HW 5 - Due Sep 26, Wed 1. Find the general solution (a) y 00 + 2y 0 − 3y = 0 • r2 + 2r − 3 = 0, (r + 3)(r − 1) = 0, r = −3, 1 • y = C1 e−3x + C2 ex (b) 2y 00 − 3y 0 + y = 0 • 2r2 − 3r + 1 = 0, (2r − 1)(r − 1) = 0, 1 r = ,1 2 • y = C1 e1/2x + C2 ex (c) y 00 − 2y 0 = 0 • r2 − 2r = 0, r(r − 2) = 0, r = 0, 2 • y = C1 e0x + C2 e2x = C1 + C2 e2x (d) 6y 00 − y 0 − y = 0 • 6r2 − r − 1 = 0, (3r + 1)(2r − 1) = 0, 1 1 r=− , 3 2 • y = C1 e−1/3x + C2 e1/2x 2. Solve the initial value problem and describes the behavior of the solution as x increases (a) 3y 00 + y 0 − 4y = 0, • 3r2 + r − 4 = 0, y(0) = 0, y 0 (0) = 1 (3r + 4)(r − 1) = 0, • General solution: y = C1 e−3/4x + C2 ex 3 • y 0 = − C1 e−3/4x + C2 ex 4 • 0 → x, 0 → y, 0 = C1 + C2 3 • 0 → x, 1 → y 0 , 1 = − C1 + C2 4 2 2 • C1 = − , C2 = 3 3 2 −3/4x 2 x • y=− e + e 3 3 • lim y = ∞ x→∞ 1 3 r = − ,1 4 (b) 4y 00 − y = 0, • • • • • • • • 00 y(−2) = 1, y 0 (−2) = −1 1 1 4r2 − 1 = 0, r2 = , r = ± 4 2 y = C1 e1/2x + C2 e−1/2x 1 1 y 0 = C1 e1/2x − C2 e−1/2x 2 2 −2 → x, 1 → y, C1 e−1 + C2 e1 = 1 1 1 −2 → x, −1 → y 0 , C1 e−1 − C2 e1 = −1 2 2 3 −1 C1 = −e, C2 = e 2 3 −1 −1/2x 3 1/2x y = −e · e + e ·e = −e1/2x+1 + e−1/2x−1 2 2 lim y = −∞ x→∞ 0 (c) y + 4y + 3y = 0, y(0) = 2, y 0 (0) = −1 r2 + 4r + 3 = 0, (r + 3)(r + 1) = 0, r = −3, −1 y = C1 e−3x + C2 e−x y 0 = −3C1 e−3x − C2 e−x 0 → x, 2 → y, C1 + C2 = 2 0 → x, −1 → y 0 , −3C1 − C2 = −1 1 5 • C1 = − , C2 = 2 2 1 −3x 5 −x • y=− e + e 2 2 1 5 • lim y = − + = 2 x→∞ 2 2 • • • • • 3. Determine the longest interval in which the given initial value problem has a unique solution. Do not attempt to find the solution. (a) ty 00 + 3y = t, y(1) = 1, y 0 (1) = 2 3 • y 00 + y = 1 t 3 • Domain of is t 6= 0, or (−∞, 0) ∪ (0, ∞) t • Domain of 1 is (−∞, ∞) • 1 ∈ (0, ∞), so the longest interval is (0, ∞) (b) t(t − 4)y 00 + 3ty 0 + 4y = 2, y(3) = 0, y 0 (3) = −1 3t 4 2 • y 00 + + = t(t − 4) t(t − 4) t(t − 4) 2 • the longest interval of p(t), q(t) and g(t) is t 6= 0 and t 6= 4 or (−∞, 0) ∪ (0, 4) ∪ (4, ∞) • 3 ∈ (0, 4), so the longest interval is (0, 4) (c) y 00 + (cos t)y 0 + 3(ln |t|)y = 0, • • • • y(1) = 0, y 0 (1) = 1 Domain of cos t is (−∞, ∞) Domain of ln |t| is t 6= 0 or (−∞, 0) ∪ (0, ∞). the overlap is (−∞, 0) ∪ (0, ∞). 1 ∈ (0, ∞), so the longest interval is (0, ∞) 4. Show that if y = φ(t) is a solution of the differential equation y 00 +p(t)y 0 +q(t)y = g(t), where g(t) 6= 0, then y = Cφ(t), C 6= 1 is not a solution. And if g(t) = 0, then y = Cφ(t) is a solution. • cφ → y, cφ00 + cp(t)φ0 + cq(t)φ = g(t). • since φ is a solution, φ00 + p(t)φ0 + q(t)φ = g(t), • so we have cg(t) = g(t), ⇒ c = 1. ↔ 5. Find the Wronskian without solve the equaiton (a) t2 y 00 − t(t + 2)y 0 + (t + 2)y = 0 t(t + 2) 0 t + 2 y + 2 y=0 • y 00 − t2 t t(t + 2) t+2 • p(t) = = t2Z t Z 2 • p(t)dt = 1 + dt = t + 2 ln t t • W (t) = Ce− R p(t)dt = Ce−t−2 ln t = C et t2 (b) (cos t)y 00 + (sin t)y 0 − ty = 0 sin t 0 t • y 00 + y − y=0 cos t cos t sin t • p(t) = cos t Z Z Z 1 sin t • p(t)dt = dt = − d cos t = − ln(cos t) cos t cos t R • W (t) = Ce− p(t)dt = Celn(cos t) = C cos t (c) x2 y 00 + xy 0 + (x2 − k 2 )y = 0, • y 00 + Bessel’s equation x 0 x2 − k 2 y + =0 x2 x2 3 • p(x) = 1 x • W (x) = Ce− R 1/xdx = Ce− ln x = C x 6. If cos2 θ and 1 + cos 2θ are two particular solutions of y 00 + p(t)y 0 + q(t)y = 0, can they form a fundamental set of solutions? Explain your answer. • 1 + cos 2θ = 2 cos2 θ 2 2 cos θ 2 cos θ • W = −2 cos θ sin θ −4 cos θ sin θ cos2 θ 2 cos2 θ • and are linear dependent, so W = 0 −2 cos θ sin θ −4 cos θ sin θ • cos2 θ and 1 + cos 2θ can not form a fundamental set of solutions. 4
© Copyright 2025 Paperzz