Continuity(worksheet( ! Intuitively,!a!function!is!not!continuous!anywhere!it!“jumps”.!! ! More!precisely,!a!function!f!is!continuous!at!a!point!x#=#C!if!(and!only!if) lim− f ( x ) = lim+ f ( x ) = f ( C ) .! x→C x→C ! The!function!f#pictured!appears!to!be!discontinuous!at!x#=#0,!2,!4!and!6.!! Verify!this!result!using!the!definition!above!and!those!4!values!for!C.!! ! 1) lim− f ( x ) = ! x→6 lim f ( x ) = ! x→6 + f (6) = ! ! ! ! 2) lim− f ( x ) = ! x→4 lim f ( x ) = ! x→4 + f (4) = ! ! ! ! 3) ! lim− f ( x ) = ! x→2 lim f ( x ) = ! x→2 + f (2) = ! ! ! ! 4) lim− f ( x ) = ! x→0 lim f ( x ) = ! x→0 + f (0) = ! ! ! 5) Show!that!f#is!continuous!at!x#=#&1!by!evaluating!the!following:! lim− f ( x ) = ! x→−1 lim f ( x ) = ! x→−1+ f ( −1) = ! ! ! So!we!can!use!limits!to!determine!if!a!function!is!continuous!at!a!point.!However,!it!is!far!more! useful!to!use!continuity!to!determine!limits!in!the!first!place.!! x2 − 4 ,!finding! lim g(x) !is!(relatively)!hard.!In!2.2,!our!only!plan!of!attack!was!to!guess! x→2 x−2 the!limit!by!evaluating!something!like! g(2.000001) !and! g(1.99999) and!taking!a!guess.!! If!! g(x) = However,!if!we!notice!that! lim g(x) = lim h(x) !for! h(x) = x + 2 ,!and!that!h!is!continuous!at!x#=#2,!we! x→2 x→2 can!use!continuity!to!evaluate!these!limits!as!simply! h ( 2 ) .!! This!is!because!the!fact!that!h!is!continuous!at!x#=!2!tells!us!(by!definition)!that! lim− h ( x ) = lim+ h ( x ) = h ( 2 ) ,!so! h ( 2 ) = lim h ( x ) = lim g ( x ) ! x→2 x→2 x→2 x→2 Going!forward,!we!will!often!be!faced!with!evaluating!limits!at!points!of!discontinuity.!We!will! typically!evaluate!functions!(like!g!above)!at!a!point!of!discontinuity!(like!x#=#2)!by!finding!a! function!(like!h#above)!that!has!the!same!limits,!but!is!continuous!at!the!point!in!question.!! Use!these!methods!to!evaluate!the!following:! 2x 2 − 5x − 3 1)! lim !! ! x→3 x−3 ! ! ! ! x 3 + 5x 2 + 10x + 8 2)! lim ! x→−2 x+2 ! 1 1 − 3)! lim 2 2 + x ! x→0 x ! ! 5)! lim ! ! ! 4)! lim x→4 x −2 !! x−4 ! ! ! ! x→5 x −1 − 2 ! x−5 Hint:!Multiply!the!top!and!the!bottom!by!the!conjugate!of!the!top.! ! ! ! 6)! lim x→10 x − 10 !! x − 10 ! ! ! ! ! ! 7)! lim Hint:!Evaluate!the!two!oneTsided!limits!and!see!if!they!are!equal.! x→1 x −1 ! 1− x !
© Copyright 2026 Paperzz