Technology Education and Non-Scientific Technological Knowledge PER NORSTRÖM Licentiate Thesis Stockholm, Sweden 2011 This licentiate thesis consists of an introduction, a summary in Swedish, and the following papers: I Norström, P. Technological Know-How From Rules of Thumb. Forthcoming in Techné: Research in Philosophy and Technology. (Published here with kind permission.) II Norström, P. Engineers’ Non-Scientific Technological Knowledge in Technology Education. Forthcoming in International Journal of Technology and Design Education. (Published here with kind permission.) Department of Philosophy and the History of Technology KTH School of Architecture and the Built Environment SE-100 44 Stockholm Sweden Typeset with LATEX by the author. Written in Emacs. Printed by E-print, Stockholm. ISBN 978-91-7501-143-1 ISSN 1650-8831 © Per Norström, 2011 iii Abstract This thesis consists of two essays and an introduction. The main theme is technological knowledge that is not based on the natural sciences. The first essay is about rules of thumb, which are simple instructions, used to guide actions toward a specific result, without need of advanced knowledge. Knowing adequate rules of thumb is a common form of technological knowledge. It differs both from sciencebased and intuitive (or tacit) technological knowledge, although it may have its origin in experience, scientific knowledge, trial and error, or a combination thereof. One of the major advantages of rules of thumb is the ease with which they can be learned. One of their major disadvantages is that they cannot easily be adjusted to new situations or conditions. Engineers commonly use rules, theories and models that lack scientific justification. How to include these in introductory technology education is the theme of the second essay. Examples include rules of thumb based on experience, but also models based on obsolete science or folk theories. Centrifugal forces, heat and cold as substances, and sucking vacuum all belong to the latter group. These models contradict scientific knowledge, but are useful for prediction in limited contexts where they are used when found convenient. The role of this kind of models in technology education is the theme of the second essay. Engineers’ work is a common prototype for the pupils’ work with product development and systematic problem solving during technology lessons. Therefore pupils should be allowed to use the engineers’ non-scientific models when doing design work in school technology. The acceptance of these could be experienced as contradictory by the pupils: a model that is allowed, or even encouraged in technology class is considered wrong when doing science. To account for this, different epistemological frameworks must be used in science and technology education. Technology is first and foremost about usefulness, not about the truth or even generally applicable laws. This could cause pedagogical problems, but also provide useful examples to explain the limitations of models, the relation between model and reality, and the differences between science and technology. Keywords: rule of thumb, technical knowledge, technological knowledge, technology education, epistemology of technology, design process, modelling Acknowledgements First and foremost I wish to thank my supervisor professor Sven Ove Hansson, and my assistant supervisors Dr. Per Sandin and professor Inga-Britt Skogh. Thanks also to the colleagues at the department of philosophy at the Royal Institute of Technology (KTH) and in the TUFF (Teknikutbildning för framtiden – Technology education for the future) graduate school. My work has been funded by the Swedish government and the city of Stockholm (i.e. the taxpayers) through Lärarlyftet (‘Boost for teachers’), a programme for teachers’ continuing professional development. Their support is gratefully acknowledged. v Contents Acknowledgements v Contents vi 1 Introduction 1.1 Philosophy of technology . . . . . . . . . . . 1.2 Technological knowledge . . . . . . . . . . . 1.3 Technology education in compulsory school 1.4 Overview of the papers . . . . . . . . . . . . 1.5 Further research . . . . . . . . . . . . . . . 1.6 Conclusions . . . . . . . . . . . . . . . . . . 1.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 4 9 13 14 15 16 2 Sammanfattning (Summary in 2.1 Inledning . . . . . . . . . . . 2.2 Teknik och naturvetenskap . 2.3 Skolans teknikämnen . . . . . 2.4 Ingående artiklar . . . . . . . 2.5 Diskussion . . . . . . . . . . . 2.6 Litteraturförteckning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21 22 23 26 29 30 Swedish) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Papers I 33 Technological Know-How From Rules of Thumb 1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . 2 Introduction . . . . . . . . . . . . . . . . . . . . . . 3 Rules of thumb, knowing how, and knowing that . 4 Technological knowledge and rules of thumb . . . . 5 The origins and justification of rules of thumb . . . 6 Context dependence . . . . . . . . . . . . . . . . . 7 Usefulness in engineering . . . . . . . . . . . . . . . 8 Dependence on creation procedures . . . . . . . . . vi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 35 35 37 40 41 43 44 46 vii 9 10 11 12 Communicability and language dependence Teaching and learning . . . . . . . . . . . . Conclusions . . . . . . . . . . . . . . . . . . Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 47 49 50 II Engineers’ Non-Scientific Knowledge in Technology Education 1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Explanation and prediction . . . . . . . . . . . . . . . . . . . . . . 4 Engineering and technological knowledge . . . . . . . . . . . . . . . 5 Truth and usefulness . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Science and school science . . . . . . . . . . . . . . . . . . . . . . . 7 Technology in science education . . . . . . . . . . . . . . . . . . . . 8 Technology and school technology . . . . . . . . . . . . . . . . . . 9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 53 54 55 57 58 61 62 63 64 67 Chapter 1 Introduction The aim of this thesis is to contribute to the epistemology of technology and its use in technology education. This introduction gives a brief overview of technology education studies and an introduction to the philosophical study of technological knowledge. It is followed by two articles: Technological know-how from rules of thumb, which describes the epistemic characteristics of rules of thumb used in technological work, and Engineers’ non-scientific knowledge in technology education, in which problems and advantages of including non-scientific technological knowledge in technology education is discussed. While the natural sciences are modern inventions, technology has existed at least since the dawn of mankind. Levers, fire, and fermentation were used technically, that is to produce particular results, long before there was anything reminiscent of scientific theories explaining the phenomena that the technology produced. In spite of its age and obvious usefulness, philosophers have payed little attention to technological knowledge that is based on experience, justified through repeated successful application, and clearly action-oriented. General epistemology and philosophy of science are well established areas of philosophical research. The philosophy of technology in general, and the epistemology of technology in particular, are not. During the last decade, the philosophical interest in technology has increased, but it is still a small field (see for example Meijers, 2009a, pp. 8ff). The science-like or science based theories of modern engineering have to some extent been covered in the general philosophy of science. The tacit knowledge of craftsmen and other professionals has also been examined by philosophers. Other kinds of technological knowledge, such as standardised procedures, rules of thumb, and knowledge of standard components and mechanisms, have to a large extent been overlooked, even though they are important for craftsmen, engineers, and technicians alike. How technology and technological knowledge are defined and described is important for technology education, as it affects what is to be taught as well as how to evaluate what has been learnt. Technology, in the form of crafts or industrial arts, has been a compulsory subject in primary school in many countries since the 19th or 1 CHAPTER 1. INTRODUCTION 2 early 20th century. Since the 1980’s, those subjects have gradually been replaced or supplemented with more modern technology subjects, focusing on design processes, general problem solving abilities and the history and sociology of technology. The introduction of these new subjects, and attempts to fit them into curricula full of subjects with established contents and strong support from academia, has led to some new research concerning the teaching and learning of technology. In this research, findings from the epistemology of technology have only been used to a very limited extent. And, for the most part, the philosophers studying the epistemology of technology do not seem very interested in the findings from technology education studies. For me, writing from the perspective of an engineer-turned-teacher-turnedphilosopher, this seems both strange and unfortunate. Even though philosophers and educational scientists approach the technological knowledge from different angles, there are common areas of interest: how to demarcate technological knowledge from other types of knowledge, how to regard concepts such as truth, usefulness, and justification in the technological domain, et cetera. 1.1 Philosophy of technology Mitcham (1994) divides the philosophy of technology into two major parts: humanities philosophy of technology and engineering philosophy of technology. Humanities philosophy of technology is philosophy about technology, often in the form of ethics or political philosophy concerning technology related problems and phenomena. Many works in the cultural philosophy of technology depend heavily on examples from the history and sociology of technology, and many of the philosophers active in the field started out in history, sociology or political science. Engineering philosophy of technology has an insider’s view of technology. Technology itself is the focal point, not its relationships with the surrounding society. Questions commonly discussed in the engineering philosophy of technology concern for example the ontology of technological artefacts and technological functions, the epistemology of technology, and modelling in the engineering sciences. This thesis belongs to the engineering philosophy of technology domain. Rules of thumb are studied from the perspective of their usefulness in various kinds of technological work. The role of non-scientific technological knowledge in technology education is also studied from a technological point of view; its roles in technological work are the main interest, not its influence or status in society at large. Attempts at defining “technology” There have been numerous attempts to define technology. Lindqvist (1987, p. 11), a Swedish historian of technology, compiled a list of the eight most common definitions that he had come by (my translation from Swedish): 1. Technology is the use of machines, implements and tools. 