Solving the Mystery of Chronic Pain and Depression

9/14/15 Solving the Mystery of
Chronic Pain and Depression
Nutritional Supplements for the Treatment
of Central Sensitization Syndrome
Gary Kaplan, DO, DABFP, DABPM, FAAMA
Medical Director, Kaplan Center for Integrative Medicine
Clinical Associate Professor, Georgetown University School of Medicine
Disclosures
•  Nothing to disclose
Central Sensitization Syndrome
CSS = Chronic Pain + Neuropsychiatric Condition
•  Neuroinflammatory
•  Neurodysregulatory
•  Neurodegenerative
1 9/14/15 Chronic pain and depression are
symptoms of inflammation in
the brain.
Inflammation is a result of
cumulative assaults on
the brain.
17, 50, 51
2 9/14/15 17, 50
18, 21, 23, 39, 43
3 9/14/15 50, 51
Brain Aging and Neurodegeneration
•  Microglia from aging or degenerated brains:
− Exaggerated inflammatory response to secondary and
sub threshold challenges
− Higher percentage are “stuck” in the inflammatory
phenotype
− Produce significantly more pro-inflammatory cytokines
(IL-1,IL-6, TNF)
− Produce significantly less anti-inflammatory mediators
(IL-10,BNDF,inhibitor of NF-kB)
PMC 4186766, PMID: 18026097, 25445485
Brain Aging and Neurodegeneration
“There is a strong correlation between brain aging
and neurodegeneration and redox imbalance, as
well as chronic low grade inflammation”
(Rojo et al., 2014)
PMC 4186766
4 9/14/15 Brain Aging and Neurodegeneration
•  Neurodegenerative diseases are characterized by
chronic microglial over-activation and oxidative stress. It
is now beginning to be recognized that reactive oxygen
species (ROS) produced by either microglia or the
surrounding environment not only impact neurons but
also modulate microglial activity
•  Despite its high dependence on oxidative metabolism,
the brain has low levels of antioxidants and is vulnerable
to oxidative stress
PMID: 24597893
Redox Imbalance
•  Oxidative stress:
ROS + RNS > Available antioxidants
•  ROS and RNS predominately originate from activated
inflammatory and immune cells:
− Microglia
− Mitochondria
Glutathione (GSH)
•  GSH is the main antioxidant in the CNS and it has a
crucial role in maintaining redox balance, particularly in
astrocytes and microglia
•  GSH is essential for mitochondrial survival
•  GSH level decrease with aging
PMC4186766, PMID: 24752591 PMID: 22532869 PMID: 25405315
5 9/14/15 Glutathione (GSH)
• 
• 
• 
• 
• 
• 
Crucial role in cellular signaling and antioxidant defenses
Most abundant of the endogenous antioxidants
Detoxification of ROS and RNS
Detoxification of electrophiles produced by Xenobiotic
Optimal functioning of the immune system
CNS antioxidant, neuromodulator, neurotransmitter
PMID: 24752591 PMID: 26233704 PMID: 24145751 PMID: 11111154
GSH
•  GSH depletion has marked consequences for the
homeostatic control of the immune system, oxidative
and nitrosative stress (O&NS) pathways, regulation of
energy production, and mitochondrial survival
PMID: 24752591 PMID: 22532869 PMID: 25405315
GSH Clinical Applications
•  Depletion/dysfunction plays an important role during the
onset and progression of neuropsychiatric and
neurodegenerative diseases.
•  Neuroimmune disorders:
− Depression
− Parkinson’s
− ME/CFS
− Fibromyalgia
PMID: 25405315,, 24752591 PMID: 22532869 PMID: 25405315
6 9/14/15 Oral GSH Supplementation
•  Generally poorly absorbed and poor bioavailability
•  Effects of oral glutathione supplementation on systemic
oxidative stress biomarkers in human volunteers in 2010
showed no effect
PMC 3162377
Oral GSH Dosage
•  Oral GSH at 250mg/day x 6 months
− 30-35% increase in erthrocytes, plasma and lymphocytes
− 260% increase in buccal cells
•  Oral GSH at 1000mg a day > 2X increase in natural
killer cytotoxicity
•  Baseline levels re-established 1 month after stopping the
supplement
PMID: 24791752
Liposomal GSH Supplementation
•  “Liposomal glutathione supplementation restores Th1
cytokine response to Mycobacterium tuberculosis
infection in HIV-infected individuals” (Ly et al., 2015).
•  “Glutathione supplementation improves macrophage
functions in HIV” (Morris et al., 2013).
PMID: 23409922, PMID: 26133750
7 9/14/15 Sublingual GSH Supplementation
•  A 2015 study entitled “Effects of N-acetylcysteine, oral
glutathione (GSH) and a novel sublingual form of GSH
on oxidative stress markers: A comparative crossover
study” found that:
“Overall, our results demonstrate the significant superiority
of a new sublingual form of GSH over the oral form, both in
terms of bioavailability and positive effects on oxidative
stress. Compared to NAC, better effects of the sublingual
form of GSH were also observed.”
PMID: 26262996
IV GSH Supplementation
•  “Intravenous glutathione prevents renal oxidative stress
after coronary angiography more effectively than oral Nacetylcysteine” (Saitoh et al., 2011).
•  “Randomized, double-blind, pilot evaluation of
intravenous glutathione in Parkinson's disease” (Hauser
et al., 2009).
•  “Effect of glutathione infusion on leg arterial circulation,
cutaneous microcirculation, and pain-free walking
distance in patients with peripheral obstructive arterial
disease: a randomized, double-blind, placebo-controlled
trial” (Arosio et al., 2002).
PMID: 21127883, PMID: 19230029, PMID: 12173710
GSH Supplementation Dosage
• 
• 
• 
• 
Oral 250mg QD-500mg BID
Liposomal 450mg a day
Sublingual 450mg a day
IV 1400mg QD-BID
PMID: 2479175223409922, 26133750,26262996,21127883, 19230029, 12173710
8 9/14/15 N-acetylcysteine (NAC)
• 
• 
• 
• 
Antioxidant
Precursor of L-cysteine and reduced GSH
Source of sulfhydryl group in cells
Scavenger of free radicals
PMID: 2546864
NAC and GSH
•  Glutathione = glutamate + glycine + cysteine
•  Cysteine has the lowest intracellular concentration and
therefore is the rate limiting molecule in glutathione
production
PMID: 185009594,PMC396752, PMID: 22634224
NAC and GSH
•  Questionable if glutathione can cross the BBB
•  NAC does contribute cysteine to the CNS across the
BBB
•  NAC can minimize the oxidative effect of ROS through
correcting or preventing GSH depletion
PMID: 185009594,PMC396752
9 9/14/15 NAC Clinical Applications
• 
• 
• 
• 
Major Depressive Disorder
Bipolar disorder
Addiction
Neurodegenerative Diseases
PMC3497002, PMID: 21118657
NAC Dosage
•  Oral 200-400mg
•  Anecdotal 500mg-6gms
NOTE: At very high dosages potential for toxicity
reaction
PMC3967529
Melatonin (N-acetyl-5mthoxytryptamine)
•  Hormone (Pineal gland)
•  Macrophages/Astrocyte/Microglia
•  GI melatonin from serotonin-rich enterochromaffin cells
of the GI mucosa
•  Circadian Rhythm
•  Antioxidant (ROS/RNS)
•  Immunologic functions/ Anti-inflammatory
•  Antinocioceptive
PMID:25908646 PMID: 25012620 PMC3091156
10 9/14/15 Melatonin Clinical Applications
• 
• 
• 
• 
• 
• 
Circadian sleep disorders
Psychiatric disease
Migraines
Fibromyalgia
Neuropathic pain
Neurodegenerative disease
PMC3593297 . PMID 25012620 PMC3354573 PMC4119581 PMC3949259, PMID: 25052847
Melatonin Impact on the Microglia
•  It is suggested that melatonin attenuates the release of
pro-inflammatory cytokines from microglia and the
development of neuropathic pain through the inhibition
of Ca2+ influx-mediated microglial activation
•  This results in reduction of neuroinflammatory factors
and is neuroprotective.
PMC4153058
Melatonin Impact on the Microglia
•  The impact may be indirect:
“Genetic Epigenetic and wider factors that regulate
astrocyte melatonin may then determine the nature of
microglia and wider immune cell responses at sites of
local inflammation” (Huand et al., 2014)
PMC4153058
11 9/14/15 Melatonin Other Mechanisms of
Action
•  Melatonin efficiently protects neuronal cells from Aβmediated toxicity via antioxidant and anti-amyloid
properties.
•  Melatonin not only inhibits Aβ generation, but also
arrests the formation of amyloid fibrils by a structuredependent interaction with Aβ.
PMC3949259
Melatonin Dosage
•  Anywhere from .1-100mg
PMC3949259, 354573, 3587994 PMID: 25052847
Ubiquinone (CoQ10)
•  In vivo 95% is in the reduced form Ubiquinol
•  Located in inner mitochondrial membrane
•  Transfers reducing equivalents from complexes I and II to
complex III
•  Antioxidant
•  Intermembrane CoQ10 are rate limiting in the
production of ATP
PMCID: PMC3262379
12 9/14/15 Ubiquinone (CoQ10) Functions
•  Essential for mitochondrial respiratory chain efficiency;
suggested that levels can be useful as biological marker
of mitochondrial function
•  Deficiency predisposes to apoptosis
•  Anti-inflammatory
•  Neuro-protective
•  Regulates gene expression
PMID: 22342824, 19932599, PMCID: PMC3262379
CoQ10
•  Reduced in patients with myopathy, but all forms of
deficiency show improvements after oral
supplementation
•  Oral supplementation enhanced levels in salivary cells
and blood mononuclear cells
•  Deficiency observed in patients suffering several typical
symptoms found in fibromyalgia patients
PMID: 22342824
CoQ10
•  Deficiencies due to mutations in ubiquinone biosynthetic
genes have excellent responses to oral treatment
•  Respiratory chain dysfunction and oxidative stress
correlate with severity of primary deficiency
•  Treatment restores mitochondrial dysfunction and the
mtDNA copy number, decreases oxidative stress, and
increases mitochondrial biogenesis
PMID: 19932599
13 9/14/15 CoQ10 Deficiencies
• 
• 
• 
• 
Autosomal recessive mutations
Ageing related oxidative stress
Carcinogenesis processes
Statin treatment
PMID: 24389208
CoQ10 Clinical Applications
• 
• 
• 
• 
• 
Neurodegenerative/Neuromuscular disorders
Fibromyalgia
ME/CFS
Migraines
Depression
PMID: 24389208, PMCID: PMC3934515, PMID: 23761046,PMID: 20017723, PMID: 11972582
CoQ10 Dosage
•  300 mg/day, divided in 3 doses (Fibromyalgia patients)
•  300-2,400mg/day in Parkinson’s dx
PMID: 22342824, PMCID: PMC3262379
14 9/14/15 Ginkgo Biloba / EGb761
•  In the United States, EGb761 is one of the most
commonly used over the counter nutraceuticals for
memory enhancement and overall wellbeing.
