X-Ray Refraction for Hard X

X-Ray Refraction for Hard X-Rays
XFEL Applications
A.G. Turyanskiy, M.A. Negodaev, R.A. Khmelnitskiy,
V.G. Ralchenko
Ryn • 2010
Scientific collaborators
Dr. Ralchenko
A.M. Prokhorov General
Physics Institute, Moscow
Dr. Khmelnitskiy
P.N. Lebedev Physical Institute
Moscow
Dr. Negodaev
P.N. Lebedev Physical
Institute, Moscow
X-ray refractometry
Retrospective
B. Davis, C.M. Slack. “Measurement of the refraction of X-rays in a
prism by means of the double crystal X-ray spectrometer”. Phys.
Rev., v. 27, (1926) pp. 18-22.
S
M1
P
α
M2
Δθ
S – slit, P – prism, M1, M2 – crystal monochromators,
Δθ –deviation angle, α − prism apex angle
α=160o-170o
Δθ~10//
Prism spectrometer basic scheme
main
detector
sample
sample
prism
prism goniometer
reference
detector
X-ray emission spectrum
Cu-anode, U=40 kV, take-off angle 5,5o
ΔE(CuKβ)=97 eV
CuKα
CuKβ
2
d N/dΩdE, a.u.
1000
100
5000
20000
10000
E, eV
40000
X-ray prism spectrometry
X-ray emission (1) and absorption angle spectra (2)
(sample C10H7Br, 3 – normalized derivative of the curve 2 )
1600
CuKβ
1400
Br K-jump
1200
I (arb.un.)
1000
+
I
800
1
600
2
400
200
0
CuKα
I
-
Zn
Ni
3
-200
0,02
0,04
0,06
0,08
Ψ (deg)
0,10
0,12
X-ray refraction and reflection at the flat boundary for
media with complex index of refraction
Snell’s law
δ >> β
n1 sin ϕ 2
=
n2 sin ϕ1
Ψ = θ1 − θ 2 = θ1 − θ12 ± 2δ ( E)
angle of deviation
n = 1 − δ ( E ) − iβ ( E )
B
A
n1
n2
θ1
C
θ1→ θc θ1→ 0
singularity angles
ϕ1
D
O
ϕ2
θ2
ϕr
A’
B’
D’
θr
C’
x
r1, 2
k1 − k 2
=γ
k1 + k 2
reflectivity amplitude
z
k – wave vector, γ – surface roughness factor
Materials for X-ray refraction application
at XFEL
Monocrystal diamond
properties
Short list
Be, B, B4C
1. Thermal conductivity, W/cm К
>100 (80 К)
>20 (300 К)
2. Atomic number, Z
6
3. Density, g/cm3
3,515
4. Linear expansion
9,1 10-7
coefficient, К-1
Carbon modifications
- graphite
- amorphous C
- diamond
Very hard X-rays E>100 keV
substance
ρ, g/cm3
δ x108
θc, mrad (″)
μρ, cm-1
CoP
6,24
0,98
0,442 (91)
1,7
FeP
6,07
0,96
0,44 (90)
1,6
MnB2
6,9
1,05
0,46 (95)
1,6
VN
6,13
0,95
0,44 (90)
1,4
Data for UKβ – spectral line (E=111 keV)
Application energy range 5÷100 keV
Basic dispersion geometries
General features
de
1
Double deviation angle
Low-energy cut-off
Decreased aperture
Prism refracting surface
requirements
σ < 1 nm
Δh < 10 nm (L=1 cm)
3
2
Angle magnification
Low-energy cut-off
Angle demagnification
Unlimited energy range
XFEL harmonics determination by a diamond prism
I, a.u.
10000
E=30 keV
k=0,09
E=50 keV
k=1
E=10 keV
k=0,001
1000
100
0,5
1,0
1,5
2,0
2,5
Ψ, mrad
3,0
3,5
4,0
XFEL harmonics selection by a diamond prism
H1
H3
H5
Ψ, angle sec
800
1000
E1=12 keV
E3=36 keV
E5=60 keV
A, μm
700
600
500
100
400
300
10
200
100
1
175
176
177
178
apex angle, degr
179
180
0
175
176
177
178
apex angle, degr
179
180
Influence of refracting face size
Interference pattern due to finite face size
1
I, a.u
2,8
1
3
de/λ=5x10
1. q=1
2. q=2
3. q=4
4. q=8
0,1
log(Io/It)
I, a.u.
ΔE1=2 eV
ΔE2=7 eV
2,6
2
3
3
0,01
2,4
4
2
1E-3
1
-0,8
-0,6
-0,4
-0,2
0,0
Ψ, mrad
0,2
0,4
0,6
0,8
2,2
1
11900
12000
12100 E, eV
1- Be prism
2 – diamond prism
3 – As2S3 (XAFS database)
0,5
Heat transfer in the diamond prism
Radiation conditions
E=12 keV, N=1012 photon per pulse
Beam diameter 400 μm
Prism dimensions, mm: W x H x L
3 x 0,5 x 12
F=5 MHz
Room temperature, 293 K (20o C)
Heat transfer in the diamond prism
at room temperature
Heat transfer in the diamond prism
at liquid nitrogen temperature (80 K)
Heat transfer in the diamond prism
at liquid nitrogen temperature (80 K)
Part1.SLDPRT [test 3 diamond - impulse]
190
180
130
150
Temperature of Solid [K]
T e m p e ra tu re o f S o lid [K ]
170
130
110
90
GG Av Temperature of Solid 1
GG Max Temperature of Solid 1
80
GG Min Temperature of Solid 1
GG Av Temperature of Solid 1
GG Max Temperature of Solid 1
30
70
0
0,0000001
0,0000002
0,0000003
0,0000004
-20
50
0
0.0002
0.0004
0.0006
0.0008
0.001
Physical time (s)
0.0012
Physical time (s)
0.0014
0.0016
0.0018
0.002
0,0000005
0,0000006
Diffraction effects
X-ray transmission spectra structure for monocrystal
diamond in crystallographic direction [100]
E, keV
40
35
(620)
(511)
30
25
20
15
10
5
0
(622)
(531)
(444) (422)
(311) (440)
(531) (331) (333) (620) (622)
(511) (422)
(331)
(220) (400)
(311)
(111)
(531) reflex splitting
deviation Δϑ=6'
19,24
19,30
19,15
Beam harmonics monitoring
and beam profiling
Strip detector
prism
XFEL beam
TER mirror
Monitoring scheme
XFEL beam
Profiling scheme
Prism spectrometer general view
and its dimensions
Strip detector
prism
TER mirror
XFEL beam
100-120 (50-60) mm
L 10-20 mm
Prism adjustment system
2-prism, 8-prism support, 9,10-cooler,
isolator, 12-goniometer, 13,15 step
motors,16-support,14,17- translation
stages
Prism technology achievements
Large 10 mm refraction face
2,5 mm refraction face
1 mm
Mosaic structure prism
with very large refraction
and reflection face
Conclusions
Possible applications of prism
refraction optics
♦ Investigation of absorption spectra including
single-shot measurements
♦ Monitoring of XFEL harmonics and
spontaneous radiation spectrum
♦ Space splitting of XFEL harmonics
♦ Selection of predetermined spectral bands
Thank you for attention