2. Technology is applied science. 1.1. PHILOSOPHY OF TECHNOLOGY 3 3. Technology is man’s ways to control nature. 4. Technology is man’s ways to control the physical environment. 5. Technology is man’s methods to fulfil his needs through the use of physical objects. 6. Technology is the methods used to treat raw materials to increase their usefulness. 7. Technology is man’s methods to fulfil his wishes through the use of physical objects. 8. Technology is all rational and efficient activities. All these examples mention characteristics commonly attributed to technology. Some of them are obviously too limited; for example number two, as technology existed long before the sciences, and numbers three and four, as technology is used to manipulate artificial environments, some of which are simulated or in other ways non-physical. Many other computer related inventions, such as programs and algorithms, are also examples of technology that is not necessarily physical. Number eight encompasses too much. It is rational and efficient to chew food before swallowing it, but very few would consider it a technological act. What is obvious from the examples above is that technology is directed towards action, and that it depends on the intentions of the agent who uses or creates it. Based on examples of how the word has actually been used, Mitcham (1994, pp. 159ff) made a fourfold description of it: technology as object, knowledge, activity, and volition. Technology as object includes the artefacts that are used in technological activities as well as those that are the results. Technological objects can be concrete (tools, buildings, computer hardware, . . . ) or abstract (rules, procedures, algorithms, . . . ). The technology as knowledge category is made up of the knowledge and skills used to create, operate, describe, maintain, adjust, and explain the technological objects. Technology as activity is the performance of the activities made possible through the knowledge. Knowing how to weld is an example of technology as knowledge; to do the actual welding is an example of technology as activity. The fourth and final category, technology as volition is probably furthest from the everyday use of the term. It is the intentions or will that motivate the technological activities. Mitcham’s (1994) fourfold characterisation of technology has a wide area of application, and is used throughout this thesis. One of technology’s distinguishing characteristics is its orientation towards action aiming at a particular outcome (technology as volition), which does have epistemological implications: To practice technology is to act, technological knowledge is technological insofar that it enables these actions; the action is successful if it results in artefacts that are useful for the intended purposes. Engineering and crafts are parts of the technological domain. So are many domestic activities such as cooking and weaving, as they transform raw materials into artefacts with certain characteristics. CHAPTER 1. INTRODUCTION 4 1.2 Technological knowledge Technological knowledge is that which enables technological activity, such as the use or creation of technological artefacts. The knowledge is of many different kinds. There are essential differences between the science-based knowledge used in advanced solid mechanics and the skills of the blacksmith, even though both are technological and both are about metals. The engineer’s knowledge is described in mathematical terms and suitable to be described in writing. By watching a piece of metal and feel its change in ductility and elasticity as the temperature varies, the blacksmith knows when the moment is right to start shaping it, but he may be unable to verbally describe the process. He has learnt it mainly from practice, and his knowledge is not suited to be described in written form. The engineer’s knowledge of applied science and the blacksmith’s tacit knowledge are both oriented towards the creation of technological artefacts, but they have different origins, different areas of application, and are justified in different ways. Their orientation towards action and creation makes them both technological. During the last decades, there have been several attempts to create all-encompassing taxonomies or other types of classification systems for technological knowledge. The most important one in terms of citation is probably that by Vincenti (1990, pp. 208ff). He divides engineering design knowledge into six categories, ranging from rules of thumb and branch traditions to mathematical methods based on science. Vincenti’s taxonomy does have benefits, but also flaws and drawbacks. It is easy to use when studying many different types of engineering activities, and clearly shows the huge variations within the technological knowledge domain. Unfortunately, it is often easy to find examples of knowledge that fit into more than one category, as well as examples that do not fit into any of them, or pieces of knowledge that move from one category to another if they are written down – branch specific traditions belong to the Fundamental design concepts category, but if they are made explicit they turn into Criteria and specifications even though their contents are still the same. Another flaw or disturbing characteristic is that different categories are defined in different ways; some are categorized by their creation and justification method, while other are defined by their areas of application. These flaws are typical of knowledge classification schemes, and several other taxonomies of technological knowledge have similar problems. The taxonomy presented by Ropohl (1997) is another typical example. It recognizes five different types of technological knowledge: socio-technical understanding, technological laws, structural rules, functional rules, and technical know-how. Much of what could be referred to as technological knowledge fits into these categories, but not all. For example, knowledge about which standard components that are readily available on the open market is very useful in many technological activities, but cannot be squeezed into Ropohl’s categories. It also suffers from the common problem with different definition methods for different characteristics. The technological laws are characterized by their justification methods, while the rest are characterized by their areas of application. In spite of these drawbacks, Ropohl’s 1.2. TECHNOLOGICAL KNOWLEDGE 5 categorization is often useful. The categories are easy to understand and the inclusion of the socio-technical understanding makes it fit for studies of technology education, which tends to include the “making” parts of technology as well as the study of its relations to society. Other taxonomies of technological knowledge include the ones by de Vries (2003) and Hansson (2011). The taxonomy presented in de Vries’ article is based on an attempt to apply Vincenti’s categories to a different area of technology, namely the manufacture of semiconductor devices. He found that knowledge gained through trial-and-error and experience played important roles there as well. To complete and refine Vincenti’s categories, de Vries suggests modified ones that better comply with other areas of the philosophy of technology: functional nature knowledge and physical nature knowledge, that refer to the dual nature of technical artefacts (for example de Vries, 2005b, pp. 18f; Kroes and Meijers, 2006), and action knowledge, that refers to studies of artefacts from an action theory perspective. Hansson (2011) presents a simple typology for technological knowledge, explicitly stated to be useful when studying technology education. He identifies four different categories of technological knowledge: tacit knowledge, practical rule knowledge, applied natural science, and technological science. The first two compare roughly to Ropohl’s (1997) categories of technical know-how and functional rules. What Ropohl calls technological laws, Hansson has divided into two categories depending on their origins. Applied natural science is based on science. Technological science has been developed and justified using experiments and systematic testing, yet without being based on the natural sciences (see also Hansson, 2007). One of the advantages of classifying this as a category of its own is to stress that even advanced technological knowledge, formulated in a scientific language and using mathematics, need not be founded on the natural sciences. Houkes (2009) provides an overview of the philosophical study of technological knowledge. He includes a comparison of important characteristics of four different taxonomies for technological knowledge, among them de Vries (2003), Ropohl (1997), and Vincenti (1990). The available classification systems for technological knowledge have emphases on the engineers, craftsmen, and/or inventors. Those who do not create, but adjust, maintain, and/or control the technological objects also possess technological knowledge, but their varieties are for the most part ignored in the above-mentioned taxonomies. The skilled machine operator or laboratory technician, with important and qualified knowledge of particular apparatuses and measuring instruments, are absent. The reason for this is in all likelihood not that their knowledge is less qualified (see for example Hills 1989, p. 6 and Latour and Woolgar 1986, pp. 66f, for descriptions of professional duties of these kinds), but an arbitrary choice made by philosophers when designing their taxonomies. Knowing how and knowing that Ryle (1949) made a famous division of knowledge into knowing that and knowing how. Knowing that is basically propositional, while knowing how is about knowing 6 CHAPTER 1. INTRODUCTION how to do something. Knowing how is justified through experience, knowing that may be justified in other ways, for example through literature. It is possible to know how to different degrees, like being a bad or a good cyclist, or a bad or a good painter. According to Ryle, this is in stark contrast to knowing that. Ryle shows this by referring to an example: you cannot know whether Sussex is an English county or not to different degrees, either you know it or you do not (Ryle, 1949, p. 59). In the technological knowledge domains, this division is awkward. There are types of technological knowledge that shun Ryle’s classification system, for example written rules of thumb or standard procedures for technological activities. Rules that describe how to reach a particular result, for example how to adjust something or how to operate some machinery, are carriers of know-how in the form of knowing that. If you know that following the rules make you know how to perform the action, the border between the two knowledge types is unclear and in practice often impossible to draw. Technological knowledge is in essence action oriented, which makes the division into knowing how and knowing that difficult: knowing that in the technology domain is supposed to guide action, just as knowing how. Prescriptive knowledge A large section of the technologists’ professional knowledge is prescriptive; it regulates how the work should be done. Some