I-J+i I/—i

Mm? 4U1
Double An2le Identities
1 Use a Double Angle identity to rewrite each expression.
.
a) cos(2(2x))
b) sin(3x)
c) tan(6x)
d)
sin(!xJ
e)
f) tan(— 7x)
cosxJ
2. Express as a single Sine or Cosine function.
a) 2sin(3x)cos(3x)
cos2J
d)
_
sin2J
—
2cos2J
—
_
1
h) 1 2sin2
—
and A is in the interval
evaluate the following: a) sin(2A)
andA is in the interval (ir-?J evaluate the following: a) sin(2A)
4. If sinA =
5. If sinA =
3
6. If cos A =
7. If tan A =
8. If tan A
1 2s2J
e)
(2x)— 4
2
g) 8sin
3. If cos A =
c) !sinJcos(J
b) 6sinxcosx
=
,
,
2
b) cos(2A)
and A is in the interval O, find the value of sin(4A).
L 2)
and A is in the interval -2,rJ evaluate the following: a) csc(2A)
---
b) cos(2A)
and A
is in
b) sec(2A)
the interval O, find the value of tan(2A).
i\ 2)
,
2 and A is in the interval
(
2,r__J find the value of tan(4A).
,
9. Find the exact value of each by using a Double Angle Identity.
a) sin.J
b)
cos.J
c)
tan(22.5
)
d) cosJ
e) sin_
!J
Answers:
2 (2x) (any of the three variations) b) 2sinxJcosxJ c) 2 tan(3x)
#1 a) cos
2 (2x)— sj
2
2
1—tan (3x)
(7
—2tanL—x
d) 2s-_xJcos_xJ e) cos
2 -xJ sin
2 -.xJ (or any of the three variations) f)
—
2
#2 a) s(6x) b) 3s(2x) c) s(x) d) cos(3x) e) cosJ
#3 a)
#6a)
#9 a)
—
.:
25
b)
25
—
4ñi
I-J+i
2
#4 a)
--
25
b)
b)
25
#7
——
17
L/—i
-
2
c)
-
1+
169
b)
cos(7x) g)
#5
—
169
4
#8
—
3
d)
iJ•+i
2
e)
I/—i
-
2
81
24
—
7
—
4cos(4x) h) sin(x)
7
‘I’
4)—
7
tfl
r
it’
‘4
‘Is’
0
;c
!f
)
IL,)
F
‘q%
:1,
-
r’
-
:‘
,3
)C
-
?‘
-‘-
_i___
—(
,3
V
,,
1
‘I
I,
-
-
-
)
--
-
—
“%
‘4)
?c
-
.,(
%
-‘
--
%%1’
-,
,4 4Is
-
-p-
:
-:
-
;_
‘
-
:
---
.-‘
‘
—.
I%__
e’M
-
7
11
——
P
-_-i’
?
-,‘r
-‘p ?.
‘I
—
-
——
- -
%2
——
——
—
— —
_j
—
—
—-
N
I
%fr
i!v’
I
r
IlL
I
,0
‘p
‘p
‘3
F,
p
1
i?
,
‘3
%J
‘S
‘I
C-’
÷ _D1
H
4
3
p
/‘
,?
141
‘C
‘—9
I
a,i
,
‘
‘I’
7
ii
1
(,
\;
.
I
rs
L
I,
‘
‘e—
-C
-%
1
,,
z
)
,
I
I
‘1
If
‘4
11
e
‘1
cfr4
I’
(%
•v,
a
t
%%
‘:131
r
f%%\
,
1__
‘I
£
LJ
1
‘%__‘‘
Mrz
%%
%_‘
:r9
2
ji
oJL
%3
0
J)%D
‘,
II
,,
?t
!
9
1
‘1
r%’
‘3
)
?‘
—
“I
oJ
,
+1
QJ
1
VI)
tø
tl
)
r
‘1
‘$1
G
£
•r’
0%
_
I
‘p
t4i
1’
±
L’
ç4jf%
43
‘4
i
‘C
(%sj
I,
I’
c)
4:
(4
‘4)
‘4)
V
I’
IL
4:
‘
0
(p
“4
IL
(S
j
4
(%4t
I.
flç4
I
1eoc
4
r
1
4
mb4r
7.’ r
L
jN1
‘4
d
‘
•F
’
41
L
I
,Jc%1
C’
I
4
_
rH
if’
c\’J
I
T
(4
•1
ri
1(i%b
Hri
.A1v,
j
I
r
II
N
ii
v’
¶3
‘3
£
1.1
>-
‘I
‘3
I
ia
1+
9)
I
:ih Jjr
-
I
cA
‘I
,94
11
a
vs
-
H
)•
3_
,.,
I
0
p
1
_1
I
-13
ii
43
11
,
r
:
.1’
4
1
I”
fr
Ca
0
q’J
‘3
I
i
4
Sej
c
it4c
d
%%
I
L-
ii
ti
.