− 24% ginkgo flavonol glycosides
− 6% terpene lactones
PMCID: PMC3568207
Ginkgo Biloba / EGb761
•  Extract from Gingko biloba tree leaves
•  Main components are quercetin, kaempferol, and
isorhamnetin
•  Antioxidant
•  Immunomodulator
•  Improves vascular flow
PMID 26021285, PMID 23983777
Ginkgo Biloba / EGb761
•  Neuroprotectant with multiple mechanisms of action:
− Downregulates microglia
− Preservation of mitochondrial ATP synthesis
− Inhibition of apoptosis
− Suppression of hypoxia-induced membrane
deterioration in the brain
PMID 26021285, PMID 23983777
15 9/14/15 Ginkgo Biloba Clinical Applications
• 
• 
• 
• 
• 
Neurodegenerative Dx
Ischemic stroke
Neuropsychiatric disease (MDD, ADHD, Anxiety)
Neuropathic pain
Migraine
PMID: 26059355, PMID: 26059355. PMID: 17763047,
PMID: 26021285, PMID: 24867850, PMCID: PMC3084934
Ginkgo Biloba Dosages
•  120-600mg/day
CAUTION: Do not take with Ibuprofen or
anticoagulants
Phenolic Compounds
•  Phytochemical – Bioactive nonessential nutrients from
plants
•  In the plant essential for reproduction, growth and
defense (pathogens, parasites, predators)
•  Abundant in fruits and vegetables
PMID: 20043255
16 9/14/15 Phenolic Compounds Properties
Antioxidant activity
Scavenging free radicals
Induction of cell-cycle arrest and apoptosis
Inhibition of signal transduction pathways including
nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κ B), activator protein-1 (AP-1), mitogenactivated protein kinases (MAPK)
•  Modulation of enzyme activities in detoxification,
oxidation, and reduction
•  Anti-inflammatory properties by stimulation of the
immune system
•  Neuroprotective
• 
• 
• 
• 
PMID: 20043255
Phenolic Compounds
• 
• 
• 
• 
• 
Quercetin
Curcumin
Stilbeniod (Resveratrol)
Flavonoids
Coumarin
PMID: 20043255
Quercetin
•  Bioflavonoid found in vegetables, fruits, herbs, leaves,
seeds, red wine, tea, coffee, beer, and several medicinal
plants
•  Converted from rutin in bloodstream
•  Inhibits cytokine release from human mast cells
PMID: 24152430, PMID: 16569342
17 9/14/15 Quercetin
•  Cell-protective
−  Antioxidant
−  Antinociceptive
−  Anti-inflammatory
•  Analgesic
•  Suppresses oxidative stress and inflammatory response
in microglia
PMID: 24152430, PMID: 25744406 , PMID: 24095694
Quercetin Clinical Applications
• 
• 
• 
• 
Neuropathic pain
? Fibromyalgia
Neurodegenerative dx
Depression
PMCID: PMC3835704, PMID: 16569342, 24188794,
PMCID:14499317, 26146123 PMCID: PMC4192974,PMC4192974
Quercetin Dosage
•  12.5-25mg/kg
•  1,136-2,272mg/day
18 9/14/15 Curcumin
•  Curcuminoid
•  The yellow pigment in Turmeric and yellow mustard
PMID: 20043255
Curcumin
•  Mediates anti-inflammatory effects through
downregulation of inflammatory transcription factors,
enzymes, and cytokines
•  Promotes microglia anti-inflammatory phenotype
•  Blocks expression and signaling of TNFα
•  Anti-inflammatory effects mediated through suppression
of transcription factor NF-κB
•  May inhibit NO production
PMID: 19110321, PMID: 17199240, PMC3535097
Curcumin Properties
• 
• 
• 
• 
Antibacterial
Antiproliferative
Anti-inflammatory
Antiviral
PMID: 19110321, PMID: 17199240, PMC3535097
19 9/14/15 Curcumin Clinical Applications
• 
• 
• 
• 
Neurodegenerative dx
OA
RA
Therapeutic value against most chronic diseases
including:
− neoplastic
− neurological
− cardiovascular
− pulmonary
− Metabolic
− psychological diseases
PMCID: PMC3535097, PMID: 22427192
Curcumin Dosage
80-500mg/day
•  Pairing curcumin with Black Pepper (Piperine)
•  Curcumin phytosomes complexed with
Phosphatidylcholine (Meriva or BCM-95)
•  Curcumin nanoparticles (Theracumin)
•  Water-soluble curcumin (Polyvinylpyrrolidone)
PMID: 17199240
Resveratrol
•  Cardioprotective phytoalexin found in red wine –
“French Paradox”
•  Mechanism by which range of beneficial effects is still
unclear
•  Effective inhibitor of cyclooxygenase activity in vivo
•  Main stilbene generated in considerable amounts in the
skin of grapes, raspberries, mulberries, pistachios and
peanuts
PMID: 18684235, PMID: 21688389
20 9/14/15 Resveratrol Pharmacokinetics
•  Well absorbed after oral administration, but has low
bioavailability
•  Rapidly metabolized in intestine and liver
•  Caution with interpretation of In Vitro vs In Vivo studies
PMID: 18684235 , PMID: 21688389, PMCID: PMC4499410
Resveratrol Properties
• 
• 
• 
• 
• 
• 
• 
Anti-carcinogenic
Antioxidant (ROS)
Anti-proliferative
Pro-apoptotic
Anti-inflammatory
Analgesic
Anti-aging
PMID: 18684235 , PMID: 18684235
Resveratrol Clinical Applications
•  Neuropathy
•  Neuroprotection stroke, TBI, spinal cord injuries
•  Adjuvant with morphine to restore the antinociceptive
effect of morphine
•  Modulation of the hippocampus plasticity and
suppression of chronic low-level inflammation resulting
in improvement in age related mood and memory
function
•  Down regulates microglial activation
•  Neuropsychiatric disorders
PMID: 26277384, PMID: 26078221, PMID: 25627672 PMID: 25727173 , PMID: 18684235 , PMID: 24717328
21 9/14/15 Resveratrol Dosage
•  Health benefits found from dosing between 5mg-5gms
(some supplements containing compounds to enhance
action, others containing pure resveratrol)
PMID: 21688389
Omega-3 Fatty Acids
• 
• 
• 
• 
• 
Polyunsaturated fatty acids (n-3 PUFAs)
Not synthesized in the body
Eicosapentaenoicacid (EPA) – fatty fish
Docosahexaenoic acid (DHA) – fatty fish
Alpha-linoleic acid (ALA) – flax seed, canola, soybean,
walnuts, leafy green vegetables
PMID: 26243838
Omega-3 Fatty Acids Actions
• 
• 
• 
• 
• 
Anti-neuroinflammatory (CNS and peripheral)
Crucial in normal neuronal development
Anti-oxidant
Neuroprotective
Regulatory function on growth factors and neuronal
plasticity
PMID: 26036964, PMID: 25889069, PMID: 25815252, PMID: 25468770, PMID: 24735929
22 9/14/15 Omega-3 Fatty Acids
“The integrity of dendritic spines, the postsynaptic
component of excitatory synapses, dictates synaptic
efficacy. Interestingly, dysgenesis of dendritic spines has
been found in many neurological diseases associated with
ω-3 polyunsaturated fatty acid (PUFA) deficiency and
cognitive decline. In contrast, supplemented ω-3 PUFAs,
such as docosahexaenoic acid (DHA), can partly
correct spine defect.”
(Chang et al., 2015)
PMID: 25889069
Omega-3 Fatty Acids Therapeutic
• 
• 
• 
• 
• 
Neuropsychiatric conditions
Neuroprotective post stroke and TBI
Neuropathic pain
Migraines
Neurodegenerative disease
PMID: 26243838, 21721919, 20090445, 24770761, 23886520, 26036964, 26260547, PMCID: PMC440491
Omega-3 Fatty Acids Dosage
•  ≥ two 3.5oz (oily) fish servings/week
•  1.5-9gms/day EPA/DHA
PMID: 24694001
23 9/14/15 Vitamin D (25-hydroxyvitamin D)
•  Produced in the skin after exposure to sunlight
•  Can be obtained through food
•  Important for calcium homeostasis and maintenance of
skeletal health
•  Conflicting results from studies on inverse relationship
between deficiency and self-reporting pain
•  Debate on what constitutes Vitamin D deficiency
PMID 25946084, PMID 17599737, PMID 24438771
Vitamin D (25-hydroxyvitamin D)
•  Immunomodulatory effects on inflammatory arthritis
•  Inversely associated with activity, severity, and functional
disability of disease in patients with early inflammatory
polyarthritis (IP)
•  Low levels result in heightened central sensitivity, nonspecific musculoskeletal pain, chronic widespread pain,
fibromyalgia, low back pain, headache, and lumbar spinal
stenosis
PMID: 17599737, PMID 2473075
Vitamin D Clinical Applications
•  Neuropsychiatric disorders
•  Neurodegenerative disease
PMID: 22211682, PMCID: PMC4008710, PMID: 25713056
24 9/14/15 Vitamin D (Calcifediol)
•  Low serum levels especially common in patients with
severe pain and fibromyalgia syndrome (FMS)
PMID: 24438771
Vitamin D Dosage
•  Each 10-ng/ml increase in 25(OH)D à decrease in
DAS28 score and CRP level
•  Each 25 nmol/L decrease in 25(OH)D à increase in pain
intensity
•  IOM: 600 IUs (800 à 70+)
•  Recommendation may be higher without adequate sun
exposure
PMID 17599737, PMID 2473075, PMID 25946084
Vitamin D Blood Levels
•  Normal Vitamin D 25-hydroxy level is 30-100ng/ml
•  I believe ideal level is 50-60ng/ml
25 9/14/15 My Recommendations
• 
• 
• 
• 
• 
• 
• 
• 
Omega-3 fatty acids – 1.5-9gms/day
Vitamin D blood level – 50-60ng/ml
Liposomal glutathione – Readisorb .5-1tps/day
NAC – 600mg TID
CoQ10 – 100-300mg TID
Ginkgo extract – 240-600mg
Curcumin – Meriva-SR 200mg QD-BID
Trans-resveratrol – 125mg
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 29, 32, 33, 34, 35, 36
I kindly thank you
for your attention.
