taken from Palmieri et al.,S) Hwang et al.,4) and Bird et al. 5) At lower energies the fit to the experimental data is quite satisfactory. At 310 Mev, on the other hand, the phase shifts calculated from the proposed potential are close to MMS 1 as shown in Table I. Table I. Phase shifts at 310 Mev. Entries are the nuclear Blatt·Biedenharn phase shifts in radians. 0.3 P 0.2 I the calculated from I potential (1) to (4) 0.1 0 -0.1 0---_ ! 0- -0.2 0 60 30 lSo 145Mev 95Mev 8 1D2 1G4 90 Fig. 2. 0;5 r--.--r---,--~-,--r_-r--~_, D /-J----t----y---------r----/' t- 0~~_7,'~',L~~~--~~~~~~ o Harvard} 145Mev o Harwell ---- 145Mev 95Mev 3Q 60 :0 90 Fig. 3. 0·---- 145Mev R 221 - 116 sPo sP1 sFs sH5 sP2 sF2 E2 sF4 sH4 E4 sH6 sK6 Eo -0.158 0.244 0.026 0.007 -0.198 -0.459 -0.069 -0.022 0.309 0.007 -0.101 0.080 0.001 -0.367 0.015 -0.006 -0.739 MMS 1 -0.156 0.207 0.013 -0.197 -0.480 -0.062 -0.020 0.291 0;020 -0.051 0.056 0.006. -0.215 0.004 A full account, with some possible refinements, will be published shortly. 95Mev O~--------------------_--~--~~-{ Fig. 4, 1) M. H. MacGregor, M. J. Moravcsik and H. P. Stapp, Phys. Rev. 116 (1959). 1248. 2) S. Okubo and R. E. Marshak, Ann. Phys. 4 (1958), 166. 3) J. N. Palmieri, A. M. Cormack, N. F. Ramsey and R. Wilson, Ann. Phys. 5 (1958), 299. 222 4) 5) Letters to the Editor C. F. Hwang, T. R. Cphel, E. H. Thorndike, R. Wilson and N. F. Ramsey, Phys. Rev. Letters 2 (1959), 310. L. Bird, D. N. Edwards, B. Rose, A. E. Taylor and E. Wood, Phys. Rev. Letters <l (1960), 302.
© Copyright 2025 Paperzz