Tikrit Journal of Pure Science 20 (4) 2015 ISSN: 1813 - 1662 Global Conharmonic Concept Type Nearly Kahler Manifold Ali A. Shihab Department of Mathematics , college of Education for pure sciences , University of Tikrit , Tikrit , Iraq [email protected] Abstract The concept of permanence conharmonic type Nearly Kahler manifold conditions are obtained when the Nearly Kahler manifold is a manifold conharmonic constant type. Proved that the local conharmonic constancy of type Nearly Kahler manifold is equivalent to its global conharmonic constancy of type. And also proved that the Nearly Kahler manifold conharmonic constant type is a manifold of constant scalar curvature. The notion of constancy of type Nearly Kahler manifolds was introduced A.Greem ([1], [2], [3]) and has proved very useful in the study of the geometry of nearly kahler manifolds. Next nearly kahler manifolds of constant type considered various mathematicians (see. [1], [3], [4], [5], [6], [7]). Comprehensive description of Nearly Kahler manifolds of constant type was obtained V.F.Kirichenko [6]. In [6] it is shown that Nearly Kahler manifold of pointwise constant type description by the identity , where B - a function on cd Babh B hcd B ab Nearly Kahler manifold, cd . Wherein local constancy of type Nearly Kahler manifold is ab ac bd ad bc equivalent to the local constancy of its type. Moreover, the covariant constancy of structure tensors of the first and second kind it follows immediately that, the constancy of type at only one point Nearly Kahler space implies global consistency of its type. Keywords: Conharmonic concept type nearly kahler manifold, manifold concept scalar curvature. Recall the definitions Let 𝑀2𝑛 - Nearly Kahler manifold with АН structure {g, J} - Riemannian connection of the metric g. Definition 1. [3]. Nearly Kahler manifold M2n has constant type at a point рM2n if X,Y,ZT(M2n): <X,Y>=<JX,Y>=<X,Z>=0; (Here T(M2n ) Y Z J Y J Z . X Theorem 1. Nearly Kahler manifold is a manifold conharmonic constant type if and only if B abh Bhcd 1 { da Acb 3Bcb ca Adb 3Bdb 4(n 1) 1 ab cb Ada 3Bda db Aca 3Bca } c cd . 2 The proof: Let 𝑀2𝑛 - Nerely Kahler manifold. To calculate the (X, Y, Z, W) and K (X, Y, JX, JY) on the space of the associated G-structure: ˆ K X , Y , Z ,W K ijkl X iY j Z kW l K aˆbcdˆ X aˆ Y b Z cW d X tangent space 𝑀2𝑛 in рM2n.) Definition 2 [3]. Nearly Kahler -manifold having a constant type at each point, called NK-manifold of pointwise constant type. Definition 3 [3]. Nerely Kahler manifold 𝑀2𝑛 pointwise constant type is globally constant type if X,YХ(M2n): <X,Y>=<JX,Y>=0; . X Y 1 X J Y const These concepts have been summarized L. Vanhecke and Boutenom for arbitrary almost Hermitian manifolds [8]. As shown by L. Vanhecke, if the almost Hermitian manifold belongs to Nearly Kahler manifolds, these definitions are reduced to the above definitions A.Greya. It is now natural to introduce the