Gary Kaplan, DO, DABFP, DABPM, FAAMA
Medical Director, Kaplan Center for Integrative Medicine
Clinical Associate Professor, Georgetown University
School of Medicine
THE KAPLAN CENTER
For Integrative Medicine
Experts in relieving chronic pain & illness
6829  Elm Street, Suite 300
McLean,VA 22101
703-532-4892
www.kaplanclinic.com
26 9/14/15 Glutathione References
1.  Antioxid Redox Signal. 2014 Oct 20;21(12):1766-801. doi: 10.1089/ars.2013.5745. Epub 2014 May 5.Redox control of microglial function:
molecular mechanisms and functional significanceRojo AI1, McBean G, Cindric M, Egea J, López MG, Rada P, Zarkovic N, Cuadrado A. PMID:
24597893
2. Eur J Pain. 2006 Oct;10(7):573-9. Epub 2005 Oct 7.Role of oxidative stress in pathophysiology of peripheral neuropathy and modulation by
N-acetyl-L-cysteine in rats.Naik AK1, Tandan SK, Dudhgaonkar SP, Jadhav SH, Kataria M, Prakash VR, Kumar D. PMID: 16214382
3. J Neurochem. 2010 Jan;112(1):77-91. doi: 10.1111/j.1471-4159.2009.06435.x. Epub 2009 Oct 15.
N-acetylcysteine inhibits hyperglycemia-induced oxidative stress and apoptosis markers in diabetic neuropathy.
Kamboj SS1,Vasishta RK, Sandhir R. PMID: 19840221
4. Antioxidant responses and cellular adjustments to oxidative stress Cristina Espinosa-Dieza,Verónica Miguela, Daniela Mennerichb, Thomas Kietzmannb,
Patricia Sánchez-Pérezc, Susana Cadenasc, Santiago Lamasa, , doi:10.1016/j.redox.2015.07.008 PMID: 26233704
5. Targeting brain cells with glutathione-modulated nanoliposomes: in vitro and in vivo study.
Salem HF, Ahmed SM, Hassaballah AE, Omar MM.
Drug Des Devel Ther. 2015 Jul 20;9:3705-27. doi: 10.2147/DDDT.S85302. eCollection 2015.
PMID: 26229435
6. Curr Opin Clin Nutr Metab Care. 2015 Jan;18(1):89-95. doi: 10.1097/MCO.0000000000000134.Glutathione redox imbalance in brain disorders.
Gu F1, Chauhan V, Chauhan A. PMID: 25405315
7. Int J Mol Sci. 2013 Oct 18;14(10):21021-44. doi: 10.3390/ijms141021021.Impaired glutathione synthesis in neurodegeneration.
Aoyama K1, Nakaki T. PMID: 24145751
8. Dev Neurosci. 2000 Sep-Dec;22(5-6):384-92.Microglial cells in culture express a prominent glutathione system for the defense against
reactive oxygen species.Hirrlinger J1, Gutterer JM, Kussmaul L, Hamprecht B, Dringen R. PMID: 11111154
9. Curr Opin Clin Nutr Metab Care. 2015 Jan;18(1):89-95. doi: 10.1097/MCO.0000000000000134.Glutathione redox imbalance in brain disorders.
Gu F1, Chauhan V, Chauhan A. PMID: 25405315
10. Mol Neurobiol. 2014 Dec;50(3):1059-84. doi: 10.1007/s12035-014-8705-x. Epub 2014 Apr 22.The glutathione system: a new drug target in
neuroimmune disorders.Morris G1, Anderson G, Dean O, Berk M, Galecki P, Martin-Subero M, Maes M. PMID: 24752591
11. PLoS One. 2012;7(4):e35677. doi: 10.1371/journal.pone.0035677. Epub 2012 Apr 19.Oxidative stress correlates with headache symptoms in
fibromyalgia: coenzyme Q₁₀ effect on clinical improvement.
Cordero MD1, Cano-García FJ, Alcocer-Gómez E, De Miguel M, Sánchez-Alcázar JA. PMID: 22532869
12. Nutrients. 2012 Oct; 4(10): 1399–1440.Published online 2012 Oct 9. doi: 10.3390/nu4101399
PMCID: PMC3497002Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases
William M. Johnson,1,2 Amy L. Wilson-Delfosse,1 and John. J. Mieyal1,2,*
Glutathione References
13. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and
neurodegenerative disease. Norden DM1, Muccigrosso MM1, Godbout JP2
Neuropharmacology. 2015 Sep;96(Pt A):29-41. doi: 10.1016/j.neuropharm.2014.10.028. Epub 2014 Nov 13. PMID 25445485
14. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Norden DM1, Godbout JP.
Neuropathol Appl Neurobiol. 2013 Feb;39(1):19-34. doi: 10.1111/j.1365-2990.2012.01306.x. PMID 23039106.
15. Randomized controlled trial of oral glutathione supplementation on body stores of glutathione.
Richie JP Jr1, Nichenametla S, Neidig W, Calcagnotto A, Haley JS, Schell TD, Muscat JE. Eur J Nutr. 2015 Mar;54(2):251-63. doi:
10.1007/s00394-014-0706-z. Epub 2014 May 5 PMID: 24791752
16. Liposomal Glutathione Supplementation Restores TH1 Cytokine Response to Mycobacterium tuberculosis
Infection in HIV-Infected Individuals.
Ly J1,2, Lagman M1,2, Saing T1, Singh MK1,2, Tudela EV1,2, Morris D2, Anderson J2, Daliva J2, Ochoa C3, Patel N3, Pearce D4,
Venketaraman V J Interferon Cytokine Res. 2015 Jul 2. PMID: 26133750
17. Glutathione supplementation improves macrophage functions in HIV.
Morris D1, Guerra C, Khurasany M, Guilford F, Saviola B, Huang Y,Venketaraman VJ Interferon Cytokine Res. 2013 May;33(5):270-9.
doi: 10.1089/jir.2012.0103. Epub 2013 Feb 14 PMID: 23409922
18. Allen J, Bradley RD. Effects of Oral Glutathione Supplementation on Systemic Oxidative Stress Biomarkers in Human
Volunteers. Journal of Alternative and Complementary Medicine. 2011;17(9):827-833. doi:10.1089/acm.2010.0716.
19. Schmitt B,Vicenzi M, Garrel C, Denis FM. Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual
form of GSH on oxidative stress markers: A comparative crossover study. Redox Biol. 2015 Jul 29;6:198-205. doi:
10.1016/j.redox. 2015.07.012. PMID: 26262996
Glutathione References
20. Saitoh T1, Satoh H, Nobuhara M, Machii M, Tanaka T, Ohtani H, Saotome M, Urushida T, Katoh H, Hayashi H. Intravenous
glutathione prevents renal oxidative stress after coronary angiography more effectively than oral Nacetylcysteine. Heart Vessels. 2011 Sep;26(5):465-72. doi: 10.1007/s00380-010-0078-0. PMID: 21127883
21. Hauser RA1, Lyons KE, McClain T, Carter S, Perlmutter D. Randomized, double-blind, pilot evaluation of intravenous
glutathione in Parkinson's disease. Mov Disord. 2009 May 15;24(7):979-83. doi: 10.1002/mds.22401 PMID: 19230029
22. Arosio E1, De Marchi S, Zannoni M, Prior M, Lechi A Effect of glutathione infusion on leg arterial circulation,
cutaneous microcirculation, and pain-free walking distance in patients with peripheral obstructive arterial
disease: a randomized, double-blind, placebo-controlled trial. Mayo Clin Proc. 2002 Aug;77(8):754-9 PMID: 12173710
27 9/14/15 N-acetylcysteine references
• 
• 
• 
• 
• 
• 
• 
1. Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with
hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radical Biol. Med.
1989;6:593–597. PMID: 2546864
2. Kerksick C, Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and
exercise-induced oxidative stress. J. Int. Soc. Sports Nutr. 2005;2:38–44. PMID: 18500954
3. Shahripour RB,Harrigan MR, Alexandrov AV. N-acetylcysteine (NAC) in neurological disorders:
mechanisms of action and therapeutic opportunities. Brain Behav. 2014 Mar; 4(2): 108–122.
PMCID: PMC3967529.
4. Dean O, Giorlando F, Berk M. N-acetylcysteine in psychiatry: current therapeutic evidence and potential
mechanisms of action. J Psychiatry Neurosci. 2011;36:78–86. PMID: 21118657
5. Sarris J, Mischoulon D, Schweitzer I. Adjunctive nutraceuticals with standard pharmacotherapies in
bipolar disorder: a systematic review of clinical trials. Bipolar Disord. 2011;13:454–465. PMID: 22017215
6. Johnson WM, Wilson-Delfosse AL, Mieyal JJ. Dysregulation of Glutathione Homeostasis in
Neurodegenerative Diseases. Nutrients. 2012;4(10):1399-1440. doi:10.3390/nu4101399. PMC3497002
7.Valdovinos-Flores C., Gonsebatt M.E. The role of amino acid transporters in GSH synthesis in the bloodbrain barrier and central nervous system. Neurochem. Int. 2012;61:405–414. doi: 10.1016/j.neuint.
