IntroductoryPhysics PHYS101 Dr RichardH.Cyburt AssistantProfessorofPhysics Myoffice:402cintheScienceBuilding Myphone:(304)384-6006 Myemail:[email protected] Inpersonoremailisthebestwaytogetaholdofme. PHYS101 MyOfficeHours TRF9:30-11:00am F12:30-2:00pm Meetingsmayalsobearrangedatothertimes,byappointment PHYS101 PHYS101:IntroductoryPhysics 400 Lecture:8:00-9:15am,TRScienceBuilding Lab1:3:00-4:50pm,FScienceBuilding304 Lab2:1:30-3:20pm,MScienceBuilding304 Lab3:3:30-5:20pm,MScienceBuilding304 Lab20:6:00-7:50pm,MScienceBuilding304 PHYS101 MasteringPhysicsOnline GotoHYPERLINK"http://www.masteringphysics.com."www.masteringphysics.com. ◦ UnderRegisterNow,selectStudent. ◦ Confirmyouhavetheinformationneeded,thenselectOK!Registernow. RCYBURTPHYS101),andchooseContinue. ◦ Enteryourinstructor’sCourseID( ◦ EnteryourexistingPearsonaccountusername andpassword andselectSignin. ◦ YouhaveanaccountifyouhaveeverusedaPearsonMyLab &Masteringproduct,suchasMyMathLab,MyITLab,MySpanishLab,or MasteringChemistry. ◦ Ifyoudon’thaveanaccount,select Create andcompletetherequiredfields. ◦ Selectanaccessoption. ◦ Entertheaccesscodethatcamewithyourtextbookorwaspurchasedseparatelyfromthebookstore. PHYS101 IntroductoryPhysics PHYS101 DouglasAdams Hitchhiker’sGuidetotheGalaxy PHYS101 You’realreadyknowphysics! Youjustdon’tnecessarilyknowtheterminologyand languageweuse!!! PhysicsofNASCAR PhysicsofAngerBirds PHYS101 Inclass!! PHYS101 Thislecturewillhelpyouunderstand: DescribingMotion UniformMotion InstantaneousVelocity Acceleration PHYS101 Chapter2Preview LookingBack:MotionDiagrams AsyousawinSection1.5,agoodfirststepinanalyzingmotionistodrawamotiondiagram, markingthepositionofanobjectinsubsequenttimes. Inthischapter,you’lllearntocreatemotiondiagramsfordifferenttypesofmotionalongaline. Drawingpictureslikethisisagoodstaringpointforsolvingproblems. ©2015PearsonEducation,Inc. Chapter2Preview StoptoThink Abicycleismovingtotheleftwithincreasingspeed.Whichofthefollowingmotiondiagrams illustratesthismotion? ©2015PearsonEducation,Inc. Section2.1Describing Motion ©2015PearsonEducation,Inc. RepresentingPosition Themotiondiagramofastudentwalkingtoschoolanda coordinateaxisformakingmeasurements EverydotinthemotiondiagramofFigure2.2representsthestudent’spositionataparticular time. Figure2.3showsthe student’smotionshows thestudent’spositionas agraph ofx versust. ©2015PearsonEducation,Inc. FromPositiontoVelocity Onaposition-versus-timegraph,afaster speedcorrespondstoasteeperslope. Theslopeofanobject’sposition-versus-time graphistheobject’svelocityatthatpointin themotion. ©2015PearsonEducation,Inc. FromPositiontoVelocity Text:p.31 ©2015PearsonEducation,Inc. FromPositiontoVelocity Wecandeducethevelocity-versus-timegraph fromtheposition-versus-timegraph. Thevelocity-versus-timegraphisyetanother waytorepresentanobject’smotion. ©2015PearsonEducation,Inc. QuickCheck 2.2 Hereisamotiondiagramofacarmovingalongastraightroad: Whichvelocity-versus-timegraphmatchesthismotiondiagram? E. None of the above. ©2015PearsonEducation,Inc. QuickCheck 2.2 Hereisamotiondiagramofacarmovingalongastraightroad: Whichvelocity-versus-timegraphmatchesthismotiondiagram? C. E. None of the above. ©2015PearsonEducation,Inc. QuickCheck 2.3 Hereisamotiondiagramofacarmovingalongastraightroad: Whichvelocity-versus-timegraphmatchesthismotiondiagram? ©2015PearsonEducation,Inc. QuickCheck 