Dobzhansky-Muller Incompatibilities in Parapatry Dobzhansky-Muller Incompatibilities in Parapatry Joachim Hermisson, Claudia Bank & Reinhard Bürger Mathematics & Biology, University of Vienna Dobzhansky-Muller Incompatibilities in Parapatry Speciation due to genetic incompatibilities: allopatry secondary contact Hermann J. Muller (1890 - 1967) “DMI” AB Ab Theodosius Dobzhansky (1900-1975) aB a→A allopatric phase b→B ab ancestral population Dobzhansky-Muller Incompatibilities in Parapatry Speciation due to genetic incompatibilities: allopatry secondary contact Hermann J. Muller (1890 - 1967) “DMI” AB Ab Theodosius Dobzhansky (1900-1975) aB a→A allopatric phase b→B ab ancestral population • theory by Orr, Turelli, et al. • standard allopatric speciation model Dobzhansky-Muller Incompatibilities in Parapatry Speciation due to genetic incompatibilities: parapatry “DMI” Hermann J. Muller (1890 - 1967) AB Ab a→A parapatric phase migration m Theodosius Dobzhansky (1900-1975) aB b→B ab ancestral population Dobzhansky-Muller Incompatibilities in Parapatry Origin and maintenance of DMI‘s in parapatry When does the mechanism work? AB Ab a→A migration m ab ¾ Limiting rate of gene-flow mmax aB b→B Dobzhansky-Muller Incompatibilities in Parapatry Origin and maintenance of DMI‘s in parapatry When does the mechanism work? AB Ab a→A migration m ab aB b→B ¾ Limiting rate of gene-flow mmax • influence of ecological factors - heterogeneous selection • genetic factors - strength of incompatibility - recombination rate • evolutionary history - order of substitution events Dobzhansky-Muller Incompatibilities in Parapatry Model: 1. Haploid Continent and Island • 2 loci, 2 alleles, recomb. r A a r aB, AB ab, Ab B b • unidirectional migration a→A m island aB migration m ab b→B continent Dobzhansky-Muller Incompatibilities in Parapatry Model: 1. Haploid Continent and Island • 2 loci, 2 alleles, recomb. r A a r aB, AB ab, Ab B b • unidirectional migration a→A m • fitness scheme on island: island ecological or extrinsic selection aB migration m ab b→B continent incompatibility: intrinsic selection Dobzhansky-Muller Incompatibilities in Parapatry Model: 2. Diploid Continent and Island • 2 loci, 2 alleles, recomb. r A a r aB, AB ab, Ab B b • unidirectional migration a→A m • fitness scheme on island: island aB migration m ab b→B continent 4 incompatibility parameters γ1: double heterozygote aAbB γ2,γ3: hetero/ homo AAbB, aABB γ4: double homozygote AABB γ1 < γ2,γ3 < γ4 Dobzhansky-Muller Incompatibilities in Parapatry Evolutionary Histories “continent – island” aB, AB ab, Ab a→A island aB migration m ab b→B continent Dobzhansky-Muller Incompatibilities in Parapatry Evolutionary Histories “island – continent ” aB, AB ab, Ab a→A island aB migration m ab b→B continent “continent – island” aB, AB ab, Ab a→A island aB migration m ab b→B continent Dobzhansky-Muller Incompatibilities in Parapatry Evolutionary Histories “island – continent ” aB, AB ab, Ab a→A island aB migration m ab b→B continent “continent – continent” aB, AB ab, Ab island aB migration m Ab b→B A→a continent “continent – island” aB, AB ab, Ab a→A island aB migration m b→B continent ab “island – island” aB, AB ab, Ab a→A B→b island aB migration m aB continent Dobzhansky-Muller Incompatibilities in Parapatry Evolutionary dynamics on the island island type Ab recombinant AB x3 x4 ٭ x1 wildtype ab continuous time dynamics ? DMI = internal stable equilibrium x2 continental aB Dobzhansky-Muller Incompatibilities in Parapatry Evolutionary dynamics on the island island type Ab recombinant AB x3 x4 ٭ x1 wildtype ab continuous time dynamics ? DMI = internal stable equilibrium x2 continental aB m Dobzhansky-Muller Incompatibilities in Parapatry Evolutionary dynamics on the island secondary contact island type Ab recombinant AB x3 x4 island – continent or continent – continent continent – island or island – island continuous time dynamics ٭ x1 wildtype ab ? DMI = internal stable equilibrium x2 continental aB m Dobzhansky-Muller Incompatibilities in Parapatry Evolutionary dynamics on the island Analytical results island type Ab recombinant AB x3 x4 • equilibria and stability analysis • Lyapunov functions • limiting cases: m → 0, r → 0, D → 0 and perturbation theory & numerical analysis ٭ x1 wildtype ab ? x2 continental aB m Dobzhansky-Muller Incompatibilities in Parapatry Evolutionary dynamics on the island Analytical results island type Ab recombinant AB x3 x4 • equilibria and stability analysis • Lyapunov functions • limiting cases: m → 0, r → 0, D → 0 and perturbation theory & numerical analysis ٭ x1 wildtype ab ? x2 continental aB m Limiting migration rates mmax for stable DMI: • haploid: almost everything analytical • diploid: only limiting cases analytical, full numerical overview ¾ at most a single stable DMI, which can be globally or locally stable Dobzhansky-Muller Incompatibilities in Parapatry Results: Types of parapatric speciation 1. Neutral DMI: α = β = 0 ¾ never for m > 0, unless r = 0 • flow: Ab → ab → aB • island type Ab recombinant AB x3 x4 ٭ general proof for diploid ? x1 wildtype ab ? x2 continental aB m Dobzhansky-Muller Incompatibilities in Parapatry Results: Types of parapatric speciation 1. Neutral DMI: α = β = 0 ¾ never for m > 0, unless r = 0 • flow: Ab → ab → aB • recombinant AB x3 x4 ٭ general proof for diploid ? 