2012.05.019 PMID: 22634224
Melatonin References
1.  Neurochirurgie. 2015 Apr-Jun;61(2-3):77-84. doi: 10.1016/j.neuchi.2015.03.002. Epub 2015 Apr 20.Melatonin: Physiological effects in
.
humans.Claustrat B1, Leston J2 PMID: 25908646
2.  CNS Neurol Disord Drug Targets. 2014;13(5):817-27.Local melatonin regulates inflammation resolution: a common factor in
neurodegenerative, psychiatric and systemic inflammatory disorders.Anderson G, Maes M1. PMID: 25012620
3. 
Neurotox Res. 2013 Apr;23(3):267-300. doi: 10.1007/s12640-012-9337-4. Epub 2012 Jun 28.Melatonin antioxidative defense: therapeutical implications for aging and
neurodegenerative processes.Pandi-Perumal SR1, BaHammam AS, Brown GM, Spence DW, Bharti VK, Kaur C, Hardeland R, Cardinali DP
4. Kostoglou-Athanassiou I. Therapeutic applications of melatonin. Therapeutic Advances in Endocrinology and Metabolism. 2013;4(1):13-24. doi:
10.1177/2042018813476084.
5. Hardeland R. Neurobiology, Pathophysiology, and Treatment of Melatonin Deficiency and Dysfunction. The Scientific World Journal. 2012;2012:640389. doi:
10.1100/2012/640389. PMCID: PMC3354573
6. De Zanette SA,Vercelino R, Laste G, et al. Melatonin analgesia is associated with improvement of the descending endogenous pain-modulating system in
fibromyalgia: a phase II, randomized, double-dummy, controlled trial. BMC Pharmacology & Toxicology. 2014;15:40. doi:10.1186/2050-6511-15-40. PMCID:
PMC4119581
7. Wong C-S, Jow G-M, Kaizaki A, Fan L-W, Tien L-T. Melatonin ameliorates brain injury induced by systemic lipopolysaccharide in neonatal rats. Neuroscience.
2014;267:147-156. doi:10.1016/j.neuroscience.2014.02.032.
8. Huang C-T, Chiang RP-Y, Chen C-L, Tsai Y-J. Sleep Deprivation Aggravates Median Nerve Injury-Induced Neuropathic Pain and Enhances Microglial
Activation by Suppressing Melatonin Secretion. Sleep. 2014;37(9):1513-1523. doi:10.5665/sleep.4002. PMCID: PMC4153058
9. De Zanette SA,Vercelino R, Laste G, et al. Melatonin analgesia is associated with improvement of the descending endogenous pain-modulating system in
fibromyalgia: a phase II, randomized, double-dummy, controlled trial. BMC Pharmacology & Toxicology. 2014;15:40. doi:10.1186/2050-6511-15-40. PMCID:
PMC4119581
10. AMA
Siah KTH, Wong RKM, Ho KY. Melatonin for the treatment of irritable bowel syndrome. World Journal of Gastroenterology :WJG. 2014;20(10):
2492-2498. doi:10.3748/wjg.v20.i10.2492.
11. Lin L, Huang Q-X,Yang S-S, Chu J, Wang J-Z, Tian Q. Melatonin in Alzheimer’s Disease. International Journal of Molecular Sciences. 2013;14(7):14575-14593.
doi:10.3390/ijms140714575.
12. De Oliveira Torres JDF, de Souza Pereira R. Which is the best choice for gastroesophageal disorders: Melatonin or proton pump inhibitors? World Journal
of Gastrointestinal Pharmacology and Therapeutics. 2010;1(5):102-106. doi:10.4292/wjgpt.v1.i5.102. PMC3091156
13. Kandil TS, Mousa AA, El-Gendy AA, Abbas AM. The potential therapeutic effect of melatonin in gastro-esophageal reflux disease. BMC Gastroenterology.
2010;10:7. doi:10.1186/1471-230X-10-7. PMC2821302
14. Di Bella G, Mascia F, Gualano L, Di Bella L. Melatonin Anticancer Effects: Review. International Journal of Molecular Sciences. 2013;14(2):2410-2430. doi:10.3390/ijms14022410.
PMC3587994
Melatonin References
15. Melatonin analgesia is associated with improvement of the descending endogenous pain-modulating system in fibromyalgia: a
phase II, randomized, double-dummy, controlled trialRandomized Controlled Trial
de Zanette SA. BMC Pharmacol Toxicol. 2014
PMID: 25052847PMCID: PMC4119581
28 9/14/15 CoQ10 References
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
Clin Biochem. 2012 Apr; 45(6): 509-11. doi: 10.1016/j.clinbiochem.2012.02.001. Epub 2012 Feb 10. Coenzyme
Q10 in salivary cells correlate with blood cells in Fibromyalgia: improvement in clinical and
biochemical parameter after oral treatment. Cordero MD1. Santos-García R, Bermejo-Jover D, SánchezDomínguez B, Jaramillo-Santo MR, Bullón P. PMID: 22342824
Nutrition. 2010 Mar; 26(3): 250-4. doi: 10.1016/j.nut.2009.08.008. Epub 2009 Nov 22. Clinical aspects of
coenzyme Q10: an update. Littarru GP1, Tiano L. PMID: 19932599.
Kones R. Mitochondrial therapy for Parkinson’s disease: Neuroprotective pharmaconutrition may be diseasemodifying. Clinical pharmacology : advances and applications. 2010;2:185-198. doi:10.2147/CPAA.S12082. PMCID:
PMC3262379
Garrido-Maraver J, Cordero MD, Oropesa-Avila M,Vega AF, de la Mata M, Pavon AD, Alcocer-Gomez E,
Calero CP, Paz MV, Alanis M, de Lavera I, Cotan D, Sanchez-Alcazar JA. Clinical applications of coenzyme
Q10. Front Biosci (Landmark Ed). 2014 Jan 1;19:619-33. PMID: 24389208
Cordero MD, Alcocer-Gómez E, Culic O, et al. NLRP3 Inflammasome Is Activated in Fibromyalgia: The Effect of
Coenzyme Q10. Antioxidants & Redox Signaling. 2014;20(8):1169-1180. doi:10.1089/ars.2013.5198. PMCID:
PMC3934515
Morris G1, Anderson G, Berk M, Maes M. Coenzyme Q10 depletion in medical and neuropsychiatric
disorders: potential repercussions and therapeutic implications. Mol Neurobiol. 2013 Dec;48(3):883-903.
doi: 10.1007/s12035-013-8477-8. Epub 2013 Jun 13.
Mancuso M1, Orsucci D,Volpi L, Calsolaro V, Siciliano G Coenzyme Q10 in neuromuscular and
neurodegenerative disorders. Curr Drug Targets. 2010 Jan;11(1):111-21. PMID: 20017723
Rozen TD, Oshinsky ML, Gebeline CA, Bradley KC,Young WB, Shechter AL, Silberstein SD. Open label trial of
coenzyme Q10 as a migraine preventive. Cephalalgia. 2002 Mar;22(2):137-41. PMID: 11972582
Ginkgo References
1.Pharmacology. 2015; 95(5-6): 293-9. Epub 2015 May 23. doi: 10.1159/000430769. EGb761 ameliorates
neuropathic pain by scavenging reactive oxygen species. Yu X1, Chen C, Ke Q, Tang H, Jou J, Fang W.
PMID: 26021285
2.Evid Based Complement Alternat Med. 2013; 2013: 423713. Epub 2013 Jul. doi: 10.1155/2013/423713. Can
medical herbs stimulate regeneration or neuroprotection and treat neurpathic pain in
chemotherapy-induced peripheral neuopathy? Schröder S, Beckmann K, Franconi G, Meyer-Hamme G,
Friedemann T, Greten HJ, Rostock M, Efferth T. PMID: 23983777
3. Ude C, Schubert-Zsilavecz M, Wurglics M. Ginkgo biloba extracts: a review of the pharmacokinetics
of the active ingredients. Clin Pharmacokinet. 2013 Sep;52(9):727-49. doi: 10.1007/s40262-013-0074-5.
PMID: 23703577
4. Nabavi SM, Habtemariam S, Daglia M, Braidy N, Loizzo MR, Tundis R, Nabavi SF. Neuroprotective Effects of
Ginkgolide B Against Ischemic Stroke: A Review of Current Literature. Curr Top Med Chem.
2015;15(21):2222-32. PMID: 26059355
5. Trebatická J, Ďuračková Z. Psychiatric Disorders and Polyphenols: Can They Be Helpful in Therapy? Oxidative
Medicine and Cellular Longevity. 2015;2015:248529. doi:10.1155/2015/248529. PMCID: PMC4477218
6. Tulsulkar J1, Shah ZA. Ginkgo biloba prevents transient global ischemia-induced delayed
hippocampal neuronal death through antioxidant and anti-inflammatory mechanism. Neurochem
Int. 2013 Jan;62(2):189-97. doi: 10.1016/j.neuint.2012.11.017. Epub 2012 Dec 7 PMCID: PMC3568207
Ginkgo References
7. Chan PC, Xia Q, Fu PP. Ginkgo biloba leave extract: biological, medicinal, and toxicological effects. J Environ Sci
Health C Environ Carcinog Ecotoxicol Rev. 2007;25:211–244. PMID: 17763047
8.Yu X, Chen C, Ke Q, Tang H, Hou J, Fang W. EGb761 Ameliorates Neuropathic Pain by Scavenging
Reactive Oxygen Species. Pharmacology. 2015;95(5-6):293-9. doi: 10.1159/000430769. Epub 2015 May 23.
PMID: 26021285
9. Taliyan R1, Sharma PLProtective effect and potential mechanism of Ginkgo biloba extract EGb 761
on STZ-induced neuropathic pain in rats. Phytother Res. 2012 Dec;26(12):1823-9. doi: 10.1002/ptr.4648.
