ZOOLOGISCHE MEDEDELINGEN UITGEGEVEN DOOR H E T RIJKSMUSEUM V A N NATUURLIJKE (MINISTERIE V A N C U L T U U R , R E C R E A T I E HISTORIE TE LEIDEN E N MAATSCHAPPELIJK Deel 41 no. 11 WERK) 27 juli 1966 THE PATTERN OF DERMAL-VERTEBRAL C O R R E L A T I O N IN S N A K E S A N D A M P H I S B A E N I A N S by A . A L L A N A L E X A N D E R ) and C A R L G A N S 1 Department of Biology, State University of New York at Buffalo, Buffalo, N . Y . 14214, U.S.A. INTRODUCTION It has long been known that the arrangement of external scales retains a constant relation to the primary pattern of mesodermal segmentation. T h e ratio of the number of dermal scale rows or annuli to the number of vertebrae has, therefore, been considered to be of fundamental importance in squamate classification (Stehli, 1910; Camp, 1923). Yet the difficulty of determining it has fostered the presentation of hypotheses based on relatively few total counts; some such hypotheses have relied upon comparisons made by dissection along limited portions of the trunk. The general implication communicated by the many statements in the literature has been that the ratios are constant at the generic or familial level, that the ratios ordinarily represent simple, whole number relations (i.e. 1 : 1, 1 : 2, 2 : 1), and that the scale-vertebra relation is constant along the length of the body. Authors have disagreed regarding the presumed evolution of these regularities; thus Stehli (1910) argued that the 1 : 1 ratio was primitive, while Camp (1923) considered it to be most highly advanced. The most "primitive" snakes (Bellairs & Underwood, 1951) were generally stated to have a 2 : 1 and the "advanced" forms a 1 : 1 ratio. In contrast, the presumably most primitive amphisbaenid (Smalian, 1884) has generally been stated to have a 1 : 1 and all other, and presumably more advanced, forms, a 2 : 1 ratio. A recent report (Gans & Taub, 1965) showed a simple method of determining these ratios, emphasized that the ratios varied markedly at the species 1) Present address : Department of Biology, Canisius College, Buffalo, N . Y . 14208. 172 ZOOLOGISCHE M E D E D E L I N G E N 41 (1966) level, and also showed that the relationship of scales to vertebrae within the Typhlopidae was not a simple, whole number ratio. This suggested the desirability of checking the actual values on which the various rules had been established. W e are grateful to Drs. Neil D . Richmond and H . W . Parker for volun teering information on aspects of this problem, and to D r . E . E . Williams for reading the manuscript. The specimens examined were loaned by C. M . Bogert and R . G . Zweifel of the American Museum of Natural History, New Y o r k ( A M N H ) , A . E . Leviton of the California Academy of Sciences ( C A S ) , the Carl Gans collection at Buffalo ( C G ) , Ν . D . Richmond of the Carnegie Museum, Pittsburgh ( C M ) , H . M a r x and R . F . Inger of the Chicago Natural History Museum ( C N H M ) , A . R . Hoge of the Instituto Butantan, Sao Paulo ( I B ) , F . W . Braestrup of the Universitetets Zoologiske Museum in Copenhagen ( K M ) , J. A . N . Cranwell and J . M . Gallardo of the Museo Argentino de Ciências Naturales in Buenos Aires ( M A C N ) , E . E . Williams of the Museum of Comparative Zoology ( M C Z ) , M . Boese man of the Rijksmuseum van Natuurlijke Historie, Leiden ( R M N H ) , H . Wermuth of the Staatlichen Museum für Naturkunde, Stuttgart ( S M N S ) , C. F . Walker of the University of Michigan Museum of Zoology ( U M M Z ) , D . M . Cochran of the United States National Museum ( U S N M ) , and J . Eiselt of the Naturhistorisches Museum, Vienna ( V M ) . D r . J . C. List kindly permitted us to cite data from his (unpublished) thesis. This study is supported by a grant from the National Science Foundation GB-2460 (to C. Gans). METHODS The arrangement and numbers of scale rows, or annuli, on the dorsal and ventral surface of trunk and tail, and the numbers of trunk and caudal vertebrae were determined for some 220 specimens. Similar determinations were accomplished on 130 specimens of Blanus. Additionally, determinations on some 100 other specimens recorded by Gans & Taub (1965), Gans & Laurent (1965), and by List (1956, unpublished thesis) were also used in the analysis. The ranges of observed values are shown by species in table 1 for the amphisbaenids, and in table 2 for the "primitive" snakes and a few advanced snakes. The forms sampled include the 23 recognized genera of amphisbaenids, fifteen genera of primitive snakes, and various advanced snakes. The various ratios observed in each family or other grouping are shown i n table 3. The numbers and proportions of vertebrae were determined fom Xrays taken with an unfiltered 60 K V P dental unit at 3.5 ma on Kodak Type A A A L E X A N D E R & GANS, D E R M A L - V E R T E B R A L C O R R E L A T I O N 173 industrial film ; the target to film distance was 50 inches. A l l determinations were made under a dissecting microscope. Measurement of proportions obviously had to be restricted to those vertebrae X-rayed while lying with their long axis in parallel to the film. Hypaque and fine steel pins were used to indicate the position of dermal segments relative to skeletal structures. Checks indicated that the counts of dermal and vertebral elements along the trunk were repeatable with less than 1% error. Caudal structures, particularly in short-tailed forms, are markedly reduced in size and the vertebrae are often partially fused. The differences between repeated counts here approached 