The world leader in serving science Extraction of Depth Information from ARXPS Data John Wolstenholme Theta Probe Features X-ray monochromator with spot size from 15 µm to 400 µm Real time angle resolved XPS analysis without sample tilting 2 Theta 300XT Parallel ARXPS from 300 mm wafers 3 Microfocusing Monochromator 15 µm – 400 µm spot size 4 Geometry 5 Theta Probe 6 Collection Conditions Angular Range • 20°to 80° Parallel collection • Up to 96 channels in angle • Generally, 16 angles are used giving an angular resolution of 3.75° • Up to 112 channels in energy Parallel collection allows rapid ‘snapshot acquisition’ • Excellent for ARXPS maps • Thickness maps • Dose maps 7 Data Acquisition Binding energy • Parallel (snapshot) or scanned Angle • Always parallel Video of snapshot acquisition • SiO2 on Si Advantages of Parallel ARXPS • • • • • Fast ARXPS from small features is possible Mapping possible Analysis area is constant ARXPS from large samples 8 Attenuation Length Each data point represents a different element or transition λ ∝~ E Intensity as a function of depth • 65% of the signal from <λ • 85% from <2λ 0.5 • 95% from <3λ M. P. Seah and W.A. Dench, Surface and Interface Analysis 1 (1979) 2 9 Relative Depth Plot (RDP) Select range of bulk sensitive angles (Ibulk) Select range of more surface sensitive angles (Isurface) Ln (Isurface / I bulk) Provides qualitative species depth distribution HfO2 SiO2 Si Relative Norm. Area 0.6 0.5 O1s 0.4 0.3 Hf4f 0.2 Si2p3/2 Si2p(Ox) 0.1 0.0 30 40 50 60 Angle (°) 10 70 80 RDP – HfO2 Grown by ALD 30 Cycles ALD on thermal SiO2 Hf4f O1s Si2pOx 30 Cycles ALD on HF-last Si Si2p3 Advantages Hf4f O1s Si2pOx Si2p3 Disadvantages • Excellent for showing the ordering of the layers • Shows gross differences between samples • Does not rely on mathematical models • Does not require a knowledge of the material properties • No quantitative data • No means to interpret the differences between samples • Subtle differences not apparent 11 Thickness Measurement Equations 5 9.0 nm • Photoemission from a thin film 4 • Attenuation by a thin film • I = I0 exp(-d/λcosθ) • Where • I0 = Emission from bulk material • θ = Emission angle (with respect to sample normal) • d = Film thickness • λ = Attenuation length Silicon dioxide on silicon Plot: ln(1+R/R∞ ) • I = I0 [1-exp(-d/λcosθ)] 6.4 nm 3 4.3 nm 2 3.6 nm 2.3 nm 1 1.9 nm 0 0 0.5 • ln[1+R/ R ∞] vs. 1/cos(θ) Gradient • d/λ 12 1 1/cos(θ) 1.5 2 Thickness Measurements –Single Layer Equations 10 • I = I0 [1-exp(-d/λcosθ)] • Attenuation by a thin film • I = I0 exp(-d/λcosθ) • Where • I0 = Emission from bulk material • θ = Emission angle (with respect to sample normal) • d = Film thickness • λ = Attenuation length ARXPS Measurements (nm) • Photoemission from a thin film y = 1.077x - 0.914 8 6 4 2 0 0 For thickness calculation • ln[1+R/ R0] = d/(λA cosθ) SiO2 on Si 2 4 6 8 Ellipsometry Measurements (nm) Beware of R0 • For SiO2/Si experimental value is very different from calculated value 13 10 XPS Measurements of SiO2 Thickness Thickness (nm) 10 Comparison of ARXPS with fixed angle XPS 8 • Good agreement except at large thickness • Single angle measurement samples large angular range. 