2.3 Hereisamotiondiagramofacarmovingalongastraightroad: Whichvelocity-versus-timegraphmatchesthismotiondiagram? D . ©2015PearsonEducation,Inc. QuickCheck 2.4 Agraphofpositionversustimeforabasketballplayermovingdownthecourt appearsasfollows: Whichofthefollowingvelocitygraphsmatchesthepositiongraph? A. ©2015PearsonEducation,Inc. B. C. D. QuickCheck 2.4 Agraphofpositionversustimeforabasketballplayermovingdownthecourt appearsasfollows: Whichofthefollowingvelocitygraphsmatchesthepositiongraph? C. A. ©2015PearsonEducation,Inc. B. D. Example2.2Analyzingacar’sposition graph FIGURE2.11 givestheposition-versus-timegraphofacar. a. Drawthecar’svelocityversus-timegraph. b. Describethecar’smotion inwords. PREPARE Figure2.11isagraphicalrepresentationofthemotion.Thecar’s position-versus-timegraphisasequenceofthreestraightlines.Eachofthese straightlinesrepresentsuniformmotionataconstantvelocity.Wecan determinethecar’svelocityduringeachintervaloftimebymeasuringtheslope oftheline. ©2015PearsonEducation,Inc. Example2.2Analyzingacar’sposition graph(cont.) SOLVE a. Fromt=0stot=2s(Δt =2s)thecar’sdisplacementis Δx =-4m- 0m=-4m.Thevelocityduringthisintervalis Thecar’spositiondoesnotchange fromt=2stot=4s(Δx =0m),so vx =0m/s.Finally,thedisplacement betweent=4sandt=6s(Δt =2s)is Δx =10m.Thusthevelocityduring thisintervalis ThesevelocitiesarerepresentedgraphicallyinFIGURE 2.12. ©2015PearsonEducation,Inc. Example2.2Analyzingacar’sposition graph(cont.) SOLVE b. Thevelocity-versus-timegraphof Figure2.12showsthemotionina waythatwecandescribeina straightforwardmanner:Thecar backsupfor2sat2m/s,sitsat restfor2s,thendrivesforwardat 5m/sfor2s. ASSESS Noticethatthevelocitygraphandthepositiongraphlookcompletely different.Theyshould!Thevalueofthevelocitygraphatanyinstantoftime equalstheslopeofthepositiongraph.Sincethepositiongraphismadeupof segmentsofconstantslope,thevelocitygraphshouldbemadeupof segmentsofconstantvalue,asitis.Thisgivesusconfidencethatthegraph wehavedrawniscorrect. ©2015PearsonEducation,Inc. FromVelocitytoPosition Wecandeducetheposition-versus-timegraph fromthevelocity-versus-timegraph. Thesignofthevelocitytellsuswhetherthe slopeofthepositiongraphispositiveor negative. Themagnitudeofthevelocitytellsushow steeptheslopeis. ©2015PearsonEducation,Inc. QuickCheck 2.1 Hereisamotiondiagramofacarmovingalongastraightroad: Whichposition-versus-timegraphmatchesthismotiondiagram? ©2015PearsonEducation,Inc. QuickCheck 2.1 Hereisamotiondiagramofacarmovingalongastraightroad: Whichposition-versus-timegraphmatchesthismotiondiagram? E. ©2015PearsonEducation,Inc. QuickCheck2.6 Agraphofvelocityversustimeforahockeypuckshotintoagoalappears asfollows: Whichofthefollowingpositiongraphsmatchesthevelocitygraph? A. ©2015PearsonEducation,Inc. B. C. D. QuickCheck2.6 Agraphofvelocityversustimeforahockeypuckshotintoagoalappears asfollows: Whichofthefollowingpositiongraphsmatchesthevelocitygraph? A. ©2015PearsonEducation,Inc. B. C. D. (d) QuickCheck 2.7 Whichvelocity-versus-timegraph goeswiththispositiongraph? ©2015PearsonEducation,Inc. QuickCheck 2.7 Whichvelocity-versus-timegraph goeswiththispositiongraph? C. ©2015PearsonEducation,Inc. Section2.2Uniform Motion ©2015PearsonEducation,Inc. UniformMotion Straight-linemotioninwhichequal displacementsoccurduringany successiveequal-timeintervalsis calleduniformmotion