PreCalculus Class Notes CT4 Transformations of Graphs Fathom: Polynomial Transformations exploration Vertical and Horizontal Shifts Original Graph Vertical shift up Horizontal shift right Horizontal shift left Example Shift the graph of y = |x| to the right 2 units and then downward 4 units. Write the new equation. y = |x| y= y= Example Find an equation that shifts the graph of f ( x ) = units. 1 2 x − 4 x + 6 to the left 8 units and upwards 4 2 Reflection of Graphs Across the x- and y-axes Example For the representation of f, graph the reflection (1) across the x-axis and (2) across the y-axis. The graph of f is the graph determined by the table. across the x-axis across the y-axis Vertical Stretching and Shrinking y= x y= y=2 x 1 x 2 Horizontal Stretching and Shrinking f ( x ) = x2 − 4 x x 0 2 4 y 0 4 0 2 ⎛1 ⎞ ⎛1 ⎞ f ( x) = ⎜ x ⎟ − 4⎜ x ⎟ ⎝2 ⎠ ⎝2 ⎠ f ( x) = (2x) − 4 (2x) 2 x y x y Example: Sketch the graph of each equation and rewrite the table. y = f ( x) Transformation (a > 0) y = 3 f ( x) Description ⎛1 ⎞ y = f ⎜ x⎟ ⎝2 ⎠ Example Graph and Equation y = f ( x + a) y = f ( x − a) Horizontal translation a units ( x + a ) translates graph left y y = f(x + a) y = f(x – a) ( x − a ) translates graph right y = f(x) x y = f ( x) + a y = f ( x) − a y Vertical translation a units + a translates graph up – a translates graph down y = f(x) + a y = f(x) y = f(x) – a x y = f (−x) Reflection over the y-axis y x y = f(–x) y = − f ( x) Reflection over the x-axis y = f(x) y y = f(x) x y = –f(x) y = af ( x ) y Vertical dilation by a factor of a y = af(x) y = f(x) x ⎛x⎞ y= f ⎜ ⎟ ⎝a⎠ Horizontal dilation by a factor of a y y = f(x) ⎛x⎞ y= f⎜ ⎟ ⎝a⎠ x
© Copyright 2026 Paperzz