10%. Correlation of caudal dermal and vertebral elements also poses a problem, particularly in the typhlopids. Here the tail is short, sharply curved, and composed of smaller vertebral elements. Additionally the X-rays suggest that the soft tissues may shift (possibly post-mortem) so that the cloacal slit may, in a given species, fall anywhere from the third caudal to the fourth from last trunk vertebra. It may be that this accounts for some of the apparently aberrant ratios ; otherwise it may be that species differences are being dealt with. RESULTS Serpentes Trunk proportions. — Neither the length of the dermal segments nor of the vertebrae remains constant throughout the trunk region. The changes are gradual, but quite evident when comparisons are made between regions. Both scales and vertebrae of the nuchal-pectoral and precloacal regions are generally of equivalent length, and definitely shorter than those of the midthoracic region. The lengths of the scales and vertebrae generally change in parallel, maintaining a constant relationship along the trunk, and giving rise to the described simple, whole number ratios (i.e. 1 : 1, 2 : 1, etc.). This is in accord with the expected basic embryological relationships of the dermal and vertebral elements. In a few forms, the constancy of the relationship is disrupted by (seemingly secondary) changes in the dermal elements, changes that result in deviant ratios. Richmond (in litt.) commented on the marked regional differences in scale size seen in certain typhlopids. Yet the vertebral column of these forms shows the same regional proportions described above for other snakes, except perhaps for a shorter precloacal region, and a sharp change in the length of vertebrae between the thoracic and precloacal zones. The dermal elements also increase in length along the trunk, but seemingly with no corresponding decrease in the short precloacal region. The degree of increase appears to be species specific. 174 ZOOLOGISCHE M E D E D E L I N G E N 41 (1966) The hydrophiid Laticauda laticaudata shows the "normal" dermal and vertebral proportions. The two specimens of Lapemis hardwicki, which differ so drastically that there is some doubt whether they are indeed conspecific, show variation in dermal, but not vertebral proportions. One specimen ( M C Z 23755) shows an increase in dermal length between the nuchal-pectoral and midthoracic regions, that is followed by a decrease posteriorly in the region leading to the relatively small precloacal and caudal scales. The other specimen ( M C Z 20647), however, shows little change of length of the dermal elements throughout the trunk region; the elements of the nuchal-pectoral are equal to or even slightly greater than those of the midthoracic zone. Trunk ratios. — Bellairs & Underwood (1951) stated that various modified burrowing snakes of the families Typhlopidae, Leptotyphlopidae, and Uropeltidae always have a ratio of transverse ventral rows to vertebrae of 2 : 1 , and that these thus differ from all other snakes which always have a ratio of 1 : 1. This statement led Williams (1959) to the conclusion that the uropeltids had not been directly derived from Cylindrophis (Aniliidae) or its immediate relatives, despite much evidence demonstrated by him to the contrary. Comparison of the data given in table 3 shows clearly that snakes, except for members of the genera Typhlops, Helminthophis, Anomalepis, and Liotyphlops, always have a 1 : 1 ratio between the number of enlarged ventral shields and of vertebrae. The literature statements regarding the departure from this ratio by members of the Leptotyphlopidae and Uropeltidae are thus in error. In the Typhlopidae (sensu lato) the ratios vary from 1.5 : 1 to 2.3 : 1. However, as already pointed out by Gans & Taub (1965) and suggested in List's unpublished thesis the values (1) ordinarily do not represent simple, whole number ratios, (2) generally depart significantly from 2 : 1, and (3) are species specific. The comparison of dermal and vertebral proportions for three of the typhlopid species (T. congestus, T. reticulatus, and T. sp., a yet unidentified, large African form) indicates that within the nuchal-pectoral region the dermal-vertebral ratio is constant at 2 :1. Thus the overall deviation from this ratio for the species (1.75 to 1.9 : 1 ; 1.5 to 1.75 : 1, 2.1 : 1, respectively) is due to differences primarily in the midthoracic, but also in the precloacal region. A different situation exists in boid snakes. It has long been known (cf. de Witte, 1962; Gans & Laurent, 1965) that some of these have dorsal scales that are much smaller and hence shorter (when measured along the snake's axis) than the widened ventral shields. This implies that there must be more A L E X A N D E R & GANS, D E R M A L - V E R T E B R A L CORRELATION 175 dorsal than ventral scales along the length of the trunk. The present ob servations confirm this and also show that there are "additional" scales in volved, since the correlation between the number of ventral shields and that of vertebrae is more regular. A similar case may exist within the colubrids, as a figure of the nuchal region of a specimen of Spalerosophis cliffordi (Barash & Hoofien, 1956) shows multiple dorsal scales corresponding to the enlarged ventrals. O n the other hand, Parker (1940) reported that within the colubrid genus Thrasops, T. flavigularis is unique in possessing dorsal scales whose length is nearly twice that of the ventrals. The two specimens of that species viewed here show dorsal scale to vertebrae ratios