INC 341 – Feedback Control Systems Transfer Functions of Transfer Functions of Physical Systems Physical Systems S Wongsa [email protected] Transfer Functions of Physical Systems Summary from previous class Definition & examples of control systems D fi iti & l f t l t Transfer functions & impedances of mechanical systems T(s) 1 Js Ds K 2 (s) Transfer Functions of Physical Systems Today’s goal Transfer functions of electrical systems Transfer functions of electro‐mechanical (DC motor) systems Nonlinearities & linearisation Transfer Functions of Physical Systems Models of electrical elements Z G I(s) Z(s) G(s)=1/Z(s) Pictures from ME451: Control Systems, J. Choi, Spring 2010. V(s) Transfer Functions of Physical Systems Kirchhoff’s Voltage & Current Laws KCL : A sum of the currents at a node is zero. i2 i1 i1 ‐ i2 ‐ i3= 0 i1 = i2 + i3 or i3 KVL : A sum of the voltages around a loop is zero. g p v1 vs ‐ v1 ‐ v2= 0 vs or v2 Transfer Functions of Physical Systems Example: simple RLC network Find the transfer function Vc(s)/V(s) t L di (t ) 1 Ri (t ) i ( )d v(t ) dt C0 L LsI ( s ) RI ( s ) I (s) 1 I ( s) V ( s) Cs V (s)s / L 1 R (s 2 s ) L LC Vc ( s) I ( s) Cs vs = v1 + v2 Transfer Functions of Physical Systems Example: two‐loop RLC network KVL: R1 I1 ( s ) ( I1 ( s ) I 2 ( s )) Ls V ( s ) ( I 2 ( s ) I1 ( s )) Ls I 2 ( s )( R2 1 )0 Cs ( R1 Ls ) I1 ( s ) LsI 2 ( s ) V ( s ) LsI L I1 ( s ) ( R2 Ls L 1 ) I 2 (s) 0 Cs Transfer Functions of Physical Systems Example: two‐loop RLC network • Node VL V ( s ) VL ( s ) VL ( s ) VL ( s ) VC ( s ) R1 Ls R2 1 G2 VL ( s ) G2VC ( s ) V ( s )G1 G1 Ls • Node V Node VC (VL ( s ) VC ( s )) VC ( s )Cs R2 G2VL ( s ) (G2 Cs )VC ( s ) 0 See Examples 2.12, 2.13 & Try Skill‐assessment Exercise 2.6 Transfer Functions of Physical Systems Operational Amplifier Characteristics of Op‐Amp 1 Differential input v2‐vv1 1. Differential input, v 2. High input impedance 3. Low output impedance 4. High constant gain amplifier ‐ 100,000 or more for integrated circuit op‐ amps. Mathematically, we often assume that A=. M th ti ll ft th t A vo (t ) A(v2 (t ) v1 (t )) Transfer Functions of Physical Systems Op‐Amp Inverting Op‐Amp I a ( s) 0 Vi ( s ) V (s) 0 Z1 Z2 I1 ( s ) I 2 ( s ) Vo ( s ) Z (s) 2 Vi ( s ) Z1 ( s ) Non inverting Op‐Amp Z1 ( s ) Vo ( s ) V1 ( s ) Z1 ( s ) Z 2 ( s ) Vo ( s ) A(Vi ( s ) V1 ( s )) Vo ( s ) Vi ( s) 1 A A Z1 ( s ) Z1 ( s ) Z 2 ( s ) A Vo ( s ) Z1 ( s ) Z 2 ( s ) Z (s) 1 2 Vi ( s ) Z1 ( s ) Z1 ( s ) Transfer Functions of Physical Systems Example Vo ( s ) Vi ( s) ( R2 Z1 ( s ) R1 1 ) sC2 R1 ( R2C2 s 1) R1C2 s 1 R (1 / C2 s ) , Z 2 ( s) 2 C1s R2 (1 / C2 s ) Vo ( s ) C2C1 R2 R1s 2 (C2 R2 C1 R2 C1 R1 ) s 1 Vi ( s) C2C1 R2 R1s 2 (C2 R2 C1 R1 ) s 1 See Example 2.14 Transfer Functions of Physical Systems DC motor Lorentz law: Faraday’s law: Current‐carrying conductor in magnetic field will induce electromagnetic force acting on the conductor. g Electromotive force (EMF) is generated in a conductor moving in a magnetic field. o g a ag e c e d Tm 2 Fr N 2(iBlr ) N (2 BNlr )i vb 2VBlN 2 ( m r ) BlN ( 2 BNlr ) m Tm K t i Multiple windings N From Dorf R. C. & Bishop R. H., Modern Control Systems, 9th ed. Addison‐Wesley, 2000. & 2.004 Dynamics & Control II, MIT OCW, Fall 2007. vb K bm Transfer Functions of Physical Systems DC motor with mechanical load Inductance & resistance of windings Equations of motion Electrical: Ea ( s ) I a ( s ) Ra La sI a ( s ) Vb ( s ) I a ( s ) Ra La sI a ( s ) K b s m ( s ) Load Mechanical: I a ( s) ( J m s 2 Dm s ) m ( s ) Tm ( J m s 2 Dm s ) m ( s ) Kt K t I a (s) Viscous fiction in motor bearings g Ea ( s ) I a ( s ) Ra La sI a ( s) K b s m ( s) ( J s 2 Dm s ) ( Ra La s ) m K b s m ( s ) Kt Transfer Functions of Physical Systems Realistic electrical properties Inductance & resistance of windings ( J s 2 Dm s ) K b s m ( s ) Ea ( s ) ( Ra La s ) m Kt La Ra ,i.e. La 0 Load Viscous fiction in motor bearings g m (s) Ea ( s ) K t /( Ra J m ) ( J s Dm ) Ea ( s ) s Ra m K b m ( s ) Kt R J D R s a m s m a K b m ( s ) Kt Kt K K 1 Dm b t s s Jm Ra m ( s) K t /( Ra J m ) K K 1 Dm t b s s Ra Jm Transfer Functions of Physical Systems How to find electrical constants of a motor Inductance & resistance of windings Given the equation I a ( s ) Ra La sI a ( s ) K bm ( s ) Ea ( s ) La 0 Load