X-Ray Refraction for Hard X-Rays XFEL Applications A.G. Turyanskiy, M.A. Negodaev, R.A. Khmelnitskiy, V.G. Ralchenko Ryn • 2010 Scientific collaborators Dr. Ralchenko A.M. Prokhorov General Physics Institute, Moscow Dr. Khmelnitskiy P.N. Lebedev Physical Institute Moscow Dr. Negodaev P.N. Lebedev Physical Institute, Moscow X-ray refractometry Retrospective B. Davis, C.M. Slack. “Measurement of the refraction of X-rays in a prism by means of the double crystal X-ray spectrometer”. Phys. Rev., v. 27, (1926) pp. 18-22. S M1 P α M2 Δθ S – slit, P – prism, M1, M2 – crystal monochromators, Δθ –deviation angle, α − prism apex angle α=160o-170o Δθ~10// Prism spectrometer basic scheme main detector sample sample prism prism goniometer reference detector X-ray emission spectrum Cu-anode, U=40 kV, take-off angle 5,5o ΔE(CuKβ)=97 eV CuKα CuKβ 2 d N/dΩdE, a.u. 1000 100 5000 20000 10000 E, eV 40000 X-ray prism spectrometry X-ray emission (1) and absorption angle spectra (2) (sample C10H7Br, 3 – normalized derivative of the curve 2 ) 1600 CuKβ 1400 Br K-jump 1200 I (arb.un.) 1000 + I 800 1 600 2 400 200 0 CuKα I - Zn Ni 3 -200 0,02 0,04 0,06 0,08 Ψ (deg) 0,10 0,12 X-ray refraction and reflection at the flat boundary for media with complex index of refraction Snell’s law δ >> β n1 sin ϕ 2 = n2 sin ϕ1 Ψ = θ1 − θ 2 = θ1 − θ12 ± 2δ ( E) angle of deviation n = 1 − δ ( E ) − iβ ( E ) B A n1 n2 θ1 C θ1→ θc θ1→ 0 singularity angles ϕ1 D O ϕ2 θ2 ϕr A’ B’ D’ θr C’ x r1, 2 k1 − k 2 =γ k1 + k 2 reflectivity amplitude z k – wave vector, γ – surface roughness factor Materials for X-ray refraction application at XFEL Monocrystal diamond properties Short list Be, B, B4C 1. Thermal conductivity, W/cm К >100 (80 К) >20 (300 К) 2. Atomic number, Z 6 3. Density, g/cm3 3,515 4. Linear expansion 9,1 10-7 coefficient, К-1 Carbon modifications - graphite - amorphous C - diamond Very hard X-rays E>100 keV substance ρ, g/cm3 δ x108 θc, mrad (″) μρ, cm-1 CoP 6,24 0,98 0,442 (91) 1,7 FeP 6,07 0,96 0,44 (90) 1,6 MnB2 6,9 1,05 0,46 (95) 1,6 VN 6,13 0,95 0,44 (90) 1,4 Data for UKβ – spectral line (E=111 keV) Application energy range 5÷100 keV Basic dispersion geometries General features de 1 Double deviation angle Low-energy cut-off Decreased aperture Prism refracting surface requirements σ < 1 nm Δh < 10 nm (L=1 cm) 3 2 Angle magnification Low-energy cut-off Angle demagnification Unlimited energy range XFEL harmonics determination by a diamond prism I, a.u. 10000 E=30 keV k=0,09 E=50 keV k=1 E=10 keV k=0,001 1000 100 0,5 1,0 1,5 2,0 2,5 Ψ, mrad 3,0 3,5 4,0 XFEL harmonics selection by a diamond prism H1 H3 H5 Ψ, angle sec 800 1000 E1=12 keV E3=36 keV E5=60 keV A, μm 700 600 500 100 400 300 10 200 100 1 175 176 177 178 apex angle, degr 179 180 0 175 176 177 178 apex angle, degr 179 180 Influence of refracting face size Interference pattern due to finite face size 1 I, a.u 2,8 1 3 de/λ=5x10 1. q=1 2. q=2 3. q=4 4. q=8 0,1 log(Io/It) I, a.u. ΔE1=2 eV ΔE2=7 eV 2,6 2 3 3 0,01 2,4 4 2 1E-3 1 -0,8 -0,6 -0,4 -0,2 0,0 Ψ, mrad 0,2 0,4 0,6 0,8 2,2 1 11900 12000 12100 E, eV 1- Be prism 2 – diamond prism 3 – As2S3 (XAFS database) 0,5 Heat transfer in the diamond prism Radiation conditions E=12 keV, N=1012 photon per pulse Beam diameter 400 μm Prism dimensions, mm: W x H x L 3 x 0,5 x 12 F=5 MHz Room temperature, 293 K (20o C) Heat transfer in the diamond prism at room temperature Heat transfer in the diamond prism at liquid nitrogen temperature (80 K) Heat transfer in the diamond prism at liquid nitrogen temperature (80 K) Part1.SLDPRT [test 3 diamond - impulse] 190 180 130 150 Temperature of Solid [K] T e m p e ra tu re o f S o lid [K ] 170 130 110 90 GG Av Temperature of Solid 1 GG Max Temperature of Solid 1 80 GG Min Temperature of Solid 1 GG Av Temperature of Solid 1 GG Max Temperature of Solid 1 30 70 0 0,0000001 0,0000002 0,0000003 0,0000004 -20 50 0 0.0002 0.0004 0.0006 0.0008 0.001 Physical time (s) 0.0012 Physical time (s) 0.0014 0.0016 0.0018 0.002 0,0000005 0,0000006 Diffraction effects X-ray transmission spectra structure for monocrystal diamond in crystallographic direction [100] E, keV 40 35 (620) (511) 30 25 20 15 10 5 0 (622) (531) (444) (422) (311) (440) (531) (331) (333) (620) (622) (511) (422) (331) (220) (400) (311) (111) (531) reflex splitting deviation Δϑ=6' 19,24 19,30 19,15 Beam harmonics monitoring and beam profiling Strip detector prism XFEL beam TER mirror Monitoring scheme XFEL beam Profiling scheme Prism spectrometer general view and its dimensions Strip detector prism TER mirror XFEL beam 100-120 (50-60) mm L 10-20 mm Prism adjustment system 2-prism, 8-prism support, 9,10-cooler, isolator, 12-goniometer, 13,15 step motors,16-support,14,17- translation stages Prism technology achievements Large 10 mm refraction face 2,5 mm refraction face 1 mm Mosaic structure prism with very large refraction and reflection face Conclusions Possible applications of prism refraction optics ♦ Investigation of absorption spectra including single-shot measurements ♦ Monitoring of XFEL harmonics and spontaneous radiation spectrum ♦ Space splitting of XFEL harmonics ♦ Selection of predetermined spectral bands Thank you for attention
© Copyright 2026 Paperzz