of 0.59 :1 and 0.78 : 1. The ventral scale ratios are 1 : 1, as are both the dorsal and ventral ratios in the other species of Thrasops. Only four boid genera, among them the peculiar Tropidophis, do not show the size reduction and numerical increase of dorsal scales. Casarea, recently (Parker, 1965) placed in the Bolyeridae, shows the more typical boid pattern. The snakes of the family Acrochordidae have the body covered by nume rous small scales, most projecting into a pointed, posteriorly curving hook. The ratios are constant along the body and along the tail, though the number of scales is much larger than that of the vertebrae. Within the hydrophiids, the specimen of Laticauda laticaudata has 1 : 1 ratios both dorsally and ventrally. The two specimens of Lapemis hardwicki, however, show both dorsal and ventral scale patterns and ratios which are quite irregular, and which vary considerably between the two specimens. In one the dorsal and ventral ratios are ^ 1 . 3 : 1 and 1.1 : 1, respectively, while those of the other specimen are ^1.8 : 1 and 1.4 : 1. The tail ratios, 1.1 : 1 and 1.2 : ι, in the two specimens are quite similar. Caudal region. — W i t h two exceptions all forms show a 1 : 1 ratio of dermal segments to vertebrae along the tail. One exception is formed by the two species of the genus Helminthophis, the other by some species of Typhlops. The occurrence in the latter has been commented upon. In the specimen of Boa, the number of dorsal, but not of ventral segments is larger than the number of vertebrae. Here again, supplementary dorsal segments are being dealt with. Amphisbaenia Trunk proportions. — The majority of the amphisbaenids examined show a regional variation of vertebral length that is similar to that found in most snakes. In general, there also occur changes in the lengths of the dermal 176 ZOOLOGISCHE M E D E D E L I N G E N 41 (1966) elements corresponding to those in the vertebrae, resulting in simple, whole number dermal-vertebral ratios. In a few forms deviations from the normal pattern do exist; such deviations occur most often in the nuchal-pectoral region. The most extensive deviations occur in four genera where the nuchal-pectoral vertebrae are significantly longer than those of the midthoracic region. The differences vary from approximately 5 % in Leposternon to 15 to 2 0 % in Monopeltis, Tomuropeltis, and Mesobaena. Although corresponding changes in the length of the dermal elements seem to occur in Mesobaena, there are no such changes in the other three genera. Representatives of three other genera, Ancylocranium, Bronia, and Rhineura, show similar, but less extensive modifications. Here, the length of the nuchal-pectoral vertebrae is equal to that of the vertebrae of the midthoracic region. These forms show corresponding changes in the dermal elements. A fourth form, Cadea palirastrata, shows the same general pattern of vertebral lengths, but while the dermal elements of the ventral surface concur with this, those of the dorsal surface vary further. This variation occurs within the midthoracic region where there seems to be a decrease in the length of the annular segments. The second, and presumably more primitive species of the genus, Cadea blanoides, shows "normal" proportions of vertebrae and dermal elements of the dorsal surface. Ventrally the dermal proportions change, with the most marked changes concentrated in the precloacal region. A l l other amphisbaenids show "normal" vertebral and dermal proportions. Trunk ratios. — In the Amphisbaenia the skin is subdivided into so-called dermal annuli that are separated by inter-annular grooves that ring the body. In most species there are clearly defined lateral sulci which divide the annuli into subequal dorsal and ventral half-annuli. Correlation of number of dermal annuli with that of vertebrae is complicated since a certain number of anterior body annuli extend over the posterior aspect of the skull. It is thus not the first, but for instance the sixth to eighth annulus in Blanus, that corresponds to the position of the atlas. Allowing for this, there are some four groups of ratios between number of ventral half-annuli and vertebrae. (1) The two species of the genus Blanus always show a ratio of 1 : 1 between the number of body annuli and that of vertebrae. (2) The species of the presumably primitive ( V a n zolini, 1951 ) genera Bipes and Cadea show values between 1.2 and 2 : 1 . ( 3 ) Members of the "advanced" rhineurine genera Leposternon, Monopeltis, and Tomuropeltis (but not of the genus Rhineura) show a ratio equal to sig- A L E X A N D E R & GANS, D E R M A L - V E R T E B R A L CORRELATION 177 nificantly greater than 2 : i . ( 4 ) A l l other species, including the bulk of the members of this group, have a simple ratio of 2 : 1. Most amphisbaenids have the same number of dorsal and of ventral halfannuli. Where intercalated half-annuli occur, they are almost always dorsal. Their number is generally low along the trunk, though many species have one or more over the back of the skull or in the cloacal region. The frequency of dorsal intercalated half-annuli is generally less than 2 % , only in a few populations of Amphisbaena innocens have values up to 10% been reported (Gans & Alexander, 1962). The two species of Bipes and the two specimens of Cadea are then unique in possession of a significantly greater number of dorsal half-annuli than ventral. In Bipes, the ratio of dorsal half-annuli to vertebrae is 2 : 1, sug gesting that the ratio of ventral to vertebrae may represent secondary