Ia(s)=Tm/Kt Ra Tm ( s ) K bm ( s ) Ea ( s ) Kt Viscous fiction in motor bearings g Ra Tm (t ) K bm (t ) ea (t ) Kt At steady‐state, Ra Tm K bm ea Kt Transfer Functions of Physical Systems How to find electrical constants of a motor Under a constant dc voltage ea, the torque and speed of a motor can be measured using a dynamometer, resulting in torque‐speed curves. Ra Tm K bm ea Kt m= 0 K t Tstall Ra ea ea1 ea2 Tm= 0 ea increases Kb ea noload Transfer Functions of Physical Systems Example: Exercise 2.23, pp. 79‐80. m (s) Ea ( s ) K t /( Ra J m ) K K 1 Dm t b s s J Ra m K t Tstall Ra ea Kb ea no load Try Skill‐assessment Exercise 2.11 Transfer Functions of Physical Systems Nonlinearity vs Linearity A linear system processes two properties: superposition & homogeneity. homogeneity superposition x1(t) y1(t) x2(t) y2(t) x1(t)+x2(t) y1(t)+y2(t) Transfer Functions of Physical Systems Some physical nonlinearities Nonlinear resistors, e.g. ‐ Varistors / VDR (Voltage Dependent Resistor) used to protect circuits against excessive transient voltages. ‐ Thermistors: special solid temperature‐sensing element where its resistance proportional to its p p temperature. Nonlinear springs, f k k1 x k3 x 3 Sources: http://en.wikipedia.org/wiki/Varistor http://automationwiki.com/index.php?title=Thermistors A. Carrella et al., Using nonlinear springs to reduce the whirling of a rotating shaft, Mechanical Systems and Signal Processing, Volume 23, Issue 7, October 2009, Pages 2228–223.5 Transfer Functions of Physical Systems Case study : Antenna Control Transfer Functions of Physical Systems Saturation Unity‐gain amplifier Ea The obtained velocity is limited. Transfer Functions of Physical Systems Deadzone Deadzone lower amplitude Transfer Functions of Physical Systems Backlash The gears finally connect Transfer Functions of Physical Systems Linearisation by small signal analysis We linearise a nonlinear system for small‐signal inputs (0) about the steady‐state solution, known as equilibrium. Using the Taylor series and neglecting higher‐order terms, we get x ‐ deviation variable f ( x) f ( x0 ) df dx ( x x0 ) x x0 Linearisation of f(x) Linearisation of f(x) Transfer Functions of Physical Systems Example Linearisation of a simple pendulum The motion equation: d 2 MgL J 2 sin T dt 2 Transfer Functions of Physical Systems Example Linearisation of a simple pendulum J d 2 MgL sin T dt 2 2 Equilibrium Equilibrium 0 0 T0 0. Define D fi 0 , T T T0 Linearisation MgL M L MgL M L M L MgL MgL M L sin sin 0 cos 0 ( 0 ) 2 2 2 2 Linearised differential equation NB: we express each variable in deviation from the steady state operating point steady‐state operating point. J d 2 MgL T dt 2 2 Linearised Li i d transfer function t f f ti 0 , T T T0 See Example 2.28 & Try Skill‐assessment Exercise 2.13 ( Js 2 MgL ) ( s ) T ( s ) 2 ( s ) 1/ J T ( s ) s 2 MgL 2J Transfer Functions of Physical Systems Readings Jirka Routbal et al., Linearization: Students Forget the Operating Point, IEEE Transactions on Education, Vol. 53, No. 3, August 2010, pp. 413‐418. Creating model of engineering systems: http://www.freestudy.co.uk/control/t1.pdf Introduction: Simulink Modeling: http://control.me.cmu.edu/ctms/index.php?example=Introduction§ion =SimulinkModeling Using Simulink to Model Continuous Dynamical Systems http://www.mathworks.com/academia/student_center/tutorials/sltutorial_launch http://www mathworks com/academia/student center/tutorials/sltutorial launch pad.html# Transfer Functions of Physical Systems Summary Transfer function of electrical systems f f i f l i l KCL KVL v1 i2 i1 i3 vs vo (t ) A(v2 (t ) v1 (t )) v2 Transfer function of DC motor with initial load, bearings and negligible inductance Inductance & resistance of windings m (s) Ea ( s ) Load Vi Viscous fiction in motor bearings fi i i b i Linearisation f ( x) f ( x0 ) df dx ( x x0 ) x x0 K t /( Ra J m ) K K 1 Dm t b s s J Ra m Transfer Functions of Physical Systems Next class First‐order systems response First order systems response Second‐order systems response ‐ types of 2nd‐order systems & their behaviours 4 1 4 8 of Ch4 4.1‐4.8 of Ch4. ‐ time domain specifications Effects of additional poles & zeros Block diagrams (5.1‐5.3 of Ch5.) Please read these topics before coming to the next class!
© Copyright 2026 Paperzz