definition of constant type, similar definitions Vanhecke, replacing the tensor R Riemann-Christoffel tensor conharmonic curvature. We recall some useful formulas, we need, is easily obtained from the first group of structural equations Nearly Kahler manifolds [6], [7]: ah ah c ahc 1) dAba dAbh Abhc Abh c Aca bc Abс ca ; (2) ad hd a ah d ad h ad h 2) dBbc Bbc h Bbc h Bhc b Bbh c ; ˆ ˆ ˆ K aˆbcˆd X aˆ Y b Z cˆW d K aˆbˆcd X aˆ Y b Z cW d K abˆcdˆ X aY b Z cW d ˆ ˆ ˆ K abˆcdˆ X aY b Z cW d K abcˆdˆ X aY b Z cˆW d ; ˆ K X , Y , JX , JY K ijkl X iY j JX k JY l K aˆbcdˆ X aˆ Y b X cY d ˆ ˆ ˆ K aˆbcˆd X aˆ Y b X cˆY d K aˆbˆcd X aˆ Y b X cY d K abˆcdˆ X aY b X cY d ˆ ˆ K abˆcˆd X aY b X cˆY d K abcˆdˆ X aY b X cˆY d . We show, ˆ K X , Y , JX , JY K X , Y , X , Y 4 K aˆbˆcd X aˆ Y b X cY d In this way,. Given the specter tensor of curvature conharmonic last equation can be written as [9]: ab K X , Y , JX , JY K X , Y , X , Y [8Bcd 2 { a Acb 3Bcb n 1 d ˆ ca Adb 3Bdb cb Ada 3Bda db Aca 3Bca }] X aˆ Y b X cY d . Since ab 8Bcd cX 2 Y 2 ab c d 4c cd X Y X aYb ab db Aca 3Bca } 4c cd , 177 2 { a Acb 3Bcb ca Adb 3Bdb cb Ada 3Bda n 1 d ie 3) dBba Bca bc Bbc ca . then Tikrit Journal of Pure Science 20 (4) 2015 B abh Bhcd ISSN: 1813 - 1662 Since, c C M dc (where, d с dc ) is a horizontal form, and dc ca a c a a therefore. Then (3) can be written as 1 { da Acb 3Bcb ca Adb 3Bdb 4(n 1) 1 ab cb Ada 3Bda db Aca 3Bca } c cd . 2 B fdh Babh cf B cfh Babh df B cdh B fbh af B cdh Bbfh bf (1) This theorem proved Theorem 2. Local conharmonic constant type Nearly Kahler manifold is equivalent to its global conharmonic constant type. The proof: We differentiate externally with regard to (2) Equation (1): (3) B fdh B c B cfh B d B cdh B f B cdh B f abh f 1 ac 4n 1 1 d 4n 1 b 1 ad 4n 1 1 c 4n 1 b abh f fbh a A A A A 1 dhg dh ac Abhg g Abh g 4n 1 1 chg ch bd Aahg g Aah g 4n 1 1 chg ch ad Abhg g Abh g 4n 1 1 dhg dh bc Aahg g Aah g 4n 1 1 cd ab сg g c g g . 2 bfh b dhg dh g Abhg Abh g Adf 3B df bf Abf 3Bbf df chg ch Aahg g Aah g Acf 3B cf af Aaf 3Baf cf chg ch g Abhg Abh g Acf 3B cf bf Abf 3Bbf cf dhg dh g Aahg Aah g Adf 3B df af Aaf 3Baf df d f 3B df bf Abf 3Bbf df c f 3B cf af Aaf 3Baf cf c f 3B cf bf Abf 3Bbf cf d f 3B df af Aaf 3Baf df The last equality can be rewritten as: 1 cd ab dc. 2 1 B fdh Babh bd Aaf 3Baf af Abd 3Bbd ad Abf 3Bbf bf Aad 3Bad cf 4 ( n 1 ) cfh 1 B Babh ac Abf 3Bbf bf Aac 3Bac bc Aaf 3Baf af Abc 3Bbc df 4(n 1) 1 B cdh B fbh bd Acf 3B cf cf Abd 3Bbd df Abc 3Bbc bc Adf 3B df 4 ( n 1) 1 B cdh Bafh ac Adf 3B df df Aac 3Bac cf Aad 3Bad ad Acf 3B cf 4 ( n 1) f a f b 1 af Abd 3Bbd bf Aad 3Bad cf bf Aac 3Bac af Abc 3Bbc df 4(n 1) 1 cf Abd 3Bbd df Abc 3Bbc af df Aac 3Bac cf Aad 3Bad bf 4(n 1) 1 dg cg cg dg dgh cgh cgh dgh ac Abgh bd Aagh ad Abgh bc Aagh h ac Abg bd Aag ad Abg bc Aag h 4n 1 1 cd ab c h h c h h , 2 which in view of (1) takes the form c fd c c cf d c cd f c cd f 1 ab f ab f fb a af b Abd 3Bbd ac Aad 3Bad bc 2 2 2 2 4(n 1) 1 Aac 3Bac bd Abc 3Bbc ad 4(n 1) 1 Abd 3Bbd ac Abc 3Bbc ad Aac 3Bac bd Aad 3Bad bc 4(n 1) 1 dg cg cg dg dgh cgh cgh dgh ac Abgh bd Aagh ad Abgh bc Aagh h ac Abg bd Aag ad Abg bc Aag h 4 n 1 1 cd ab c h h c h h , 2 and we have 1 cg dg dg cg 1) ad Abgh bc Aagh ac Abgh bd Aagh abcd c h ; 2n 1 1 2) ad Abgcgh bc Aagdgh ac Abgdgh bd Aagcgh abcd c h . 