re duction. In Cadea the dorsal ratio is slightly less than 2 : 1 for the least specialized, and somewhat more than 2 : 1 for the most specialized species. Cadea is the only amphisbaenid genus with very poorly expressed lateral sulci. The contact region between dorsal and ventral half-annuli is charac terized by multiple and irregular interdigitations, yielding a confusing pattern, and making correlations difficult. Caudal region. — The vast majority of species have a ratio of 1 : i between the number of caudal annuli and vertebrae. Exceptions to this are found only in one of the species of Cadea and both species of Bipes. In Cadea palirostrata, the departure from 1 : 1 is restricted to the dorsal surface of the tail, where it ranges from 1.3 to 1.6 : 1. It is clearly due to the intercalation of additional dorsal half-annuli. In Bipes the departure from a ι : ι ratio occurs both dorsally and ventrally, though the dorsal ratio is again larger in one of the two species. DISCUSSION The present survey provides evidence that the regional changes i n the lengths of the dermal and vertebral elements are correlated within certain groups of squamates. The correlation is of two kinds. First, there are the dermal-vertebral ratios, which appear fixed on various taxonomie levels. Secondly, there is a general regularity in the relative length of dermal and of vertebral elements in different groups; departures from this regularity ap pear to occur primarily for immediate functional causes. The dermal-vertebral ratios have traditionally been used in denoting higher categories of squamates. Certain assumptions concerning these are here shown to be wrong. The additional evidence simplifies certain aspects of the taxo nomie pattern; it also presents some new problems. It is now possible to 178 ZOOLOGISCHE M E D E D E L I N G E N 41 (1966) generalize regarding the pattern to be expected in these several families, and to differentiate between basic trends and limited departures from these. The assumption is that such departures have quite probably been forced by selective pressures established by secondary adaptive factors. The pattern exhibited by the serpentes permits a simplification of their presumptive phylogeny since it suggests that the group is relatively homo genous as far as this characteristic is concerned. Most species show a ι : ι ratio both dorsally and ventrally on both trunk and tail. The clarification of this point is useful since it permits pursuit of the hypothesis that uropeltids and aniliids are closely related (cf. Williams, 1959). The modification of the dorsal skin (ventral, rarely) by variation in the size and number of scales in certain boids, colubrids and hydrophiids obviously represents secondary departures from the basic pattern. A s interesting as the general constancy is the departure from this observed in the four genera generally combined under the heading Typhlopidae. Their specialization in this characteristic provides additional evidence for McDowell & Bogert's (1954) suggestion that the typhlopids are more distinct from the remainder of the snakes than are the leptotyphlopids. In spite of publica tion of the hypothesis that these genera are "lizards", it remains most plausible to follow the view of List (1956) who states that "these groups have diverged from each other at an early date, but are derived from a common ancestor". The pattern in the amphisbaenids is similarly suggestive. Most of the species have a 2 : 1 ratio, both ventrally and dorsally, on the trunk and a ι : ι ratio on the tail. A 1 : 1 ratio on both trunk and tail is found only in the two species of the genus Blanus. There are numerous other characters which suggest that this genus is one of the most primitive in the group. Vanzolini (1951) and Gans (i960) have suggested that the genera Cadea and Bipes are the next most primitive pleurodont species, while the genus Trogonaphis is clearly the acrodont form retaining the most generalized character pattern. Other authors have argued that Bipes represents a distinct line to be distinguished on the family level. The primitive status of Cadea and Bipes may explain their distinct patterns. Bipes is certainly different in that the ventral ratios of both trunk and tail depart significantly from 2 : 1 , and 1:1, respectively. Cadea is less modified in that the ventral caudal ratios are regular. Mesobaena, a genus at least super ficially similar to Cadea, has the ratios common to most amphisbaenids. This, and the finding of the 2 : 1 ratio along the dorsal surface of both species of Bipes, and one of Cadea, and on the ventral surface of the other species of Cadea, offers at least the presumption that the condition seen in these genera A L E X A N D E R & GANS, D E R M A L - V E R T E B R A L CORRELATION 179 is not an intermediate or different condition but a secondary modification. It is highly interesting that the acrodont genus Trogponophis, shown in some characters to be more generalized than Blanus, has the standard 2 : ι trunk and ι : ι tail ratios noted in other members of that family. The increase in the number of dorsal and ventral body half-annuli in the three rhineurine genera, Monopeltis, Tomuropeltis, and Leposternon, can be shown to occur in the modified nuchal-pectoral region. Here the vertebrae are significantly longer than those of the trunk region, whereas the pattern in the vast majority of species is one in which the nuchal are significantly shorter than the trunk vertebrae. A s the relative length of the dermal annuli in the nuchal-pectoral