of these prescriptions are demanded by laws, insurance policies, and other types of official rules and regulations, for example an overhead electrical wire has to be placed at a minimum height of 4.5 metres for voltages lower than 1000V (Elsäkerhetsverket, 2008, p. 7), or that lights that indicate emergency evacuation should be red (Arbetsmiljöverket, 2008, p. 9). Others are not regulated in official documents, but by tradition and habit. Examples of the latter include the placement of buttons on telephones and calculators or that the cold water tap is placed to the right and the hot water one to the left (in Sweden anyway). These rules are often not explicitly stated, nevertheless deviations from them can render an artefact useless in a certain context. These examples show that technological activities depend on the environment where they take place, and where the artefacts they produce should be used. This is another proof that technology is more than applied science – the regulatory traditions and rules are required for the successful creation of artefacts and therefore part of the technological knowledge domain. They can however not be derived from scientific knowledge. Explanation and prediction An explanation is some kind of description, intended to increase the understanding of how something is related to something else. In the sciences, a typical explanation shows how some phenomenon brings something else about, using established laws of science. Hempel’s model of deductive nomological explanations (also known as the covering law of explanation) states that a scientific explanation is based on 1.2. TECHNOLOGICAL KNOWLEDGE 7 an explanans that is basically a description of a situation that includes one or more natural laws (Hempel and Oppenheim, 1948; von Wright, 1971, pp. 11ff). To qualify as a deductive nomological explanation, the explanandum must be logically deductible from the explanans. This type of explanation is not very common, and of limited use in technology. The main reasons for this are the users’ and creators’ intentions that play a major role in technology. What the results of manipulating artefacts are, depend not only on scientific laws, but also on the intentions of the agent doing the manipulation. By using scientific explanations it is possible to conclude that a particular force applied to the handle of a claw-hammer will cause a stronger force to affect a nail. That this could be the first step towards the construction of a sauna cannot be derived scientifically, but in order to explain the carpenter’s behaviour this is an important piece of information. There have been some fundamental attempts to analyse the roles of users’ and creators’ intentions and knowledge in technological explanations (for example de Ridder, 2007; Houkes, 2006; Pitt, 2009) but there is still more to be done. This lack of philosophical theory is a serious drawback for technology education studies. Knowing what constitutes a good explanation in technology is important for the choice of teaching methods as well as for the assessment of pupils’ knowledge. In technological practice, prediction is generally more important than explanation. It is often enough to be able to predict how a certain component will behave in a certain context; the laws of nature that bring this about matter very little to the practician. Explanations could be useful when refining processes and improving artefacts, but for everyday work the ability to predict is sufficient. This can be shown through many historical examples. Medieval metallurgists could predict that steel would become harder if heated until red-hot and then quenched in water or oil. They could not explain how this happened, as this demands an understanding of the crystalline structure of the steel; information that would not be available until several hundred years later. Their predictive ability was nevertheless sufficient to produce hard and firm steel. In science, the situation is quite different. The product of scientific work is knowledge, and explanations are necessary to show how different pieces of scientific knowledge support each other. Non-scientific technological knowledge and its justification As technology is much older than the sciences, at least some technological knowledge must be able to exist without scientific justification. Even today, and even in technologically advanced professions such as among computer programmers, laboratory technicians, and electronics engineers, a significant amount of their professional knowledge is not based on science. The laboratory technician might know that a certain instrument does not give reliable results at high temperatures, even though the data sheet says otherwise. Many computer programmers know that the well known sorting algorithm quick sort is more efficient than the equally well known shell sort for large collections of data, but that the opposite is true for small sets. It is possible to prove this mathematically, but it is perfectly possible to use the algo- 8 CHAPTER 1. INTRODUCTION rithms efficiently without knowing or understanding this proof. These are examples of technological knowledge – knowledge that enables or improves technological abilities – that are justified by experience, rather than by science. Some of it, like the measuring instrument that does not comply with its data sheet, could be justified using established scientific methods. Other kinds of technological knowledge cannot, for example those based on standards and conventions. The insulation of the earth wire should be striped in yellow and green according to electrical installation standards. An icon depicting a stylized 3.5" disk is commonly used to symbolise the save command in graphical user interfaces (even though nobody uses that kind of disks anymore). These are highly useful pieces of technological knowledge for electricians and computer users respectively; they are conventions that are generally agreed upon, and cannot possibly be justified using the natural sciences. Among the non-scientific technological knowledge it is the so-called tacit knowledge that has got the most attention. The concept was popularised by Polanyi, a chemist turned philosopher who used it to describe knowledge (or skills) that are difficult or impossible to verbalise. A common example is that of riding a bicycle. To describe how you actually behave to retain the balance on two wheels is much more difficult than doing it. To learn how to ride a bicycle from written or oral instructions is impossible; it must be learnt by experience. The situation is similar in many crafts and also in professions that are seen as highly theoretical and science based. The experienced doctor can often make a correct diagnosis within his area of expertise without doing a full examination. Knowledge like this can only be learnt through experience (Nightingale, 2009, pp. 353ff). While there is an extensive literature on tacit knowledge, other types of nonscientific, experience based knowledge are little discussed. This includes various types of rule-based knowledge as well as knowledge of standard solutions and procedures. These can typically be described in writing and they are thereby easy to transfer from one person to another. They may have their origin in trial-and-error procedures, experience or scientific knowledge. Often, the rules themselves do not disclose their origins. They are ultimately justified through repeated successful use. This experience-based knowledge includes what Ropohl (1997) calls structural rules: knowledge about how components interact. This does not demand any scientific knowledge; the components can be seen as ‘black boxes’, defined by their inputs and outputs. It also includes what I refer to as rules of thumb, standard procedures used in limited contexts to bring about a particular outcome. The users of these kinds of knowledge are often unaware of their origins, and sometimes even believe that they have a scientific foundation. Rules for metal extraction from ore may be derived from the phlogiston theory. In the early 1700’s, the phlogiston theory was the best available theory for combustion and metals turning to calx and vice versa (known today as oxidation and reduction) (Bowler and Morus, 2005, pp. 60f). Its users certainly believed that conclusions drawn using the theories could serve as justification of procedures for metal extraction. It has since been shown that phlogiston does not exist, and that it therefore cannot be used to justify knowledge about how to turn ore into metal. The procedures themselves 1.3. TECHNOLOGY EDUCATION IN COMPULSORY SCHOOL 9 are nonetheless useful, as they produce the expected results. The usefulness can be divided into effectiveness and efficiency. The effectiveness of a model or method signifies to what extent it produces a good result (“barely useful” might be good enough in one context, while “optimal” is needed in other). The efficiency is a measure of which resources that are needed (material, economical, temporal, . . . ) and in which amounts. As the procedure of heating coal with ore to get iron has proven to be both effective and efficient over and over again, it is rational to believe in its usefulness. Rules that have even more fantastic attempts of justification may also be useful. Almar-Næss (1985, p. 8) describes an old Arabic tradition where a newly forged sword, still red hot, is wielded in the air to accustom it to fighting, and afterwards thrust into a living goat. He notes that the procedure is useful for the hardening of objects made from steel with low levels of carbon. Similar methods are used today, even though the preferred procedures are less complicated. The red hot steel is allowed to cool in the air, after which it is quenched in water. Goats’ blood would work just as well, but using it would be unnecessarily expensive and ethically questionable. The Arabs who used the method believed that the surrounding story provided justification for the method, but it was really only a mnemonic rule. The description was useful for prediction of the final result, a durable sword that could be sharpened, but provided no true or correct explanation of how this came about. The procedure was really justified through repeated success. 