Epub 2012 Mar 15. PMID: 22422566
10. D'Andrea G1, Cevoli S, Cologno D. Herbal therapy in migraine. Neurol Sci. 2014 May;35 Suppl
1:135-40. doi: 10.1007/s10072-014-1757-x. PMID: 24867850
11. Usai S, Grazzi L, Bussone G. Gingkolide B as migraine preventive treatment in young age: results at 1-year
follow-up. Neurological Sciences. 2011;32(Suppl 1):197-199. doi:10.1007/s10072-011-0522-7. PMCID:
PMC3084934
29 9/14/15 Quercetin Resveratrol and Curcumin
References
1.Mol Pain. 2013 Oct; 9:53. doi: 10.1186/1744-8069-9-53. The antioxidant effect of flavanoids rutin and
quercetin inhibit oxiliplatin-induced chronic painful periheral neuropathy. Azevedo MI, Pereira AF,
Nogueira RB, Rolim FE, Brito GA, Wong DV, Lima-Júnir RC, de Albuquerque RR,Vale ML1. PMID: 24152430
2 Lucas HJ1, Brauch CM, Settas L, TheoharidesFibromyalgia--new concepts of pathogenesis and
treatment. Int J Immunopathol Pharmacol. 2006 Jan-Mar;19(1):5-10. PMID: 16569342
3. Lara Gibellini, Elena Bianchini, Sara De Biasi, Milena Nasi, Andrea Cossarizza, and Marcello Pinti, “Natural
Compounds Modulating Mitochondrial Functions,” Evidence-Based Complementary and Alternative Medicine,
vol. 2015, Article ID 527209, 13 pages, 2015. doi:10.1155/2015/527209
4. Wong WT. Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation. Frontiers in Cellular
Neuroscience. 2013;7:22. doi:10.3389/fncel.2013.00022. PMCID: PMC3595516
5. Azevedo MI, Pereira AF, Nogueira RB, et al. The antioxidant effects of the flavonoids rutin and quercetin
inhibit oxaliplatin-induced chronic painful peripheral neuropathy. Molecular Pain. 2013;9:53. doi:
10.1186/1744-8069-9-53. PMCID: PMC3835704
6. Fürst R, Zündorf I. Plant-Derived Anti-Inflammatory Compounds: Hopes and Disappointments regarding the
Translation of Preclinical Knowledge into Clinical Progress. Mediators of Inflammation. 2014;2014:146832. doi:
10.1155/2014/146832. PMCID: PMC4060065
7. Huang WY, Cai YZ, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary
plants: potential use for cancer prevention. Nutr Cancer. 2010;62(1):1-20. doi:
10.1080/01635580903191585 PMID: 20043255
Quercetin References
8.. Lucas HJ, Brauch CM, Settas L, Theoharides TC. Fibromyalgia--new concepts of pathogenesis and
treatment. Int J Immunopathol Pharmacol. 2006 Jan-Mar;19(1):5-10. PMID: 16569342
9.. Inhibition of microglial activation by elderberry extracts and its phenolic components Simonyi A. Life Sci.
2015 PMI: 25744406PMCID: PMC4405485
10. Chakraborty J1, Singh R, Dutta D, Naskar A, Rajamma U, Mohanakumar KP. Quercetin improves
behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3nitropropionic acid-induced rat model of Huntington's Disease. CNS Neurosci Ther. 2014 Jan;20(1):
10-9. doi: 10.1111/cns.12189. Epub 2013 Nov 4. PMID: 24188794
11. Rinwa P1, Kumar A. Quercetin suppress microglial neuroinflammatory response and induce
antidepressent-like effect in olfactory bulbectomized rats. Neuroscience. 2013;255:86-98. doi: 10.1016/
j.neuroscience.2013.09.044. Epub 2013 Oct 1. PMID: 24095694
12. Kapoor S. Systemic alcohol-protective effects of quercetin besides its ameliorating effect on
alcohol-induced neuropathic pain. Inflammopharmacology. 2012 Oct;20(5):295. doi: 10.1007/
s10787-012-0131-y. Epub 2012 Mar 17. PMID: 22427192
13. Anjaneyulu M, Chopra K. Quercetin, a bioflavonoid, attenuates thermal hyperalgesia in a mouse
model of diabetic neuropathic pain. Prog Neuropsychopharmacol Biol Psychiatry. 2003 Sep;27(6):1001-5.
PMID: 14499317
14. Subash S, Essa MM, Al-Adawi S, Memon MA, Manivasagam T, Akbar M. Neuroprotective effects of berry fruits
on neurodegenerative diseases. Neural Regeneration Research. 2014;9(16):1557-1566. doi:
10.4103/1673-5374.139483. PMCID: PMC4192974
Curcumin References
1. 
2. 
3. 
4. 
5. 
Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic disease: an
old-age spice with modern targetsTrends Pharmacol Sci. 2009 Feb; 30(2): 85-94. doin: 10.1016/j.tips.
2009.11.002.. PMID: 19110321
Sharma S, Chopra K, Kulkarni SKPhytothe. Effect of insulin and its combination with resveratol
or curcumin in attentuation of diabetic neuropathic pain: participation of nitric oxide and
TNF-alpha.Res. 2006 Oct; 21: 278-83. doi: 10.1002/ptr.2070. PMID: 17199240
Epstein J, Sanderson IR, MacDonald TT. Curcumin as a therapeutic agent: the evidence from in vitro,
animal and human studies. British Journal of Nutrition. 2010;103(11):1545–1557. PMID: 20100380
Gupta SC, Patchva S, Aggarwal BB. Therapeutic Roles of Curcumin: Lessons Learned from Clinical Trials.
The AAPS Journal. 2013;15(1):195-218. doi:10.1208/s12248-012-9432-8. PMCID: PMC3535097
Parada E1,2,3, Buendia I1,2, Navarro E1,2, Avendaño C4, Egea J1,2,3, López MG. Microglial HO-1
induction by curcumin provides antioxidant, antineuroinflammatory, and glioprotective
effects. Mol Nutr Food Res. 2015 Jun 5. doi: 10.1002/mnfr.201500279. PMID: 26047311
30 9/14/15 Resveratrol References
1. 
2. 
3. 
4. 
5. 
6. 
Phytothe. Res. 2006 Oct; 21: 278-83. doi: 10.1002/ptr.2070. Effect of insulin and its
combination with resveratol or curcumin in attentuation of diabetic neuropathic
pain: participation of nitric oxide and TNF-alpha. Sharma S, Chopra K, Kulkarni SK. PMID:
17199240
Nat Rev Drug Discov. 2006 June; 5: 493-506. doi: 10.1038/nrd2060. Therapeutic potential of
resveratrol: the in vivo evidence. Baur JA1, Sinclair DA1. PMID: 16732220CNS
Neuroscience and Therapeutics. 2008; 14: 234-37. doi:10.1111/j.1755-5949.2008.00045.x.
Resveratrol: a natural compound with pharmacological potential in
neurodegenerative diseases. Rocha-González HI, Ambriz-Tututi M, Granados-Soto V. PMID:
18684235
Mol. Nutr. Food Res. 2011 Jun; 55(8): 1129-41. doi: 10.1002/mnfr.201100143. Resveratrol and
health – a comprehensive review of human clinical trials. Smoliga JM1, Baur JA2,
Hausenblas HA3. PMID: 21688389
Carrizzo A, Forte M, Damato A, Trimarco V, Salzano F, Bartolo M, Maciag A, Puca AA,Vecchione C.
Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food
Chem Toxicol. 2013 Nov;61:215-26. doi: 10.1016/j.fct.2013.07.021. PMID: 23872128
Lopez M1, Dempsey RJ1,Vemuganti RResveratrol Neuroprotection in Stroke and
Traumatic CNS injuryNeurochem Int. 2015 Aug 12. pii: S0197-0186(15)30037-1. doi:
10.1016/j.neuint.2015.08.009PMID: 26277384
Resveratrol References
7. Gambini J, Inglés M, Olaso G, et al. Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism,
Bioavailability, and Biological Effects in Animal Models and Humans. Oxidative Medicine and Cellular Longevity.
2015;2015:837042. doi:10.1155/2015/837042. PMCID: PMC4499410
8. Tsai RY, Wang JC, Chou KY, Wong CS, Cherng CH. Resveratrol reverses morphine-induced
neuroinflammation in morphine-tolerant rats by reversal HDAC1 expression. J Formos Med Assoc.
2015 Jun 12. pii: S0929-6646(15)00180-1. doi: 10.1016/j.jfma.2015.05.010. PMID: 26078221
9. Kodali M, Parihar VK,, Hattiangady B, Mishra V, Shuai B, Shetty AK. Resveratrol prevents age-related
memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature,
and reduced glial activation. Sci Rep. 2015 Jan 28;5:8075. doi: 10.1038/srep08075. PMID: 25627672
10. Girbovan C, Plamondon H. Resveratrol downregulates type-1 glutamate transporter expression
and microglia activation in the hippocampus following cerebral ischemia reperfusion in rats. Brain
Res. 2015 May 22;1608:203-14. doi: 10.1016/j.brainres.2015.02.038. Epub 2015 Feb 26PMID: 25727173
11. Hurley LL, Akinfiresoye L, Kalejaiye O, Tizabi Y. Antidepressant effects of resveratrol in an animal
model of depression. Behav Brain Res. 2014 Jul 15;268:1-7. doi: 10.1016/j.bbr.2014.03.052. Epub 2014 Apr 6.
PMID: 24717328
Omega-3 References
1. 
2. 
3. 
4. 
5. 
6. 
Pain. 2007 May; 129(1-2): 210-23. doi: 10.1016/j.pain.2007.01.020. A meta-analysis of the analgesic
effects of omega-3 polyunsaturated fatty acid supplementation for inflammatory joint pain.