6 4 2 10 0 ARXPS Instrument 1 Single Angle Instrument 2 Single Angle Instrument 2, 2 Angles Linear (ARXPS) 20 40 60 Measured Thickness 8 80 Maximum Angle (°) ARXPS measurements • Effect of angular range upon measured thickness • Minimum angle is 23°in all cases • Highest usable maximum angle depends upon oxide thickness 6 4 2 0 0 2 4 6 Nominal Thickness (nm) 14 8 10 Multiple Overlayers 1 2 n Substrate Choose XPS transitions representing the composition of each layer Measure signals as a function of angle Determine intensity ratios • Ij(θ)/Ij+1(θ) • Ij (θ) /Isub (θ) • Ij (θ) is the XPS signal from layer j as a function of angle Fit theoretical ratios to measured ratios using layer thickness as fitting parameter Best results are obtained by finding the best fit to all of the data simultaneously 15 Layer Thickness Calculation HfO2 SiO2 Layer Thickness (nm) Si 16 HfO2 Growth on Thermal SiO2 Si 2 SiO2 1 0 0 20 ALD Cycles 40 HfO2 Thickness (ARXPS) (nm) Thickness (nm) 3 Thickness calculated from PARXPS data using multilayer thickness calculator Increasing growth rate Constant SiO2 thickness HfO2 HfO2 SiO2 2.5 2 0.15 0.1 0.05 1.5 0 0.00 0.20 0.40 1 0.5 0 0.00 2.00 4.00 Hf Coverage (RBS/1e15) 17 6.00 Thickness Measurement of SAMs Using PARXPS Measurements from 3 Alkanethiols deposited on gold • C9H19SH • C11H23SH • C16H33SH C1s S2p Au4f Layer Thickness 2.5 Acquisition Times • C 1s • Au 4f • S 2p 3 min 1 min 15 min 2 1.5 1 0.5 0 0 5 10 15 Number of Carbon Atoms 18 20 Thickness Measured as Function of Time Conditions • Angle integrated • Acquisition time per point = 1.25 min. 1.5 1.2 1.2 Thickness/nm 0.6 Duration of PARXPS Measurement 0.3 0.9 0.6 0.3 C9H19SAu 0 0 20 2 40 C12H25SAu 0 60 0 1.6 Time/min Thickness/nm Thickness/nm 0.9 20 40 60 Time/min 1.2 0.8 0.4 C16H33SAu 0 0 20 40 Time/min 19 60 ~20% Decrease in 70 minutes Thickness Map Conditions • • • • • • Sample C16H33SAu Angle integrated Snapshot 20 x 20 pixels 100 µm spot size Time per point 3 seconds Clear evidence for X-ray damage caused during ARXPS measurement 20 Thickness Measurement Layer Thickness 2.5 ARXPS can be applied to delicate samples by mapping the sample and summing the data. Only feasible with PARXPS From Map 2 1.5 1 From Static Point 0.5 0 0 5 10 15 20 Number of Carbon Atoms 21 Generation of Depth Profiles Summary of the Maximum Entropy method Start Generate Trial Profiles Use Genetic Algorithm 20000 Generations Maximum Entropy Optimisation Average 5 or 20 profiles Generate output profile 30-point profiles generated Profiles generated from angular range <62° Average 5 cycles of • 20,000 generations • Powell optimisation End 22 Sample Generate Random Profile HfO2 Al2O3 SiO2 Si 100 O1s Si2p 80 60 Hf4f 40 Si2p(O) Al2p 20 0 0 0.7 Relative Intensity (%) Atomic Concentration (%) Depth Profile Generation 2 4 Depth (nm) 0.6 O1s 0.5 0.4 Si2p 0.3 Hf4f 0.2 Al2p Si2p(O) 0.1 Tj(θ) = exp(-t/λcosθ) 0 20 40 60 Calculate Expected