1.3 Technology education in compulsory school School technology has traditionally been closely connected either with science studies or industrial arts. In some countries and regions, such as Sweden, Scotland, England, and several states in the United States, technology education has its roots in some kind of wood or metal shop work. Beginning in the 1980’s, this practical hands-on training has gradually been replaced by more theoretical subjects, emphasizing product development, design processes, and the social effects of technology. The skills practiced have changed from sanding, sawing and soldering to design and general problem solving strategies (Cunningham and Hester 2007, p. 3; Lewis 2004, pp. 30f; Pavlova 2006, p. 21). Using the terms of Ropohl’s 1997 taxonomy for technological knowledge (see page 4), focus has shifted from technical know-how, to socio-technical understanding, functional rules, and structural rules. Technological laws are largely excluded, as they demand knowledge of mathematics and skills in systematic problem solving that pupils in compulsory school seldom possess. Among these modern technology subjects, there are slight differences. In most of the United States, the purpose of the subject is to make the inhabitants technologically literate: “A technologically literate person understands, in increasingly sophisticated ways that evolve over time, what technology is, how it is created, and how it shapes society, and in turn is shaped by society.” (International Technology Education Association, 2007, p. 9). This means that pupils should acquire 10 CHAPTER 1. INTRODUCTION the fundamental technological knowledge and skills necessary to be an autonomous agent in a technology-based society. The English approach is somewhat different. In England, the school subject is called Design and Technology and has a strong focus on the design process (Banks and McCormick, 2006, p. 287). English pupils should become capable to intervene in a technologically advanced society. The goal is that they should learn to design and develop artefacts and thereby become capable of actual intervention in the technological world. When American pupils design artefacts they do so mainly to learn about the technologies involved. English pupils design artefacts to learn the design process (Kimbell and Stables, 2008, pp. 22f). In England, the design ability is a goal in itself, whereas in the United States it is often seen as a means to an end. The English pupils should learn how to design and make objects while the American should primarily understand the technologies involved and their interactions with the surrounding society. In Sweden, technology was established as a compulsory school subject in the mid 1980’s. The first proper syllabus was written in 1994. A slightly revised version (Skolverket, 2008) has been used until the spring term of 2011. This syllabus is vague, and many teachers find it difficult to understand. According to the few studies of classroom reality that have been made, the subject’s contents vary considerably between schools and individual teachers. As technology is the newest compulsory school subject, few teachers have adequate training, and there are no national assessment tests, there are good reasons to believe that technology varies more than other school subjects (Teknikdelegationen, 2010, p. 89). Among the activities performed in Swedish technology classrooms, the design of artefacts and construction of physical models from cardboard, string, and drinking straws often have prominent positions. Since the beginning of the autumn term of 2011, a new curriculum is used (Skolverket, 2010). In this new curriculum some central areas of study are defined, such as mechanics, electronics, automatic control, technological systems, the product development process, and technology’s relation to society, the arts, and the sciences. To further help the teachers, a booklet of comments and suggestions has also been published (Skolverket, 2011). To what extent this will change the classroom practices and actual contents of the technology subject is impossible to say at the time of writing (October 2011). The philosophy of technology education Technology education studies and the philosophy of technology have common interests. In spite of this, the collaborations and interchange between the two areas have been few and far between. The philosophy of technology is important to show what technology is and why technological knowledge is necessary for all citizens, and to justify useful teaching methods. To manage this, references to Heidegger and Dewey have been among the most common philosophical references in technology education studies. Heidegger’s philosophy has been used to define technology and its relations to society; in the Swedish syllabus of 1994 there is even a reference to “the essence of technology”, which is a complicated concept from one of his essays 1.3. TECHNOLOGY EDUCATION IN COMPULSORY SCHOOL 11 on technology (Blomdahl, 2006; Heidegger, 1974). In the curriculum text, there is no description of what this essence consists of or any information about how it should be interpreted in an educational context. Most teachers are unlikely to understand its meaning or know of its origins. Dewey’s philosophy of education, especially the concept of learning by doing, has been popular in school science for a long time. The action-oriented nature of technology makes the concept fit for technology as well, at least for some of the areas covered by the modern technology subjects (Blomdahl, 2006; de Vries, 2005b, p. 84; Volk, 2007, p. 195). So, while there is some kind of tradition for finding philosophical support for the views of the nature of technology and the methods used to teach technology, other areas have been overlooked. There have been attempts to introduce other branches of philosophy of technology into technology education studies, most notably de Vries (2005b) and Dakers (2006). There have also been a small number of articles published in The International Journal of Technology and Design Education about technological knowledge (for example de Vries, 2005a; Ropohl, 1997), the study of artefact functions (for example Frederik et al, 2010), and ethical and aesthetical aspects of technological work (for example Ankiewicz et al, 2006; Middleton, 2005). These articles have generally not been widely cited and I have not been able to find any implications of them having had any major impact on curriculum writers or other key persons in technology education development. Technological knowledge in technology education Results from research in the epistemology of technology could be very useful in the planning and evaluation of technology education; they provide a starting point for the necessary discussion about how technological knowledge differs from other types of knowledge that are taught in school and how it should be assessed. In the philosophy of technology there is also a well defined terminology for types of knowledge, truth, justification, et cetera, that would be useful when discussing these themes in technology education. If school technology should mainly be about acquiring the knowledge and skills necessary to be an autonomous agent in modern society, a strong emphasis must be placed upon the socio-technical understanding. School technology should include the history and sociology of technology, for example how railways, television, and computers have changed political and everyday life, and how new lifestyles have caused demand for certain products. Being technologically literate and a conscious and attentive citizen also demands some knowledge about the technological artefacts and technical aspects of socio-technical systems. When discussing the system level, as is commonly done in science and technology studies (STS), focus is on the interaction between agents and the system wherefore the artefacts that make up the systems’ components are reduced to ‘black boxes’, abstract function-providers defined by their inputs and outputs (Sismondo, 2010, pp. 85, 120). A technologically literate person must also have some understanding of the artefact level; how the in- 12 CHAPTER 1. INTRODUCTION dividual artefacts are used, what standard mechanisms they utilise, et cetera. Using Ropohl’s 1997 terminology (see page 4), the artefact and system studies should be dominated by socio-technical understanding, functional rules, and structural rules. Together, these allow pupils to develop a technological knowledge that enable an understanding of much of what is going on around us and also complements and may provide support to scientific knowledge, yet does not limit technology to applied science. Technical know-how must be included to some extent. Without fundamental skills in for example tool handling it is very difficult to do experimental work in technology. In Sweden, pupils practice sanding, sawing, soldering, sewing, et cetera in the crafts subject.1 Therefore these skills do not need prominent positions in the technology curriculum. Technological laws must be excluded from school technology as learning those demands knowledge of mathematics, science, and general problem solving that are too difficult for the vast majority of pupils in compulsory school. Technology is different from science in that its purpose is to find what is useful, often in limited contexts, rather than what is true or generally applicable. If school technology is to mimic real technology, this view must permeate the work performed by the pupils and also the procedures for assessment of their knowledge. Pupils should be allowed, and even encouraged, to use mechanisms and ideas developed by others as well as the trial and error method. To a large extent this is what technological work has been about throughout history. If school technology can use school science and vice versa, that could provide a deeper understanding of both subjects. This must not be the main purpose, though. Science and technology represent different traditions and approaches to knowledge. These differences must be apparent in education as well, otherwise technology loses its raison d’être as a separate subject. Knowledge of the philosophy of science and the philosophy of technology could provide teachers and curriculum developers with a deepened understanding of the distinctive features of science and technology respectively. This could improve the quality of the teaching as well as the assessment procedures. Models and experiments in technology education To make the pupils understand the procedures of non-physical modelling and the differences between model and reality is difficult in science education. Here, technology could provide useful examples. It is fairly easy to design models of one’s own, if the purpose is technological. This means that the models are intended for prediction in a limited context. Technological models do not have to be explanatory and generally applicable, as scientific models do. For example: the solubility of salt (sodium chloride) in water varies approximately linearly with the water temperature in a limited interval. Outside of this interval it is not linear, and at temperatures above boiling or below freezing point the interpretation of solubility 1 The Swedish name of this subject is slöjd. It is often referred to as sloyd in the international literature on education. Crafts is the official translation from The Swedish National Agency for Education. 1.4. OVERVIEW OF THE PAPERS 13 is not evident to most pupils in secondary school. This means that the limitations of the models should be obvious to the pupils, a first step towards understanding that all models have limitations. Similarly, mathematical models could be made of the elongation of a spring or bending of a plank under different loads. At a certain stress, the spring is deformed plastically and the plank breaks, which marks the limitations of the models. All the models used in school science – where wires lack electrical resistance, Mendel’s laws of heredity are true, water is incompressible, and electrons circle atomic nuclei in well-ordered shells – have limitations. These limitations may not be possible to find in a school science setting, but they do exist and are well known by scientists working in the respective fields. In that way, many of the models used in school science are similar to technological models. We know that they are wrong, but they are useful for prediction in limited contexts. 