Goldberg RJ, Katz J. PMID: 17335973
Nutrition. 2014 Apr; 13:31. doi: 10.1186/1475-2891-13-31. U.S. adults are not meeting
recommended levels of omega3 fatty acid intake: results of an analysis of observational
data from NHANES 2003-2008. Papanikolaou Y1, Brooks J2, Reider C3, Fulgoni VL 4. PMID:
24694001
Trépanier MO, Hopperton KE, Orr SK, Bazinet RP. N-3 polyunsaturated fatty acids in animal
models with neuroinflammation: An update. Eur J Pharmacol. 2015 May 30. pii:
S0014-2999(15)30043-1. doi: 10.1016/j.ejphar.2015.05.045 PMID: 26036964
Chang PK, Khatchadourian A, McKinney RA, Maysinger D. Docosahexaenoic acid (DHA): a
modulator of microglia activity and dendritic spine morphology. J Neuroinflammation. 2015
Feb 22;12:34. doi: 10.1186/s12974-015-0244-5. PMID: 25889069
McNamara RK,Vannest JJ,Valentine CJ. Role of perinatal long-chain omega-3 fatty acids in
cortical circuit maturation: Mechanisms and implications for psychopathology. World J
Psychiatry. 2015 Mar 22;5(1):15-34. doi: 10.5498/wjp.v5.i1.15. PMID: 25815252
Zendedel A, Habib P, Dang J, Lammerding L, Hoffmann S, Beyer C, Slowik A. Omega-3
polyunsaturated fatty acids ameliorate neuroinflammation and mitigate ischemic stroke
damage through interactions with astrocytes and microglia. J Neuroimmunol. 2015 Jan
15;278:200-11. doi: 10.1016/j.jneuroim.2014.11.007. Epub 2014 Nov 14. PMID: 25468770
31 9/14/15 Omega-3 References
• 
• 
• 
• 
• 
• 
7. Madore C, Nadjar A, Delpech JC, Sere A, Aubert A, Portal C, Joffre C, Layé S. Nutritional n-3 PUFAs
deficiency during perinatal periods alters brain innate immune system and neuronal
plasticity-associated genes. Brain Behav Immun. 2014 Oct;41:22-31. doi: 10.1016/j.bbi.2014.03.021.
Epub 2014 Apr 13. PMID: 24735929
8. Kuan-Pin Su,Yutaka Matsuoka, and Chi-Un Pae. Omega-3 Polyunsaturated Fatty Acids in Prevention of
Mood and Anxiety Disorders. Clinical Psychopharmacology and Neuroscience 2015; 13(2): 129-137. PMID:
26243838
9. Balanzá-Martínez V1, Fries GR, Colpo GD, Silveira PP, Portella AK, Tabarés-Seisdedos R, Kapczinski F.
Therapeutic use of omega-3 fatty acids in bipolar disorder. Expert Rev Neurother. 2011 Jul;11(7):
1029-47. doi: 10.1586/ern.11.42. PMID: 21721919
10. Ko GD, Nowacki NB, Arseneau L, Eitel M, Hum A. Omega-3 fatty acids for neuropathic pain: case
series. Clin J Pain. 2010 Feb;26(2):168-72. doi: 10.1097/AJP.0b013e3181bb8533. PMID: 20090445
11. Dyuizen IV1, Manzhulo IV, Ogurtsova OS, Lamash NE, Latyshev NA, Kas'yanov SVSpecific features of
analgesic effect of docosahexaenoic acid in rats with neuropathic pain syndrome. Bull Exp Biol
Med. 2014 Mar;156(5):699-701. doi: 10.1007/s10517-014-2428-x. Epub 2014 Mar 25. PMID: 24770761
12. Ramsden CE1, Faurot KR, Zamora D, Suchindran CM, Macintosh BA, Gaylord S, Ringel A, Hibbeln JR,
Feldstein AE, Mori TA, Barden A, Lynch C, Coble R, Mas E, Palsson O, Barrow DA, Mann JDTargeted
alteration of dietary n-3 and n-6 fatty acids for the treatment of chronic headaches: a
randomized trial. Pain. 2013 Nov;154(11):2441-51. doi: 10.1016/j.pain.2013.07.028. Epub 2013 Jul 22.
PMID: 23886520
Omega 3 References
• 
• 
13.Vauzour D1, Martinsen A2, Layé S3. Neuroinflammatory processes in cognitive disorders: Is
there a role for flavonoids and n-3 polyunsaturated fatty acids in counteracting their
detrimental effects? Neurochem Int. 2015 Aug 7. pii: S0197-0186(15)30032-2. doi: 10.1016/j.neuint.
2015.08.004. PMID: 26260547
14. Dyall SC. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects
of EPA, DPA and DHA. Frontiers in Aging Neuroscience. 2015;7:52. doi:10.3389/fnagi.2015.00052. PMCID:
PMC440491
Vitamin D References
1. 
2. 
3. 
4. 
5. 
6. 
7. 
Cochrane Database Syst Rev. 2015 May 6; 5: CD007771. Vitamin D for the treatment of chronic painful
conditions in adults. Straube S1, Derry S, Strube C, Moore RA. PMID: 25946084
Arthritis Rheum. 2007 Jul; 56(7): 2143-9. Association between serum vitamin D metabolite levels and
disease activity in patients with early inflammatory polyarthritis. Patel S1, Farragher T, Berry J, Bunn D,
Silman A, Symmons D. PMID: 17599737
Pain Med. 2014 Sept; 15(9): 1609-18. doi: 10.1111/pme.12454. Epub 2014 Apr 14. Vitamin D and central
hypersensitivity in patients with chronic pain. von Känel R1, Müller-Hartmannsgruber V, Kokinogenis G,
Egloff N. PMID: 2473075
Pain Med. 2014 Feb; 155(2): 261-8. doi: 10.1016/j.pain.2013.10.002. Effects of vitamin D on patients with
fibromyalgia syndrome: a randomized placebo-controlled trial. Wepner F1, Scheuer R2, ScheutzWieser B2, Machacek P2, Pieler-Bruha E2, Cross HS3, Hahne J2, Friedrich M2.
Shaffer JA, Edmondson D, Wasson LT, et al.Vitamin D Supplementation for Depressive Symptoms: A Systematic
Review and Meta-analysis of Randomized Controlled Trials. Psychosomatic medicine. 2014;76(3):190-196. doi:
10.1097/PSY.0000000000000044. PMCID: PMC4008710
Adzemovic MZ1, Zeitelhofer M, Hochmeister S, Gustafsson SA, Jagodic M. Efficacy of vitamin D in treating
multiple sclerosis-like neuroinflammation depends on developmental stage. Exp Neurol. 2013 Nov;
249:39-48. doi: 10.1016/j.expneurol.2013.08.002. Epub 2013 Aug 13. PMID: 23954214
Patrick RP1, Ames BN1Vitamin D and the omega-3 fatty acids control serotonin synthesis and action,
part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J. 2015
Jun;29(6):2207-22. doi: 10.1096/fj.14-268342. Epub 2015 Feb 24. PMID: 25713056
32 9/14/15 References
12. Compton, W.M., Conway, K.P., Stinson, F.S., & Grant, B.F. (2006). Changes in the
prevalence of major depression and comorbid substance use disorders in the United States
between
1991-1992 and 2001-2002. American Journal of Psychiatry, 163, 2141-2147. doi:10.1176/appi.ajp.163.12.2141
13. Ellis, A., Wieseler, J., Favret, J., Johnson, K.W., Rice, K.C., Maier, S.F, … Watkins, L.R.
(2014). Systemic administration of propentofylline, ibudilast, and (+)-naltrexone each
reverses
mechanical allodynia in a novel rat model of central neuropathic pain. Journal of
Pain, 15(4), 407-421. doi:
10.1016/j.jpain.2013.12.007
14. Ericsson, M., Poston, W.S., Linder, J., Taylor, J.E., Haddock, C.K., & Foreyt, J.P. (2002).
Depression predicts disability in long-term chronic pain patients. Disability and
Rehabilitation, 24(6),
334-340. doi:10.1080/09638280110096241
15. Gameroff, M.J., & Olfsen, M. (2006). Major depressive disorder, somatic pain, and health
care costs in an urban primary care practice. Journal of Clinical Psychiatry, 67(8), 1232-1239.
doi:
10.4088/JCP.v67n0809
16. Gaskin, D.J., & Richard, P. (2012). The economic costs of pain in the United States. Journal of Pain, 13(8),
715-724. doi:10.1016/j.jpain.2012.03.009
17. Grace, P.M., Hutchinson, M.R., Maier, S.F., & Watkins, L.R. (2014). Pathological pain and
the neuroimmune interface. Nature Reviews Immunology, 14, 217–231. doi:10.1038/nri3621
References
18. Graeber, M.B. (2010). Changing face of microglia. Science, 330(6005), 783-788.
19. Graeber, M.B., & Streit, W.J. (2009). Microglia: Biology and pathology. Acta
Neuropathologica, 119(1), 89-105. doi:10.1007/s00401-009-0622-0
doi:10.1126/science.1190929
20. Greenberg, P.E., Kessler, R.C., Birnbaum, H.G., Leong, S.A., Lowe, S.W., Berglund, P.A.,
& Corey-Lisle, P.K. (2003). The economic burden of depression in the United States: How
did it
change between 1990 and 2000? Journal of Clinical Psychiatry, 64(12), 1465-1475.
doi:10.4088/jcp.v64n1211
21. Hinwood, M., Morandini, J., Day, T.A., & Walker, F.R. (2012). Evidence that microglia
mediate the neurobiological effects of chronic psychological stress on the medial prefrontal
cortex.
Cerebral Cortex, 22(6), 1442-1454. doi:10.1093/cercor/bhr229
22. Institute of Medicine of the National Academies. (2011). Relieving pain in America: A
blueprint for transforming prevention, care, education, and research. Retrieved from
http://www.iom.edu/~/
media/Files/Report%20Files/2011/Relieving-Pain-in-America- A-Blueprint-for-Transforming-Prevention-CareEducation- Research/Pain%20Research%202011%20Report%20Brief.pdf
23. Jurgens, H.A., & Johnson, R.W. (2012). Dysregulated neuronal-microglial cross-talk during
aging, stress and inflammation. Experimental Neurology, 233(1), 40-48. doi:10.1016/j.expneurol.2010.11.014
References
24. Kessler, R.C., Merikangas, K.R., & Wang, P.S. (2007). Prevalence, comorbidity and service
utilization for mood disorders in the United States at the beginning of the twenty-first century. Annual
Review of Clinical Psychology, 3, 137-158.
doi:10.1146/annurev.clinpsy.3.022806.091444
25. Kraft, A.D., & Harry, G.J. (2011). Features of microglia and neuroinflammation relevant to
environmental exposure and neurotoxicity. International Journal of Environmental Research &
Public
Health, 8(7), 2980-3018. doi:10.3390/ijerph8072980
26. Maletic,V., & Raison, C.L. (2009). Neurobiology of depression, fibromyalgia and
neuropathic pain. Frontiers in Bioscience, 14, 5291-5338. doi:10.2741/3598
27. Manchikanti, L., Singh,V., Datta, S., Cohen, S.P., & Hirsch, J.A. (2009). Comprehensive
review of epidemiology, scope, and impact of spinal pain. Pain Physician, 12, E35-E70.