region does not undergo a correlated change, the dermalvertebral ratio approaches 3 : 1 , thus yielding an overall increase beyond the common 2 : 1 ratio. The increased ratios are thus a secondary result of the specialized excavating mechanism. O f interest here are the normal ratios of the genera Aulura and Rhineura. The former is unspecialized, while the latter evidences a level of specialization approaching that of the other forms. The results then support other evidence that the grouping may be artificial. While the present study has simplified the patterns observed within the snakes and amphisbaenids, it does not provide a clear indication regarding the evolutionary sequence. In snakes, the two groupings are each sufficiently old to support the contention that either pattern may have been primitive. In amphisbaenids, Blanus may or may not retain an "ancestral" condition, although the finding of a 1 : 1 caudal ratio consistently throughout the am phisbaenids suggests that this may be the case. If the evidence for this 1 : 1 to 2 : 1 sequence be accepted, it would sup port Stehli's (1910) contention that the squamate integumentary patterns are primitively 1 : 1, and upset Camp's (1923) argument in the opposite direction. There is, however, no reason to suppose that the trend need always go in the same direction in the various squamate groups. I I I 2 Baikia africana Bipes biporus B. canaliculatus II 2 4 9 Cadea blanoides C. palirostrata lig Bronia brasiliana Blanus cinereus B. strauchi I Aulura anomala I 2 Anops kingi s. somalicum I I I 2 I 2 2 2 I 2 2 2 I I Ancylocranium 2 Number of specimens Amphisbaena alba A. angustifrons A. camura A. carvalhoi A. darwini heterosonata Α. dubia A. fenestrata A. fuliginosa A. leeseri A. manni A. mitchelIi A. munoai Α. ο. occidentalis Α. ridleyi Α. silvestrii Α. vermicularis Amphisbaenidae Species 185196(200211) 272294(306336) 225227 ι19133 98128 ?i54i6i?(259260) 165(210) 250(251) 184 229232(230232) 197 225235 215(213) 208212 264 172 180(178) 229 204212 190 203 237245 198 216226(215226) 236 205215(208215) 223227 Body 23 34(35) 3 13 14 4 5 3 5/4 34 5 3 4 4 3 24 3 23 3/4 2 23 3 3 3 34 23 2 Lateral Ventral annuli (Dorsal) *) 3 2 23 105107 136145 1315(1619) III 24 14 ι15127 92122 M 12 1213 1821 1420 1618 22 12 I 14 21 19 8 1517 16? 2526 18 (Autot) 28 20 26 20 20 28 1516 14? 5 21 16 Caudal 3 2 3 2 3 2 I - 2 12 2 24 23 3 23 2 2? 2 2? 2 Lateral 129130 104 126 92 113114 97 131 87 89 114 108 104106 ?II2II7? IIIII3 9798 ι07112 117? 104108 93 102 ι19122? 102107 Body Vertebrae 13 1012 1722 1520 21(25?) 30 14 21 18 6 23 17(18) 21 26 14 25 i 6 ( + ι A utot) (Autot) 27(28) 20 13 6(Autot) 2021 16 1416 ?III6 Caudal Numbers of segments and vertebrae in Amphisbaenia. TABLE ι σ\ Μ S ο Μ U Μ Ö Μ r Μ Μ Ο m Ο Ο Γ" Ν Ο Ο 8? Vertebrae Caudal A L E X A N D E R & GANS, DERMAL-VERT EBRAL CORRELAT ION m 7 νθ PQ . Tf m co . 1 CS 0 0 vO ΗΗ ? CS vO CO Η Γ». ΗΗ es es ? co tv. . O CS O O . co . Î . . . . . Tf- HH CS CS CS ON O ? CS es 0\ 00 ^ ON ON 0 0 . . ON CS . . CS rv, vO es co Tt - t CO CS ?t tv. 00 HH es co G»-. . l 8 W iO HH νθ vO " 8 l HH Μ Tf T f Tj I 1 CO 1 CO CO CO CO CS CO co ON Χ» 11 es Χϊ1 15 u <υ Μ 0< Η CS 181 co O- . Ti - CS CS co CO CO 1 CS ? CS CS vO HH M VO 2 Î ON 00 00 vO es IX 00 S> co tx .- . •—s ο Tf . ι IS Ventral annuli (Dorsal) ) υ 7 / — S HH tx CS CS CO CS a 1 S . M es t}- vO t t ï 2a2 2 " "o^ < + lX xíCS 00 CS ι* vO ON ON HH co^ CS 1τ 00 CS 1 S ««5 ï I Σ HH Γ». io /—s t." 1 1 co CO — ' CO co co *o I TJ- 'sG ON CS ^ HH HH T.o co . .—.' . <υ tf HH VÖ . m . io I . . PQ «-M O . I CS CS CS CS CS CS CS 4 vi vA 0J . CJ <. *Q . cp CS CS CS Q 00 i O O 00 00 es CS CS t}CS CS "u Si .. a Ö ^•c S ^ ^ Ö I S d § g ^ es ccos esG cs es es cs . oo vó M <££ ÓN O Tf CS ON CS CS I O HH .] k j k j Ks] es CS T Í - HH IO 7 IO . . u «+H CS es c <. u <v Ti- cs HH s «+H t+H t/i g o g > s 0 «o s *d §1 . ûi h 1 G ' f N N i o o u H o ^ XI ^ -.s; s .h. C5 .. (. (. ÖS '§ s «o s •S o <^ §1 ho <u ÖS Q +J "c <. g a . s a CS OS * i 1 ° ^· s<^ Q HH tx H-> O -Si vO tx c > VH Q Kj tN. HH OH Sk u /—. «O „Ö s co co es CS s τ CO tx es sa-, .Sá S Tf CS HH CS CS CO Tf co es <. .a 00 M s 77 iO CO en .... l . CS CS i O Ti 1 es 4jtx CO CO O ' + tN. HH O 0 0 tx CS CS CS CS CS CS CS CS CS 00 QN O C u 1 S» t>s CS CS lOvO i O CS . . . 0 0 0 0 CS CS I O O CS CS CS CS CO . Τ CO CS vo" oo 'tx 'co 'co m co .. . 0 0 CS CS cp cp CS •..i O" r 0f 0OO CStx CSi OOOCS0 0 CS r co Tt- <. OH . i3 13 . Q +2 <u . Cu ..y C/3 C 3 -G c <D H-> 1 5 3 3 3 3 3 3 3 3 4 3 4 4 5 2 6 4 Typhlops aluensis T. ataeniatus ) T. bituberculatus T. braminus ) T. blandfordi ) T. boettgeri ) T. congestus T. c. cuneirostris ) T. cuneirostris calabresii ) T. infralabialis T. lumbricalis ) T. luzonensis T. platycephalus ) T. polygrammicus ) T. proximus T. pusillus ) T. reticulatus ) T. reticulatus T. richardi ) T. rostellatus ) 3 3 2 2 15-16 344-353 I I 9 I I 3 3 — — 214-251 — — 321-343 — — 349 I 503 ?320-343? — — — 435-592 ?335-358 — 331 320 503 279 346 371 392-409 321-343 290 213 215-261 II ?7-n? 13 14 IO 16-19 10-13 12 — — ?7-io? — — 10-13 — — II II — 16 7-11 — — — 16-23 18-19 — — 13 27 14-22 — 15 10 17-20 344-356 457-476(B + C) 16-23 439-589 282-312 11-12 10 435 8 377 9-11 314-334 2i5-248(B + C) 257-302(B + C) 27 II — — I — 12-22 Dorsal Caudal Ventral — — 328 Dorsal Scale rows 382-428 468 467 Body ?388-430? 