1.4 Overview of the papers This thesis consists of this introduction and two papers which are summarised below: (I) Technological know-how from rules of thumb A rule of thumb is an ordered set of instructions that can be used to reach a specific result. The agent who uses the rules needs little or no knowledge about what each of the individual actions mean, but he knows what result they bring about when performed consecutively. Typically, rules of thumb are useful in just a limited context, they may be based on experience or scientific knowledge, they are easy to learn and teach, and their application leads to a useful albeit not optimal result. Because of this, they are frequently used in many different kinds of technological activities. Typically, rules of thumb are thought of as rather primitive and belonging mainly to the domain of amateurs and beginners. The DIY enthusiast uses rules of thumb in the form of tables to pick a useful drill for a particular material, while the professional builder uses tacit knowledge based on experience. The amateur pastrycook drops a spoonful of caramel mixture into a glass of water. If it is possible to form a small ball of it, the mixture is finished. The professional knows this from the mixture’s consistency, or uses a thermometer. In many cases, rules of thumb are also used by skilled professionals. Engineers use them in the form of safety factors, and also for quick estimations or when they have to perform work for which they lack proper training. The purpose of this paper is to provide an epistemological foundation for rules of thumb, describe their limitations, advantages, and justification procedures. Knowledge from rules of thumb is a special kind of technological knowledge that is worthy of philosophical attention, namely know-how stored and transferred as know-that. CHAPTER 1. INTRODUCTION 14 (II) Engineers’ non-scientific knowledge in technology education Among the non-scientific models that engineers use, there are some that actually contradict scientific knowledge. Among the examples mentioned in the paper are the notions of heat as a substance and that vacuum sucks. That heat is a substance was assumed even in science well into the 19th century. Today we all know that it is not. Nevertheless, engineers often talk of heat as if it were a substance when discussing thermal insulation. As this facilitates communication and leads to useful predictions, it fulfils the major purposes of technological models. These models are more prominent in real technological work than they are in technology education. The reasons for this are multiple: not all teachers and curriculum designers realize that technological knowledge is first and foremost about what is effective and efficient and not necessarily about truth or generalizability, and school technology is still often seen as a support for school science. If technology is to be taken seriously as an epistemological domain, non-scientific methods should be used when they are useful. This means that separate epistemological frames of reference must be used in school science and school technology. School science should aim for the truth and generally applicable theories, while school technology should aim for usefulness. The differentiation between knowledge in the science subjects and knowledge in technology leads to some difficult pedagogical challenges. It also leads to new opportunities to explain the differences between science and technology. It is possible to construct technological models or systems for prediction that are useful in a limited context (for example the elongation of a loaded spring that is linear as long as no plastic deformation occurs), and to make the limits explicit. This is generally not possible in school science – to falsify Newton’s mechanics or Bohr’s model of the atom is complicated and demands advanced knowledge and expensive equipment. If this is done systematically, pupils and teachers would gain deeper insights into the modelling process, its purposes, and the relations between model and reality. 1.5 Further research Collaboration between the philosophy of technology and technology education studies ought to benefit both areas. Technology education studies could use the terminology, definitions and delimitations from the sciences that have been developed by philosophers. Philosophers could benefit from viewing knowledge as a developing process, which is common in technology education studies, instead of just writing about knowledge as a finished product, estranged from the knowing subject. The study of different types of technological knowledge is not in any way finished. The studies so far have been directed towards the knowledge used by engineers, inventors, craftsmen, and other types of creative technologists. The professional knowledge of operators and maintenance personnel has not yet been thoroughly studied, apart from the tacit parts. Not even all types of knowledge used by creative professionals have been studied; we have yet to see a philosophical investi- 1.6. CONCLUSIONS 15 gation that incorporates the knowledge about standard components or applicable security regulations into the technological knowledge. Partly, these could be described as rules of thumb, but it is more than that. Whether it is philosophically interesting, furher studies will show. Related areas that demand further studies include explanations and understanding in technology. While understanding and explanations in the natural sciences are based solely on the laws of nature and descriptions of the state of the world, their technological counterparts must also include an agent’s intentions and/or a technological function. Some fundamental work has been done in this area (for example de Ridder, 2007; Pitt, 2009), but technological understanding has still not been examined properly. So far, there has also been surprisingly little interest in using the philosophical research results about technological explanation when studying education. It is my firm conviction that technology teachers would benefit from deeper knowledge of the philosophy of technology. Skills in philosophical analysis, and knowledge of the specific questions concerning what technology is, what constitutes technological knowledge, and what characterizes a technological artefact, would strengthen technology as a subject of its own, elucidating that it is neither a more glamorous crafts subject, nor some kind of degenerate science studies. To do this efficiently, a first step would have to be an empirical study of what teachers know and think today. Without knowledge of what teachers currently think about technological knowledge, truth versus usefulness, and the distinguishing qualities of technological activities, it is impossible to propose an efficient education programme for them. 1.6 Conclusions The epistemology of technology still consists largely of uncharted terrain. The technological laws that are science-based or science-like and the tacit knowledge of the craftsmen have been subject of serious study, but for the rest philosophers have yet only scratched the surface. This includes the areas that are emphasized in technology education for children and adolescents, which places curricula and grading guidelines on shaky ground. How can knowledge be assessed in a context where it is not defined properly? Technological knowledge is multifaceted and includes facts about technological artefacts and mechanisms as well as skills necessary to perform technological work. I am firmly convinced that curriculum designers, textbook authors, and individual teachers could benefit from the philosophical work in this area. Without wellfounded knowledge about what technology and technological knowledge are, it is difficult to demarcate technology from other school subjects, use its special features, and guarantee that the contents of the subject, as well as the assessment procedures are equivalent (or at least similar) throughout the country. BIBLIOGRAPHY 16 1.7 Bibliography Almar-Næss A (1985) Metalliske materialer [Metallic materials]. Tapir akademisk forlag, Trondheim, Norway Ankiewicz P, de Swardt E, de Vries MJ (2006) Some implications of the philosophy of technology for science, technology and society (STS) studies. International Journal of Technology and Design Education 16:117–141, URL http: //dx.doi.org/10.1007/s10798-005-3595-x, 10.1007/s10798-005-3595-x Arbetsmiljöverket (2008) Skyltar och signaler [Signs and signals]. Arbetsmiljöverket [The Swedish Work Environment Authority], Stockholm, AFS 2008:13 Banks F, McCormick R (2006) A case study of the inter-relationship between science and technology: England 1984–2004. In: de Vries and Mottier (2006), pp 285–311 Blomdahl E (2006) Att undervisa i teknik – ett försök till en undervisningsfilosofi utifrån Heidegger och Dewey [Teaching technology – an attempt at an educational philosophy based on Heidegger and Dewey]. NorDiNa 2(1):44–57 Bowler PJ, Morus IR (2005) Making modern science. The University of Chicago Press Cunningham CM, Hester K (2007) Engineering is elementary: An engineering and technology curriculum for children. In: Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition Dakers J (ed) (2006) Defining technological literacy. Palgrave MacMillan, New York de Ridder J (2007) Reconstructing design, explaining artifacts. PhD thesis, Delft University of Technology, Delft, The Netherlands de Vries MJ (2003) The nature of technological knowledge: Extending empirically informed studies into what engineers know. Techné 6(3), URL http://scholar. lib.vt.edu/ejournals/SPT/v6n3/devries.html de Vries MJ (2005a) The nature of technological knowledge: Philosophical reflections and educational consequences. International Journal of Technology and Design Education 15:149–154 de Vries MJ (2005b) Teaching about technology. Springer, Dordrecht, The Netherlands de Vries MJ, Mottier I (eds) (2006) International handbook of technology education. Sense Publishers, Rotterdam, The Netherlands BIBLIOGRAPHY 17 Elsäkerhetsverket (2008) Elsäkerhetsverkets föreskrifter och allmänna råd om hur elektriska starkströmsanläggningar ska vara utförda [The National Electrial Safety Board’s rules and regulations for how electrical high voltage installations should be designed]. Elsäkerhetsverket, Kristinehamn, Elsäk-FS 2008:1 Frederik I, Sonneveld W, de Vries MJ (2010) Teaching and learning the nature of technical artifacts. International Journal of Technology and Design Education pp 1–14, URL http://dx.doi.org/10.1007/s10798-010-9119-3, 10.1007/s10798010-9119-3 Hansson SO (2007) What is technological science? Studies in History and Philosophy of Science 38:523–527 Hansson SO (2011) Vad är teknisk kunskap? [What is technological knowledge?]