2n 1 … (4) From (4) we have 1 cg dg dg cg ad Abgh bc Aagh ac Abgh bd Aagh abcd c h ; 2n 1 1 2) ad Abgcgh bc Aagdgh ac Abgdgh bd Aagcgh abcd c h . 2n 1 1) Rolling recent last equality in the first by indices a and c, and then the indices b and d, we obtain: 178 Tikrit Journal of Pure Science 20 (4) 2015 1) ch 1 ab Aabh ; nn 1 2) c h ISSN: 1813 - 1662 1 Aababh. (5) nn 1 The proof: In particular, from (6) it follows that. From ab abh Aabh Aab 0 this and from (2: 1) it follows that Rolling equation (4), first in the indices a and d, and then the indices b and c, we get: (6) 1 1 ab h abh 1) ch nn 1 Aabh ; 2) c nn 1 ab ab c abc dA dAaa dAab Aabc Aab c Aca ac Aac ca 0 . 5 From (2: 3), we have dB dBaa Bca ac Bac ca 0 . So from the last two equations, we have that d 2dA 6dB 0 , that const . This theorem proved. Aab . Comparing (5) and (6) we find that: ch c h 0 . This theorem proved. Theorem 3. Nearly Kahler manifold conharmonic constant type is a manifold of constant scalar curvature. References 1. Gray A. Nearly Kâhler manifolds. J. Diff. Geom., 4, №3, 1970, 283-309. 2. Gray A. The structures of nearly Kähler manifolds. Ann. Math. 223 (1976), 233-248. 3. Gray A. Six dimensional almost complex manifolds defined by means of three-fold vector cross products. Tôhoku Math. J., 2, 1969, 614-620. 4. VF Kirichenko Some types of K-spaces .// Uspekhi Mat. Sciences, T.30, №3, 1975, p. 163-164. 5. VF Kirichenko Some results of the theory of kspace. 6th All-Union. Geometry. Conference on the present-day. probl. geometry. Abstracts. Vilnius, 1975, 112-115. 6. VF Kirichenko K-spaces of constant type. Sib. Mat. g., 1976, t.17, №3, 282-289. 7. VF Kirichenko K-algebra and K-spaces of constant type with indefinite metric .// Mateo. notes, 29, №2, 1981, 265-278. 8. Vanhecke L., Bouten F. Constant type for almost Hermitian manifolds .// Bull. Math. Soc. Sci. math. RSR. - 1976 (1977), v.20, №3-4, p. 252-258. 9. VF Kirichenko, Rustanov AR, Shihab A. Geometry curvature tensor conharmonic almost Hermitian manifolds .// Mat. Notes, 2011, t. 90, №1. نوع الثابت العالمي الكونهورمني لمنطوي كوهلر التقريبي علي عبد المجيد شهاب العراق، تكريت، جامعة تكريت، كلية التربية للعلوم الصرفة، قسم الرياضيات الملخص حيث تم برهان.الثابت الكونهورمني لمنطوي كوهلر التقريبي والذي يتحقق عندما منطوي كوهلر التقريبي يكون منطوي كونهورمني ذات ثابت معين وبرهن ايضا كل منطوي كوهلر.الثابت المحلي الكونهورمني من نوع المنطوي كوهلر التقريبي يكون مساوي الى نوع الثابت المحلي الكونهورمني التقريبي ذات ثابت نوع كونهورمني هو منطوي ذات ثابت منحني عددي 179
© Copyright 2026 Paperzz