orconstantvelocitymotion. Anobject’smotionisuniformifand onlyifitsposition-versus-timegraph isastraightline. ©2015PearsonEducation,Inc. EquationsofUniformMotion Thevelocityofanobjectinuniformmotiontellsustheamountbywhichits positionchangesduringeachsecond. ThedisplacementΔx isproportionaltothetimeintervalΔt. ©2015PearsonEducation,Inc. QuickCheck 2.8 Hereisapositiongraph ofanobject: Att =1.5s,theobject’s velocityis ◦ 40m/s ◦ 20m/s ◦ 10m/s ◦ –10m/s ◦ Noneoftheabove ©2015PearsonEducation,Inc. QuickCheck 2.8 Hereisapositiongraph ofanobject: Att =1.5s,theobject’s velocityis ◦ ◦ ◦ ◦ ◦ 40m/s 20m/s 10m/s –10m/s Noneoftheabove ©2015PearsonEducation,Inc. Example2.3IfatrainleavesClevelandat 2:00… Atrainismovingduewestataconstantspeed. Apassengernotesthatittakes10minutestotravel12km. Howlongwillittakethetraintotravel60km? ©2015PearsonEducation,Inc. Example2.3IfatrainleavesClevelandat 2:00…(cont.) SOLVE Wearecomparingtwocases:thetimetotravel12kmandthetimetotravel60km. BecauseΔx isproportionaltoΔt,theratioofthetimeswillbeequaltotheratioofthedistances. Theratioofthedistancesis Thisisequaltotheratioofthetimes: Ittakes10minutestotravel12km,soitwilltake50minutes—5timesaslong—totravel60km. ©2015PearsonEducation,Inc. ExampleProblem Asoccerplayeris15mfromheropponent’sgoal. Shekickstheballhard;after0.50s,itfliespastadefenderwho stands5maway,andcontinuestowardthegoal. Howmuchtimedoesthegoaliehavetomoveintopositiontoblock thekickfromthemomenttheballleavesthekicker’sfoot? ©2015PearsonEducation,Inc. FromVelocitytoPosition,OneMore Time ThedisplacementΔx isequaltotheareaunderthevelocitygraphduringthetimeintervalΔt. ©2015PearsonEducation,Inc. QuickCheck 2.11 Hereisthevelocitygraphofanobjectthatisattheorigin (x = 0m)att = 0s. Att = 4.0s,theobject’s positionis ◦ 20m ◦ 16m ◦ 12m ◦ 8m ◦ 4m ©2015PearsonEducation,Inc. QuickCheck 2.11 Hereisthevelocitygraphofanobjectthatisattheorigin (x = 0m)att = 0s. Att = 4.0s,theobject’s positionis ◦ 20m ◦ 16m ◦ 12m ◦ 8m ◦ 4m Displacement = area under the curve ©2015PearsonEducation,Inc. Section2.3 InstantaneousVelocity ©2015PearsonEducation,Inc. InstantaneousVelocity Forone-dimensionalmotion,anobjectchangingitsvelocityiseitherspeeding uporslowingdown. Anobject’svelocity—aspeedand adirection—ataspecificinstant oftimet is calledtheobject’s instantaneousvelocity. Fromnowon,the word“velocity”will alwaysmean instantaneousvelocity. ©2015PearsonEducation,Inc. FindingtheInstantaneousVelocity Ifthevelocitychanges,thepositiongraphisacurvedline.Butwecan computeaslopeatapointbyconsideringasmallsegmentofthe graph.Let’slookatthemotioninaverysmalltimeintervalright aroundt=0.75s.Thisishighlightedwithacircle,andweshowa closeup inthenextgraph. ©2015PearsonEducation,Inc. FindingtheInstantaneousVelocity Inthismagnifiedsegmentofthepositiongraph,thecurveisn’t apparent.Itappearstobealinesegment.Wecanfindtheslopeby calculatingtheriseovertherun,justasbefore: vx =(1.6m)/(0.20s)=8.0m/s Thisistheslopeatt=0.75sandthusthevelocityatthisinstantoftime. ©2015PearsonEducation,Inc. FindingtheInstantaneousVelocity Graphically,theslopeofthe curveatapointisthesame astheslopeofastraightline drawntangent tothecurveat thatpoint.Calculatingrise overrunforthetangentline, weget vx =(8.0m)/(1.0s)=8.0m/s Thisisthesamevalueweobtainedfromthecloseup view.Theslopeofthetangentlineisthe