. In: Hansson SO, Nordlander E, Skogh IB (eds) Teknikutbildning för framtiden [Technology education for the future], Liber, Stockholm, pp 178–188 Heidegger M (1974) Teknikens väsen och andra uppsatser [The essence of technology and other essays]. Rabén och Sjögren, Stockholm, originally published 1954. Hempel CG, Oppenheim P (1948) Studies in the logic of explanation. Philosophy of Science 15(2):135–175 Hills RL (1989) Power from steam. Cambridge University Press, Cambridge, United Kingdom Houkes W (2006) Knowledge of artefact functions. Studies in the History and Philosophy of Science 37:102–113 Houkes W (2009) The nature of technological knowledge. In: Meijers (2009b), pp 309–350 International Technology Education Association (2007) Standards for technological literacy, 3rd edn. International Technology Education Association, Reston, VA Kimbell R, Stables K (2008) Researching design learning. Springer, Dordrecht, The Netherlands Kroes P, Meijers A (2006) The dual nature of technical artefacts. Studies in History and Philosophy of Science Part A 37(1):1–4, DOI 10.1016/ j.shpsa.2005.12.001, URL http://www.sciencedirect.com/science/article/ pii/S0039368105001032 Latour B, Woolgar S (1986) Laboratory life. Princeton University Press Lewis T (2004) A turn to engineering: The continuing struggle of technology education for legitimization as a school subject. Journal of Technology Education 16:21–39 18 BIBLIOGRAPHY Lindqvist S (1987) Vad är teknik? [What is technology?]. In: Sundin B (ed) I teknikens backspegel [In technology’s rear-view mirror], Carlssons bokförlag, Stockholm, pp 11–33 Meijers A (2009a) General introduction. In: Meijers (2009b), pp 1–19 Meijers A (ed) (2009b) Philosophy of technology and engineering sciences. North Holland, Burlington, MA Middleton H (2005) Creative thinking, values and design and technology education. International Journal of Technology and Design Education 15:61–71, URL http://dx.doi.org/10.1007/s10798-004-6199-y, 10.1007/s10798-004-6199-y Mitcham C (1994) Thinking through technology. The University of Chicago Press Nightingale P (2009) Tacit knowledge and engineering design. In: Meijers (2009b), pp 351–374 Pavlova M (2006) Comparing perspectives: Comparative research in technology education. In: de Vries and Mottier (2006), pp 19–32 Pitt JC (2009) Technological explanation. In: Meijers (2009b), pp 861–879 Ropohl G (1997) Knowledge types in technology. International Journal of Technology and Design Education 7:65–72 Ryle G (1949) The Concept of Mind. Hutchinson’s university library, London Sismondo S (2010) An introduction to science and technology studies. WileyBlackwell, Chichester, United Kingdom Skolverket (2008) Syllabuses 2000, revised version 2008, compulsory School. Skolverket [The Swedish National Agency for Education], URL http://www3. skolverket.se/ki/eng/comp.pdf, originally published 1994, revised 2000 and 2008. Accessed on 21 July 2010. Skolverket (2010) Del ur Lgr 11: Kursplan i teknik i grundskolan [Excerpt from Lgr 11: Syllabus for technology in compulsory school]. URL http://www.skolverket. se/content/1/c6/02/38/94/Teknik.pdf Skolverket (2011) Kommentarmaterial till kursplanen i teknik [Comments to the syllabus in technology]. URL http://www.skolverket.se/publikationer?id= 2568 Teknikdelegationen (2010) Vändpunkt Sverige [Turning point Sweden]. Stockholm, SOU 2010:28 Vincenti WG (1990) What engineers know and how they know it. The John Hopkins University Press, Baltimore BIBLIOGRAPHY 19 Volk KS (2007) Attitudes. In: de Vries MJ, Custer R, Dakers J, Martin G (eds) Analyzing best practices in technology education, Sense publishers, Rotterdam, The Netherlands, pp 191–202 von Wright GH (1971) Explanation and understanding. Cornell University Press, Ithaca, NY Kapitel 2 Sammanfattning (Summary in Swedish) 2.1 Inledning Syftet med denna uppsats är att bidra till teknikens epistemologi och dess tillämpning i undervisningssammanhang. Uppsatsen utgörs av en inledning (”kappa”), denna svenska sammanfattning och två artiklar. Den första artikeln beskriver den kunskap man kan få genom tumregler och inordnar den i ett teknikepistemologiskt sammanhang, med begränsningar, för- och nackdelar. Den andra behandlar hur teknisk kunskap som inte är vetenskapsbaserad kan tas upp i grundläggande teknikundervisning i ungdomsskolan. Detta leder till pedagogiska utmaningar, men också till möjligheter till en fördjupad förståelse för skillnaderna mellan teknik och naturvetenskap samt mellan modell och verklighet. Teknisk kunskap kan vara av många olika slag, från urgamla hantverksfärdigheter till modern ingenjörskonst. Till skillnad från den vetenskapliga kunskapen har den tekniska inte tilldragit sig något större filosofiskt intresse. Framför allt gäller detta de kunskaper som kan formuleras i ord men inte nödvändigtvis berättigas genom naturvetenskap. Exempel på dessa är kunskaper om standardprocedurer och så kallade tumregler. Sedan 1980 års läroplan är teknik ett obligatoriskt ämne i den svenska grundskolan. Trots detta har ämnet ännu inte funnit sin form. Det finns få läromedel, få utbildade lärare och ämnet varierar kraftigt mellan olika skolor. Av tradition har tekniken betraktats som samhörande med slöjd eller med något av de naturorienterande ämnena, vanligen fysik. Dagens teknikämne skall dock stå på egna ben. Att döma av läroplanen skall teknik vara ett ämne med inslag av hantverk, vardagsfärdigheter, ingenjörskonst och samhällsvetenskaper (Skolverket, 2010). Den kursplan, Skolverket (2008), som använts till och med vårterminen 2011 har av många uppfattats som svårläst. Den forskning som har genomförts visar att klassrumspraktiken och det faktiska ämnesinnehållet ofta haft svag koppling till kursplanen (Bjurulf, 21 KAPITEL 2. SAMMANFATTNING (SUMMARY IN SWEDISH) 22 2008; Teknikdelegationen, 2010). Den nuvarande läroplanen, som började användas höstterminen 2011, har en delvis annan uppläggning och ett tydligt angivet centralt innehåll. Dessutom kompletteras och förtydligas den av ett kommentarmaterial, Skolverket (2011). I skrivande stund (oktober 2011) är det för tidigt att uttala sig om hur detta kommer att påverka undervisningen. 2.2 Teknik och naturvetenskap Teknik är ett samlingsnamn för en stor mängd aktiviteter, föremål och kunskapsområden som är skapade av människan och syftar till att lösa problem eller förändra omgivningen. Vissa former av teknik har funnits mycket länge. Människan har i tusentals år använt hävstänger för att flytta föremål, kol för att reducera järnmalm till järn och jäsningsprocesser för att framställa vin. Dessa exempel falsifierar effektivt påståendet att all teknik skulle vara tillämpad naturvetenskap (något som framhållits bland annat av Bunge 1966) eftersom teknik existerade långt innan det fanns någon naturvetenskap att tillämpa. Före 1900-talet är det faktiskt svårt att hitta bra exempel på teknik som är tillämpad naturvetenskap. Tvärtom finns det gott om exempel på hur naturvetenskapen utvecklats ur tekniska upptäckter. Exempelvis grundade Carnot termodynamiken på upptäckter som han gjort i arbetet med att effektivisera ångmaskinen (Šesták et al, 2009, ss. 680ff). Vidare lades grunden för den vetenskapliga hållfasthetsläran av den byggnadstekniska praktiken (Turnbull, 1993, p. 317) och metallurgin härstammar från gamla erfarenheter av hur föroreningar och värmebehandlingar påverkar metallers egenskaper. Modern teknik har dock ofta formen av tillämpad naturvetenskap. Utan den moderna fysiken skulle dagens halvledarbaserade elektronik vara otänkbar och den moderna biotekniken skulle vara omöjlig utan senare decenniers stora landvinningar i kemi, biologi och besläktade vetenskaper. Teknik och naturvetenskap är två skilda verksamhetsområden. Viss teknik är utvecklad ur naturvetenskapligt kunnande. Vissa naturvetenskapliga upptäckter kommer ur tekniken. Tekniken och naturvetenskaperna har olika mål och studieobjekt. Naturvetenskapernas yttersta (sannolikt ouppnåeliga) mål är att finna sanningen om världen. Teknikens mål är att vara användbar. Inom naturvetenskaperna intresserar man sig för generella lagar, inom tekniken ofta för partikulära lösningar. Resultatet av naturvetenskapligt arbete är kunskap medan tekniskt arbete resulterar i artefakter. Teknikfilosofen Mitcham (1994) beskriver fyra olika aspekter hos tekniken:1 teknik som aktivitet, teknik som föremål, teknik som kunskap och teknik som viljeyttring. Teknik som aktivitet omfattar arbete med konstruktion, byggande, felsökning, underhåll, teknologisk forskning med mera. Teknik som föremål är alla de föremål som är resultat av tekniskt arbete. Teknik som kunskap är de kunskaper och färdigheter som man använder i det tekniska arbetet. Teknik som viljeyttring 1 Mitcham ordet teknik. skriver om technology. I detta sammanhang översätts det bäst med det svenska 2.3. SKOLANS TEKNIKÄMNEN 23 är drivkrafterna för att få igång det tekniska arbetet: brokonstruktörens vilja att korsa floden, hackerns vilja att knäcka säkerhetssystemet et cetera. Teknik som viljeyttring ligger längst ifrån vardagsanvändningen av ordet teknik, men markerar en avgörande aspekt av det tekniska arbetet – utan viljan att handla för att uppnå ett mål, ingen teknik. Teknisk kunskap Det finns i dag flera olika klassificeringssystem för teknisk kunskap (exempelvis de Vries, 2003; Hansson, 2011; Vincenti, 1990). De flesta av dessa är inriktade på att beskriva de tekniska kunskaper som används i skapandet av tekniska artefakter, alltså den kunskap som konstruktörer, hantverkare och liknande använder. De kunskaper och färdigheter som teknikanvändare har får sällan något större utrymme, inte ens högt kvalificerad kunskap som handhavandet av komplicerade maskiner eller mätinstrument. I föreliggande uppsats används framför allt det klassifikationssystem som föreslagits av Ropohl (1997). I detta system delas den tekniska kunskapen in i tekniska färdigheter, funktionella regler, strukturella regler, tekniska lagar samt socioteknisk förståelse. Den sociotekniska förståelsen handlar om förståelse av teknikens växelverkan med samhället. Övriga beskriver kunskap för tekniskt skapande, från de situationsspecifika, hantverkslika tekniska färdigheterna till de vetenskapslika eller -baserade tekniska lagarna som ofta beskrivs med matematikens hjälp. De funktionella reglerna handlar om att veta hur man uppnår något utan att nödvändigtvis kunna förklara processen vetenskapligt. Dessa har jag valt att kalla tumregler. De strukturella reglerna beskriver samverkan mellan ingående delar i ett system. Speciellt med Ropohls system är att den sociotekniska förståelsen betraktas som en typ av teknisk kunskap. Det gör systemet lämpat för att beskriva den tekniska utbildningen inom det obligatoriska skolväsendet, där socioteknisk förståelse, hantverksfärdigheter, funktionella regler och strukturella regler ingår. Tekniska lagar får i regel inget större utrymme, detta då elever i ungdomsskolan inte har de förkunskaper i naturvetenskap, matematik och generell problemlösningsmetodik som behövs för att kunna tillgodogöra sig dem. 2.3 Skolans teknikämnen Teknik har varit ett obligatoriskt ämne i den svenska grundskolan sedan 1980 års läroplan. Teknikinslag har funnits längre än så i ämnen som slöjd, hemkunskap och hembygdskunskap. Det har också funnits en lång tradition av att använda tekniska uppfinningar för att konkretisera undervisningen i naturorienterande ämnen, exempelvis används glödlampor, tvättmedel och ångmaskiner för att förtydliga egenskaperna hos slutna kretsar, emulgatorer och gastryck. Det är inte