Math 2300: Calculus II Integrals: The Big Picture (solutions) For each of these integrals, determine a strategy for evaluating. Don’t evaluate them, just figure out which technique of integration will work, including what substitutions you will use. Z p 1. x 9 − x2 dx Set u = 9 − x2 so 21 du = xdx. Then Z Z p 1√ 2 u du x 9 − x dx = 2 1 2 = · u3/2 + C 2 3 1 = (9 − x2 )3/2 + C. 3 Z 2. x2 p 9 − x2 dx This is a trig substitution problem. Set x = 3 sin(ϑ), so dx = 3 cos(ϑ)dϑ. Then Z Z p 2 2 x 9 − x dx = 9 sin2 (ϑ) · 3 cos(ϑ) · 3 cos(ϑ) dϑ Z = 81 sin2 (ϑ) cos2 (ϑ) dϑ Z 81 = (1 − cos2 (2ϑ)) dϑ 4 Z 81 = sin2 (2ϑ) dϑ 4 Z 81 = (1 − cos(4ϑ)) dϑ 8 81 81 = ϑ− sin(4ϑ) + C 8 32 81 81 sin(2ϑ) cos(2ϑ) + C = ϑ− 8 16 81 81 = ϑ− sin(ϑ) cos(ϑ)(1 − 2 sin2 (ϑ)) + C 8 8 81 1 p = arcsin(x/3) − x 9 − x2 (9 − 2x2 ) + C. 8 8 Z 3. sin6 (x) cos2 (x) dx This is a trigonometric integral with multiple applications of the power reduction formulae for sine and cosine. The solution is extremely lengthy, but otherwise not any different from the above solution. 1 Math 2300: Calculus II Z 4. Integrals: The Big Picture (solutions) sin5 (x) cos2 (x) dx This is a trigonometric integral with a u-substitution. First, rewrite it as Z (1 − cos2 (x))2 cos2 (x) sin(x) dx. Let u = cos(x), so −du = sin(x)dx. Then Z Z 2 2 2 (1 − cos (x)) cos (x) sin(x) dx = −(1 − u2 )2 u2 du Z = (−u2 + 2u4 − u6 ) du 1 2 1 = − u3 + u5 − u7 + C 3 5 7 2 1 1 = − cos3 (x) + cos5 (x) − cos7 (x) + C. 3 5 7 Z 5. 3 dx x2 + 5x + 4 This is a partial fractions problem. Factoring the denominator, we have 3 A B = + , (x + 4)(x + 1) x+4 x+1 so by clearing the denominators in the above equation, we have 3 = A(x + 1) + B(x + 4). Setting x = −4 yields 3 = −3A, so A = −1. Setting x = −1 yields 3 = 3B, so B = 1. Thus, Z Z Z 3 1 1 dx = dx − dx 2 x + 5x + 4 x+1 x+4 = ln|x + 1| − ln|x + 4| + C. Z 6. 3 dx + 6x + 9 This looks like a partial fractions problem, but it is not. Factoring the denominator yields Z Z 3 3 dx = dx 2 x + 6x + 9 (x + 3)2 x2 Set u = x + 3, so du = dx. Then Z = 3u−2 du = −3u−1 + C = −3(x + 3)−1 + C. 2 Math 2300: Calculus II Integrals: The Big Picture (solutions) Z 7. arcsin(x) dx This is an integration by parts problem. Set u = arcsin(x) and dv = dx. Then 1 du = √1−x dx and v = x. Then 2 Z Z x dx arcsin(x) dx = x arcsin(x) − √ 1 − x2 Set u = 1 − x2 , so − 21 du = xdx. Then Z 1 1 √ du = x arcsin(x) + 2 u √ = x arcsin(x) + u + C p = x arcsin(x) + 1 − x2 + C. Z arctan(x) dx 1 + x2 This is a u-substitution problem. Set u = arctan(x), so du = Z Z arctan(x) dx = u du 1 + x2 1 = u2 + C 2 1 = (arctan(x))2 + C. 2 Z √ 9. x x + 2 dx 8. 1 1+x2 dx. Then This is a clever u-substitution. Set u = x + 2 so du = dx and x = u − 2. Then Z Z √ √ x x + 2 dx = (u − 2) u du Z = (u3/2 − 2u1/2 ) du 2 4 = u5/2 − u3/2 + C 5 3 2 4 = (x + 2)5/2 − (x + 2)3/2 + C. 5 3 Z 10. √ (x + 2) x dx We have Z √ Z (x + 2) x dx = (x3/2 + 2x1/2 ) dx 2 4 = x5/2 + x3/2 + C 5 3 3 Math 2300: Calculus II Integrals: The Big Picture (solutions) ex dx 4 + e2x This is a u-substitution and a formula from the table of integrals. Set u = ex , so du = ex dx, and note that e2x = (ex )2 . Then Z Z 1 ex dx = du 2x 4+e 4 + u2 1 = arctan(u/2) + C 2 1 = arctan(ex /2) + C. 2 Z 1 dx 12. x ln(x) This is a u-substitution problem. Set u = ln(x), so du = x1 dx. Then Z Z 1 1 dx = du x ln(x) u = ln|u| + C Z 11. = ln|ln(x)| + C. Z 13. x2 cos(5x) dx This is a double integration by parts. For the first application, set u = x2 and dv = cos(5x) dx, so du = 2x dx and v = 51 sin(5x). Then Z Z x2 2 x2 cos(5x) dx = sin(5x) − x sin(5x) dx. 5 5 For the integral on the right hand side, we must use integration by parts again, this time with u = x and dv = sin(5x) dx. Then du = dx and v = − 15 cos(5x). Hence, Z Z x2 2 x 1 x2 cos(5x) dx = sin(5x) − − cos(5x) + cos(5x) dx 5 5 5 5 Z 2 x 2x 2 = sin(5x) + cos(5x) − cos(5x) dx 5 25 25 x2 2x 2 = sin(5x) + cos(5x) − sin(5x) + C. 5 25 125 Z 2 x +1 14. dx x Break the fraction up and integrate directly: Z 2 Z x +1 1 dx = x+ dx x x 1 = x2 + ln|x| + C. 2 4 Math 2300: Calculus II Integrals: The Big Picture (solutions) Z 15. x+5 dx x2 + 4 Break the fraction up, and we have two integrals. The first is u-substitution with u = x2 + 4 (so du = 2x dx), while the second integral is a formula from the table of integrals. Z Z Z x+1 x 5 dx = dx + dx 2 2 2 x +4 x +4 x +4 Z 1 1 5 = du + arctan(x/2) + C 2 u 2 1 5 = ln|u| + arctan(x/2) + C 2 2 1 5 = ln(x2 + 4) + arctan(x/2) + C. 2 2 Z 16. tan4 (x) sec2 (x) dx This is a u-substitution trig integral. Set u = tan(x), so du = sec2 (x) dx. Then Z Z tan4 (x) sec2 (x) dx = u4 du 1 = u5 + C 5 1 = tan5 (x) + C. 5 5
© Copyright 2026 Paperzz