2. Adaptive DMI [Schluter 2009]: a) “Ecological speciation” • • island type Ab x1 wildtype ab globally stable DMI Schluter: for local adaptation (β < 0 < α) ? x2 continental aB m Dobzhansky-Muller Incompatibilities in Parapatry Results: Types of parapatric speciation 1. Neutral DMI: α = β = 0 ¾ never for m > 0, unless r = 0 • flow: Ab → ab → aB • recombinant AB x3 x4 ٭ general proof for diploid ? 2. Adaptive DMI [Schluter 2009]: a) “Ecological speciation” • • island type Ab x1 wildtype ab globally stable DMI Schluter: for local adaptation (β < 0 < α) ? x2 continental aB m b) “Mutation order speciation” • Origin of DMI depends on mutation order: historical contingency ¾ locally stable DMI: evolves only if second substitution on continent (island – continent, continent – continent, secondary contact) • Schluter: for global adaptation (0 < α, β) Dobzhansky-Muller Incompatibilities in Parapatry Results: Fitness parameters (haploid) D = 0 (linkage equilibrium) mmax “local adaptation” β<0<α globally stable β 0 locally stable α /4 γ α mmax α /4 “global adaptation” 0 < α, β locally stable 0 α,β γ Dobzhansky-Muller Incompatibilities in Parapatry Results: Fitness parameters (haploid) D = 0 (linkage equilibrium) mmax “local adaptation” β<0<α ¾ heterogeneous selection β globally stable 0 locally stable α /4 γ α mmax α /4 “global adaptation” 0 < α, β ¾ selection against hybrids locally stable 0 α,β γ Dobzhansky-Muller Incompatibilities in Parapatry Results: Fitness parameters (haploid) D = 0 (linkage equilibrium) mmax “local adaptation” β<0<α ¾ heterogeneous selection β globally stable 0 locally stable α /4 γ α mmax α /4 “global adaptation” 0 < α, β ¾ selection against hybrids locally stable 0 α,β γ Dobzhansky-Muller Incompatibilities in Parapatry Results: Recombination & linkage (haploid) linkage r = 0; 0.001; mmax 0.003; 0.1; 100 “local adaptation” β<0<α ¾ heterogeneous selection β 0 α 0 α,β γ linkage mmax “global adaptation” 0 < α, β ¾ selection against hybrids γ Dobzhansky-Muller Incompatibilities in Parapatry Results: Diploid, recessive DMI γ1 = 0; γ2,3 = γ4 /2 mmax “local adaptation” β<0<α ¾ heterogeneous selection β 0 α γ2,3 0 α,β γ2,3 mmax “global adaptation” 0 < α, β ¾ selection against hybrids Dobzhansky-Muller Incompatibilities in Parapatry Results: Diploid, co-dominant DMI γ1 = γ4 /4; mmax γ2,3 = γ4 /2 + selection against double heterozygote F1 “local adaptation” β<0<α ¾ heterogeneous selection β 0 α γ2,3 0 α,β γ2,3 mmax “global adaptation” 0 < α, β ¾ selection against hybrids Dobzhansky-Muller Incompatibilities in Parapatry Summary & Outlook • No neutral DMI’s with gene-flow Dobzhansky-Muller Incompatibilities in Parapatry Summary & Outlook • No neutral DMI’s with gene-flow • Two mechanisms for stable DMI’s in parapatry: Heterogeneous selection - can be globally stable - weak DMI favored - tight linkage Hybrid deficiency (intrinsic) - mutation order important - strong DMI favored - loose linkage Dobzhansky-Muller Incompatibilities in Parapatry Summary & Outlook • No neutral DMI’s with gene-flow • Two mechanisms for stable DMI’s in parapatry: Heterogeneous selection - can be globally stable - weak DMI favored - tight linkage Hybrid deficiency (intrinsic) - mutation order important - strong DMI favored - loose linkage • In diploids: • costs for double heterozygotes AaBb (γ1) crucial • γ1 >> 0: DMIs due to deficient hybrids with tight linkage Dobzhansky-Muller Incompatibilities in Parapatry Summary & Outlook • No neutral DMI’s with gene-flow • Two mechanisms for stable DMI’s in parapatry: Heterogeneous selection - can be globally stable - weak DMI favored - tight linkage Hybrid deficiency (intrinsic) - mutation order important - strong DMI favored - loose linkage • In diploids: • costs for double heterozygotes AaBb (γ1) crucial • γ1 >> 0: DMIs due to deficient hybrids with tight linkage • Outlook: • two islands, X-linked DMI’s, genetic drift, … Dobzhansky-Muller Incompatibilities in Parapatry Thanks ! Claudia Bank Reinhard Bürger
© Copyright 2026 Paperzz