Mathematics 1 Grade7 Geometry:Construction Constructingaperpendicularlinewitha compass: Step1:PlacethecompassonpointMabovea line Step2:Extendcompasswidthbeyondtheline andmaketwoarcsontheline,oneitherside pointM. Step3:Keepingthecompassasitis,movethe compasstopointNandmakeasmallarc,then movethecompasstopointOandmakeanother smallarctoformacrossbow Step4:ConnectpointMtothepointwherethe twoarcsinStep3cross MP⊥NO ConstructingParallellinesusingacompass: Parallellinesarelinesthatareanequaldistancefrom eachotheratanypointonthetwolines. Parallellinescanbeconstructedwithacompassusing avarietyofmethods. ≫ Step5 Step6 Step3 Step1:DrawalinesegmentAB Step4 Step2:ConstructalineCFthroughapointEonline ABsothatCF⊥AB Step1 ≫ Step3:MarkapointDonlineCF Step2 Step4:PlacethecompassonpointDandmaketwo arcs(bandb1)onbothsidesofpointD Step5:Setthecompasstobethedistancebetweenb1andb,putthecompassonpointb, andthenb1,andmaketwocrossbowsonbothsidesofpointD Step6:DrawalinePQthroughthecrossbowsandpointD LinePQwillbeparalleltolineAB(AB∥PQ) Mathematics 2 Grade7 Geometry:Construction Locus(plural–loci) Alocusisapaththatmovesaroundaspecificpointaccordingtosomerule. Example: ThelocusofapointmovesaroundpointEsothatitisatalltimesafixed distanceawayfromthepoint.Whatshapewillitform? Thelocuswillmoveintheshapeofacircle. Grade7learnersneednotknowthedetailsofloci,this justhelpstoexplainbisectinglines. Perpendicularbisectorofaline Perpendicularmeansalinecrossesanotherlineatanangleof90°. Bisectormeanstocutinhalf. ThelocusofapointthatmovessothatitisexactlythesamedistancefrompointAand pointBoflinesegmentABwillbeaperpendicularbisectoroftheline. Constructingaperpendicularbisector: E Step1:DrawalinesegmentAB Step2:PutyourcompassonpointAanddraw anarcoverhalfway Step3:Keepingthecompassasitis,putthe compassonpointBanddrawanarccrossing thearcinStep2 Step4:DrawalinethroughpointsEandF, wherethetwoarcsintersect Step5:ThepointwherelineABandlineCD meets,isthemidpointandAB⊥CD F Mathematics Bisectinganangle: 3 Geometry:Construction Whenanangleisbisected,theanglewillbedividedintotwoexactlyequalangles. Step1:DrawananglewithavertexX Step2:PlaceyourcompassonpointXanddrawanarcacross bothraysoftheangle Step3:Keepingthecompassasitis,putthecompassonpoint Yanddrawanarcinthemiddleoftheangle Step4:Keepingthecompassasitis,putthecompassonpoint Zanddrawanarcinthemiddleoftheangle,crossingthearc madeinStep3 Step5:Drawalinethroughthemiddlepointwherethetwo arcsmeet. AngleYXWwillnowbeequaltoangleWXZ Practice1: Constructthefollowing,usingyourcompass: 1. ConstructMN⊥PQ,thenconstructRS∥PQ,throughpointM. Grade7 Mathematics 4 Grade7 Practice2: Constructthefollowing: 1. Circlewitharadiusof2cm 2. Circlewithadiameterof3cm Practice3: Replicatethefollowingcirclepatternsonapieceofscrappaper: Practice4: DrawthefollowingonthecirclewithAasthecentre,thenlabeleachpart. AREA1 AREA2 LineCD LineEF LineAB Area1(formed bylineEF) Area2(formed bylineABand AD) Mathematics 5 Practice5: Constructthefollowingangles: 1. ∠𝐴𝐵𝐶 = 38° 3. ∠𝑀𝑁𝑂 = 192° 5. Bisectangle∠𝐷𝐸𝐹 = 60° Grade7 2. ∠𝑃𝑄𝑅 = 106° 4. ∠𝐴𝐵𝐶 = 280° 6. Bisectangle∠𝐻𝐼𝐽 = 88° Mathematics 6 Grade7 MEMO: Practice1: Constructthefollowing,usingyourcompass: 1. ConstructPQ∥RS.DrawapointMonlineRS,thenconstructMN⊥PQ. (Compassmarksnotshownonthisconstruction–refertopage1forinstructions) ≫ ≫ Practice2: Constructthefollowing: 1. Circlewitharadiusof2cm 2. Circlewithadiameterof3cm Practice3: (Notdrawntoscale) Replicatethefollowingcirclepatternsonapieceofscrappaper: Mathematics Practice4: 7 Grade7 DrawthefollowingonthecirclewithAasthecentre,thenlabeleachpart: LineCD diameter LineEF chord LineAB radius Area1(formed bylineEF) Area2(formed bylineABand AD) segment sector Practice5: Constructthefollowingangles:(Variancesof2°eitherwayallowed) 1. ∠𝐴𝐵𝐶 = 38° 2. ∠𝑃𝑄𝑅 = 106° EastofNorth(right-facing) 3. ∠𝑀𝑁𝑂 = 192° 5. WestofNorth(left-facing) Bisectangle∠𝐷𝐸𝐹 = 60° Bisector=EG EastofNorth(right-facing) 4. ∠𝐴𝐵𝐶 = 280° 6. WestofNorth(left-facing) Bisectangle∠𝐻𝐼𝐽 = 88° Bisector=IK
© Copyright 2026 Paperzz