bara i Sverige som man har infört ett separat teknikämne under de senaste decennierna, utan även på många andra håll. I England, Skottland, Nederländerna, vissa av USA:s delstater, Nya Zeeland och flera andra länder har nya teknik- och/eller designämnen tagit plats i läroplanen. Till skillnad från slöjden är de nya teknikämnena 24 KAPITEL 2. SAMMANFATTNING (SUMMARY IN SWEDISH) inte hantverksbaserade, utan handlar primärt om produktutveckling, generell problemlösningsförmåga och tekniken i samhället. Inriktningen varierar något mellan länderna. I England står produktutvecklingsprocessen i centrum och det uttalade målet är att eleverna skall lära sig att skapa artefakter och därigenom kunna påverka samhället och den egna livssituationen. Amerikanska elever behöver inte kunna påverka handgripligen, utan målet för dem är att förstå världen genom den teknik som påverkar den. Även de arbetar ofta med produktutveckling, men då som en metod för att fördjupa sin allmänna tekniska förståelse. I läroplanen beskrivs det svenska teknikämnet som brett, med tydligt tvärvetenskaplig karaktär (Skolverket, 2010). Den nu gällande läroplanen, som började användas hösten 2011, har ett angivet centralt innehåll med vitt skilda teman. Socioteknisk förståelse, produktutvecklingsmetodik, materiallära, styr- och reglerteknik, elektronik och tekniska system är några av de områden som skall behandlas. Teknikens och den tekniska kunskapens speciella egenskaper får inte stort utrymme i läroplanstexten. Det står att ”tekniken ställer frågan hur saker och ting skulle kunna vara och hur man kan åstadkomma det man vill” (Skolverket, 2011, s. 10). Att tekniken inte kan reduceras till tillämpad naturvetenskap påpekas också, liksom att tekniken påverkar och påverkas av mänskliga verksamheter som vetenskap och konst. Däremot nämns inte det tekniska kunskapsfältets handlingsorientering eller hur man inom tekniken förhåller sig till begrepp som förklaring, förståelse, sanning eller användbarhet. I undervisningspraktiken har ämnets inrikting ofta varit otydlig. Bjurulf (2008) har granskat hur fem lärare tolkar teknikämnets innehåll och syfte i sin undervisning utifrån den kursplan som gällde till och med vårterminen 2011 (Skolverket, 2008). Tolkningarna varierar kraftigt: en lärare menar att syftet är att eleverna skall lära sig vardagsfärdigheter som tapetsering, en annan menar att ämnets mål är att få fler elever att söka tekniska utbildningar efter grundskolan och en tredje att ämnets syfte är att förbättra flickors självförtroende. Att ämnet kan se väldigt olika ut i olika skolor och på många håll har fått orimligt lite schemalagd tid bekräftas av bland andra Teknikdelegationen (2010). Filosofin och skolans teknikämnen I den tidigare kursplanen för den svenska skolans teknikämne finns tydliga spår av Heidegger, framför allt genom begreppet ”teknikens väsen” som ämnet skall ge förtrogenhet med (Skolverket, 2008, s. 115). ”Teknikens väsen” lanserades av Heidegger i en essä med samma namn och är ett centralt begrepp i hans teknikfilosofi. Exakt vad Heidegger menar med det är svårt att reda ut, något som betonas bland annat av Heidegger själv (1974, ss. 17ff) och Mitcham (1994, s. 53). Detta hindrade inte kursplaneförfattarna från att nämna ”teknikens väsen” i samband med teknikämnets syfte, helt utan förklarande kommentarer. I den nya läroplanen (Skolverket, 2010) lyser tydliga filosofireferenser med sin frånvaro. Fackfilosofin har generellt svag ställning inom teknikdidaktiken. Bortsett från enstaka försök att analysera vad teknik är och få in etiska frågor i teknikundervis- 2.3. SKOLANS TEKNIKÄMNEN 25 ningen är det skralt. Detta gäller såväl i Sverige som internationellt. Forskningen inom teknikens kunskapsteori har inte haft någon större påverkan på kursplaner eller teknikdidaktisk forskning. För mig, som började som ingenjör, sedan blev lärare och därefter filosof, framstår detta som konstigt. Man studerar teknisk kunskap både inom teknikfilosofin och inom teknikdidaktiken. Båda områdena borde kunna vinna på ett samarbete. I dag har områdena ingen gemensam terminologi och vanligen olika infallsvinklar i sina studier av den tekniska kunskapen. Didaktikerna studerar framför allt kunskapsbildningen och kunskapens användning. De engelska teknikdidaktikerna Kimbell och Stables (2008, ss. 42f) markerar detta genom att i allmänhet inte skriva om ”knowledge” (kunskap), utan om ”knowing” (kunnande). Fokus är inte på kunskapen i sig själv, utan på det kunnande subjektet. Framför allt koncentrerar man sig på hur lärandet går till och hur kunskapen (kunnandet) används. Trots detta finns rimligen gemensamma intressen. Vad som karaktäriserar den tekniska kunskapen, liksom hur man skall se på sanning och strävan efter sanning inom teknisk verksamhet, är essentiellt för bedömning och utvärdering av teknisk kunskap. Det går inte rimligen att skapa tydliga och rättssäkra kunskapsbedömningskriterier utan att veta vilket slags kunskap det är man skall bedöma. Experimentens roll inom naturvetenskaperna är och har varit en viktig vetenskapsfilosofisk fråga. Varför man skall experimentera inom de naturvetenskapliga ämnena i ungdomsskolan har också debatterats och utretts många gånger. Eleverna skall bli förtrogna med experimentella metoder, de lär sig bättre om de får upptäcka saker själva och så vidare. Experimentens roll inom teknikundervisningen är däremot ett betydligt mindre utforskat område. Medan experiment inom naturvetenskaperna handlar om att nå kunskap om generella naturlagar så kan tekniska experiment vara betydligt mer jordnära. Om man vill veta huruvida en byrå är mer hållbar än en annan kan man utsätta båda för upprepat hårdhänt in- och utdragande av lådorna och se vilken som går sönder först. Om man vill veta hur stor ström som kan gå genom en ledning utan att den blir för varm kan man mäta temperaturen vid olika strömstyrkor. I bästa fall är resultaten direkt tillämpbara, trots att de helt saknar förklaringsvärde. Denna påtagliga skillnad – sökandet efter ett väl belagt (i bästa fall sant), generellt resultat i vetenskapsfallet och något användbart i teknikfallet – återfinns sällan i den teknikdidaktiska litteraturen och inte i någon av de läroböcker i teknik för grundskolan som jag har studerat (Andersson, 2004; Börjesson et al, 2009; Sjöberg, 2004, med flera). Tekniska modeller skiljer sig också ofta från de naturvetenskapliga. De tekniska modellerna skall framför allt ge möjlighet till prediktion, medan de naturvetenskapliga även skall förklara. För förklaring krävs något slags orsakssamband. För prediktion räcker korrelation. Detta gör att falsifierade vetenskapliga teorier kan leva kvar som tekniska modeller. Newtons fysik är falsifierad sedan ungefär hundra år, men används fortfarande med gott resultat av ingenjörer världen över. Även andra teorier och modeller som är obsoleta i vetenskapligt hänseende används flitigt inom tekniken. Lättfattliga exempel inkluderar centrifugalkraften (som är en skenkraft) och den sugande kraften hos vakuum (som inte existerar, det är trycket från den omgivande luften som ger upphov till den fasthållande kraften). Inom tekniken 26 KAPITEL 2. SAMMANFATTNING (SUMMARY IN SWEDISH) använder man det som ger användbara resultat i den aktuella kontexten, oavsett om det är sant eller inte. I tekniska sammanhang kan man inte heller tillåta sig samma idealiseringar som man ibland kan göra inom naturvetenskaperna. En fysiker kan renodla problem genom att exempelvis bortse från gravitationen. Ingenjören kan knappast göra det, om gravitationen påverkar resultatet måste den tas med i beräkningen (Hansson, 2007, s. 526). Om han/hon skulle välja att försumma den måste han kompensera för detta på annat sätt, exempelvis genom väl tilltagna säkerhetsmarginaler. Många av de speciella karaktäristika som finns hos teknisk kunskap och teknisk verksamhet och skiljer dem från andra typer av kunskaper och verksamheter har lagts i dagen av teknikfilosofer. De torde kunna ge positiva bidrag till såväl undervisningspraktik som utvärderingsmetoder och kunskapsmål inom teknikundervisningen. 2.4 Ingående artiklar Uppsatsen består av ett inledande avsnitt, denna svenska sammanfattning och två artiklar, som sammanfattas nedan. (I) Teknisk kunskap genom tumregler – Technological know-how from rules of thumb Olika typer av tumregler och standardprocedurer kan ge en person en typ av teknisk kunskap eller handlingsförmåga utan att han har någon kunskap om exakt hur de bakomliggande mekanismerna fungerar. I artikeln exemplifieras det bland annat med inställningen av en reglerutrustning, en så kallad PID-regulator (proportionell, integrerande och deriverande regulator). På 1990-talet arbetade jag i den industriella automationsbranschen där sådana används bland annat för att styra hydraulpumpar. En riktigt inställd regulator ger ett stabilt system, felaktig inställning kan leda till för lågt eller för högt tryck och en illa fungerande maskin. Bland mina kolleger fanns två som var specialiserade på att hantera reglertekniska problem. Båda var skickliga, men löste uppgiften på olika sätt. Den ene, Nils, är civilingenjör. Med hjälp av matematiska modeller tog han fram lämpliga parametervärden och ställde sedan in regulatorn enligt dessa. Den andre, Paul, var elektriker i grunden och hade lärt sig regulatorinställningskonsten genom systematisk prövning och många års erfarenhet. Han kunde inte förklara hur han gjorde, enligt egen utsago gick han på känsla, men åstadkom alltid användbara resultat. Båda hade teknisk kunskap – Nils kände till en mängd tekniska lagar, medan Paul hade informell kunskap av ”tyst” slag. Vid ett tillfälle blev jag, som nästan helt saknade erfarenhet av reglerteknik, ombedd att ställa in en regulator hos en kund. Nils gav mig en lista hämtad ur en reglerhandbok. Nedanstående är snarlik, men hämtad från webbplatsen PLC Drives (Utan årtal, min översättning från engelskan): 2.4. INGÅENDE ARTIKLAR 27 1. Sätt parametrarna Kp , Ki , Kd till deras minimivärde (0 eller 1 beroende på regulatorns utforming). 2. Öka Kp till systemet börjar självsvänga. 3. Öka Kd till systemet slutar självsvänga. 