469 468 — Ventral I I 3 5 34 I I I Liotyphlops albirostris ) L. albirostris ) I 2 I aspinosus ) specimens Helminthophis albirostris H. ternetzii H. sp. Anomalepis Typhlopidae Species Number of Number of scales and vertebrae in Serpentes. TABLE 2 8-10 16 17 II 7-15 — Caudal II 237 200 7 180-182 7-12 ii5-i26(B + C) I30-I43(B + C) 289 13 169 10 208 10 222 II 193-206 14-16 160-173 7-12 12 158 143 9 6-10 137-155 204 13 10 183 ?i75-i8i ?n-i5 297-307(B + C) 219-300 13-15 174-182 IO-II 234-252 207-208 205-233 242 230 173 Body Vertebrae 183 A L E X A N D E R & GANS, D E R M A L - V E R T E B R A L C O R R E L A T I O N U 00 tebraí audal ό ? PQ u ï *c U 75 Ο Q U 75 c O CM ΝC ON M ^Λ ON o? HH co ON T f I Tf HH - I 00 CO C M CM Ο CM T f CM CM M 1 co 1 C CM OO CM J, ο Q HH H? 8 o o. CM CO C O HH HH r + PQ O vO co 1 > LJ co o o o. Π. Ο. 5 CO 00 CO CO CM HH HH to HH ON H H H H H H H H H H H H H H H H H H H H H H H H ro CO t-t h-i t -i LTJ N N HH CO Tf O N N Μ τΗ ο Nj \^ Ο Tf ^ HH Ο 4t co HH LO Tf ο ιΛ 5 V §- ^ ο νΟ C M CM C M 00 il ^ 1 J « V U >U vN ι Λ m è l O v O O N N N N Tf vO t o vO 00 vO co vO Ο CM HH CM ι α CM 00 HH CO Tf 8 LA_J vO ON 2 1 5 I1 ι I 1 co co νθ νθ J Tf CO tO 00 Tf ^ i\ CO o vO 00 v o ^ J 0 M H co vO HH HH CO QN H H i O Ο 00 H CM Μ Ν H HH v i v i totoONvOcovO HH t -i >-< HH HH HH CM Ν I 00 to HH ON C/3 C CM Ο CO CM CM VO t HH H rt Η HH HH CO Tf ε 'u m S %ξ S 1 g h hi hi hi hi hi 3 3 CO 3 TH ^ ^ ^ • · • ~ s» Q iá S g .2 S g 3 (Λ 'u <υ ft Leptotyphlopidae <υ ft m V CO rs 73 ft ο u HH CM HH Tf vo CM CM M O tO HH Tf CO < Anilius scytale Cylindrophis maculatus C. rufus (U Leptotyphlops conjuncta L. emini ) L. longicauda L. magnamaculata ) L. maximus ) L. nigricans ) L. phillipsi Β HH?? HH HH ΠΗ νθ Tf CO ON ON ι o Ο ^ r cO C M CM CMMCM 1 Tf 1 C g CM 00 CM8! 8 CM C M W CM . ONT ON co. 00 co ? " co to > υ 00 00 Tf + PQ 75 Vi vO 00 T+ T + T?T°°TT VO ο. CO Ό Ο Ι Ο ο. J, S i ? CM r i o Ν^ Νο ^ PQ G HH ON ON .Ν . ON ΝON CM CM . ΟON vO . .Ν . vA ν θ vA tt oo ttoo ON vO co co . . ο. OO O O ^^ 22vO vi vi vO Ι Ο CO ! ι! ι 1ι 1 HH >> u CM CM Ν v o .Ν . vO Ν 00 vO co co Tf T f O* VO T ff T t too vO vO ON ON . . ν θ h H h H O O O O M M TT ff H H HH HH HH HH HH HH HH HH HHHHHH HH CM «M 1 m HH vQ co co (Ν I VU HH o 1 75 "rf Τ + Τ + ϊ?Το>ττ Brachyophidium rhodogaster Melanophidium wynaudense Platyplectrurus madurensis Plectrurus perroteti Rhino phis blythi R. philippinus Uropeltis ocellatus U. pulneyensis U. rubrolineatus U. woodmasoni Scale ]rows > ^ CM C M o ri HH t/3 ^ Λ CM ?î? SS CM CM CM C M ο PQ VO Tf 8*8 >> 7 PQ Ι Ο > νο C M ΤΤ 2 Ο co " ο ~ U + + Lichanura roseofusca Python (More l ia) argus P. sebae Sanzinia madagascariensis Trachyboa boul engeri Tropidophis mel anurus T. semicincta Charina bottae Chondropython viridis Corallus (Boa) annulatus Enygrus asper Epicrates angul ifer Ε. striatus Ery'χ col ubrinus Ε. conicus Ε. jaciil us Eunectes notaeus Liasis antethystinus L. chil dreni L. fuscus Acranthophis madagascariensis Aspidiotes mel anocephal us Boa canina Β. enydris Bothrochilus boa Calabaria reinhardti Boidae Xenopeltis unicol or Xenopeltidae Species 139 286 287-295 ?I82-I84? 188 ?168-182? I 2 2 I I I I I I 2 I 2 I 2 2 I 132-135 193-199 204 273 235 268 278 206 230 315-321 281 265 I I I I I I I I I 237 294 198 260 264 231 211 236 184-188 Ventral I 2 specimens Number of Scale rows Dorsal 274 128-132 190-202 210 245 359 606 348 421 254-278 316 200-318 ± 1 0 415 i86±3 413=^=10 433-466 270-277 265 590 385 256 312 39+ 24-25+ 40-41+ 79+ 78+ 40+ 74+ 48+ 46+ 59 113-116+ 19+ 18? 92-93+ ?26-28? 54+ 27+ 40+ 82 86 21 ± 82 Ill 340 470 488 34+ 48+ 68? 26-30 ? 57+ 27+ 47+ 91 89+ 19+ 88 III 79 51+ 56+ 26-32 Dorsal 23-25+ 41-43+ 39+ 42+ 81+ 109+ 75+ 52+ 48+ 92-97+ ?26-28? 20+ 18? 66 111-114+ Caudal Ventral 460 184-185 Body ± 2 131-134 196-198 — I 211 283 208 235 276 275 282 174-185 238 318-322 ± 5 290 291-296 187-190 100 215 240 ± 2 268 144 293 203 261 266 236 ? 2 4 6 ± 10 187-100 Body ± 44 83±6 86+ S7 i 26+ 73 112 34+ 48+ 26-30 ? Caudal 24 41 37+ 75+ 42+ 52+ 86 48+ 76 + 19 65+ n8-ii9± ι 18+ 21+ ^79+2 91-92 28-29 Vertebrae 4 3 2 x ) ) ) ) Data Data Data Data from from from from Dunn (1941) in List (1956). Dunn & Tihen (1944) in List (1956). List (1956). Gans & Laurent (1965) and Gans & Taub (1965). Crotalus terrificus Viperidae Micrurus sp. Elapidae 5 ) Skull plus a few anterior vertebrae missing. — data not available. (B + C ) = total of body plus caudal. <n OO M O > η o > r Laticauda laticaudata W Lapemis hardwicki H M < > M Ö > O w ö > r w X > Hydrophiidae Colubridae Ahaetulla mycterizans Dasypeltis scabra Dlibcrria lutrix Elachistodon westermanni Malpolon monspessulanus Psammophylax tritaeniatus Thrasops flavigularis T. j. jacksoni T. schmidti T. occidentalis A crochordus granulatus Acrochordidae Casarea dussumieri Bolyeridae Species l86 ZOOLOGISCHE M E D E D E L I N G E N 4 I (1966) TABLE 3 Dermalvertebral ratios. species Caudal Body Number of Ventral D orsal Ventral Dorsal Serpentes Typhlopidae Anomalepis Helminthophis Liotyphlops ) Typhlops ) 2 3 3 I 1.82.0 : ι 1.9 : I 1.82.0 : ι 1.72.0 : ι ι.01.7 : ι ι :I ι.01.7 : I 25 152.3 : ι 1.52.3 : ι ι .01.5 : ι ι .01.5 : I 7 ι :I ι : I ι : I ι : ι I I I I 2 4 ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι I 2 ι :I ι :I ι :: ι τ :: ι ι : I ι :I ι : ι τ : ι I ι :I ι ;: ι ι : I ι :ι I I 2 I I I I Î I 2 ι ι ι ι ι ι ι ι ι ι ι ι ι ι ι I I I ι :. ι :: ι ι :: ι ι :: ι ι :: ι ι :: ι I : ι ι ;: ι I : ι I : ι ι :: ι 0.9 : ι ι :: ι 0.9 : ι 0.91.0 : ι I : ι I : ι I : ι 1.5 : ι 1.2 : ι ι : ι ι : ι ι :ι 1.1 : ι ι : ι ι : ι 0.9 : ι ι .01. ι :: ι 1.01.1 : I ι :ι ι :ι ι :ι 0.91.5 :: ι ι : ι ι : ι ι : ι I — Leptotyphlopidae Leptotyphlops ) 4 Uropeltidae Brachyophidium Melano phidium Platyplectrurus Plectrurus Rhino phis Uropeltis : : : : : : τ I I I I I : I : I :: ι :: ι :: ι :: ι : I : I :I :I :I : I : : : : : : ι 1 ι ι ι ι Aniliidae Anilius Cylindrophis Xenopeltidae Xenopeltis Boidae Acrantophis Aspidiotes Boa Bothrochilus Calabaria Charina Chondropython Corallus Enygrus Ε picrates Eryx Eunectes Liasis Lichanura Python Sanzinia Trachyboa Tropidophis 3 I 3 I 2 I I 2 :I :I :I :I :: ι :: ι :: ι :: ι :: ι :: ι :I :: ι :I :: ι :: ι : ι : ι : ι 1.9 : ι 1.6 : ι 1.32.5 : ι 1.5 : ι I.I : ι 1.5 : ι 2.5 : ι 1.6 : ι 1.3 : ι ι .41.5 : ι 1.4 : ι 1.3 : ι 901.5 : ι I : ι 1.32. ι : ι 1.3 : ι I : ι I : ι 1 187 A L E X A N D E R & GANS, D E R M A L - V E R T E B R A L CORRELATION Number of Body species Ventral I ι :ι I 47-5-0 : ι Caudal Dorsal Ventral Dorsal Bolyeridae Casarea 1.8 : ι ι :ι i.6 : ι Acrochordidae Acrochordus 3-4-3-5 : ι 3-9-4.5 : ι 47-5-6 : ι Colubridae Ahaetulla Dasypeltis Duberria Elachistodon Malpolon Psammophylax Thrasops I I I I I I 3 ι ι ι ι ι ι ι :ι :ι :ι :ι :ι :ι :ι ι :ι ι :ι ι :ι ι :ι ι :ι ι :ι 0.6-1 : ι ι ι ι ι ι ι ι :ι :ι :ι :ι :ι :ι :ι ι ι ι ι ι ι ι : : : : : : : ι ι ι ι ι ι ι Hydrophiidae Lapemis Laticauda I I ?T.I-I.4 : ι ι :ι ι.2-1.8 : ι ι :ι i.i : ι ι :ι i.i :ι ι : ι Elapidae Micrurus I ι :ι ι :ι ι :ι ι : ι I ι :ι ι :ι ι :ι ι : ι Viperidae Crotalus Amphisbaenia Amphisbaenidae Amphisbaena Ancylocranium Anops Aulura Baikia Bipes biporus Bipes canaliculatus Blanus Bronia Cadea blanoides Cadea palirostrata Chirindia Cynisca Geocalamus Le posternon Loveridgea Mesobaena Monopeltis Rhineura Tomuropeltis Zygaspis 16 I I I I 2 I I I I 7 I I 2 I I 2 2 :ι 2:1 2:1 2:1 2:1 r-; 1.2 : ι /wi.6 : ι 1:1 2:1 rwi.8 : ι 2 :ι 2:1 2:1 2:1 2.2-2.9 : ι 2:1 2:1 2.0-2.2 : ι 2:1 ^2.2 : ι 2:1 2:1 2:1 2:1 2:1 2:1 2:1 2:1 1:1 2:1 1.9-2.0 2.2-2.4 2:1 2:1 2:1 2.2-2.9 2:1 2:1 2.0-2.2 2:1 ^2.2 : ι 2:1 :ι 'ι :ι :ι 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 ι .2-1.3 : ι 1.4-1.6 : 1 ^1.4 : 1 ^1.4 : 1 1:1 1:1 1:1 1:1 1:1 1:1 · ^1.3-1.6 : ι 1:1 1:1 1:1 1:1 1:1 1:1 ι .0—1.3 : 1 1.0-1.5 : 1 1:1 1:1 1:1 1:1 1:1 ι : J 1:1 1:1 1:1 1:1 1:1 1:1 1 1 188 ZOOLOGISCHE M E D E D E L I N G E N 41 (1966) Number of Body Caudal species Ventral Dorsal 2 1 1 1 2:1 2:1 2:1 2:1 2:1 2:1 2:1 2:1 Ventral Dorsal Trogonophidae Agamodon Diplometopon Pachycalamus Trogonophis x 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1 : 1 ) Data from Dunn (1941) in List (1956). 2 ) Data from Dunn & Tihen (1944) in List (1956). 3 ) Includes data from Gans & Laurent (1965), Gans & Taub (1965), and List (1956). 4 ) Includes data from List (1956). — data not available. L I S T OF SPECIMENS USED Serpentes Typhlopidae. — Helmi nthophi s albi rostri s (P eters) : M C Z 25232, 25234. H. ternetzi i Boulenger : C G 1594. H. sp. : M C Z 67933. Typhlops aluensi s Boulenger : M C Z 73767, 73768, 73769, 73770. T. bi tuberculatus (P eters) : M C Z 32810, 51890. T. congestus ( D u m é r i l & Bibron) : C M 8043, 15213, 15217. T. i nfralabi ali s Waite : M C Z 65990. T. luzonensi s Taylor: M C Z 79698. T. proxi mus Waite: M C Z 10278, 72081, 72082. T. reticulatus (Linné) : IB 7207, 8964, 14752, 14758, 14762, 16245 ; U M M Z 55853, 60655, 63235. T. solomonis P arker : M C Z 72083, 72085, 72086. T. torrcsi anus Boulenger : M C Z 53752, 53753- T. sp. : IB 14029, 14030. Leptotyphlopidae. — Leptotyphlops conjuncta (Jan) : M C Z 52628, 52629, 52630, 52631. L. longi cauda (P eters) : M C Z 40093, 40094, 40095, 40096. L. phi lli psi Barbour : M C Z 0642, 9643, 9644. Uropeltidae —Brachyophi di um rhodogaster W a l l : C G 1699, 1700, 1801, 1802, 1804, 1806. Melanophi di um wynaudense (Beddome) : M C Z 24739. Platyplectrurus madurensi s Beddome: M C Z 18044, 18045. Plectrurus pcrrotcti Duméril & Bibron: M C Z 4178. Rhinophis blythi Kelaart: M C Z 1319A, 1319B, 34887, 34888, 39816. R. phi li ppi nus (Cuvier) : M C Z 18034, ^035, 18037, 18038, 48947, plus one unnumbered specimen. Uropeltis ocellatus (Beddome) : M C Z 3873, 3884, 47288, 47389. U. pulneyensis (Beddome) : M C Z 1335, 47042, 47043. U. rubroli neatus ( G ü n t h e r ) : M C Z 3850, 3880, 3881, 3911, 47035, 47036, 47037, 47038, 47039, 47040. U. woodmasoni (Theobald) : C G 1693, 1695, 1696, 1697. Aniliidae. — Ani li us scytale (Linné) : M C Z 2950. Cyli ndrophi s maculatus (Linné) : M C Z 57192, 57193, 57194, 57195, 34886. C. rufus (Laurenti) : C G 2518. Xenopeltidae. — Xenopelti s uni color Boie : C G 2713, 2954. Boidae. —• Acrantophis madagascari ensi s ( D u m é r i l & Bibron) : M C Z 51848. Aspi di otes melanocephalus K r e f f t : M C Z 32808. Boa canina L i n n é : C G 2696. Β. cnydris L i n n é : M C Z 80858. Bothrochi lus boa (Schlegel) : M C Z 26940. Calabari a rei nhardti (Schlegel) : M C Z 9237. Chari na bottae (Blainville) : M C Z 63601. Chondropython vi ri di s (Schlegel) : M C Z 84010. Corallus (Boa) annulatus (Cope) : M C Z 76678. Enygrus asper (Günther) : M C Z 84012. Epi crates anguli fer Bibron: M C Z 46465. E. stri atus (Fischer): M C Z A L E X A N D E R & GANS, D E R M A L V E R T E B R A L CORRELATION 189 68573, 68574. Eryχ colubrinus (Linné) : M C Z 30008, 30010. E. conicus (Schneider) : MCZ 3885. E. jaculus (Linné) : M C Z 32798, 34050. Euncctes notaeus Cope : M C Z 2795. Liasis amethystinus (Schneider): M C Z 59124, 84013. L. childreni Gray: M C Z 4215. L. f uscus Peters : M C Z 59125. Lichanura roseof usca Cope : M C Z 29339. Python argus (Duméril & Bibron) : M C Z 59045. P. scbae (Gmelin) : M C Z 40302. Sanzinia madagascariensis (D uméril & Bibron): M C Z 11811. Trachyboa boulengcri Peracca : MCZ 29249, 29250. Tropidophis mclanurus (Schlegel) : M C Z 44862, 44864. T. semicincta (Gundlach) : M C Z 18122. Bolyeridae. — Casarea dussumieri (Schlegel) : M C Z 