PubMed PMID:
19668291
28. McBeth, J., Silman, A.J., Gupta, A., Chiu,Y.H., Ray, D., Morriss, R., … Macfarlane, G.J.
(2007). Moderation of psychosocial risk factors through dysfunction of the hypothalamicpituitaryadrenal stress axis in the onset of chronic widespread musculoskeletal pain: Findings of a population-based
prospective cohort study. Arthritis Rheum, 56(1), 360-371. doi:10.1002/art.22336
29. McClain, J.A., Morris, S.A., Deeny, M.A., Marshall, S.A., Hayes, D.M., Kiser, Z.M., &
Nixon, K. (2011). Adolescent binge alcohol exposure induces long-lasting partial activation
of
microglia. Brain Behavior Immunity, 25(Suppl 1), s120-s128. doi:10.1016/j.bbi.2011.01.006
33 9/14/15 References
37. Phillips, J.L., Batten, L.A., Aldosary, F., Tremblay, P., & Blier, P. (2012). Brain-volume
increase with sustained remission in patients with treatment-resistant unipolar depression.
Journal of
Clinical Psychiatry, 73(5), 625-631. doi:10.4088/JCP.11m06865
38. Pleis, J.R., Lucas, J.W., & Ward, B.W. (2009). Summary health statistics for U.S. adults:
National Health Interview Survey, 2008 DHHS Publication No. (PHS)2010–1570. National Center for
Health Statistics.Vital Health Stat 10(242). Retrieved from
http://www.cdc.gov/nchs/data/series/sr_10/
sr10_242.pdf
39. Püntener, U., Booth, S.G., Perry,V.H., & Teeling, J.L. (2012). Long-term impact of systemic
bacterial infection on the cerebral vasculature and microglia. Journal of Neuroinflammation,
9, 146. doi:
10.1186/1742-2094-9-146
40. Purkayastha, S., & Cai, D. (2013). Disruption of neurogenesis by hypothalamic inflammation
in obesity or aging. Reviews in Endocrine and Metabolic Disorders, 14(4), 351-356.
doi:10.1007/
s11154-013-9279-z
41. Robinson, M.E., Craggs, J.G., Price, D.D., Perlstein, W.M., & Staud, R. (2011). Gray matter volumes of painrelated brain areas are decreased in fibromyalgia syndrome. Journal of Pain, 12(4), 436-443. doi:10.1016/j.jpain.
2010.10.003
42. Robinson, M.J., Edwards, S.E., Iyengar, S., Bymaster, F., Clark, M., & Katon, W. (2009).
Depression and pain. Frontiers in Bioscience, 14, 5031-5051. doi:10.2741/3585
References
43. Rock, R.B., Gekker, G., Hu, S., Sheng, W.S., Cheeran, M., Lokensgard, J.R., & Peterson,
P.K. (2004). Role of microglia in central nervous system infections. Clinical Microbiology Reviews, 17(4),
942-964. doi:10.1128/CMR.17.4.942-964.2004
44. Sinikallio, S., Aalto, T., Airaksinen, O., Lehto, S.M., Kröger, H., & Viinamäki, H. (2011).
Depression is associated with a poorer outcome of lumbar spinal stenosis surgery: A twoyear
prospective follow-up study. Spine (Phila Pa 1976), 36(8), 677-682.
doi:10.1097/BRS.0b013e3181dcaf4a
45. Somera-Molina, K.C., Nair, S.,Van Eldik, L.J., Watterson, D.M., & Wainwright, M.S.
(2009). Enhanced microglial activation and proinflammatory cytokine upregulation are linked to
increased susceptibility to seizures and neurologic injury in a 'two-hit' seizure
model. Brain Research, 1282,
162-172. doi:10.1016/j.brainres.2009.05.073
46. Starr, C.J., Sawaki, L., Wittenberg, G.F., Burdette, J.H., Oshiro,Y., Quevedo, A.S., &
Coghill, R.C. (2009). Roles of the insular cortex in the modulation of pain: Insights from brain lesions.
Journal of Neuroscience, 29(9), 2684-2694.
doi:10.1523/JNEUROSCI.5173-08.2009
47. Ulrich-Lai,Y.M., Xie, W., Meij, J.T., Dolgas, C.M.,Yu, L., & Herman, J.P. (2006). Limbic
and HPA axis function in an animal model of chronic neuropathic pain. Physiology &
Behavior, 88(1-2),
67-76. doi:10.1016/j.physbeh.2006.03.012
References
48. Wager-Smith, K., & Markou, A. (2011). Depression: A repair response to stress-induced
neuronal microdamage that can grade into a chronic neuroinflammatory condition?
Neuroscience &
Biobehavioral Reviews, 35(3), 742-764. doi:10.1016/j.neubiorev.2010.09.010
49. Wake, H., Moorhouse, A.J., Jinno, S., Kohsaka, S., & Nabekura, J. (2009). Resting microglia
directly monitor the functional state of synapses in vivo and determine the fate of ischemic
terminals.
Journal of Neuroscience, 29(13), 3974-3980. doi:10.1523/JNEUROSCI.4363-08.2009
50. Walker, A.K., Kavelaars, A., Heijnen, C.J., & Dantzer, R. (2014). Neuroinflammation and
comorbidity of pain and depression. Pharmacological Reviews, 66(1), 80-101. doi:10.1124/pr.113.008144
51. Walters, E.T. (2014). Neuroinflammatory contributions to pain after SCI: Roles for central
glial mechanisms and nociceptor-mediated host defense. Experimental Neurology, 258, 48-61.
doi:
10.1016/j.expneurol.2014.02.001
52. Zhang, F., Liu, J., & Shi, J.S. (2010). Anti-inflammatory activities of resveratrol in the brain:
role of resveratrol in microglial activation. European Journal of Pharmacology, 636(1-3), 1-7.
doi:
10.1016/j.ejphar.2010.03.043
34 9/14/15 References for Hypoxia Slides
A.  Feng J, Chen BY. Prevalence and incidence of hypertension in obstructive sleep apnea patients and the
relationship between obstructive sleep apnea and its confounders. Chin Med J (Engl) 2009;122:1464–1468.
B.  Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective.
Am J Respir Crit Care Med. 2002;165:1217–1239
C.  Lumeng JC, Chervin RD. Epidemiology of pediatric obstructive sleep apnea. Proc Am Thorac Soc.
2008;5:242–252.
D.  Intermittent hypoxia from obstructive sleep apnea may cause neuronal impairment and dysfunction in
central nervous system: the potential roles played by microglia.Yang Q, Wang Y, Feng J, Cao J, Chen B.
E.  Neuropsychiatr Dis Treat. 2013;9:1077-86. doi: 10.2147/NDT.S49868. Epub 2013 Aug 5.PMID: 23950649
F.  Intermittent hypoxia from obstructive sleep apnea may cause neuronal impairment and dysfunction in
central nervous system: the potential roles played by microglia.Yang Q, Wang Y, Feng J, Cao J, Chen
B.Neuropsychiatr Dis Treat. 2013;9:1077-86. doi: 10.2147/NDT.S49868. Epub 2013 Aug 5.PMID: 23950649
G.  J Headache Pain. 2015 Apr 21;16:34. doi: 10.1186/s10194-015-0517-5.Tension-type headache associated with
obstructive sleep apnea: a nationwide population-based study.Chiu YC1, Hu HY2,3, Lee FP4,5, Huang HM6,7.
H.  Eur J Intern Med. 2015 Jun 28. pii: S0953-6205(15)00217-4. doi: 10.1016/j.ejim.2015.06.010.
I.  Fibromyalgia is frequent in obstructive sleep apnea and responds to CPAP therapy. Marvisi M1, Balzarini L2,
Mancini C2, Ramponi S2, Marvisi C2. PMID: 26129987
J.  Fibromyalgia: gender differences and sleep-disordered breathing.
K.  Prados G, Miró E, Martínez MP, Sánchez AI, López S, Sáez G.
L.  Clin Exp Rheumatol. 2013 Nov-Dec;31(6 Suppl 79):S102-10. Epub 2013 Dec 2.PMID: 24373368
M.  J Clin Sleep Med. 2014 Aug 15;10(8):847-52. doi: 10.5664/jcsm.3950.
N.  Sleep disordered breathing and chronic respiratory failure in patients with chronic pain on long term opioid
therapy.
O.  Rose AR1, Catcheside PG1, McEvoy RD1, Paul D1, Kapur D2, Peak E1,Vakulin A3, Antic NA1.
References
1. Chakraborty, J., Singh, R., Dutta, D., Naskar, A., Rajamma, U., & Mohanakumar, K.P. (2014) Quercetin improves
behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic
acid-induced rat model of Huntington's Disease. CNS Neuroscience & Therapeutics, 20(1), 10-19. doi:10.1111/cns.
12189
2. Chan, P.C., Xia, Q., & Fu, P.P. (2007). Ginkgo biloba leave extract: Biological, medicinal, and toxicological effects.
