Algebra I Practice A.REI.C.6: Graphing Linear Systems 3 NAME

Algebra I Practice A.REI.C.6: Graphing Linear Systems 3
NAME:_____________________________
www.jmap.org
Graph:
3. x + y = 3
3x  y  – 7
1. x  2 y  – 8
3y  x  – 3
10
10
y
y
–10
10
x
–10
10
x
–10
[3]
–10
[1]
4. x + y = – 1
3x  y  – 7
2.
x  3y  9
10
2y  x  2
10
–10
y
y
10
x
–10
10
x
[2]
–10
[4]
–10
Algebra I Practice A.REI.C.6: Graphing Linear Systems 3
NAME:_____________________________
www.jmap.org
5. Find the solution to the system by graphing.
x y  –6
2x  y  – 6
10
7. Find the solution to the system by graphing.
xy  0
4x  y  – 5
10
y
–10
10
y
–10
10
x
–10
[5]
–10
[7]
6. Find the solution to the system by graphing.
x y  –3
3x  y  – 5
10
x
8. Use a graphing calculator to solve the system of
linear equations below by graphing. Sketch the
graph on your paper.
5x  y  4
4x  2 y  6
y

–10
y
10
x

[6]
x
–10
[8]

Algebra I Practice A.REI.C.6: Graphing Linear Systems 3
Page 1
www.jmap.org
10
10
y
–10
10
y
–10
10
x
x
–10
–10
[1]
[5] (–4, –2)
10
y
10
–10
y
10
x
–10
10
x
–10
[2]
–10
10
[6] (–2, –1)
y
10
–10
10
y
x
–10
x
–10
[3]
10
y
–10
[7] (–1, 1)
–10
10
x
[4]
10
–10
Algebra I Practice A.REI.C.6: Graphing Linear Systems 3
www.jmap.org


x

[8] (1, 1)
y
Page 2