49135. Acrochordidae. — Acrochordus granulatus (Schneider) : M C Z 25607, 65573. Colubridae. — Ahaetulla mycterizans (Linné) : CG 2777. Dasypeltis scabra (Linné) : CG 0518. Dubcrria lutrix (Linné): CG 2275. Elachistodon westermanni Reinhardt: C N H M 152140; K M R6401. Malpolon monspessulanus (Hermann) : CG 2486. Psammophylax tritaeniatus (Günther) : CG 2522. Thrasops f lavigularis (Hallowell) : M C Z 8776, 51009. T. jacksoni Günther: M C Z 9276, 40551, 48342. T. occidentalis Parker: MCZ 49686, 55232. Hydrophiidae. — Lapemis hardwicki Gray: M C Z 20647, 23755. Laticauda laticaudata (Linné) : CG 3080. Elapidae. — Micrurus sp. : CG 3273. Viperidae. — Crotalus tcrrif icus (Laurenti) : CG 3272. Amphisbaenia Amphisbaenidae. — Amphisbaena alba Linné: CG 1331, 3329. A. angustif rons Cope: CG 3321. A. camura Cope: CG 3322. A. carvalhoi Gans: CG 2833, 2834. A. darwini heterozonata Burmeister: CG 1341, 2800. A. dubia Müller: CG 2092, 2093. A. f enestrata (Cope): U M M Z 73847. A. f uliginosa Linné: CG 2802, 3086. A. leeseri Gans: CG 2803, 2804. A. manni Barbour: A M N H 41051, 41078. A. mitchelli Proctor: CG 2764. A. munoai Klappenbach: CG 2768, 2769. A. 0. occidentalis Cope: CG 1660. A. ridleyi Boulenger: CG 2501. A. silvestrii Boulenger: CG 2718. A. vermicularis Wagler: U S N M 6035. Ancylocranium s. somalicum (Scortecci) : CG 3035. Anops kingi Bell: CG 3324, 3325. Aulura anomala Barbour : CG 2766. Baikia af ricana Gray : B M 1964.253. Bipes biporus (Cope): CG 2538, 2539. B. canaliculatus Bonnaterre: C M 4321. Blanus cinereus (Valisnieri) : (Alexander, 1966). B. strauchi (Bedriaga) : (Alexander, 1966). Bronia brasiliana Gray: V M 12346861, 12346? Cadea blanoides Stejneger: MCZ 13571, 13572, 13573, 13574· C. palirostrata D ickerson : MCZ 12331, 12332, 12333, 12448, 12449, 12450, 12452, 12453, 12454. Chirindia e. ewerbecki Werner: CG 3326, 3327, 3328. Cynisca leueura (D uméril & Bibron): CG 2301. Geocalamus acutus Sternfeld: MCZ 41120. Leposternon af f ine (Boettger): V M 12374; Z M U 26267. L. boulengeri (Boett ger): B M 1956.1.3.27, 1956.1.3.28. L. crassum (Strauch): V M 12370:3, 12370:4. L. phocaena (D uméril & Bibron): U M M Z 60518; Z M U 9388. L. polystegum (D uméril): N H M B 68D ; Z M U 9808. L. scutigerum (Hemprich) : B M 1904.2.2.2; Z M U 1398. L. wucheren (Peters) : V M 12373 ; Z M U 9389. Loveridgea ionidesii (Battersby) : CG 1830, 1831. Mesobaena huebneri Mertens: C N H M 130987. Monopeltis c. capensis Smith: CG 1589, 1591. M. guentheri Boulenger: C G 3308, 3309. Rhineura f loridana (Baird) : CG 2995, 2996. Tomuropeltis pistillum (Boettger) : CG 1588. Zygaspis capensis (Peters) : CG 1587. Zygaspis quadrif rons (Thominot) : CG 1824, 1826. Trogonophidae. — Agamodon a. anguliceps Peters: CG 36120, 36129. A. compressus Mocquard: CG 3330, 10149. Diplometopon zarudnyi Nikolski : CG 1688. Pachycalamus brevis Günther: CG 2511, 2512. Trogonophis wiegmanni elegans (Gervais): CG 1897, 1899. 190 ZOOLOGISCHE MEDEDELINGEN 41 (1966) LITERATURE CITED Α . Α . , IQ66. Taxonomy Reptilia). — Copeia, in press. B E L L A I R S , A. D ' A . & G. U N D E R W O O D , Phil. Soc. 26: 193237. B A R A S H , A L . & J. H . H O O F I E N , 1956. Israel, 181 p. CAMP, C. L., 1923. Classification of ALEXANDER, and variation of Blanus strauchi (Amphisbaenia, 1951. The origin of snakes. — Biol. Rev. Camb. Reptiles of Israel. — Hakibutz Hamenchad Ltd., the lizards. — Bull. Amer. Mus. Nat. Hist. 48: 289481. D U N N , E. R., 1941. Notes on the snake genus Anomalepis. — Bull. Mus. Comp. Zool. 87: 511526. R. & J. Α . Τ Ι Η Ε Ν , Ι944 The skeletal anatomy of Liotyphlops albirostris. — J. Morph. 74: 287290. G A N S , C., i960. Studies on amphisbaenids (Amphisbaenia, Reptilia) 1. A taxonomie revision of the Trogonophinae, and a functional interpretation of the amphisbaenid adaptive pattern. — Bull. Amer. Mus. Nat. Hist. 119: 129204. G A N S , C. & A. A. A L E X A N D E R , 1962. Studies on amphisbaenids (Amphisbaenia, Reptilia). 2. On the amphisbaenids of the Antilles. — Bull. Mus. Comp. Zool. 128: 65158. G A N S , C. & R. F . L A U R E N T , 1065. IV. Snakes. — In C. G A N S , R. F . L A U R E N T & H . P A N D I T , Notes on a herpetological collection from the Somali Republic. Ann. Mus. Afrique Centr., 8vo., Sei. Zool. 134: 4970. G A N S , C. & A. M. T A U B , 1965. Segmental correlation between integument and verte bral column in typhlopids (Reptilia: Squamata). — Copeia 1965: 110111. LIST, J. C , 1956. Comparative osteology of the Typhlopidae and Leptotyphlopidae. — University of Illinois, unpublished thesis, 143 p. M C D O W E L L JR., S. B . & C. M. BOGERT, 1954. The systematic position of Lanthanotus and the affinities of the anguinomorphan lizards. — Bull. Amer. Mus. Nat. Hist. DUNN, Ε . 105: 1142. H . W., 1940. Undescribed anatomical structures and new species of reptiles and amphibians. — Ann. Mag. Nat. Hist. (11) 5: 257274. , 1965. Natural History of Snakes. — Eyre and Spottiswoode Ltd., Portsmouth, 95 p. S M A L I A N , C , 1884. Beiträge zur Anatomie der Amphisbaeniden. — Zeitschr. Wiss. Zool. 42: 126202. S T E H L I , G., 1910. Ueber die Beschuppung der Reptilien. — Jena Zeitschr. Natur. 46: PARKER, 737800. P. E., 195Ι. A systematic arrangement of the family Amphisbaenidae (Sauria). — Herpetologica 7: 113123. W I L L I A M S , E. E., 1959. The occipitovertebral joint in the burrowing snakes of the family Uropeltidae. — Breviora, Mus. Comp. Zool. 106 : ιιο. W I T T E , G. F . D E, 1962. Genera des serpents du Congo et du RuandaUrundi. — Ann. Mus. Afrique Centr., 8vo., Sei. Zool. 104: 1203. VANZOLINI,
© Copyright 2026 Paperzz