4. Öka Ki till det statiska felet är eliminerat. Jag följde instruktionerna och startade maskinen. Systemet blev förmodligen inte lika snabbt eller lika robust som om Nils eller Paul hade ställt in det, men det fungerade. Även jag hade, med hjälp av tumreglerna ovan, en typ av teknisk kunskap, trots att jag inte förstod vad vart och ett av stegen egentligen innebar. Tumregler av liknande slag används inom de mest skilda branscher och verksamheter. I handböcker och på webbplatser kan man hitta regler för att välja fyllnadsmaterial vid svetsning, rätt kornstorlek i lödpastan vid automatlödning, rätt sorteringsalgoritm för en viss datamängd och så vidare. Inom andra områden som inte är fullt så tydligt tekniska finns det liknande regler. Ett exempel är ”Safety on board”-korten som finns på passagerarflygplan. De är fulla av enkla regler som är tänkta att ge användbara resultat. Det är inte säkert att det i varje enskilt fall är säkrast att först ta på sin egen syrgasmask och först därefter hjälpa medföljande barn. Det är inte heller säkert att det alltid är optimalt att välja den bakre utgången bara för att man sitter i den bakre halvan av planet, det beror faktiskt på hur medpassagerarna sitter fördelade och hur de rör sig. Reglerna är gjorda för att vara lättfattliga och ge användbara resultat i de flesta situationer – de är tumregler. Tumregler har typiskt följande egenskaper: • De är kontextberoende. Reglerna är användbara för att lösa en mycket begränsad uppgift. Om mätsignalen i reglersystemet ovan hade varit väldigt brusig skulle tumreglerna ha varit oanvändbara. • De är användbara även om agenten har liten eller ingen kunskap om de underliggande processerna. Agenten behöver inte vet vad var och en av de handlingar som reglerna föreskriver leder till. Det räcker med att veta vad de leder till tillsammans. • De är lätta att verbalisera och överföra. Häri ligger tumreglernas kanske största fördelar. • De är oberoende av sitt ursprung. Tumreglerna för regulatorinställningen ovan kan vara framtagna med hjälp av matematisk analys av reglerproblem. De kan också vara framtagna genom att man studerat hur en erfaren tekniker faktiskt gör när han ställs inför ett liknande problem. När reglerna väl är nedskrivna spelar skapandeprocessen i allmänhet ingen roll. • Deras användning leder ofta till användbara men sällan till optimala resultat. Reglerna bygger på det som är allmänt för en stor problempopulation. Det finns små eller inga möjligheter att ta hänsyn till speciella omständigheter. 28 KAPITEL 2. SAMMANFATTNING (SUMMARY IN SWEDISH) Tumreglerna är speciella såtillvida att de ger handlingsberedskap eller ”know-how” genom en lista med beskrivningar av handlingar. Om man vet vad som står på listan har man också färdigheten. Kunskap genom tumregler är en speciell typ av teknisk kunskap som är viktig inom många tekniska domäner. Den är därför väl värd att uppmärksammas inom teknikfilosofin. (II) Ingenjörers ovetenskapliga tekniska kunskap och dess användning i teknikundervisningen - Engineers’ non-scientific technological knowledge in technology education Inom naturvetenskaperna är förklaringar centrala. Förklaringar visar hur teorier stöder varandra och hur ett fenomen ger upphov till ett annat. Inom tekniken har de inte alls samma roll. I regel räcker det där med prediktionsförmåga hos modeller och teorier. Detta leder till att man i tekniska sammanhang ofta kan använda obsoleta vetenskapliga teorier, modeller baserade på vardagsuppfattningar eller metoder som på annat sätt är felaktiga eller ofullständiga, så länge de leder till korrekta förutsägelser. Att vakuum suger fast saker är en vanlig men felaktig vardagsuppfattning. I själva verket är den omkringliggande luften som trycker fast föremålet. Trots detta är det vanligt att ingenjörer utgår från ett sugande vakuum i sitt konstruktionsarbete. Jag har själv arbetat på ett företag där vi omtalade vakuum som om det vore en substans. Det skapades i en ejektor och transporterades i slangar varefter det slutligen nådde en sugkopp där det kunde suga fast något som skulle lyftas eller hållas. Sugande vakuum omtalas också i flera patenttexter. Detta gör man då det leder till användbara prediktioner och är ett enkelt sätt att prata om apparaternas funktion. Det är bekvämare att tala om aktiviteten hos ett skapat vakuum än om trycket hos den omkringliggande luften. Ingenjörers användning av felaktiga teorier och verklighetsfrämmande modeller som ger användbara förutsägelser har lämnat litet avtryck i den teknikdidaktiska litteraturen. I de läroböcker i teknik och naturorienterande ämnen som jag har studerat får frågor kring modeller och modellering över lag väldigt litet utrymme. Man använder enkla matematiska och grafiska modeller, både av typer som används utanför skolan (exempelvis kopplingsscheman och kraftparallellogram) och av skolspecifika typer. Ett exempel på det senare är den välkända modell där en elektrisk krets liknas vid ett vattenledningssystem. Spänningen motsvaras av trycket, strömmen av flödet, resistorer representeras av olika tjocka rör, strömbrytare och dioder av olika slags ventiler och så vidare. Modellen är användbar till exempel för att visa hur strömmen påverkas av en parallellkoppling. Den är givetvis väldigt begränsad i sitt användningsområde och det är lätt att hitta dessa gränser. Om man klipper av en kabel i en sluten strömkrets så upphör strömmen. Om man klipper av ett vattenledningsrör kommer vattnet däremot att fortsätta strömma och spruta ut i omgivningen. En av begränsningarna är alltså att modellen bara kan användas när rören/ledningarna är hela. Andra begränsningar är till exempel 2.5. DISKUSSION 29 att vattnet inte värmer rören på samma sätt som elektriciteten värmer ledningarna och att att elektronernas rörelser i en elledning inte alls är lika regelbundna som det strömmande vattnets. Liknande begränsningar finns givetvis hos alla modeller, men ofta kan de inte enkelt visas i ett skollaboratorium. Bohrs atommodell och Newtons fysik har exempelvis väl kända begränsningar, men för att få fram dem krävs mer tid, större kunskaper och mer avancerad utrustning än man har tillgång till i grundskolan. Tekniska modeller som är användbara i en mycket begränsad domän kan användas för att demonstrera skillnaderna mellan modell och verklighet samt teknik och naturvetenskap. De naturvetenskapliga modellerna har större krav på förklaringsförmåga och generalitet än de tekniska. Ingenjören kan med gott samvete låtsas att vakuum har en sugande förmåga, att centrifugalkraften existerar, att värme är en substans och att elektronerna i en elektrisk ledning rinner fram likt vatten i rör. Faktiskt skulle han ofta till och med kunna använda sig av den sedan länge falsifierade flogistonteorin för oxidation och reduktion om han så önskade. Trots att flogiston inte existerar så ger teorin ofta riktiga förutsägelser (Allchin, 1997, s. 474). Inom naturvetenskaperna duger de inte. I skolan kan detta leda till besvärliga motsättningar. Tanken att teknikämnet skall vara en stödfunktion till de naturorienterande ämnena finns såväl i Sverige som på andra håll (Cunningham and Hester 2007, s. 3, Klasander 2010, ss. 261f; Lewis 2004, ss. 30f; Pavlova 2006, s. 21). Om man då tillåter eller till och med uppmuntrar eleverna att tänka i termer av sugande vakuum på tekniklektionerna samtidigt som man avråder från det på fysiklektionerna kan det hela bli mycket förvirrande. Det finns tyvärr ingen enkel utväg. Skoltekniken skall genomsyras av teknikens särart. Att då plocka bort det som inte kan förklaras med hjälp av skolans naturvetenskap vore att beröva det tekniska kunskapsområdet en av dess tydligast särskiljande egenskaper. I stället måste man använda sig av skilda epistemologiska utgångspunkter i teknikundervisningen och i de naturorienterande ämnena. I teknik skall prediktion poängteras och i de naturorienterande ämnena förklaring. I teknik är det användbarhet och funktion som är viktigt, i de naturorienterande ämnena skall man arbeta med generella frågor och hålla sig så nära den etablerade vetenskapliga kunskapen som möjligt. De tekniska modeller som har lätt insedda begränsningar kan användas för att illustrera förhållandet mellan modell och verklighet – alla modeller har begränsningar, även om de inte kan upptäckas i ett skollaboratorium. 2.5 Diskussion Teknikens kunskapsteori är fortfarande ett outvecklat område. De typer av kunskap som saknar naturvetenskaplig grund har blivit styvmoderligt behandlade. Mycket arbete återstår innan det finns en heltäckande beskrivning av allt det vi kan kalla teknisk kunskap. LITTERATURFÖRTECKNING 30 I den teknikdidaktiska forskningen har filosofiska frågor fått liten plats. Kunskap, förklaringar och förståelse diskuteras utan att begreppens betydelse i teknikutbildningskontexten är ordentligt klarlagd. Detta är problematiskt för teknikämnets innehåll och kunskapsutvärdering. Om det inte finns någon bestämd uppfattning om vad teknisk kunskap är så kan man inte rimligen skapa något rättssäkert sätt att utvärdera den. 2.6 Litteraturförteckning Allchin D (1997) Rekindling phlogiston: From classroom case study to interdisciplinary relationship. Science and Education 6:473–509 Andersson N (2004) Teknikboken 2004/2005. Allde och Skytt, Stockholm Bjurulf V (2008) Teknikämnets gestaltningar. Doktorsavhandling, Karlstads universitet, Estetisk-filosofiska fakulteten, Karlstad, Sverige Börjesson G, Chocron M, Högfeldt-Rudervall M, Nylén B, Olsson B, Sjöström IL, Svensson M (2009) Teknik direkt. Bonnier utbildning, Stockholm Bunge M (1966) Technology as applied science. Technology and Culture 7:329–347 Cunningham CM, Hester K (2007) Engineering is elementary: An engineering and technology curriculum for children. I: Proceedings of the 2007 American Society for Engineering Education Annual Conference & Exposition de Vries MJ (2003) The nature of technological knowledge: Extending empirically informed studies into what engineers know. Techné 6(3), URL http://scholar. lib.vt.edu/ejournals/SPT/v6n3/devries.html Hansson SO (2007) What is technological science? Studies in History and Philosophy of Science 38:523–527 Hansson SO (2011) Vad är teknisk kunskap? I: Hansson SO, Nordlander E, Skogh IB (red) Teknikutbildning för framtiden, Liber, Stockholm, ss 178–188 Heidegger M (1974) Teknikens väsen och andra uppsatser. Rabén och Sjögren, Stockholm, ursprungligen publicerad 1954. Kimbell R, Stables K (2008) Researching design learning. Springer, Dordrecht, Nederländerna Klasander C (2010) Talet om tekniska system. Doktorsavhandling, Linköpings universitet, Institutionen för samhälls- och välfärdsstudier, Norrköping, Sverige Lewis T (2004) A turn to engineering: The continuing struggle of technology education for legitimization as a school subject. Journal of Technology Education 16:21– 39 LITTERATURFÖRTECKNING 31 Mitcham C (1994) Thinking through technology. The University of Chicago Press Pavlova M (2006) Comparing perspectives: Comparative research in technology education. I: de Vries MJ, Mottier I (red) International handbook of technology education, Sense Publishers, Rotterdam, Nederländerna, ss 19–32 PLC Drives (Utan årtal) PLC drives and automation forums. URL http://www. plcdrives.com/forum/f34/pid-tuning-rule-thumb-37763/, läst 16 november 2009 Ropohl G (1997) Knowledge types in technology. International Journal of Technology and Design Education 7:65–72 Šesták J, Mareš J, Hubík P, Proks I (2009) Contribution by Lazare and Sadi Carnot to the caloric theory of heat and its inspirative role in thermodynamics. Journal of Thermal Analysis and Calorimetry 97:679–683 Sjöberg S (2004) Puls teknik. Natur och kultur, Stockholm Skolverket (2008) Kursplaner 2000, reviderad version 2008, grundskolan. Skolverket, URL http://www.skolverket.se/publikationer?id=745, ursprungligen utgiven 1994, reviderad 2000 och 2008. Läst 21 juli 2010. Skolverket (2010) Del ur Lgr 11: Kursplan i teknik i grundskolan. URL http: //www.skolverket.se/content/1/c6/02/38/94/Teknik.pdf Skolverket (2011) Kommentarmaterial till kursplanen i teknik. URL http://www. skolverket.se/publikationer?id=2568 Teknikdelegationen (2010) Vändpunkt Sverige. Stockholm, SOU 2010:28 Turnbull D (1993) The ad hoc collective work of building gothic cathedrals with templates, string, and geometry. Science, technology and human values 18(3):315– 340 Vincenti WG (1990) What engineers know and how they know it. The John Hopkins University Press, Baltimore
© Copyright 2026 Paperzz