Journal of Environmental Science and Health Part C Environmental Carcinogenesis & Ecotoxicology Reviews, 25(3),
211-244.
doi:10.1080/10590500701569414
3. Cho, I.H. (2012). Effects of panax ginseng in neurodegenerative diseases. Journal of Ginseng Research, 36(4),
342-353. doi:10.5142/jgr.2012.36.4.342
4. Ding, K., Wang, H., Xu, J., Lu, X., Zhang, L., & Zhu, L. (2014). Melatonin reduced microglial activation and
alleviated neuroinflammation induced neuron degeneration in experimental traumatic brain injury: Possible
involvement of mTOR pathway. Neurochemistry International, 76, 23-31. doi:10.1016/j.neuint.2014.06.015
5. Djukic, M., Onken, M.L., Schütze, S., Redlich, S., Götz, A., Hanisch, U.K., … Nau, R. (2014).Vitamin d deficiency
reduces the immune response, phagocytosis rate, and intracellular killing rate of microglial cells. Infection and
Immunity, 82(6), 2585-2594. doi:10.1128/IAI.01814-14
6. EGb 761: Ginkgo biloba extract, ginkor. (2003). Drugs in R & D, 4(3), 188-193. PubMed PMID: 12757407
References
7. Grace, P.M., Rolan, P.E., & Hutchinson, M.R. (2011). Peripheral immune contributions to the maintenance of
central glial activation underlying neuropathic pain. Brain, Behavior, and Immunity, 25(7), 1322-1332. doi:10.1016/
j.bbi.2011.04.003
8. Hardeland, R. (2010). Melatonin metabolism in the central nervous system. Current Neuropharmacology, 8(3),
168-181. doi:10.2174/157015910792246244
9. Hjorth, E., & Freund-Levi,Y. (2012). Immunomodulation of microglia by docosahexaenoic acid and
eicosapentaenoic acid. Current Opinion in Clinical Nutrition and Metabolic Care, 15(2), 134- 143. doi:10.1097/MCO.
0b013e32835017cc
10. Hjorth, E., Zhu, M., Toro,V.C.,Vedin, I., Palmblad, J., Cederholm, T., … Schultzberg, M. (2013). Omega-3 fatty
acids enhance phagocytosis of Alzheimer's disease-related amyloid-β42 by human microglia and decrease
inflammatory markers. Journal of Alzheimer's Disease, 35(4), 697-713. doi:10.3233/JAD-130131
11. Huang, C.T., Chiang, R.P., Chen, C.L., & Tsai,Y.J. (2014). Sleep deprivation aggravates median nerve injuryinduced neuropathic pain and enhances microglial activation by suppressing melatonin secretion. SLEEP. 37(9).
doi:10.5665/sleep.4002
12. Kao, T.K., Ou,Y.C., Raung, S.L., Lai, C.Y., Liao, S.L., & Chen, C.J. (2010). Inhibition of nitric oxide production by
quercetin in endotoxin/cytokine-stimulated microglia. Life Sciences, 86(9-10), 315-321. doi:10.1016/j.lfs.
2009.12.014
35 9/14/15 References
13. Karlstetter, M., Lippe, E., Walczak,Y., Moehle, C., Aslanidis, A., Mirza, M., & Langmann, T. (2011). Curcumin is a
potent modulator of microglial gene expression and migration. Journal of Neuroinflammation, 8(1), 125. doi:
10.1186/1742-2094-8-125
14. Kim, H.J., Kim, P., & Shin, C.Y. (2013). A comprehensive review of the therapeutic and pharmacological effects
of ginseng and ginsenosides in central nervous system. Journal of Ginseng Research, 37(1), 8-29. doi:10.5142/jgr.
2013.37.8
15. Landry, R.P., Jacobs,V.L., Romero-Sandoval, E.A., & DeLeo, J.A. (2012). Propentofylline, a CNS glial modulator
does not decrease pain in post-herpetic neuralgia patients: In vitro evidence for differential responses in human
and rodent microglia and macrophages. Experimental Neurology, 234(2), 340-350. doi:10.1016/j.expneurol.
2011.11.006
16. Leonard, B., & Maes, M. (2012). Mechanistic explanations how cell-mediated immune activation, inflammation
and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the
pathophysiology of unipolar depression. Neuroscience & Biobehavioral Reviews, 36(2), 764-785. doi:10.1016/
j.neubiorev.2011.12.005
17. Lu,Y., Zhao, L.X., Cao, D.L., & Gao,Y.J. (2013). Spinal injection of docosahexaenoic acid attenuates
carrageenan-induced inflammatory pain through inhibition of microglia-mediated neuroinflammation in the
spinal cord. Neuroscience, 241, 22-31. doi:10.1016/j.neuroscience.2013.03.003
References
18. Magrone, T., Marzulli, G., & Jirillo, E. (2012). Immunopathogenesis of neurodegenerative diseases: Current
therapeutic models of neuroprotection with special reference to natural products. Current Pharmaceutical Design,
18(1), 34-42. doi:10.2174/138161212798919057
19. Milligan, E.D., & Watkins, L.R. (2009). Pathological and protective roles of glia in chronic pain. Nature Reviews
Neuroscience, 10(1), 23-36. doi:10.1038/nrn2533
20. Morris, G., Anderson, G., Dean, O., Berk, M., Galecki, P., Martin-Subero, M., & Maes, M. (2014). The glutathione
system: A new drug target in neuroimmune disorders. Molecular Neurobiology. doi:10.1007/s12035-014-8705-x
21. Nikodemova, M., Duncan, I.D., & Watters, J.J. (2006). Minocycline exerts inhibitory effects on multiple
mitogen-activated protein kinases and IkappaBalpha degradation in a stimulus- specific manner in microglia.
Journal of Neurochemistry, 96(2), 314-323. doi:10.1111/j.1471-4159.2005.03520.x
22. Park, S.M., Choi, M.S., Sohn, N.W., & Shin, J.W. (2012). Ginsenoside Rg3 attenuates microglia activation
following systemic lipopolysaccharide treatment in mice. Biological & Pharmaceutical Bulletin, 35(9), 1546-1552.
PubMed PMID: 22975507
23. Pettit, L.K.,Varsanyi, C., Tadros, J., & Vassiliou, E. (2013). Modulating the Inflammatory properties of activated
microglia with docosahexaenoic acid and aspirin. Lipids in Health and Disease, 12, 16. doi:
10.1186/1476-511X-12-16
References
24. Pu, H., Guo,Y., Zhang, W., Huang, L., Wang, G., Liou, A.K., … Gao,Y. (2013). Omega-3 polyunsaturated fatty
acid supplementation improves neurologic recovery and attenuates white matter injury after experimental
traumatic brain injury. Journal of Cerebral Blood Flow & Metabolism, 33(9), 1474-1484. doi:10.1038/jcbfm.2013.108
25. Rinwa, P., & Kumar, A. (2013). Quercetin suppress microglial neuroinflammatory response and induce
antidepressent-like effect in olfactory bulbectomized rats. Neuroscience, 255, 86-98. doi:10.1016/j.neuroscience.
2013.09.044
26. Robertson, N. J., Faulkner, S., Fleiss, B., Bainbridge, A., Andorka, C., Price, D., … Raivich, G. (2013). Melatonin
augments hypothermic neuroprotection in a perinatal asphyxia model. Brain, 136(1), 90-105. doi:10.1093/brain/
aws285
27. Rojo, A.I., McBean, G., Cindric, M., Egea, J., López, M.G., Rada, P., … Cuadrado, A. (2014). Redox control of
microglial function: Molecular mechanisms and functional significance. Antioxidants & Redox Signaling. doi:10.1089/
ars.2013.5745
28. Rolan, P., Hutchinson, M., & Johnson, K. (2009). Ibudilast: A review of its pharmacology, efficacy and safety in
respiratory and neurological disease. Expert Opinion on Pharmacotherapy, 10(17), 2897-2904. doi:
10.1517/14656560903426189
29. Roth, T.L., Nayak, D., Atanasijevic, T., Koretsky, A.P., Latour, L.L., & McGavern, D.B. (2014). Transcranial
amelioration of inflammation and cell death after brain injury. Nature, 505(7482), 223–228. doi:10.1038/
nature12808
36 9/14/15 References
30. Sumracki, N.M., Hutchinson, M.R., Gentgall, M., Briggs, N., Williams, D.B., & Rolan, P. (2012). The effects of
pregabalin and the glial attenuator minocycline on the response to intradermal capsaicin in patients with
unilateral sciatica. PLOS ONE, 7(6), e38525. doi:10.1371/journal.pone.0038525
31. Sweitzer, S., & De Leo, J. (2011). Propentofylline: glial modulation, neuroprotection, and alleviation of chronic
pain. Handbook of Experimental Pharmacology, 200, 235-250. doi:10.1007/978-3-642- 13443-2_8
32. Tulsulkar, J., & Shah, Z.A. (2013). Ginkgo biloba prevents transient global ischemia-induced delayed
hippocampal neuronal death through antioxidant and anti-inflammatory mechanism. Neurochemistry International,
62(2), 189-197. doi:10.1016/j.neuint.2012.11.017
33. Wang, J.Y., Wen, L.L., Huang,Y.N., Chen,Y.T., & Ku, M.C. (2006). Dual effects of antioxidants in
neurodegeneration: Direct neuroprotection against oxidative stress and indirect protection via suppression of
gliamediated inflammation. Current Pharmaceutical Design, 12(27), 3521-3533. doi:10.2174/138161206778343109
34. Wong, C.S., Jow, G.M., Kaizaki, A., Fan, L.W., & Tien, L.T. (2014). Melatonin ameliorates brain injury induced by
systemic lipopolysaccharide in neonatal rats. Neuroscience, 267, 147-156. doi:10.1016/j.neuroscience.2014.02.032
35.Yang, Z., Zhao, T., Zou,Y., Zhang, J.H., & Feng, H. (2014). Curcumin inhibits microglia inflammation and confers
neuroprotection in intracerebral hemorrhage. Immunology Letters, 160(1), 89-95. doi:10.1016/j.imlet.2014.03.005 References
36. Zhang, F., Liu, J., & Shi, J.S. (2010). Anti-inflammatory activities of resveratrol in the brain: Role of resveratrol in
microglial activation. European Journal of Pharmacology, 636(1-3), 1-7. doi:10.1016/j.ejphar.2010.03.043
37. Recep Keşli, Cem Gökçen, Ufuk Buluğ,Yüksel Terzi (2014). Investigation of the relation between anaerobic
bacteria genus clostridium and late-onset autism etiology in children. J Immunoassay Immunochem. 35(1):101-9.
doi: 10.1080/15321819.2013.792834.
37. Keşli R, Gökçen C, Buluğ U, Terzi Y. J Immunoassay Immunochem. 2014;35(1):101-9.
doi: 10.1080/15321819.2013.792834. PMID: 24063620
38. Adapted by permission from Macmillan Publishers Ltd: Nature Reviews Neuroscience, copyright (October
2012)
37