ARXPS Data (Beer Lambert Law) 80 Angle (°) 23 6 Depth Profile Generation (2) Determine error between observed and calculated data: Relative Intensity (%) 0.7 0.6 Calculate the entropy associated with a particular profile (the probability of finding the sample in that particular state) c S = ∑ ∑ c j,i − c 0j,i − c j,i log 0j,i c j i j,i O1s 0.5 0.4 0.3 Si2p 0.2 Hf4f Al2p Si2p(O) 0.1 cj,i is the concentration of element i in layer j Maximise the joint probability function 0 20 40 χ2 = ∑ k (I 60 Angle (°) calc k −I σ k2 Q = α S − 0. 5 χ 2 80 ) obs 2 k Repeat process to obtain most likely profile 24 Effect of Alpha on Generated, Unconstrained Profile α=0 α=3x10-8 Si0 80 O Si4+ 60 Hf 40 20 Atomic Concentration (%) 100 80 60 40 20 0 0 0 1 2 0 3 1 α=3x10-7 80 60 40 20 0 0 1 2 3 α=10-4 100 Atomic Concentration (%) 100 2 Depth (nm) Depth (nm) Atomic Concentration (%) Si Atomic Concentration (%) 100 HfO2 SiO2 3 Depth (nm) 80 60 40 20 0 0 1 2 Depth (nm) 25 3 Add Constraints and Automate Need to apply constraints to prevent chemically unreasonable solutions (analogy to spectrum peak fitting) • We know the composition of the substrate • Assume mixtures of stoichiometric components (“Fit Units”) • Examples HfO2 and SiO2 SiOxNy = (SiO2 ) a + (Si3N4) b • Non-stoichiometric components / “Free” oxygen Examine data to obtain the optimum value for ‘α’ (automated) Choose most appropriate angular range (automated) • Depends upon layer thickness 26 Use Fit Units Si Atomic Concentration (%) HfO2 SiO2 100 Si0 80 O 60 40 Si4+ Hf 20 0 0 0.5 1 1.5 Depth (nm) 27 2 Effect of Interlayer on 30 Cycle ALD Layer Grown on thin SiO2 layer Atomic Concentration (%) 100 80 O1s Si2pOxSi2p3 Hf4f Atomic Concentration (%) Hf4f Grown on HF last surface 100 Hf4f O1s Si2pO Si2p 60 40 60 40 20 0 0 0 2 Depth (nm) 28 Hf4f O1s Si2pO Si2p 80 20 0 O1s Si2pOxSi2p3 1 2 Depth (nm) 3 SiON Chemical State Profile N N 1s (Low BE) N (High BE) 405 402 399 396 Binding Energy (eV) N Si4+ O 393 Atomic Concentration (%) 100 80 O N Si0 (Low BE) 60 Si4+ 40 N 20 (High BE) (Low BE) 0 0 N 1 2 Depth (nm) (High BE) Si0 29 3 Ti/W Alloy 100 Atomic Concentration (%) W WO3 WO2 C1s W4f O1s 80 60 W4f W4f (WO3) (WO2) Ti2p (TiO2) 40 20 Ti2p W 5p3/2 0 41 39 37 35 33 31 29 27 0 Binding Energy (eV) 1 2 Depth (nm) 30 3 4 Profiles from SAMs 1-Mercapto-11-undecyl-tri(ethylene glycol) Nonanethiol C 1s 100 Au 4f 80 60 40 S 2p 20 Au 4f Concentration/% Concentration/% 100 0 80 C 1s C-O 1s 60 O 1s 40 20 S 2p 0 0 0.5 1 1.5 0 Depth/nm 1 2 Depth/nm 31 3 Nitrogen Dose and Thickness 300 mm wafer Single measurement 49-point maps Thickness Dose 32 Conclusions Angle Resolved XPS is a powerful tool for the characterisation of ultra-thin films • Layer ordering • Multiple layer thickness determination • Depth profiles Parallel ARXPS extends the capabilities of the technique • • • • Small features Large samples Mapping Larger number of angles 33 Acknowledgements Dr K Bonroy, IMEC, Belgium Dr T Conard, IMEC, Belgium Dr D Graham, Asemblon, USA Financial support of the EU-CUHKO project 34
© Copyright 2026 Paperzz