instantaneousvelocityatthatinstantoftime. ©2015PearsonEducation,Inc. InstantaneousVelocity Evenwhenthespeedvarieswecanstillusethevelocity-versus-timegraphtodetermine displacement. Theareaunderthecurveinavelocity-versus-timegraphequalsthedisplacementevenfornonuniformmotion. ©2015PearsonEducation,Inc. QuickCheck 2.5 Theslopeatapointonaposition-versus-timegraphofanobjectis ◦ Theobject’sspeedatthatpoint. ◦ Theobject’svelocityatthatpoint. ◦ Theobject’saccelerationatthatpoint. ◦ Thedistancetraveledbytheobjecttothatpoint. ◦ Iamnotsure. ©2015PearsonEducation,Inc. QuickCheck 2.5 Theslopeatapointonaposition-versus-timegraphofanobjectis ◦ Theobject’sspeedatthatpoint. ◦ Theobject’svelocityatthatpoint. ◦ Theobject’saccelerationatthatpoint. ◦ Thedistancetraveledbytheobjecttothatpoint. ◦ Iamnotsure. ©2015PearsonEducation,Inc. QuickCheck2.10 MassesP andQ movewiththepositiongraphsshown.DoP andQ everhavethesamevelocity?Ifso,atwhattimeortimes? ◦ ◦ ◦ ◦ P andQ havethesamevelocityat2s. P andQ havethesamevelocityat1sand3s. P andQ havethesamevelocityat1s,2s,and3s. P andQ neverhavethesamevelocity. ©2015PearsonEducation,Inc. QuickCheck2.10 MassesP andQ movewiththepositiongraphsshown.DoP andQ everhavethesamevelocity?Ifso,atwhattimeortimes? ◦ ◦ ◦ ◦ P andQ havethesamevelocityat2s. P andQ havethesamevelocityat1sand3s. P andQ havethesamevelocityat1s,2s,and3s. P andQ neverhavethesamevelocity. ©2015PearsonEducation,Inc. QuickCheck2.13 Acarmovesalongastraightstretchofroad.Thefollowinggraphshowsthecar’s positionasafunctionoftime: Atwhatpoint(orpoints)dothefollowingconditionsapply? • Thedisplacementiszero. • Thespeediszero. • Thespeedisincreasing. • Thespeedisdecreasing. ©2015PearsonEducation,Inc. QuickCheck2.13 Acarmovesalongastraightstretchofroad.Thefollowinggraphshowsthecar’s positionasafunctionoftime: Atwhatpoint(orpoints)dothefollowingconditionsapply? • Thedisplacementiszero. D • Thespeediszero. B,E • Thespeedisincreasing. C • Thespeedisdecreasing. A ©2015PearsonEducation,Inc. Section2.4Acceleration ©2015PearsonEducation,Inc. Acceleration Wedefineanewmotionconcepttodescribeanobjectwhosevelocityischanging. ◦ TheratioofΔvx/Δt istherateofchangeofvelocity. ◦ TheratioofΔvx/Δt istheslopeofavelocity-versus-timegraph. ©2015PearsonEducation,Inc. UnitsofAcceleration InourSIunitofvelocity,60mph=27m/s. TheCorvettespeedsupto27m/sinΔt=3.6s. Everysecond,theCorvette’svelocity changesby7.5m/s. ©2015PearsonEducation,Inc. Itiscustomarytoabbreviate theaccelerationunits(m/s)/sasm/s2,which wesayas“meterspersecond squared.” Example2.6Animalacceleration Lions,likemostpredators,arecapableofveryrapidstarts.Fromrest,alioncansustainan accelerationof9.5m/s2 foruptoonesecond.Howmuchtimedoesittakealiontogofromrest toatypicalrecreationalrunner’stopspeedof10mph? PREPARE WecanstartbyconvertingtoSIunits.Thespeedthelionmustreachis Thelioncanaccelerateat9.5m/s2,changingitsspeedby9.5m/spersecond,foronly1.0s—long enoughtoreach9.5m/s.Itwilltakethelionlessthan1.0storeach4.5m/s,sowecanuseax = 9.5m/s2 inoursolution. ©2015PearsonEducation,Inc. Example2.6Animalacceleration(cont.) SOLVE Weknowtheaccelerationandthedesiredchangeinvelocity,sowecanrearrangeEquation 2.8tofindthetime: ASSESS Thelionchangesitsspeedby9.5meterspersecondinonesecond.Soit’sreasonable(ifa bitintimidating)thatitwillreach4.5m/sinjustunderhalfasecond. ©2015PearsonEducation,Inc. Inclass!! PHYS101
© Copyright 2026 Paperzz